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Abstract
The availability of machine learning systems that
can effectively perform arbitrary tasks has led to
synthetic labels from these systems being used in
applications of statistical inference, such as data
analysis or model evaluation. The Prediction Pow-
ered Inference (PPI) framework provides a way
of leveraging both a large pool of pseudo-labelled
data and a small sample with real, high-quality
labels to produce a low-variance, unbiased esti-
mate of the quantity being evaluated for. Most
work on PPI considers a relatively sizable set of
labelled samples, which can be resource intensive
to obtain. However, we find that when labelled
data is scarce, the PPI++ method can perform
even worse than classical inference. We analyze
this phenomenon by relating PPI++ to ordinary
least squares regression, which also experiences
high variance with small sample sizes, and use
this regression framework to better understand
the efficacy of PPI. Motivated by this, we present
two new PPI-based techniques that leverage ro-
bust regressors to produce even lower variance
estimators in the few-label regime.

1. Introduction
The deployment of machine learning (ML) systems into sev-
eral areas of modern life has the potential to lead to several
positive outcomes, such as faster and more precise medical
care (Rajpurkar et al., 2017), improved educational tools
(Jaiswal & Arun, 2021; Lee, 2024), and a wide variety of
professional assistive technologies (Dehaerne et al., 2022).
However, the ever increasing integration of these systems
has resulted in a more drastic need for effective evaluation
techniques for determining when these systems suffer from
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systematic errors (DeGrave et al., 2021). Accurate evalua-
tion in the era of large language models (LLMs) presents a
scaling challenge. Traditional evaluation schemes involve
collecting several annotated samples from human labellers,
and with ML systems quickly changing (Tu et al., 2023),
the repeated collection of this data can quickly exhaust time
and resources.

Recent advances in the development of LLMs have resulted
in the widespread availability of reasonably strong predic-
tive models for arbitrary tasks. The proliferation of these
models has made the practice of replacing human-annotated
labels with the outputs of an LLM for the sake of evaluation,
or automatic evaluation, more feasible. Inherent bias in
these LLM predictions leads to potentially inaccurate evalu-
ations, even in the case where many examples are available
(Angelopoulos et al., 2023a). Proposed frameworks such
as Prediction Powered Inference (PPI) (Angelopoulos et al.,
2023a) offer a way to remove the statistical bias of these
predictions with a small pool of labelled data.

While previous works studying the PPI framework have
focussed on circumstances where 50 or more (usually 200+)
labelled examples are available (Boyeau et al., 2024; An-
gelopoulos et al., 2023b; Zrnic & Candès, 2024b;a), the
applicability of PPI in the few-label regime has not been
thoroughly investigated — in this work, we find that empiri-
cally, PPI performs poorly (sometimes worse than classical
inference) when very few labelled examples are available.
We argue this is an important case, as many developers of
ML systems will rarely have access to a large evaluation set
for every criteria they wish to evaluate their system for, e.g.
when developing generative models, important evaluations
are often highly qualitative and potentially time-consuming.
In these cases, developers may wish to use a small pool of
hand-labelled examples as a way to guide design decisions.

With this in mind, ensuring evaluation with few labels is
as efficient and accurate as possible is important for the
development of reliable ML systems. Specifically in the
case of generative model evaluation, the PPI framework is
a natural candidate, as the large set of unlabelled data PPI
requires can be directly generated by the model itself. Effi-
cient inference with few labels is also relevant to research in
the sciences, where collecting more data may be costly but
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annotating unlabelled data may be less resource intensive.
In this paper, we work towards the goal of improving few-
label auto-evaluation by proposing modifications to the PPI
framework which can produce lower variance estimates in
the low-label regime. Specifically, we do this through em-
phasizing and re-interpreting the critical role of the tuning
parameter λ. Our contributions are:

1. Providing a theoretical analysis of the PPI++ method
in the context of mean estimation, and how it relates to
univariate regression.

2. Positing two new extensions for PPI inspired by uni-
variate regression techniques that improve upon the
base method.

3. Applying these techniques to the task of feature gener-
ation rate estimation in research and LLM evaluation.

2. Background
In this section, we provide details on the estimation prob-
lems we approach, their associated data generative process,
and its relationship with contemporary automatic evaluation
schemes.

2.1. Estimating Feature Generation Rate

We are interested in the properties of some outputs X gen-
erated from some distribution P, X ∼ P . These outputs can
consist of any modality (e.g. text, images, video) and the
distribution can take any form (e.g. a complex generative
model). Consider the binary function h(X) ∈ {0, 1} that
outputs 1 if X presents a certain feature of interest, and 0 if
X does not present that feature. h(X) can represent quanti-
tative features such as the presence of a word in text or the
value of a certain pixel in an image, or more subjective fea-
tures such as toxicity in text. This notion can be extended to
non-binary functions, but this work will focus on the binary
case. We wish to estimate the quantity EP [h(X)]. The best
known estimator is the classical estimator, which is simply
the sample mean from a finite sample of n example, label
pairs Dn = {(Xi, h(Xi))}ni=1:

µh,P := EP [h(X)], µ̂h :=
1

n

n∑
i=1

h(Xi) (1)

This estimate is unbiased, and its variance will decay in
order 1

n . However, in the regime where labels are scarce or
expensive to procure the variance on the sample mean will
be high, leading to low-fidelity estimates of the mean.

2.2. Prediction Powered Inference for Mean Estimation

We next examine how a strong predictive model could be
used to complete this estimation task. In our set up, we

can consider another binary function, f(X) ∈ {0, 1} that
is meant to approximate h(X). We can estimate µh,P by
instead taking the sample mean of a finite pseudolabelled
sample DN = {(Xu

i , f(X
u
i ))}Ni=1. Seeing as unlabelled

dataX is often plentiful and f(X) can be generated without
human intervention, one can efficiently reach a value of
N where the variance of the sample mean is minimized.
However, f(X) may be biased. More rigorously:

µf,P := EP [f(X)], |µf,P − µh,P | > 0. (2)

If this is true, regardless of how large our sample of N
examples is, estimating the mean using pseudolabels will
have an irreducible amount of error.

In response to the shortcomings of this automatic evalua-
tion approach, Angelopoulos et al. (2023a) leverage a small
pool of in-distribution labelled examples along with a larger
sample of pseudolabelled examples to create a low vari-
ance unbiased estimator in the Prediction Powered Inference
(PPI) framework. The PPI estimate takes as input both the
labelled dataset Dn and the pseudolabelled dataset DN , as
well as a tuning parameter λ ∈ R, and estimates µh,P as:

µ̂PPI :=
1

N

N∑
i=1

λf(Xu
i )+

1

n
(

n∑
i=1

h(Xi)−λf(Xi)). (3)

This approach, as well as the methods that have succeeded
it (Angelopoulos et al., 2023b; Zrnic & Candès, 2024a;
Boyeau et al., 2024), makes use of both the strong statis-
tical power that traditional automatic evaluation schemes
promise, as well as the asymptotic benefits of being unbi-
ased provided by traditional evaluation.

3. Related Work
Since its inception, the PPI framework has been the subject
of much investigation, both in terms of application and
improving the method. Zrnic & Candès (2024a) propose
a technique for determining which samples within a batch
of unlabelled data to collect labels for to achieve the best
possible performance with PPI. Zrnic & Candès (2024b)
show how one can use cross-fitting to be able to use PPI even
when a pre-trained predictive model is unavailable. Fisch
et al. (2024) demonstrate that using subgroup information
can provably improve the estimates from PPI. While these
works focus on how to apply the PPI framework under
different assumptions, we instead focus on improving the
efficacy of the method in its original setting. Boyeau et al.
(2024) were the first to propose how the PPI framework
can be used to improve contemporary automatic evaluation
schemes. We build upon this work by investigating new use
cases and improving performance in the low-label regime.
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Several techniques for supplementing a model’s training
data with synthetic data have been proposed. This includes
both data augmentation techniques such as Mixup (Zhang,
2017) and those used in reinforcement learning (Pitis et al.,
2022; Osiński et al., 2020). Improved generative models
have provided a new avenue for researchers and practitioners
alike to create new datasets for both training and evaluation
(Neuhausen et al., 2020). We contribute to this branch
of research by building upon a method for evaluating a
generative model with synthetic data generated by the model
itself.

The use of an additional, correlated variable as a way to re-
duce the variance of an estimator is a well studied technique
in the fields of statistics and machine learning. Previous
works have specifically investigated how one can reduce
the variance in mean estimation using a control variate con-
structed with unlabelled data in a regime known as semi-
supervised learning (Zhang et al., 2019; Zhang & Bradic,
2022). Furthermore, the use of different regression methods
and control variates has also been explored (South et al.,
2023; Blanchet et al., 2024). In this work, we use this ex-
isting literature to better understand and improve the PPI++
method.

4. Using Regression for Improving PPI
In this section, we discuss our approach to improving the
PPI estimator in the few-label regime. Our approach pri-
oritizes reducing variance and focuses on the role of λ in
PPI, re-interpreting the task of choosing λ as post-hoc re-
gression. We first draw the connection between optimizing
λ and linear regression, and then discuss how choosing λ
correctly can be challenging in the low-label regime, result-
ing in high variance estimates. We then highlight two tools
from the regression literature which can be used to improve
these estimates, and demonstrate how they fit into the PPI
framework.

4.1. Optimal λ and the Regression Coefficient

To understand how selecting λ appropriately can reduce
the variance of µ̂PPI , we first provide an expression for
the variance of µ̂PPI , and decompose it into V ar[Dn] and
V ar[DN ]:

V ar[µ̂PPI ] =V ar[
1

N

N∑
i=1

λf(Xu
i )]︸ ︷︷ ︸

V ar[DN ]

+ V ar[
1

n
(

n∑
i=1

h(Xi)− λf(Xi))]︸ ︷︷ ︸
V ar[Dn]

.

(4)

Note that we are able to distribute the variance operator this
way as the two samples are i.i.d. Given that we assume that
n << N (e.g. we can generate or collect a large amount of
unlabeled data cheaply), V ar[DN ] will be negligible and we
may turn our focus to V ar[Dn]. We can further decompose
this variance as:

V ar[Dn] =
1

n2

n∑
i=1

V ar[h(Xi)− λf(Xi)]

=
1

n2

n∑
i=1

V ar[h(X)] + λ2V ar[f(X)]

− 2λCov[h(X), f(X)].

(5)

The first term in this sum is equal to the variance of the classi-
cal estimate (the labelled sample mean) for µh,P . Therefore,
µ̂PPI will have lower variance than the sample mean esti-
mate whenever λ2V ar[f(X)]− 2λCov[h(X), f(X)] < 0.

One can find a simple expression for the optimal λ givenDn
by simply taking the derivative of Equation 5 with respect
to λ and setting it to zero, which yields:

λOpt =
Cov[h(X), f(X)]

V ar[f(X)]
. (6)

Notably, Angelopoulos et al. (2023b) choose λ to minimize
both V ar[Dn] and V ar[DN ] and arrive at a similar expres-
sion1. The quantity expressed in Equation 6 is known as the
regression coefficient (Kenney & Keeping, 1962), and is the
solution to univariate ordinary least squares regression.

We emphasize this insight into the role of λ as a post-hoc re-
gressor. Previous works have encouraged an interpretation
where λ is intended to interpolate between two estimators:
classical estimation at λ = 0 and “real PPI” at λ = 1. In-
deed, Boyeau et al. (2024) describe λ as a “tuning parameter
... in [0, 1] ... When the synthetic data is very good, we can
set λ = 1; when it is bad, setting λ = 0 will throw it away
entirely.” However, we suggest that λ may more accurately
be interpreted as a post-hoc transformation of f to make it
“closer to” h; that is, minimizing PPI variance through equiv-
alently minimizing the mean-squared error of the post-hoc
regression problem, which has the same form as Equation 5:

1

n

n∑
i=1

(h(Xi)− λf(Xi)− b)2 ≈ ˆV ar[h(X)] + ˆV ar[λf(X)]

− 2 ˆCov[h(X), λf(X)].
(7)

1We note that when n is small, this expression is unlikely to
have converged in probability to a constant. Consequently, fitting
λ to the labelled data may result in µ̂PPI being a biased estimator
in this small n regime.
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and admits the same minimizer (derivation details in Ap-
pendix B). Here, b = µ̂h − µ̂λf is the optimal ordinary
least squares intercept coefficient, which is the difference
between the sample means of the target h(X) and trans-
formed input λf(X). We note that this interpretation better
aligns with the fact that PPI is still valid for λ outside the
[0, 1] interval, and indeed in some situations may achieve
its minimal variance at one of these values of λ2.

4.2. Variance Reduction through Regularized
Regression

Thinking of the λ-selection problem simply as univariate
regression allows for new intuitions around the challenges
of few-label PPI. It is known that ordinary least squares
(OLS) is an unbiased estimator, but can suffer from high
variance when few examples are available. In regression,
a standard way to overcome issues with variance is to use
ridge regression. This estimator imposes an L2 penalty in
addition to the MSE to reduce the variance of the estimate
(at the price of adding a small amount of bias). We pro-
pose using ridge regression to robustly estimate λ in the
case where n is small. We specifically propose using the
estimator:

λ̂α :=
ˆCov[h(X), f(X)]

ˆV ar[f(X)] + α
. (8)

This value yields the minimum mean squared error for the
ridge regression problem with α ∈ R as the ridge coefficient
— α penalizes regression solutions with large L2-norm, hav-
ing the effect of reducing the magnitude of the estimated λ.
This estimated λ is in turn used to calculate µ̂PPI .

4.3. Variance Reduction through Non-linear
Regression

Understanding the role of λ as a regression coefficient can
also lead us to investigate other hypothesis classes for regres-
sion. One may consider an arbitrary transform g of f(X),
and it is clear to see that substituting g(f(X)) for λf(X)
in Equation 5 can be done with no difficulties. Similarly, if
one uses the intercept term b = Ê[h(X)]− Ê[g(f(X))] and
substitutes g(f(X)) for λf(X) in Equation 7, one finds that
minimizing the mean squared error for an arbitrary function
g(X) is equivalent to minimizing the variance of µ̂PPI .

What might be a useful g to consider? In the rate estimation
case (i.e. binary h), we note that it’s somewhat unnatural
to perform linear regression of f ∈ [0, 1] onto h ∈ {0, 1}.
Instead, we propose using the simple but more well-suited

2Angelopoulos et al. (2023b) note explicitly that in the mean
estimation case (unlike more general cases), λ need not be clipped
at [0, 1].

function class of sigmoidal regressors for post-hoc regres-
sion of f , as well as an associated PPI estimate:

g(f(X)) :=
1

1 + exp(−αf(X) + β)
, (9)

µ̂PPIg :=
1

N

N∑
i=1

g(f(Xu
i )) +

1

n
(

n∑
i=1

h(Xi)− g(f(Xi))).

(10)

where α, β are learned parameters. By using a function
class which is better-suited to our problem domain, we
hope to find useful transformations which are not possible
with a linear regressor and thereby achieve greater variance
reduction.

4.4. Discussion on Various Other Approaches in
Existing Open Source Implementations

Angelopoulos et al. (2023b) demonstrate that when account-
ing for the added unlabelled term in Equation 3, the point
estimate for the optimal lambda is a scaling of the regression
coefficient dependant on the ratio of the size of the labelled
and unlabelled datasets. We follow this methodology and
scale both the PPI++ estimate λ̂Opt and the Ridge-PPI esti-
mate λ̂α by (1 + n

N )−1.

We additionally note that in a pre-existing open source im-
plementation of the PPI++ algorithm3, two additional heuris-
tic inductive biases are used when calculating λ. First, a
biased estimate of Cov[h(X), f(x)] is used, where the sam-
ple covariance is divided by n rather than n− 1. We use the
unbiased estimate of the covariance in our implementations.
Further, the open source implementation clips the estimated
λ to be within the interval [0, 1]. We do not clip our esti-
mates of λ, as in principle the optimal regression coefficient
may exist outside of that interval. We note that both of these
heuristics may be helpful for improving the performance of
PPI on some distributions as they both frequently produce
smaller estimates of λ — this is a similar reason to why we
believe Ridge-PPI is helpful, which provides a principled
approach to preventing overestimation of λ.

5. Experiments
In this section, we empirically analyze the performance
of our proposed approaches in the few-label setting. We
provide a description of the data that we analyze, the exact
implementation of the methods that we use, and the results
of our experiments.
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Figure 1: Estimation performance on research datasets. Average MAE of each estimate type is normalized by the average
MAE of classical estimation at that batch size.

5.1. Datasets

5.1.1. RESEARCH DATA

We first apply our method to statistical inference for sev-
eral real-world research questions. This suite of datasets,
aggregated by Angelopoulos et al. (2023a), presents many
instances where pseudolabelled data can be plentiful while
gold standard labels are scarce. Some examples include
using images of galaxies to estimate the occurrence rate of
spiral galaxies and estimating the mean deforestation level
in the Amazon over a specified time period. We defer to
Angelopoulos et al. (2023a) for a full description of each of
the datasets.

5.1.2. LLM REFUSAL DATA

For this section, we use a datatset of prompts and LLM
outputs, along with human-made annotations indicating
whether the output was an instance of refusal. LLMs can
refuse to answer questions for a variety of reasons, such
as when the model is prompted to complete a task outside
its capabilities (Xu et al., 2024), asked to provide private
information (Liu et al., 2024), or asked an inappropriate or
unsafe question (Yuan et al., 2024). The dataset consists
of over 50,000 prompt-answer pairs. Prompts consist of a
wide variety of requests concerning several different topics,
and the answers are sourced from multiple different publicly
available LLMs. For our purposes, we will only use this
data to understand how often a given LLM refuses to answer
its prompt, rather than investigating the kinds of prompts
the model refuses to answer. Given the high diversity of

3https://github.com/aangelopoulos/ppi_py

prompts in the dataset, one cannot make conclusions regard-
ing a model’s sensitivity to any one specific subject matter
using the bulk refusal rate, nor is one rate of refusal qualita-
tively better than any other. Instead, this dataset is intended
to provide a relevant setting where qualitative annotations
are required to evaluate a complex model behavior.

Within our previously described framework, examples Xi

are each a tuple containing a prompt and an answer from
an LLM. Here, the labelling function h(X) is equal to one
when X is an instance of refusal, and zero otherwise.

5.2. Experiments and Estimation Methods

To benchmark the efficacy of different estimation methods
for the refusal rate, we conduct an experiment where we
randomly sample both Dn and DN from the larger pool of
samples. We ablate over several different values of n to
compare each method’s performance with different amounts
of labelled data. We keep the amount of unlabelled data
fixed at N = 1000. We measure performance of each
method as the mean absolute error between the estimate and
the true refusal rate over the entire dataset. For each setting
of n, we sample Dn and DN 350 times and compute the
MAE over all trials.

In our experiments with the LLM Refusal Dataset, we exper-
iment with four different methods for estimating the refusal
rate:

• Classical: Classical estimation using the sample mean
from the labelled data Dn.

• PPI++: Estimating the refusal rate using both Dn and
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(a) Standard deviation of estimates (top) and average MAE of esti-
mates (bottom) for different estimation methods.

(b) Average MAE of different estimates normalized by the average
MAE of classical estimation at that batch size.

Figure 2: Estimation performance on the LLM Refusal Dataset.

DN through µ̂PPI . Here, we use the sample estimate
of λOpt based off Equation 6.

• Ridge-PPI (Ours): Similar to PPI++, but we instead
fit λ using ridge regression as seen in Equation 8. Here,
we perform cross validation over the labelled set to
determine the ridge parameter α.

• Sigmoid-PPI (Ours): We follow the procedure de-
scribed in Section 4.3 to fit a sigmoidal function on our
labelled data from f(X) to h(X) and then use that to
make a PPI estimate. Here we also use L2 regulariza-
tion and choose the regularization parameter based on
cross validation, similar to Ridge-PPI.

5.3. Results

5.3.1. RESEARCH DATA

We find that both Ridge-PPI and Sigmoid-PPI are able to
either match or exceed the performance of both classical
estimation and PPI++ across each of the settings (Fig. 1).
This includes the plankton, alphafold, and forest datasets,
where traditional PPI++ fails to outperform classical for
several settings of n while our methods consistently match
or exceed this performance. While across several of the
datasets Ridge-PPI and Sigmoid-PPI are able to cut the
error of the leading baseline by a significant fraction, other
datasets such as ballots, forest, and census_healthcare show
a more modest improvement. In sections 5.4 and 6.1, we
further investigate this phenomenon and present hypotheses
on the conditions that lead to it.

5.3.2. LLM REFUSAL DATA

While each of the PPI based methods are able to achieve
superior MAE over classical estimation, we find that both
Ridge-PPI and Sigmoid-PPI are able to improve upon the
performance of PPI++ for all small values of n (Figure
2, left). We also observe that the standard deviation of
these estimates is smaller, indicating that these techniques
have indeed reduced the variance. This effect can most
prominently be seen for smaller labelled sets (Figure 2,
right), where we see that our improved PPI methods can
reduce the MAE of classical estimation by over a quarter.

5.4. Distributional Influence on PPI’s Efficacy

The underlying data distribution has the potential to effect
the efficacy of each estimation method. To study how the
variance of the target variable h(X), the predictions f(X),
and the covariance between these variables effect perfor-
mance, we perform the experiments described in Section
5.2 for each individual LLM represented in the LLM Refusal
Dataset.

We find that the efficacy of PPI++ in comparison to classi-
cal estimation can vary highly across different distributions
of samples. In some distributions, PPI++ cuts the error
of classical estimation by roughly 30%, with our methods
producing similar gains (Figure 3, right). Under other dis-
tributions, PPI++ performs worse than classical estimation;
PPI++ can accrue 20% more error than classical estimation
when applied to certain distributions (Figure 3, left). How-
ever, in these circumstances, we find that both Ridge-PPI
and Sigmoid-PPI perform 10% better than classical estima-
tion, demonstrating a circumstance in which our methods
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Figure 3: Estimation performance on two different subsets of the LLM refusal dataset normalized by the average MAE of
classical estimation at that batch size. We note that V ar[f(X)] is twice as large on the right (where PPI++ succeeds) as on
the left (where it fails).

are able to overcome the shortcomings of PPI++.

We suspect that the poor performance of PPI++ on distribu-
tions like this one may be related to low variance of f(X).
Since V ar[f(X)] appears in the denominator of Equation
6, potential errors from overestimating Cov[f(X), h(X)]
are amplified when V ar[f(X)] is small. This is evidenced
by the fact that despite the fact that the two distributions
depicted in Figure 3 have similar optimal regression coef-
ficients, V ar[f(X)] is two times larger for the distribution
depicted on the right. This would help explain the improved
performance of ridge-regression, which biases the estimate
towards smaller λ. We explore this hypothesis analytically
in Section 6.1.

We next investigate whether these trends are persistent in
the research datasets by calculating the ratio of the MSE
for PPI++ to the MSE at for Ridge-PPI for each dataset
and taking its correlation with V ar[f(X)] for that dataset.
We find that there is a strong anticorrelation between these
values (Pearson r = -0.69), further supporting our hypothesis
that small V ar[f(X)] hinders the efficacy of PPI++. While
we do not have enough datapoints to make this correlation
statistically significant, it serves as motivation for the more
thorough analysis we present in Section 6.1.

We note that asymptotically, PPI++ is guaranteed to perform
at least as well as classical estimation (Angelopoulos et al.,
2023b). The failure of PPI++ shown on the left of Fig. 3
can be explained since the sample size is clearly not large
enough to reach this asymptotic regime, and so PPI++ is not
guaranteed to improve performance. We additionally note
that the proof of the PPI++ estimator being asymptotically
unbiased presented by Angelopoulos et al. (2023b) does not
directly map on to our Sigmoid-PPI approach. While this is

not a concern in the low-label regime, further investigation is
necessary to determine the theoretical and empirical efficacy
of Sigmoid-PPI when n is large (Appendix A). An inter-
esting path for further work would be determining which
statistics of the distribution determine the efficacy of each
of these PPI-based approaches.

6. Discussion
We now turn our attention to additional analyses to help
interpret our results. In particular, we analyze the attributes
of the distributions on which PPI++ succeeds, and how our
estimation methods may help alleviate problems in scenar-
ios where PPI++ performs poorly. To carry this out, we
extend our previous analysis to consider the fact that the λ
parameter is a random variable; we had previously taken
it to be a constant. Our new analysis highlights the role of
V ar[f(X)] as an important, but previously unconsidered,
factor in the success of PPI++.

6.1. Stochastic λ

In this section, we propose a new expression for the variance
of PPI++ using the first and second moments of a stochastic
λ parameter. To simplify these expressions, we assume that
λ is fit to an independent but identically distributed pool
of data. Techniques like cross-fitting have been proposed
as a data efficient way to conduct this procedure (Zrnic &
Candès, 2024b).

We arrive at the following expression for the excess variance
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of PPI, with a full derivation supplied in Appendix C:

V ar[µ̂PPI ]− V ar[µ̂h]

= E[λ]2(
1

N
+

1

n
)V ar[f(X)]

+ V ar[λ](2E[f(X)]2 + (
1

N
+

1

n
)V ar[f(X)])

− 2E[λ]
n

Cov(h(X), f(X))

(11)

This is similar to the expression for the variance of PPI pre-
sented in Equation 5 (which assumed a constant λ), with the
notable exception that V ar[λf(X)] has been decomposed
into two terms depending on the expectation and variance
of (stochastic) λ, respectively. This reveals an important
property of PPI++: using a higher variance estimator for λ
can reduce the efficacy of PPI.

While it is not surprising that the error of a mean estimate
will depend on the variance of a variable being used to
construct the estimate, this formalism remains important
as previous expressions for the variance of PPI neglected
λ-estimation variance as a source of error. This also theo-
retically justifies the benefits we see from using Ridge-PPI:
ridge regression has lower variance than OLS regression,
and this expression demonstrates how that may lead to a
decrease in estimation error.

6.2. Efficacy of PPI++

Further insight into PPI++ specifically can be made if we
consider the estimator λ̂Opt, where

E[λ̂Opt] =
λ∗

1 + n
N

=
Cov(f(X), h(X))

(1 + n
N )V ar[f(X)]

. (12)

Furthermore, under certain convergence conditions (see Ap-
pendices C and D), V ar[λ̂Opt] =

V ar[ ˆCov[f(X),h(X)]
V ar[f(X)]2 , ulti-

mately giving us:

V ar[µ̂PPI ]− V ar[µ̂h]

=
V ar[ ˆCov[f(X), h(X)]

V ar[f(X)]
(
2E[f(X)]2

V ar[f(X)]
+ (

1

N
+

1

n
))

−V ar[h(X)]Corr(h(X), f(X))2

(1 + n
N )n

.

(13)

Counterintuitively, this demonstrates the variance of PPI++
actually scales inversely to Var[f(X)]. This is supported
by our empirical findings in Section 5.4. This runs con-
trary to what one would expect from Equation 5 and further

Figure 4: The normalized variance of PPI++,
V ar[µ̂PPI ]
V ar[µ̂h]

, for several values of V ar[f(X)] and n.

V ar[ ˆCov[f(X), h(X)] is set to a value of 0.3 with an
additional 1

n2 decay multiplier.

reveals the importance of understanding λ as a stochastic
quantity.

To end this discussion, we evaluate a number of possible
variance values for µ̂PPI , normalized by V ar[µ̂h], for a
distribution from one of our previous experiments. Taking
the values ofCorr(h(X), f(X)), V ar[h(X)] and E[f(X)]
from the Ballots dataset, we plot the variance reduction of
PPI++ for various settings of V ar[f(X)] and n. We take
a static value for V ar[ ˆCov[f(X), h(X)], but we note that
the exact relationship between this quantity and V ar[f(X)]
will likely depend on the data generative procedure which
is opaque in most circumstances. Figure 4 demonstrates
how a larger V ar[f(X)] leads to variance reduction with
most smaller values of n. Furthermore, it demonstrates that
depending on the distributions of f(X) and h(X), specif-
ically if V ar[f(X)] is too small, PPI++ will not reduce
error in expectation if the labelled sample size is too scarce.
This underpins the importance of techniques that reduce the
variance of the λ estimate, such as Ridge-PPI.

6.3. Risk Reduction from Ridge-PPI

To theoretically justify the improvement of Ridge-PPI over
PPI++, we can create a similar expression for excess risk
as the one presented in Section 6.2. In this section, we
refer to the estimator using λ̂α (Equation 8) to calcu-
late µ̂PPI as µ̂PPIα . Specifically, we will reason about
when Ridge-PPI can improve upon PPI++. Using the
same assumptions as Equation 13, as well as the short-
hand V := V ar[ ˆCov[f(X), h(X)]](2E[f(X)]2 + ( 1

N +
1
n )V ar[f(X)]), we show:

V ar[µ̂PPIa ]− V ar[µ̂PPI ] (14)

8
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= V (
1

(V ar[f(X)] + α)2
− 1

V ar[f(X)]2
) (15)

+
Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

. (16)

A full proof is presented in Appendix E. This expression
demonstrates how a small V ar[f(X)] contributes to Ridge-
PPI improving upon PPI. The first term in Expression 15
presents a variance reduction term, as V is non-negative
and the difference is non-positive. When V ar[f(X)] is
particularly small, ( 1

(V ar[f(X)]+α)2 −
1

V ar[f(X)]2 ) will be
negatively dominated by the latter term in the difference.
Importantly, the larger the ridge coefficient α, the more
negative this difference is, indicating a larger reduction in
variance.

Meanwhile, the second term, Expression 16, represents an
increase in loss attributable to the fact that Ridge does not
yield the optimal λ. This non-negative term grows as the
correlation between f(X) and h(X) increases. This makes
intuitive sense, as a stronger correlation between f(X) and
h(X) leads to a lower variance estimator when using PPI++.
Both these terms in tandem demonstrate how Ridge-PPI
can be deployed in circumstances where PPI++ struggles
in order to improve performance, namely the circumstance
where V ar[f(X)] is small.

6.4. Optimal Ridge Coefficient

We next look at the optimal selection for the α parameter in
Ridge-PPI and use it to further investigate how the statistics
of the data relate to PPI’s success. To do this, we will apply
simple first-order optimization techniques to Expression 14.
Note that since this expression is not convex in α, it is not
guaranteed that this critical point in a minima. Furthermore,
depending on the statistics of the data Ridge may not im-
prove upon standard PPI++. However, when the minima is
not given by zero or infinity, it will be given by:

α∗ =
n(1 + n

N )V

Cov(f(X), h(X))2
. (17)

This quantity is difficult to estimate in practice, but supplies
more insight into the dynamics of PPI. Notably, this opti-
mum is smaller in the case of greater covariance, and greater
in the case of large V . Seeing as V is a large positive term
in the risk, this expression balances between the potential
variance and the potential variance reduction permitted by
Cov[f(X), h(X)]2.

7. Conclusion and Future Work
In this work, we expanded on the PPI framework to perform
mean estimation when very few labelled examples are avail-
able. By relating the optimal λ setting for PPI++ in mean
estimation to the regression coefficient, we provide theo-
retical motivation for two regression-inspired approaches
to mean estimation. Both of these approaches use insights
from univariate regression to reduce the variance of the
estimate when few labels are available. Through exper-
iments estimating feature generation rates in the context
of data analysis and LLM evaluation, we demonstrate that
our approaches produce lower variance estimates than both
classical estimation as well as PPI in the low-label regime.
Through additional analyses and experiments, we further
elaborate on when our methods can have the most impact.

The use of predictive models to aid statistical inference is an
exciting research frontier. Future work should investigate
efficient methods for performing PPI when the labelled
and unlabelled samples come from different distributions.
Furthermore, the potential impact of the predictive model
having varying levels of performance on different subgroups
of the distribution and the potential fairness related concerns
that come with it is an important future research direction.

Impact Statement
Our work investigates the shortcomings of the Prediction
Powered Inference framework and proposes new methods
to help overcome these problems. PPI has been applied to
several fields of great impact to society, such as ecological,
social science, and biological research, as well as the evalu-
ation of widely used machine learning systems like LLMs.
These improvements to PPI have the potential to lead to
expedited progress in these application areas by reducing
errors in statistical inference. However, while we may have
uncovered some cases where PPI does not perform as ex-
pected, this is certainly not to be exhaustive. Future work
should investigate additional shortcomings of PPI, such as
whether bias in the labelled or unlabelled data can lead to
fairness concerns.
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Figure 5: Estimation performance on the LLM refusal dataset with larger labelled batch sizes normalized by the average
MAE of classical estimation at that batch size.

A. Larger Labelled Batch Size Experiments
Though our methods were intended to be used for smaller n, we also experiment with the case where both the labelled
and unlabelled datasets are large (Figure 5). We find that our methods are best suited for smaller batch sizes, with the
greatest improvements over classical estimation (in relative terms) occurring around a labelled batch size of n = 20. Beyond
this point, we find that the performance of Ridge-PPI converges to the performance of PPI++. This could potentially be
explained by the larger pools of labelled data resulting in a smaller α being selected in cross-validation, or simply because
the (1 + n

N ) term in the denominator of our PPI++ estimate λ̂Opt and the Ridge-PPI estimate λ̂α (Section 4.4) increases
with n, causing the estimated λ to be closer to 0 and the methods to behave more similarly to classical estimation.

We observe that Sigmoid-PPI’s performance decays as the size of the labelled dataset approaches the size of the unlabelled
dataset. This could be caused by the lack of a scaling mechanism, such as those described in Section 4.4, that allow the
method to rely on classical estimation as n approaches or exceeds the magnitude of N , or the presence of a potential
asymptotic bias. To counteract this, we propose an adjusted variant of Sigmoid-PPI that also uses a scaling mechanism.
Specifically, this estimator has the same form as the one presented in Equation 10, except it uses the following function:

g(f(X)) :=
1

1 + n
N

1

1 + exp(−αf(X) + β)
. (18)

Results for this new estimator are presented in Figure 6. We observe that the estimator significantly benefits from this
adjustment factor at large labelled dataset sizes: the adjusted estimator continues to make gains over the classical estimate,
while the unadjusted estimator may diverge towards excess error.

We recommend using Sigmoid-PPI in cases where the labelled dataset is small, while Ridge-PPI seems to be flexible to
different labelled dataset sizes.
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Figure 6: Comparison in performance on the Plankton and Ballots datasets for Sigmoid-PPI and an adjusted Sigmoid-PPI
that is scaled by 1

1+ n
N

. We see that in some circumstances, the Sigmoid-PPI’s normalized error diverges. Meanwhile, the
adjustment leads to steady performance gains over the classical baseline.

B. Proof of Equation 7
In this section, we prove the following expression:

1

n

n∑
i=1

(h(Xi)− λf(Xi)− b)2 ≈ ˆV ar[h(X)] + ˆV ar[λf(X)]− 2 ˆCov[h(X), λf(X)]. (19)

where b = µ̂h − µ̂λf is the optimal ordinary least squares intercept coefficient, which is the difference between the sample
means of the target h(X) and transformed input λf(X). We start by expanding the squared loss within the sum.

1

n

n∑
i=1

(h(Xi)− λf(Xi)− b)2 =
1

n

n∑
i=1

(h(Xi)− λf(Xi)− µ̂h + µ̂λf )
2 (20)

=
1

n

n∑
i=1

((h(Xi)− µ̂h)− (λf(Xi)− µ̂λf ))2 (21)

=
1

n

n∑
i=1

((h(Xi)− µ̂h)2 + (λf(Xi)− µ̂λf )2 − 2(λf(Xi)− µ̂λf )(h(Xi)− µ̂h)). (22)

Distributing the sum and division by n across each of the terms, one can see that each of these terms are biased estimates of
V ar[h(X)], V ar[λf(X)], and Cov[h(X), λf(X)] respectively. Therefore, it’s clear that the left hand side of Equation 7
is proportional to the right hand side, and that this expression admits the same minimizing λ as the variance depicted in
Equation 5.

C. Stochastic λ

In this section, we work through the complete decomposition of the variance of PPI assuming an stochastic but independent
estimator for λ.

We analyze the expected mean squared error of PPI++:

E[(µhP − (
1

N

N∑
i=1

λf(Xu
i ) +

1

n
(

n∑
i=1

h(Xi)− λf(Xi))))
2] = E[(µhP − (a+ λb− λc))2] (23)

12
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To simplify expressions, we take the following shorthands:

a =
1

n

n∑
i=1

h(Xi), b =
1

N

N∑
i=1

f(Xu
i ), c =

1

n

n∑
i=1

f(Xi) (24)

We know that the risk of an MSE loss can be written as a bias-variance decomposition. Since we assume λ is independent,
this bias is zero. Of course a dependent λ, which is often the case in practice, would introduce bias.

The variance has the following form:

V ar[a+ λb− λc] (25)

= V ar[a] + V ar[λb] + V ar[−λc] + 2Cov(a, λb) + 2Cov(a,−λc) + 2Cov(λb,−λc) (26)

Since we assume λ is independent of our data, we are left with:

V ar[a+ λb− λc] = V ar[a] + V ar[λb] + V ar[−λc] + 2Cov(a,−λc) (27)

We will further decompose this expression by analyzing each of its summands:

• Var[a]: This is already fully simplified, and is the variance of the classical estimate.

• Var[λb]: V ar[λb] = V ar(λ)V ar(b) + V ar(λ)E[b]2 + V ar(b)E[λ]2

• Var[−λc]: V ar[−λc] = V ar(λ)V ar(−c) + V ar(λ)E[−c]2 + V ar(−c)E[λ]2

• 2Cov(a,−λc): Cov(a,−λc) = E[−aλc]− E[a]E[−λc] = E[λ](E[−ac]− E[a]E[−c]) = E[λ]Cov(a,−c)

Ultimately this gives us:

V ar[a+ λb− λc] = V ar[a] (28)

+E[λ]2(V ar(b) + V ar(c)) (29)

+V ar(λ)(E[b]2 + E[c]2 + V ar(b) + V ar(c)) (30)

−2E[λ]Cov(a, c). (31)

We can therefore understand the error incurred by a stochastic λ as being determined by its variance and expectation. More
importantly, this gives us an expression for the excess risk of a stochastic λ vs. classical inference:

V ar[a+ λb− λc]− V ar[a] (32)

= E[λ]2(V ar(b) + V ar(c)) + V ar(λ)(E[b]2 + E[c]2 + V ar(b) + V ar(c))− 2E[λ]Cov(a, c) (33)

= E[λ]2(
1

N
+

1

n
)V ar(f) + V ar(λ)(2E[f ]2 + (

1

N
+

1

n
)V ar(f))− 2E[λ]

n
Cov(h, f). (34)
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Furthermore, if we assume that we are using PPI++ and our λ estimator is OLS, we can use the properties that

λ̂Opt, where

E[λ̂Opt] =
λ∗

1 + n
N

=
Cov(f(X), h(X))

(1 + n
N )V ar[f(X)]

. (35)

Furthermore, under certain convergence conditions (see Appendix D), V ar[λ̂Opt] =
V ar[ ˆCov[f(X),h(X)]

V ar[f(X)]2 , ultimately giving
us:

V ar[a+ λb− λc]− V ar[a] (36)

= (
Cov(f(X), h(X))

(1 + n
N )V ar[f(X)]

)(
Cov(f(X), h(X))

(1 + n
N )V ar[f(X)]

(
1

N
+

1

n
)V ar(f)− 2

n
Cov(h, f)) + V ar(λ)(2E[f ]2 + (

1

N
+

1

n
)V ar(f))

(37)

We will focus on the second factor in the first product:

Cov(f(X), h(X))

(1 + n
N )V ar[f(X)]

(
1

N
+

1

n
)V ar(f)− 2

n
Cov(h, f) (38)

= Cov(f(X), h(X))(
( 1
N + 1

n )

(1 + n
N )
− 2

n
) = Cov(f(X), h(X))(

n( 1
N + 1

n )− 2(1 + n
N )

(1 + n
N )n

) (39)

= Cov(f(X), h(X))(
(1 + n

N )− 2(1 + n
N )

(1 + n
N )n

) = Cov(f(X), h(X))(
1− 2

n
) = −Cov(f(X), h(X))

n
(40)

Substituting that back into our original expression, we have:

V ar[a+ λb− λc]− V ar[a] (41)

= (
Cov(f(X), h(X))

(1 + n
N )V ar[f(X)]

)(−Cov(f(X), h(X))

n
) + V ar(λ)(2E[f ]2 + (

1

N
+

1

n
)V ar(f)) (42)

= (− Cov(f(X), h(X))2

n(1 + n
N )V ar[f(X)]

) + V ar(λ)(2E[f ]2 + (
1

N
+

1

n
)V ar(f)) (43)

= V ar(λ)(2E[f ]2 + (
1

N
+

1

n
)V ar(f))− V ar[h(X)]Corr(h(X), f(X))2

(1 + n
N )n

(44)

Where in the final line we have used the definition of covariance as Cov(f(X), h(X)) =√
V ar[f(X)]V ar[h(X)]Corr(f(X), h(X)). Finally, if we substitute in V ar[λ̂Opt] = V ar[ ˆCov[f(X),h(X)]

V ar[f(X)]2 , we
arrive at the expression from Section 6.2:

=
V ar[ ˆCov[f(X), h(X)]

V ar[f(X)]2
(2E[f(X)]2 + (

1

N
+

1

n
)V ar[f(X)])− V ar[h(X)]Corr(h(X), f(X))2

(1 + n
N )n

. (45)
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D. Convergence of OLS Estimate

In Section 6.2, we propose that under certain conditions, we can take V ar[λ̂Opt] =
V ar[ ˆCov[f(X),h(X)]

V ar[f(X)]2 . In this section,
we set forth the conditions under which that may be the case. Throughout this section we assume we are using the
estimator

ˆCov(f(X),h(X))

(1+ n
N ) ˆV ar[f(X)]

, where ˆV ar[f(X)] and ˆCov(f(X), h(X)) are the sample estimates for the variance of f(X)

and covariance of f(X) and h(X), respectively.

In section 6.1, we assumed that the estimator for λ used a finite sample separate from the data used for creating the PPI
estimate. We will make the additional assumption that we have two pools of data for fitting λ: one set of n examples for
fitting ˆCov(f(X), h(X)) and one pool of N examples for fitting ˆV ar[f(X)], where n << N . This has been a standard
assumption throughout this work, as we assume that we have access to a very large number of pseudolabels f(X). With that
in mind, we rewrite our estimates for these two quantities as ˆCovn(f(X), h(X)) and ˆV arN [f(X)] to denote the random
variables being used to generate them, and rewrite our estimator for λ as

ˆCovn(f(X),h(X))

(1+ n
N ) ˆV arN [f(X)]

.

We will now use a set of standard convergence in probability results for the sample variance. Namely, as N grows, we have
the following:

ˆV arN [f(X)] −→p V ar[f(X)], (1 +
n

N
) ˆV arN [f(X)] −→p V ar[f(X)]. (46)

Since this variable converges in probability in a constant, we can use Slutsky’s theorem for the following convergence in
distribution of our estimator for λ:

ˆCovn(f(X), h(X))

(1 + n
N ) ˆV arN [f(X)]

−→d

ˆCovn(f(X), h(X))

V ar[f(X)]
. (47)

Therefore, in this asymptotic regime, we have:

V ar[
ˆCovn(f(X), h(X))

V ar[f(X)]
] =

V ar[ ˆCovn[f(X), h(X)]

V ar[f(X)]2
. (48)

Similarly for Ridge-PPI, where λ̂α :=
ˆCovn[h(X),f(X)]

(1+ n
N )( ˆV arN [f(X)]+α)

we can use an identical line of reasoning and know that,
asymptotically, we have:

V ar[λ̂α] = V ar[
ˆCovn(f(X), h(X))

(V ar[f(X)] + α)
] =

V ar[ ˆCovn[f(X), h(X)]

(V ar[f(X)] + α)2
. (49)

E. Proof of Excess Risk of Ridge
Here we prove our expression for the difference of risks between Ridge-PPI and the classical estimate:

V ar[µ̂PPIa ]− V ar[µ̂h] (50)

Using the decomposition given by Equation 36 in Section C, as well as the fact that E[λ̂α] = Cov(f(X),h(X))
(1+ n

N )(V ar[f(X)]+α) , we can
further decompose this expression as:

= (
Cov(f(X), h(X))

(1 + n
N )(V ar[f(X)] + α)

)(
Cov(f(X), h(X))

(1 + n
N )(V ar[f(X)] + α)

(
1

N
+

1

n
)V ar(f)− 2

n
Cov(h, f)) (51)

+V ar(λ)(2E[f ]2 + (
1

N
+

1

n
)V ar(f)). (52)
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We’ll start by decomposing the first term in the sum. We’ll focus on the second factor in the product.

(
Cov(f(X), h(X))

(1 + n
N )(V ar[f(X)] + α)

(
1

N
+

1

n
)V ar(f)− 2

n
Cov(h, f)) (53)

= Cov(f(X), h(X))(
( nN + 1)V ar[f(X)]− 2(1 + n

N )(var(f(X) + α)

n(1 + n
N )(var(f) + α)

) =
Cov(f(X), h(X))

n
(
−V ar[f(X)]− 2α

V ar[f(X)] + α
)

(54)

=
Cov(f(X), h(X))

n
(−(1 + α

var(f(X) + α
)) (55)

Substituting this back into the original product, we have:

(
Cov(f(X), h(X))

(1 + n
N )(V ar[f(X)] + α)

)(
Cov(f(X), h(X))

(1 + n
N )(V ar[f(X)] + α)

(
1

N
+

1

n
)V ar(f)− 2

n
Cov(h, f)) (56)

= (
Cov(f(X), h(X))

(1 + n
N )(V ar[f(X)] + α)

)(−Cov(f(X), h(X))

n
− αCov(f(X), h(X))

(V ar[f(X)] + α)n
) (57)

= − Cov(f(X), h(X))2

n(1 + n
N )(V ar[f(X)] + α)

− αCov(f(X), h(X))2

n(1 + n
N )(V ar[f(X)] + α)2

(58)

= −Cov(f(X), h(X))2V ar[f(X)] + 2Cov(f(X), h(X))2α

n(1 + n
N )(V ar[f(X)] + α)2

(59)

We now again use the definition of Covariance as Cov(f(X), h(X)) = Corr(f(X), h(X))
√
V ar[f(X)]

√
V ar[h(X)],

as well as the fact that (V ar[f(X)] + α)2 = V ar[f(X)]2 + α2 + 2V ar[f(X)]α.

= −Corr(f(X), h(X))2V ar[h(X)](V ar[f(X)]2 + 2V ar[f(X)]α)

n(1 + n
N )(V ar[f(X)] + α)2

(60)

We’ll now add and subtract Corr(f(X), h(X))2V ar[h(X)]α2 from the numerator:

= −Corr(f(X), h(X))2V ar[h(X)](V ar[f(X)] + α)2 − Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

(61)

=
Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

− Corr(f(X), h(X))2V ar[h(X)]

n(1 + n
N )

. (62)

We now substitute this expression back into the expression for the difference of risks:

V ar[µ̂PPIa ]− V ar[µ̂h] (63)

= (
Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

− Corr(f(X), h(X))2V ar[h(X)]

n(1 + n
N )

)+V ar(λ)(2E[f ]2+(
1

N
+

1

n
)V ar(f)) (64)
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We can simplify this expression if we make the same simplifying convergence assumptions described in Appendices C and
D, as well as the shorthand V := V ar[ ˆCov[f(X), h(X)]](2E[f(X)]2 + ( 1

N + 1
n )V ar[f(X)]):

=
V

(V ar[f(X)] + α)2
+
Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

− Corr(f(X), h(X))2V ar[h(X)]

n(1 + n
N )

. (65)

Finally, we can also calculate the risk reduction from using Ridge-PPI vs PPI++ by subtracting Equation 13 from Equation
65:

V ar[µ̂PPIa ]− V ar[µ̂h]− (V ar[µ̂PPI ]− V ar[µ̂h)]) = V ar[µ̂PPIa ]− V ar[µ̂PPI ] (66)

=
V

(V ar[f(X)] + α)2
− V

V ar[f(X)]2
+
Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

(67)

= V (
1

(V ar[f(X)] + α)2
− 1

V ar[f(X)]2
) +

Corr(f(X), h(X))2V ar[h(X)]α2

n(1 + n
N )(V ar[f(X)] + α)2

(68)

F. Optimal Ridge Coefficient
The expression for the risk reduction from using Ridge-PPI vs PPI++ given in Equation 68 is not convex in α, and depending
on the statistics of the data Ridge may not improve upon standard PPI++. However, if there does exist an optimal setting for
α, we select it using first order optimization. If we take the derivative of Equation 68 with respect to α we have:

d

dα
V ar[µ̂PPIa ]− V ar[µ̂PPI ] =

2(Corr(f(X), h(X))2V ar[h(X)]αV ar[f(X)]− n(1 + n
N )V )

n(1 + n
N )(V ar[f(X)] + α)3

. (69)

Setting this to zero we have:

d

dα
V ar[µ̂PPIa ]− V ar[µ̂PPI ] = 0 =⇒ α =

n(1 + n
N )V )

Cov(f(X), h(X))2
(70)
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