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Abstract

The Abstraction and Reasoning Corpus (ARC)
benchmarks broad generalization in artificial in-
telligence, and presents a significant challenge to
existing machine learning models and program
synthesis solvers. In this work, we introduce a
Reflection System for ARC. It combines Large
Language Models (LLMs) and a program synthe-
sis solver based on a Domain Specific Language
(DSL). We analyse the base accuracy of publicly
available LLMs on ARC and demonstrate unsat-
isfactory results. We create AugARC, an aug-
mented ARC benchmark, which consistently im-
proves the performance of LLMs compared to the
normal ARC benchmark. Using augmented ARC
data, we fine-tune LLMs and observe a significant
gain in ARC accuracy after training. By utilizing
reflection, we combine LLMs and a previous DSL
solver into our Reflection System for abstraction
and reasoning. The proposed Reflection System
motivates research to advance previous ARC at-
tempts by using reflection to combine the advan-
tages of LLMs and program synthesis solvers.

1. Introduction
Incorporating abstract reasoning into machines has been an
active research topic since the 1955 Dartmouth AI workshop
(McCarthy et al., 2006). Despite the significant progress
in machine learning, today’s AI systems still lack human-
level abstract reasoning (Korteling et al., 2021). Studies
have shown that digital systems are significantly inferior to
humans in terms of abstract cognitive abilities (Boden et al.,
2017; Shneiderman, 2020).

To address the gap between human intelligence and AI mod-
els, François Chollet created the Abstraction and Reasoning
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Corpus (ARC) (Chollet, 2019). ARC consists of 1000 vi-
sual tasks, that capture essential aspects of abstraction and
analogy. The ARC tasks are split into 400 for training, 400
for evaluation and 200 hidden tasks for testing. A Program
Synthesis approach from 2020 solved 40% of the complete
evaluation set (Icecuber, 2023), and a voting ensemble from
2024 achieved 40.25% (Bober-Irizar & Banerjee, 2024).

15x15Input 1 15x15Input 2 15x15Input 3 15x15Test 1

15x15Output 1 15x15Output 2 15x15Output 3

?

Task b7fb29bc

Figure 1. Visualisation of an ARC task. The test-taker is provided
with some input-output pairs as examples. The objective is to
recognise the transformation used in the given input-output pairs
and apply it to the test input grid to obtain the test output grid.

Many systems that attempt to solve the ARC test set use
heuristic search. Such models are heavily handcrafted and
designed entirely with the goal of solving ARC. Recent
attempts have tried solving ARC with Graph Abstractions
(Xu et al., 2023a) and Generalized Planning (Lei et al.,
2024). However, these two approaches have only been
tested on a subset of ARC evaluation data. Some attempts
have been made to use Large Language Models (LLMs) to
solve ARC (Xu et al., 2023b; Min, 2023; Mitchell et al.,
2023), with some of the previous publications testing LLMs
on the ARC evaluation set (Bober-Irizar & Banerjee, 2024;
Opiełka et al., 2024; Gendron et al., 2023; Lee et al., 2024b).
Nevertheless, previous studies test LLMs only on subsets of
the ARC evaluation data and do not attempt to build more
advanced systems with reflection based on several LLMs.

Hence, we aim to fully explore the abilities of base LLMs
on ARC and how those can be combined in systems with
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reflection. We introduce a new augmented ARC (AugARC)
benchmark tailored towards LLMs, which shows consis-
tently improved performance across all tested LLMs com-
pared to the normal ARC. We show the benefit of fine-tuning

LLMs on augmented ARC data. Finally, we build a Reflec-
tion System which solves 5 more evaluation tasks than a pre-
vious system that combines multiple ARC solvers (Bober-
Irizar & Banerjee, 2024).

2. AugARC: Augmented ARC for LLMs
ARC training data can be utilised to fine-tune LLMs and
improve their performance in evaluation and test sets. One
potential issue with this approach is the size of the training
set - it contains only 400 samples. Since LLMs have billions
of parameters, they usually cannot be effectively trained on
smaller datasets and instead require more samples. There-
fore, due to its small size, the ARC training dataset limits the
ability to fine-tune LLMs for improved broad generalization
and reasoning.

2.1. Augmented Training Data

To overcome the limited number of ARC training tasks, we
implement an augmentation procedure that can significantly
extend the training dataset. Our approach expands the ARC
training set by applying the following transformations:

- Rotation: clockwise rotation of each ARC grid for a
given task by 90° or 270°.

- Flipping: flips each ARC grid of a task horizontally
(along the y-axis) and vertically (along the x-axis).

- Permutations: rearranges the sequence of demonstra-
tion input-output pairs before the test input grid. We set
a threshold for the maximum number of permutations
per task to produce datasets of various sizes.

Depending on the transformations applied and the maxi-
mum number of permutations applied, the augmented ARC
training datasets vary from 2000 up to over 18 million tasks.

2.2. 3-Shot AugARC Benchmark

A key reason for the relatively scarce ARC research on
LLMs is the lack of a textual version of the benchmark. The
only benchmark suitable for LLMs that resembles Chollet’s
visual ARC (Chollet, 2019) is the AI2 Reasoning Chal-
lenge (Clark et al., 2018; Pătras et al., 2022). AI2 is a
multi-choice question answering benchmark that focuses on
assessing reasoning. Although AI2 is a more popular and
well-established reasoning benchmark for LLMs compared
to Chollet’s ARC (Chollet, 2019), the latter is more effec-

Dataset Size Max Permutations

2 000 tasks -
4 000 tasks 2
5 715 tasks 3
7 430 tasks 4
9 145 tasks 5
18 668 610 tasks All

Table 1. Size of the augmented ARC training datasets according
to the maximum number of permutations. All datasets include
90° and 270° rotations, and horizontal and vertical flipping. The
augmented datasets range in size from 2000 to 18 million tasks.

tive at evaluating broad generalization abilities due to its
hand-crafted abstract logic.

Identifying that the lack of a textual ARC benchmark is a
significant barrier for evaluating LLMs, we create the Au-
gARC Benchmark. The AugARC Benchmark provides an
easy and unified way to evaluate LLMs on 3-shot accuracy
on reasoning tasks. In AugARC, each ARC task starts with
a textual description explaining the format of the problem.
Each ARC grid is represented as a 2D matrix of numbers.

2.2.1. AUGARC INPUT TO LLMS

The first prediction is based on a normal ARC task, whereas
the second and the third ones are 90° and 270° clockwise
rotated versions of the same task. The AugARC Benchmark
is tailored for LLMs, as these models process inputs in an
auto-regressive, sequential manner. By rotating the ARC
tasks, LLMs are presented with a different sequence of
numbers (2D matrices) which contain the same abstract
logic.

2.2.2. REPRODUCING ARC SOLUTIONS FROM
AUGARC OUTPUTS

Although the second and third shot in AugARC are based
on rotated ARC tasks, the output of the LLMs can easily be
transformed back to a solution to the original ARC problem.
Once an output is generated by the LLM, it is simply rotated
back in an anticlockwise direction. In this way, AugARC
only changes the input representation of the ARC problems:
the outputs by the models are then rotated to valid ARC
solutions. This process ensures that the results with the
AugARC approach are directly comparable to previous ARC
attempts.

3. Fine-tuning LLMs on ARC tasks
Although LLMs have shown impressive capabilities, they
can sometimes hallucinate and are therefore regarded as
unreliable in reasoning tasks. One potential way to reduce

2
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4x9Input 1 5x13Input 2 5x13Input 3 6x13Input 4 5x11Test 1

4x9Output 1 5x13Output 2 5x13Output 3 6x13Output 4

?

Task 770cc55f

(a) First Shot - Normal ARC

9x4Input 1
13x5Input 2 13x5Input 3

13x6Input 4 11x5Test 1

9x4Output 1
13x5Output 2 13x5Output 3

13x6Output 4

?
Task 770cc55f

(b) Second Shot - 90° rotated ARC

9x4Input 1
13x5Input 2 13x5Input 3

13x6Input 4 11x5Test 1

9x4Output 1
13x5Output 2 13x5Output 3

13x6Output 4

?
Task 770cc55f

(c) Third Shot - 270° rotated ARC

Figure 2. Evaluation Task of the 3-shot AugARC Benchmark. The first shot is a normal ARC evaluation task, while the second and third
shots are 90° and 270° rotated. All three shots are represented as a 2D matrices of numbers, each one representing a different colour. The
figure showcases the three shots in as coloured grids for demonstration purposes.

such hallucinations and improve performance on abstract
logical tasks is to fine-tune LLMs. Due to the limited size
of the ARC training dataset (400 tasks), previous studies
have not attempted to train LLMs on ARC. Our proposed
augmentation of ARC allows us to overcome this limitation
and have sufficient ARC data to fine-tune LLMs.

For efficient training of LLMs, we use Quantized Low-
Rank Adaptation (QLoRA) with 4-bit NormalFloat (NF4)
quantization (Dettmers et al., 2024). Low-Rank Adapta-
tion constrains the update of a pre-trained weight matrix
W0 ∈ Rd×k with a low-rank decomposition W0 +∆W =
W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank
r ≪ min(d, k) (Hu et al., 2021). During training, W0 is
frozen and does not receive gradient updates, while A and B
contain trainable parameters. Both W0 and ∆W = BA are
multiplied with the same input, and their respective output
vectors are summed coordinate-wise (Hu et al., 2021).

Using QLoRA, we fine-tune LLMs on an augmented ARC
training dataset consisting of 2000 tasks 1. Due to a sig-
nificant increase in computational complexity, we avoid
fine-tuning the models on some of the bigger augmented
ARC training sets from Table 1. For the same reason, we
only train LLMs with parameters ranging from 7 to 13 bil-
lion.

4. Reflection System
A previous promising approach which solves 40.25% of
the ARC evaluation tasks combines solutions from differ-
ent ARC solvers (Bober-Irizar & Banerjee, 2024). This ap-
proach utilizes a voting ensemble of systems that “votes” for

the predictions of an LLM, a Program Synthesis solver and
a Neuro-symbolic model (Bober-Irizar & Banerjee, 2024).
The voting ensemble outperforms systems that are solely
based on Program Synthesis such as DSL Search (Icecuber,
2023).

The encouraging result of the voting ensemble motivates
further research into combining different architectures into a
complex system for enhanced ARC performance. Although
the voting ensemble achieves promising ARC accuracy, it
lacks any “intelligent” analysis of potential solutions and
instead uses a weighting algorithm (Bober-Irizar & Banerjee,
2024). In order to build upon this limitation and combine
multiple previous attempts into a new complete approach,
we propose a Reflection System for ARC.

Our approach relies on solvers that could have various archi-
tectures - for example, LLMs or Domain Specific Languages
using Program Synthesis. When predicting the correct solu-
tion to an ARC task, the Reflection System executes in two
main stages, as visualised in Figure 3.

4.1. Predictions in the Reflection System

In the first stage, each solver makes a prediction on the
given ARC task. Each solver solver independently and
cannot access the outputs of other solvers. Once a solver
has produced a prediction for the ARC task, it passes the
solution to the reflection model.
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Figure 3. Reflection System - execution on two ARC evaluation tasks. Initially, multiple solvers make independent predictions on the
task. Then, the task and the prediction are presented to the reflection model, which chooses the correct final prediction. In the example,
solver 1 is based on program synthesis (DSL Search) and solver 2 is an LLM (Claude 3 Opus). The reflection model is an LLM (GPT-4o).
Both task flows are actual demonstrations of how the Reflection System performs on ARC evaluation tasks. In both cases, the Reflection
System produces a correct final solution.

4.2. Reflection over all Prediction

The second stage of our approach is inspired by previous
studies on self-reflection (Lee et al., 2024a; Renze & Gu-
ven, 2024), in which LLMs refine their responses based on
feedback against previous outputs and, in this way, achieve
more accurate predictions. In our system, the reflection
model processes all generated predictions from all the ARC
solvers. Conditioning on the given ARC task, the reflection
model chooses the prediction from the solver that is most
likely to be correct.

4.3. Flexibility of the Reflection System

In the Reflection System, an ARC solver can be any model
including LLMs, program synthesis approaches or neuro-
symbolic models. Any number of solvers can be used, as the
reflection model can easily process the outputs of various
solvers. This makes our approach customisable, as each of
its components - the ARC solvers and the reflection model,
can easily be changed. This architectural design allows the
Reflection System to be easily tested with various ARC
solvers for finding the optimal ARC configuration.

5. Experiments
We perform all experiments on the ARC evaluation set
which consist of 400 tasks. By design, the ARC evalua-
tion set is significantly more challenging than the training
set (Chollet, 2019). The creator of ARC, François Chol-

let, emphasised that the performance of intelligent systems
should be measured by the fraction of tasks solved on the
evaluation set (Chollet, 2019). Therefore, we perform our
experiments on the evaluation set and use 3 shots per task,
as set out in the ARC design (Chollet, 2019).

To present fully reproducible results, all experiments are exe-
cuted on the complete evaluation set. Some previous solvers
have been evaluated on a subset of the ARC evaluation data,
making it difficult to understand the true performance of
the solver. Our testing approach ensures that future studies
could easily use our results for direct comparison with new
ARC solvers.

5.1. Performance on base ARC and AugARC

We start our experiments with LLMs on the base ARC
benchmark, shown in Table 2. The ARC accuracy across
7-13 billion models ranges from 5 to 9 correctly solved ARC
evaluation tasks. Bigger LLMs solve slightly more ARC
tasks, from 7 to 20 solved tasks, with Gemini Pro achieving
the highest accuracy (20).

Using the same LLMs, we evaluate the performance on Au-
gARC. For all LLMs, there is a clear accuracy improvement
on AugARC compared to base ARC. The increase varies
from 29% for Llama-2 7B up to 125% for Mixtral 8x7B,
with the majority of models achieving at least 60%.

The significant improvement in all LLMs on AugARC com-
pared to ARC suggests that changing the grid structure of
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Model ARC AugARC Increase

Llama-2 7B 5/400 7/400 29%
Mistral 7B 9/400 15/400 67%
Llama-2 13B 5/400 8/400 100%
Llama-2 70B 7/400 14/400 100%
Mixtral 8x7B 9/400 18/400 125%
Gemini Pro 20/400 33/400 65%

Table 2. Performance of LLMs on ARC and AugARC (on the
evaluation set). There is a consistent increase of the accuracy of
LLMs when using the AugARC inputs compared to using the base
ARC ones (29-125%).

the tasks for the second and third shots leads to increased
accuracy. LLMs process the ARC tasks sequentially, and
thus are directly influenced by the exact order of the grids.
Based on the results, we conclude that the proposed Au-
gARC benchmark is well suited for LLMs.

Since AugARC results are directly comparable to ARC, we
proceed to use AugARC for the remainder of our experi-
ments.

5.2. ARC accuracy across LLMs

Llama-2 7B

Mistra
l 7B

Llama-2 13B

Llama-2 70B

Mixtral 8x7B

Gemini Pro

Llama-3 8B

Mixtral-8x22B

WizardLM-2-8x22B

Llama-3 70B

Claude 3 Opus
0
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Figure 4. ARC evaluation tasks solved by LLMs. Claude 3 Opus
solves the most ARC tasks (74).

The ARC accuracy of LLMs ranges between 7 up to 74
solved tasks, as visualised in Figure 4. The best performance
of a small model is achieved by Llama-3 8B (21). Some
bigger open-source LLMs can solve more than 30 ARC
tasks, with Llama-3 70B achieving 36. The highest number
of solved ARC task, 74, is by Claude 3 Opus.

The ARC results demonstrated some variability in perfor-
mance across LLMs. Bigger models appear to be more
accurate on ARC compared to smaller ones. Most LLMs
achieve an accuracy in the range of 10-35 tasks, with the
only exception being Claude 3 Opus with 74.

5.3. Performance of Fine-tuned LLMs on ARC

To observe whether we can reduce the performance gap
between smaller and bigger LLMs on ARC, we fine-tune
the 7 and 13B models. The models are fine-tuned on the
training set only using a single Nvidia A100 80GB GPU.

The results in Table 3 show that the fine-tuned LLMs solve
between 18 and 34 ARC evaluation tasks. Training ben-
efited all the models substantially - the small fine-tuned
Llama-2 7B and 13B achieved a performance on par with
the base versions of the significantly bigger models such as
Llama-2 70B. After fine-tuning, Mistral 7B outperforms the
standard Mixtral 8x7B by 5 correct tasks. The highest result
of 34 correct solutions after fine-tuning by Llama-3 8B is
impressive, as it outperforms Gemini Pro.

Model Base Fine-tuned Increase

Llama-2 7B 7/400 21/400 200%
Mistral 7B 15/400 23/400 53%
Llama-2 13B 8/400 18/400 125%
Llama-3 8B 21/400 34/400 62%

Table 3. Results of base and fine-tuned LLMs on the ARC evalua-
tion set. The increase column shows the improvement in accuracy
from a base LLM compared to its fine-tuned version. All LLMs
consistently show improved ARC performance after fine-tuning,
ranging from 62% to 200%.

The results in Table 3 demonstrate a significant increase in
ARC performance across all fine-tuned LLMs compared
to their base versions. The accuracy improvement after
training varies between 53% in Mistral 7B up to 200% in
Llama-2 7B. While Llama-2 7B and 13B both achieve more
than 100% improvement - 125% and 200% respectively,
Mistral 7B and Llama-3 8B improved in the range of 50%
to 65%.

Our results suggest that training small LLMs on the Au-
gARC dataset consistently improves their performance. In
particular, fine-tuning smaller LLMs (7-13B parameters) is
so effective that it can lead to better ARC performance than
significantly larger base LLMs.

5.4. Solution Overlap and Gain Measure

To motivate our reflection approach to ARC, we show the
benefit of combining ARC solutions from base and fine-
tuned LLMs together with Program Synthesis solvers.

The ratio of overlapping solutions between different ARC
solvers is visualised in Figure 5a. The numbers in Figure
5a refer to the proportion of overlapping tasks solved by
the systems on the left and on the bottom. For each pair
of LLMs, there is an overlap between 0.5 and 0.9 in their
correct ARC solutions. A lower overlap can be observed
between the base LLMs and the fine-tuned ones. For ex-
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(a) Overlapping ARC tasks between the system on the left and the
one on the bottom.
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Figure 5. Overlap of solutions and gain measure between systems. The systems are ordered by how much gain they add. In (a), the overlap
ranges from 0.5 up to 0.9, with lower values between fine-tuned and base LLMs. In (b), Claude 3 Opus could add 23 new solutions to the
DSL Search, while the remaining LLMs could add between 3 and 6.

ample, a fine-tuned Mistral 7B has an overlap of only 0.52
with standard models such as Mixtral 8x22B and Llama-3
70B. The low overlap in the solutions between fine-tuned
and base LLMs indicates that training the models leads to
correct solutions to new ARC tasks, which have previously
not been solved by the base LLMs. The solution overlap
between LLMs and a Program Synthesis solver, DSL Search
(Icecuber, 2023), ranges between 0.69 and 0.9.

We also measure the gain from adding a second system when
testing the models on ARC. Figure 5b shows how much the
base systems on the left would benefit from adding the
solutions from the models at the bottom. We visualise how
much the base systems can gain from utilizing new correct
solutions from the second systems. For most LLMs, the
gain of adding the solutions from another LLM is between
3 and 24. The gain between every two LLMs is slightly
skewed by Claude 3 Opus due to its substantially better
performance than any other LLM.

The LLMs we tested solved only 3 to 6 new tasks compared
to DSL search (Icecuber, 2023). Importantly, Claude 3 Opus
could contribute 23 new correct solutions to DSL search,
leading to a substantial improvement in ARC accuracy. This
encouraging result motivates a new approach, which can
effectively combine solutions from LLMs such as Claude 3
Opus with prrogram synthesis solvers such as DSL Search
(Icecuber, 2023).

5.5. Performance of the Reflection System

We experiment with different Reflection System configura-
tions based on two or three ARC solvers and with different
reflection models. We always include the program synthesis
solver (DSL Search (Icecuber, 2023)) as a solver in all of
our reflection system experiments. We also always include
the LLM with highest ARC accuracy as a solver (Claude 3
Opus). We experiment with base and fine-tuned LLMs for
the reflection models and a potential third solver to find the
reflection system configurations which achieve the highest
ARC accuracy.

Solver 1 Solver 2 Solver 3 Reflection ARC
Model Correct

DSL Claude - Llama-3 133/400
Search 3 Opus 70B
DSL Claude - GPT-4- 165/400
Search 3 Opus turbo
DSL Claude - GPT-4o 166/400
Search 3 Opus
DSL Claude Fine-Tuned Claude 163/400
Search 3 Opus Llama-3 8B 3.5 Sonnet

Table 4. Correctly solved ARC evaluation tasks in a 3-shot setting
by different reflection system configurations. The best 2-solver
model performance is with DSL Search and Claude 3 Opus as
solvers and GPT-4o as a reflection model (166). A fine-tuned
Llama-3 8B model achieves the top performance among 3-solvers
(163).
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Table 4 shows that the ARC performance by different re-
flection system configurations varies between 133 and 166
solved evaluation tasks. In a 2-solver setting, with DSL
Search and Claude 3 Opus, Llama-3 70B struggles as a
reflection model, solving only 133 tasks. GPT-4-turbo and
GPT-4o perform significantly better as reflection models,
solving 165 and 166 ARC tasks respectively. When adding
a fine-tuned Llama-3 8B as a third solver, the reflection
system solves 163 ARC tasks.

Our best 2-solver and 3-solver configurations both outper-
form the best single LLM, Claude 3 Opus (74), and the best
program synthesis approach, DSL Search (160). Based on
the results, we argue that the proposed reflection system is
an effective approach for combining LLMs and program
synthesis solvers for enhanced ARC performance.

5.6. Previous Approaches

To demonstrate the effectiveness of our reflection system, we
compare the ARC performance of our optimal configuration
to previous publicly available approaches. We present sys-
tems that have been tested on the complete ARC evaluation
dataset and split the categories into LLMs, neuro-symbolic
models and program synthesis solvers. We also compare to
a previous attempt combining different ARC solvers with a
voting ensemble (Bober-Irizar & Banerjee, 2024).

Table 5 compares our approach to some publicly available
systems on the ARC evaluation dataset.

System Method ARC
Type Correct

DreamCoder 18/400
Neuro- (Bober-Irizar & Banerjee, 2024)
Symbolic CodeIt 59/400

(Butt et al., 2024)
GPT-4 32/400

(Bober-Irizar & Banerjee, 2024)
LLM Fine-Tuned Llama-3 8B 34/400

Llama-3 70B 36/400
Claude 3 Opus 74/400

Brute Force 26/400
(Ainooson et al., 2023a)

Program Neurodiversity solver 45/400
Synthesis (Ainooson et al., 2023b)

DSL Search 160/400
(Icecuber, 2023)

Ensemble Voting 161/400
(Bober-Irizar & Banerjee, 2024)

Multiple Reflection System 166/400
Solvers (Solvers: DSL Search, Claude 3 Opus;

Reflection: GPT-4o)

Table 5. Number of correctly solved ARC evaluation tasks across
different system types. The reflection system achieves an ARC
accuracy of 166.

6. Related Work
Most of the previous ARC attempts can be split into two
categories: Program synthesis solvers and methods that
rely on machine learning. In contrast, machine learning
implementations vary from neuro-symbolic models to the
latest LLMs.

6.1. Program Synthesis Solvers

A popular program synthesis solver for ARC is the DSL
Search implementation by IceCuber which achieves 40%
accuracy on the complete ARC evaluation dataset. The DSL
solution is based on brute-force search. It applies transfor-
mations of varying depth in parallel and greedily stacking
them to fit training samples (Icecuber, 2023). The final
prediction is ensembled based on the most solved training
samples and least depth.

Another promising program synthesis approach is the
the Generalized Planning for Abstract Reasoning (GPAR)
solver (Lei et al., 2024). It casts an ARC problem as a
generalized planning (GP) problem, where a solution is
formalized as a planning program with pointers (Lei et al.,
2024). On 160 of the 400 ARC evaluation tasks, GPAR
outperforms the DSL Search by 10% (Lei et al., 2024).

6.2. Neuro-symbolic Models

Neuro-symbolic models have emerged as promising AI sys-
tems that aim at integrating the ability to learn from experi-
ence, and the ability to reason from what has been learned
(Garcez et al., 2019). In neuro-symbolic computing, knowl-
edge is represented in symbolic form, whereas learning and
reasoning are computed by a neural network (Garcez et al.,
2019).

The first neuro-symbolic approach to solving ARC was
DreamCoder (Alford, 2021). It used neural networks to
guide its ability to write programs (Bober-Irizar & Banerjee,
2024). An initial implementation of DreamCoder (Alford,
2021) solves 2 ARC evaluation tasks, and an updated ver-
sion with a Perceptual Abstraction & Reasoning Language
(PeARL) achieves 18 (Bober-Irizar & Banerjee, 2024).

Code Iteration (CodeIt) is a recent neuro-symbolic model
that approaches ARC (Butt et al., 2024) as a programming-
by-examples problem by training a policy to produce pro-
grams when shown demonstration examples (Butt et al.,
2024). Experiments on the complete ARC evaluation set
show that CodeIt solves 59 tasks, significantly outperform-
ing previous neuro-symbolic approaches.

6.3. Large Language Models

Previous research that explores LLMs on ARC has been
primarily focused on OpenAI’s GPT models (Mitchell et al.,

7
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2023; Mirchandani et al., 2023; Moskvichev et al., 2023).

Complete experiments on the 400 ARC evaluation tasks
show that the best overall LLM is GPT-4 with 32 cor-
rect tasks (Bober-Irizar & Banerjee, 2024), while the best
open-source LLM is LLaMa-65B with 13 correct solutions
(Bober-Irizar & Banerjee, 2024).

6.4. Ensembling Different System Types

A promising approach to ARC is to use a voting ensemble of
systems: each system can propose an ARC solution which
they “vote” for, added to a priority queue (Bober-Irizar &
Banerjee, 2024). Using this voting ensemble to combine
the DSL Search (Icecuber, 2023), DreamCoder and GPT-4
solutions achieves 161 correct tasks on the ARC evaluation
set (Bober-Irizar & Banerjee, 2024).

7. Limitations
Since we did not have access to the data used for pre-training
the LLMs, we cannot exclude the hypothesis that some
models might have been pre-trained either on ARC tasks or
on other very similar abstract problems. It can be argued that
the significant improvement after fine-tuning demonstrates
that most of the tested LLMs have not been pre-trained on
ARC. Nevertheless, the substantially higher ARC results
by Claude 3 Opus compared to all other LLMs raise some
concerns that this model might have been pre-trained on
ARC.

Furthermore, our reflection approach lacked communica-
tion and collaboration between solvers. The independence
between the solvers in the Reflection System can limit its
flexibility. Another potential limitation is that most of the
correct solutions generated by our approach are produced
by the DSL search (160 out of 166).

Although the proposed reflection system showed promis-
ing ARC results and outperformed previous ensembling
methods, it significantly lags behind compared to the latest
results from OpenAI’s o3 model. On the semi-private ARC
test set, the fine-tuned o3 model scored an impressive 87.5%
(Pfister & Jud, 2025). Even though it is unclear how o3
was trained on the ARC data and whether such fine-tuning
approach is a legitimate submission to an AGI benchmark,
the model’s ARC accuracy vastly outperforms the previous
best submission by Jeremy Berman (Chollet et al., 2024).

The recently released DeepSeek R1 mdoel (Guo et al., 2025)
has also shown remarkable reasoning capabilities and is
likely to outperform any previous ensembling systems on
ARC. Hence, the rapid recent advancement in LLMs with
heavy focus on reasoning have surpassed any previous ar-
chitectures on ARC. Recent models like OpenAI’s o3 and
DeepSeek R1 encourage further research into new ensem-

bling systems such as the proposed reflection method to ef-
fectively combine advanced LLMs with other ARC solvers.

8. Conclusion
We proposed a Reflection System, which effectively com-
bines ARC solutions from Large Language Models and a
Program Synthesis solver. We demonstrate that the reflec-
tion system can easily be configured to work with a different
number of solvers and various reflection models.

In future work, the reflection system can be extended with
more than 3 solvers. The architecture can be improved by
using the solvers as agents that collaborate and communicate
when solving ARC tasks. Such improvements would allow
the solvers to support each other dynamically and achieve
better performance on complex reasoning tasks.

Impact Statement
This paper presents a novel approach to ARC that combines
different solvers such as LLMs and heuristic search methods.
Although the experiments of the proposed method specifi-
cally focuses on the ARC benchmark, the implications of
enhanced reasoning systems can have significant impact on
society. The possibility to achieve AI-based system that
have advanced reasoning capabilities can completely trans-
form the workforce and enhance efficiency.

Improved reasoning would allow AI systems to indepen-
dently and reliable perform complex tasks in new, unfa-
miliar environments. This would make them extremely
valuable for many sectors such technology and manufac-
turing. Nevertheless, independent AI system can also be
highly dangerous to society. They can be used for mali-
cious internet activity such as writing manipulative content,
and misleading the public opinion. Iterating AI system into
defense system such as robots and weaponry can even be
regarded as existential risk to humanity.

Overall, ARC is an important benchmark for measuring
abilities of AI systems to perform and reason in an unseen
environment. By introducing a reflection system, our work
proposed a new method to combine different architectures
for solving ARC. Since many practical applications of AI
require the combination of LLMs and other technological
tools such as traditional software code, our work can be
highly beneficial towards improving such real-world appli-
cations. The proposed augmentation techniques and the Au-
gARC benchmark can be highly useful to future researchers
who aim to train and measure LLMs on reasoning tasks.
The comprehensive ARC results can be used as baseline for
comparison to future ARC systems. By introducing a re-
flection architecture and new ARC augmentation, the paper
contributes positively to industry and AI research labs.
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