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Abstract

Generative molecular design has moved from proof-of-concept to real-world appli-1

cability, as marked by the surge in very recent papers reporting experimental valida-2

tion. Key challenges in explainability and sample efficiency present opportunities3

to enhance generative design to directly optimize expensive high-fidelity oracles4

and provide actionable insights to domain experts. Here, we propose Beam Enumer-5

ation to exhaustively enumerate the most probable sub-sequences from language-6

based molecular generative models and show that molecular substructures can be ex-7

tracted. When coupled with reinforcement learning, extracted substructures become8

meaningful, providing a source of explainability and improving sample efficiency9

through self-conditioned generation. Beam Enumeration is generally applicable10

to any language-based molecular generative model and notably further improves11

the performance of the recently reported Augmented Memory algorithm, which12

achieved the new state-of-the-art on the Practical Molecular Optimization bench-13

mark for sample efficiency. The combined algorithm generates more high reward14

molecules and faster, given a fixed oracle budget. Beam Enumeration is the first15

method to jointly address explainability and sample efficiency for molecular design.16

The code is available at https://figshare.com/s/d0cd53fc14027accd7b0.17

1 Introduction18

Molecular discovery requires identifying candidate molecules possessing desired properties amidst19

an enormous chemical space1. Generative molecular design has become a popular paradigm in20

drug discovery, offering the potential to navigate chemical space more efficiently with promise for21

accelerated discovery. Very recently, efforts have come to fruition and a large number of works have22

reported experimental validation of generated inhibitors, notably for both distribution learning2–1423

and goal-directed generation15–20 approaches. Perhaps now more than ever, existing challenges in24

explainability and sample efficiency offer an avenue to propel generative molecular design towards25

outcomes that are not yet possible. Specifically, if one can elucidate why certain substructures or26

molecules satisfy a target objective, the model’s knowledge can be made actionable, for example, in27

an interplay with domain experts. Moreover, sample efficiency concerns with how many experiments,28

i.e., oracle calls, are required for a model to optimize the target objective. This is a pressing problem29

as the most informative high-fidelity oracles are computationally expensive, e.g., molecular dynamics30

(MD) for binding energy prediction21,22. If a generative model can directly optimize these expensive31

oracles, the capabilities of generative design can be vastly advanced.32
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In this work, we propose Beam Enumeration to exhaustively enumerate the most probable token sub-33

sequences in language-based molecular generative models and show that valid molecular substructures34

can be extracted from these partial trajectories. We demonstrate that the extracted substructures are35

informative when coupled with reinforcement learning (RL) and show that this information can be36

made actionable to self-condition the model’s generation by only evaluating sampled molecules37

containing these substructures with the oracle. The results show significantly enhanced sample38

efficiency with an expected small trade-off in diversity. Beam Enumeration is the first method to39

jointly address explainability and sample efficiency. Our contribution is as follows:40

1. We propose Beam Enumeration as a task-agnostic method to exhaustively enumerate sub-41

sequences and show that molecular substructures can be extracted. When coupled with42

RL43

2. During the course of RL, extracted substructures provide structural insights and are on track44

to yield high rewards, which, in turn, enables self-conditioned molecular generation.45

3. We perform exhaustive hyperparameter investigations (2,224 experiments and 144 with46

molecular docking) and provide insights on the predictable behavior of Beam Enumeration47

and recommend default hyperparameters for out-of-the-box applications.48

4. We combine Beam Enumeration with the recently reported Augmented Memory23 opti-49

mization algorithm and show that the sample efficiency becomes sufficient (up to a 29-fold50

increase on the most challenging task) to find high reward molecules that satisfy a docking51

objective with only 2,000 oracle calls in three drug discovery case studies.52

2 Related Work53

Sample Efficiency in Molecular Design. Tailored molecular generation is vital for practical54

applications as every use case requires optimizing for a bespoke property profile. Over the past55

several years, so-called goal-directed generation has been achieved using a variety of architectures,56

including Simplified molecular-input line-entry system (SMILES)24-based recurrent neural networks57

(RNNs)25–28, generative adversarial networks (GANs)29–31, variational autoencoders (VAEs)17,32,33,58

graph-based models34–37, GFlowNets38, and genetic algorithms39. However, while all methods59

can be successful in optimizing for various properties, the oracle budget, i.e., how many oracle60

calls (computational calculations) were required to do so, is rarely reported. To address this, Gao61

et al.40 proposed the Practical Molecular Optimization (PMO)40 benchmark, which assesses 2562

models across 23 tasks and enforces a budget of 10,000 oracle calls. Recently, Guo et al. proposed63

Augmented Memory23, which uses a language-based molecular generative model and achieves the64

new state-of-the-art on the PMO benchmark.65

Explainability for Molecules. Explainable AI (XAI)41 to interpret and explain model predictions is a66

vital component for decision-making. Existing methods include Gradient-weighted Class Activation67

Mapping (Grad-CAM)42, which uses gradient-based heat maps for convolutional layers and Local68

Interpretable Model-agnostic Explanations (LIME)43, which uses a locally interpretable model.69

Other methods include permutation importance44 and SHAP values45, which are model-agnostic. For70

molecules, the Molecular Model Agnostic Counterfactual Explanations (MMACE)46 method was71

proposed to search for the most similar counterfactual (model predicts the opposite label) molecule.72

Recently, the pBRICS47 algorithm was proposed to combine functional group decomposition with73

Grad-CAM to explain matched molecular pairs. While existing XAI methods can work well provided74

a dataset, making the explanations actionable during a generative design experiment that relies on an75

interplay between chemical space exploration and oracle feedback is difficult.76

To address this limitation, we introduce Beam Enumeration, which extracts molecular substructures77

directly from the model’s token sampling probabilities and derives explainability from a generative78

probabilistic perspective that is modulated by reward feedback. Moreover, when coupled with79

Augmented Memory23, sample efficiency drastically improves.80
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Figure 1: Beam Enumeration overview. a. The proposed method proceeds via 4 steps: 1. generate
batch of molecules. 2. filter molecules based on pool to enforce substructure presence, discarding
the rest. 3. compute reward 4. update the model. After updating the model, if the reward has
improved for consecutive epochs, execute Beam Enumeration. b. Beam Enumeration sequentially
enumerates the top k tokens by probability for N beam steps, resulting in an exhaustive set of token
sub-sequences. c. All valid substructures (either by the Structure or Scaffold criterion) are extracted
from the sub-sequences. The most frequent substructures are used for self-conditioned generation.

3 Proposed Method: Beam Enumeration81

In this section, each component of Beam Enumeration (Fig. 1) is described: the base molecular gen-82

erative model, the Beam Enumeration algorithm, and how Beam Enumeration harnesses the model’s83

built-in explainability which can be used to improve sample efficiency through self-conditioned84

generation (further details on Beam Enumeration are presented in Appendix A).85

Autoregressive Language-based Molecular Generative Model. The starting point of Beam Enu-86

meration is any autoregressive language-based molecular generative model. The specific model used87

in this work is Augmented Memory23 which recently achieved the new state-of-the-art performance88

on the PMO40 benchmark for sample efficiency, outperforming modern graph neural network-based89

approaches48,49 and GFlowNets50. Augmented Memory builds on REINVENT25,51 which is a90

SMILES-based24 RNN using long-short-term memory (LSTM) cells52. The optimization process is91

cast as an on-policy RL problem. We define the state space, St, as all intermediate token sequences92

and the action space, At(st), as the token sampling probabilities (conditioned on a given a state).93

At(st) is given by the policy, πθ, which is parameterized by the RNN. The objective is to iteratively94

update the policy such that token sampling, At(st), yields trajectories (SMILES) with increasing95

reward. Formally, sampling a SMILES, x, is given by the product of conditional state probabilities96

(Equation 1), and the token sampling is Markovian:97

P (x) =

T∏
t=1

P (st | st−1, st−2, . . . , s1) (1)

Goal-directed generation proceeds by defining the Augmented Likelihood (Equation 2), where the98

Prior is the pre-trained model and S is the objective function returning a reward, given a SMILES, x.99

log πθAugmented
= log πθPrior

+ σS(x) (2)

The policy is directly optimized by minimizing the squared difference between the Augmented100

Likelihood and the Agent Likelihood given a sampled batch, B, of SMILES constructed following101

the actions, a ∈ A∗ (Equation 3):102
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L(θ) =
1

|B|

[ ∑
a∈A∗

(log πθAugmented
− log πθAgent

)

]2

(3)

Minimizing L(θ) is equivalent to maximizing the expected reward as shown previously23,53.103

Beam Enumeration. Beam Enumeration is proposed based on the fact that on a successful op-104

timization trajectory, it must become increasingly likely to generate high reward molecules. It is105

therefore reasonable to assume that the highest probability trajectories are more likely to yield high106

reward. Correspondingly, Beam Enumeration (Fig. 1) exhaustively enumerates the top k tokens (by107

probability) sequentially for N beam steps. Molecular substructures can be extracted from the set of108

sub-sequences, and we show how this information can be made actionable.109

Probabilistic Explainability. Here, we describe how probabilistic explainability can be extracted110

from the exhaustive set of token sub-sequences. We hypothesized that molecular substructures can be111

extracted from a given sub-sequence by iteratively considering every (sub)-sub-sequence (Fig. 1).112

For example, given the sub-sequence “ABC”, the set of (sub)-sub-sequences are: “A”, “AB”, and113

“ABC”. It is expected that not every sub-sequence possesses (sub)-sub-sequences mapping to valid114

molecular substructures. Still, we show that a sufficient signal can be extracted (Appendix C). We115

implement two types of substructures: Scaffold, which extracts the Bemis-Murcko54 scaffold and116

Structure, which extracts any valid substructure. The closest work to ours is the application of Beam117

Search55,56 for molecular design3. Our work differs as the objective is to exhaustively enumerate the118

highest probability sub-sequences to extract molecular substructures for self-conditioned generation.119

Self-conditioned Generation. The sub-sequences were enumerated by taking the most probable120

k tokens, and generating high reward molecules should be increasingly likely. Correspondingly, it121

is reasonable to posit that the most frequent molecular substructures are on track to becoming high122

reward full molecules and that the substructures themselves possess properties aligned with the target123

objective. The generative process can be self-conditioned to filter sampled batches for the presence124

of these molecular substructures and discard those that do not (Fig. 1).125

Sample Efficiency Metrics. We define two metrics to assess sample efficiency: Generative Yield126

(referred to as Yield from now on) and Oracle Burden. Yield (Equation 4) is defined as the number of127

unique generated molecules above a reward threshold, where g ∈ G are the molecules in the generated128

set, I is the indicator function which returns 1 if the reward, R(g), is above a threshold, T . Yield is a129

useful metric for drug discovery as the generated set is usually triaged to prioritize molecules, e.g.,130

based on synthetic feasibility, for experimental validation or more expensive computational oracles.131

Generative Y ield =

G∑
g=1

I[R(g) > T ] (4)

Oracle Burden (Equation 5) is defined as the number of oracle calls (c) required to generate N unique132

molecules above a reward threshold. This is a direct measure of sample efficiency as high reward133

molecules satisfy the target objective, and the metric becomes increasingly important with expensive134

high-fidelity oracles.135

Oracle Burden = c |
G∑

g=1

I[R(g) > T ] = N (5)

4 Results and Discussion136

We first design an illustrative experiment to demonstrate the feasibility of Beam Enumeration to137

extract meaningful substructures and, in turn, enable self-conditioned generation. Next, three drug138

discovery case studies to design prospective inhibitors were performed to demonstrate real-world139
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Figure 2: Illustrative experiment with the following multi-parameter optimization objective: maximize
tPSA, molecular weight < 350 Da, number of rings ≥ 2. a. Augmented Memory23 reward trajectory
with annotated top-4 (excluding benzene) most frequent molecular substructure scaffolds at varying
epochs using Beam Enumeration. b. Examples of molecules with high reward.

Table 1: Illustrative experiment: Beam Enumeration improves the sample efficiency of Augmented
Memory. All experiments were run for 100 replicates with an oracle budget of 5,000 calls, and
reported values are the mean and standard deviation. Scaffold and Structure indicate the type of
substructure, and the number after is the Structure Minimum Size. Parentheses after Oracle Burden
denote the cut-off number of molecules. Parentheses after values represent the number of unsuccessful
replicates (for achieving the metric).

Metric Augmented Memory
Beam Scaffold 15 Beam Structure 15 Beam Scaffold Beam Structure Baseline

Generative Yield>0.7 (↑) 1757 ± 305 1669 ± 389 1117 ± 278 864 ± 202 496 ± 108

Generative Yield>0.8 (↑) 819 ± 291 700 ± 389 425 ± 256 199 ± 122 85 ± 56

Oracle Burden>0.7 (1) (↓) 577 ± 310 616 ± 230 1037 ± 414 897 ± 347 1085 ± 483
Oracle Burden>0.7 (10) (↓) 947 ± 350 926 ± 332 1881 ± 259 1745 ± 292 2392 ± 216
Oracle Burden>0.7 (100) (↓) 1530 ± 468 1547 ± 513 2736 ± 335 2713 ± 402 3672 ± 197

Oracle Burden>0.8 (1) (↓) 1311 ± 628 1401 ± 695 2423 ± 487 2295 ± 482 3164 ± 492
Oracle Burden>0.8 (10) (↓) 1794 ± 617 (1) 2009 ± 804 (1) 3124 ± 497 3241 ± 492 4146 ± 326
Oracle Burden>0.8 (100) (↓) 2704 ± 689 (1) 2943 ± 811 (6) 3973 ± 592 (6) 4415 ± 437 (20) 4827 ± 170 (69)

application. The key result we convey is that Beam Enumeration can be added directly to existing140

algorithms, and it both provides structural insights and improves sample efficiency to not only141

generate more high reward molecules, but also faster, given a fixed oracle budget.142

4.1 Illustrative Experiment143

Extracted Substructures are Meaningful. The illustrative experiment aims to optimize the following144

multi-parameter optimization (MPO) objective: maximize topological polar surface area (tPSA),145

molecular weight (MW) < 350 Da, and number of rings ≥ 2. This specific MPO was chosen because146

satisfying the objective requires generating rings saturated with heteroatoms. Augmented Memory23147

was used to optimize the MPO objective. The reward trajectory tends towards 1, indicating the148

model gradually learns to satisfy the target objective, as desired (Fig. 2) Next, we investigate the149

top k and N beam steps parameters for Beam Enumeration and show that while the majority of150

sub-sequences do not possess valid substructures, a meaningful signal can still be extracted (Appendix151

C). We hypothesize that the optimal parameters are using a low top k as we are interested in the most152

probable sub-sequences and large N beam steps, which would enable extracting larger (and potentially153

more meaningful) substructures. Fig. 2 shows the top-4 substructures from Beam Enumeration at154

varying epochs. The substructures are informative when considering the MPO objective: the most155

frequent substructures gradually become rings saturated with heteroatoms, which possess a high156

tPSA.157
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Self-conditioned Generation Improves Sample Efficiency. Thus far, the results only show that158

Beam Enumeration can extract meaningful molecular substructures. To enable self-conditioned159

generation, we consider when extracted substructures would be meaningful and propose to execute160

Beam Enumeration when the reward improves for Patience number of successive epochs (to mitigate161

sampling stochasticity). We combine Beam Enumeration with Augmented Memory23 and perform162

an exhaustive hyperparameter grid search (with replicates) using Yield and Oracle Burden as the163

performance metrics (Appendix A). The results elucidate the behavior of Beam Enumeration with164

three key observations: firstly, Structure extraction is permissive compared to Scaffold and often leads165

to small functional groups being the most frequent substructures which diminish the sample efficiency166

benefits (Appendix C). Secondly, enforcing larger substructures to be extracted (Structure Minimum167

Size) improves performance across all hyperparameter combinations. This reinforces that extracted168

substructures are meaningful as larger substructures heavily bias molecular generation during self-169

conditioning. If they were not meaningful, sample efficiency would not improve (and would likely be170

detrimental). Thirdly, Structure extraction while enforcing a higher Structure Minimum Size prevents171

small functional group extraction which significantly enhances performance. Subsequently, we172

perform five experiments (N=100 replicates each) based on the optimal hyperparameters identified:173

Augmented Memory23 (baseline) and Augmented Memory with Beam Enumeration (Scaffold and174

Structure with and without Structure Minimum Size = 15). Table 1 shows that Beam Enumeration175

drastically improves the Yield and Oracle Burden compared to the baseline at both the > 0.7 and >176

0.8 reward thresholds, especially when Structure Minimum Size = 15 is enforced. We highlight that177

the improved sample efficiency is significant as baseline Augmented Memory could not find 100178

molecules > 0.8 reward in 69/100 replicates.179

4.2 Drug Discovery Case Studies180

Next, we apply Beam Enumeration to drug discovery case studies to design inhibitors against181

DRD2 which is implicated in neurodegenerative diseases57, MK2 kinase which is involved in pro-182

inflammatory responses58, and AChE which is a target of interest against Alzheimer’s disease59.183

Following Guo et al.23,60, we formulate the following MPO objective: minimize the AutoDock184

Vina61 docking score, maximize the QED62 score, and MW < 500 Da. The QED and MW objectives185

prevent the generative model from exploiting the weaknesses of docking algorithms to give inflated186

docking scores to large, lipophilic molecules, which can be promiscuous binders63. Moreover, an187

oracle budget of 5,000 Vina calls was enforced which is almost half the budget of the original188

Augmented Memory23 work (9,600). Since the observations made from the previous hyperparameter189

grid search may not be generalizable to docking tasks, we perform an additional hyperparameter grid190

search (with replicates). The results (Appendix D) show that the optimal hyperparameters across191

all drug discovery case studies are the same as the illustrative experiment. We designate these the192

default hyperparameters and demonstrate the applicability of Beam Enumeration to both Augmented193

Memory23 and REINVENT25,51 which is the second most (behind Augmented Memory) sample194

efficient model in the PMO40 benchmark.195

Qualitative Inspection: Explainability. We first show that Augmented Memory with Beam Enu-196

meration generates molecules that satisfy the MPO objective (Fig. 3). We emphasize that results197

were not cherry-picked and the three generated examples shown are the top 1 (by reward) across198

triplicate experiments. All molecules possess better Vina scores and higher QED than the reference199

molecules, as desired. Fig. 3 shows the highlighted substructures extracted using Structure extraction200

with Structure Minimum Size = 15 with three key observations: firstly, "uncommon" molecular201

substructures may be extracted such as the bridged cycle against DRD2. The exact substructure202

extracted was an amide bond with a long carbon chain which implicitly enforces the bridged cycle,203

and the Vina pose shows that it fits in the binding cavity with no clashes, despite being a bulky204

group. Secondly, bicylic or double-ring systems are often extracted, forming central scaffolds of205

the full molecule. Thirdly, scaffolds with branch points, i.e., a central ring with single carbon bond206

extensions, are often extracted. These substructures are particularly interesting as they heavily bias207

what can be generated in the remaining portion of the full molecule. An exemplary example of this208

is in the first generated molecule against MK2, where the branch points are effectively a part of209
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Figure 3: Three drug discovery case studies showing the top generated molecule (triplicate experi-
ments) using Augmented Memory23 with Beam Enumeration Structure Minimum Structure Size =
15 and the reference ligand. Extracted substructures from Beam Enumeration are highlighted. The
multi-parameter optimization objective is: Minimize Vina score, maximize QED, and molecular
weight < 500 Da. a. Dopamine type 2 receptor57. b. MK2 kinase58. c. Acetylcholinesterase59.

two other ring systems (Fig. 3). Beam Enumeration can provide insights into the tolerability and210

suitability of certain substructures in the context of the full molecules (see Appendix D for more211

examples of substructures). Overall, the extracted substructures are meaningful and act both as a212

source of generative explainability and can self-direct the generative model into specific regions of213

chemical space with high reward.214

Quantitative Analysis: Sample Efficiency. Next, we reinforce results from previous work showing215

that Augmented Memory23 is significantly more sample efficient than REINVENT25,64 (Table 2).216

Notably, the Yield of Augmented Memory is much greater than REINVENT at both the > 0.7217

and > 0.8 reward thresholds, indicating that more high reward molecules are generated. Moreover,218

Augmented Memory has a lower Oracle Burden than REINVENT in all cases, except for Oracle219

Burden>0.8 (1) for DRD2 and AChE where there is essentially no difference. The reason for this is220

because molecules with > 0.8 reward were already generated at epoch 1, indicating the pre-trained221

model (trained on ChEMBL65) is a good Prior for these case studies. By contrast, the MK2 case222

study is considerably more challenging as extremely few > 0.8 reward molecules are generated under223

a 5,000 oracle calls budget. Augmented Memory significantly outperforms REINVENT as the latter224

could not find 10 molecules with reward > 0.8 (Table 2).225

Subsequently, we demonstrate that Beam Enumeration can be applied out-of-the-box on top of226

Augmented Memory and REINVENT. Firstly, the addition of Beam Enumeration improves the227

sample efficiency of both base algorithms, as evidenced by the Yield and Oracle Burden metrics228

in Table 2 with a small trade-off in diversity (Appendix D). The benefits are more pronounced in229

Augmented Memory as observed by the Yield>0.8 improving by > 4x in all cases (MK2 improves230

by 29x) and the Oracle Burden >0.8 (10 and 100) over halved in most cases. Notably, for MK2231
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Oracle Burden >0.8 (100), baseline Augmented Memory could not accomplish the task while Beam232

Enumeration is successful in almost under 2,000 oracle calls (Table 2). We further verify that a233

large number of unique scaffolds are generated despite the Beam Enumeration bias (Appendix D),234

demonstrating that the combined algorithm with Augmented Memory achieves both exploration and235

exploitation. Overall, the results show that Beam Enumeration is task-agnostic and can be applied on236

top of existing algorithms to improve sample efficiency. The combined algorithm generates more237

high reward molecules and faster, even in challenging (MK2) scenarios under a limited oracle budget.238

Furthermore, in reference to all the Oracle Burden metrics (Table 2), Augmented Memory with Beam239

Enumeration can identify a small set of excellent (high reward) candidate molecules in under 2,000240

oracle calls and in some cases, even under 1,000 oracle calls.241

Table 2: Drug discovery case studies: Beam Enumeration improves sample efficiency. All experiments
were run in triplicate with an oracle budget of 5,000 calls and reported values are the mean and
standard deviation. Scaffold and Structure indicate the type of substructure (Structure Minimum Size
= 15) extracted. The Generative Yield and Oracle Burden are reported at varying reward thresholds.
Parentheses after Oracle Burden denote the cut-off number of molecules. Best performance is bolded
with the exception of Oracle Burden (1) (DRD2/AChE) which have essentially identical performance
due to the pre-trained model. * and ** denote one and two replicates were unsuccessful, respectively.

Metric Target Augmented Memory REINVENT
Beam Beam Baseline Beam Beam Baseline

Structure 15 Scaffold 15 Structure 15 Scaffold 15

Generative Yield>0.7 (↑)
DRD2 3474 ± 158 3412 ± 95 2513 ± 442 2392 ± 699 2686 ± 235 1879 ± 16
MK2 3127 ± 138 2584 ± 443 1446 ± 173 1822 ± 444 1553 ± 391 879 ± 10
AChE 3824 ± 162 3902 ± 189 3288 ± 85 2511 ± 369 2684 ± 242 2437 ± 53

Generative Yield>0.8 (↑)
DRD2 1780 ± 439 1607 ± 379 363 ± 195 417 ± 275 687 ± 366 102 ± 6
MK2 987 ± 211 523 ± 438 34 ± 13 179 ± 241 19 ± 7 2 ± 0
AChE 2059 ± 327 2124 ± 326 556 ± 47 323 ± 58 310 ± 207 147 ± 11

Oracle Burden>0.8 (1) (↓)
DRD2 126 ± 90 83 ± 29 187 ± 51 63 ± 0 127 ± 52 168 ± 149
MK2 736 ± 166 1221 ± 564 1360 ± 543 1110 ± 268 808 ± 524 1724 ± 802
AChE 105 ± 29 63 ± 0 62 ± 0 62 ± 0 84 ± 29 83 ± 29

Oracle Burden>0.8 (10) (↓)
DRD2 582 ± 83 571 ± 104 711 ± 120 1099 ± 930 604 ± 71 883 ± 105
MK2 1122 ± 154 2426 ± 1525 3833 ± 394 1778 ± 0∗∗ 3891 ± 631 Failed
AChE 462 ± 25 418 ± 27 380 ± 0 441 ± 132 421 ± 120 481 ± 108

Oracle Burden>0.8 (100) (↓)
DRD2 1120 ± 194 1056 ± 146 2558 ± 30∗ 1928 ± 117 2109 ± 1090 4595 ± 0∗∗

MK2 2189 ± 181 2676 ± 403 Failed 3208 ± 0∗∗ Failed Failed
AChE 1110 ± 265 884 ± 162 2021 ± 89 3073 ± 427 3596 ± 678 3931 ± 286

5 Conclusion242

In this work, we propose Beam Enumeration to exhaustively enumerate sub-sequences from a243

language-based molecular generative model based on the top k most probable tokens and for N244

beam steps. We show that molecular substructures can be extracted from the sub-sequences, which245

enables self-conditioned generation by only evaluating (by the oracle) molecules possessing these246

substructures and discarding the rest. We show that Beam Enumeration can be coupled with existing247

RL-based algorithms including Augmented Memory23 and REINVENT25,64. In three drug discovery248

case studies involving docking, the addition of Beam Enumeration improves sample efficiency249

as assessed by the Yield and Oracle Burden metrics with a small trade-off in diversity (which250

is expected). The extracted substructures themselves provide valuable structural insights, often251

enforcing the generation of specific cyclic systems and scaffolds with branch points which impose252

an overall molecular geometry, thus serving as a source of explainability. Beam Enumeration253

is the first proposed method to jointly address explainability and sample efficiency in molecular254

generative models. The improvements in the latter will enable more expensive high-fidelity oracles255

to be explicitly optimized. We note, however, that sparse reward environments15 remain a difficult256

optimization task. Finally, Beam Enumeration is a task-agnostic method and can be combined257

with recent work integrating active learning with molecular generation to further improve sample258

efficiency66,67. If the benefits can be synergistic, we may approach sufficient sample efficiency to259

directly optimize expensive state-of-the-art (in predictive accuracy) physics-based oracles such as260

MD simulations21,22. Excitingly, this would in turn enhance explainability as high-fidelity oracles are261

inherently more informative.262

8



The Appendix contains further experiments, ablation studies, experiment hyperparameters, and263

algorithmic details.264

A Beam Enumeration265

This section contains full details on Beam Enumeration including hyperparameters, design decisions,266

and pseudo-code.267

A.1 Algorithm Overview268

Figure A4: Beam Enumeration overview. a. The proposed method proceeds via 4 steps: 1. generate
batch of molecules. 2. filter molecules based on pool to enforce substructure presence, discarding
the rest. 3. compute reward 4. update the model. After updating the model, if the reward has
improved for consecutive epochs, execute Beam Enumeration. b. Beam Enumeration sequentially
enumerates the top k tokens by probability for N beam steps, resulting in an exhaustive set of token
sub-sequences. c. All valid substructures (either by the Structure or Scaffold criterion) are extracted
from the sub-sequences. The most frequent substructures are used for self-conditioned generation.
This overview figure is the same as in the main text.

Beam Enumeration (Fig. A4) is an algorithm that extracts molecular substructures from a generative269

model’s weights for self-conditioned generation. The problem set-up is any molecular design task270

to optimize for a target property profile, e.g., high predicted solubility and binding affinity. When271

molecular generative models are coupled with an optimization algorithm, it should be increasingly272

likely to generate desirable molecules, i.e., molecules that possess the target property profile.273

Beam Enumeration is proposed based on two facts:274

1. On a successful optimization trajectory, the model’s weights must change such that desirable275

molecules are more likely to be generated, on average.276

2. The act of generating molecules in an autoregressive manner involves sequentially sampling277

from conditional probability distributions.278

In this work, Beam Enumeration is applied to a language-based autoregressive generative model279

operating on the simplified molecular-input line-entry system (SMILES)24 representation. The280
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optimization algorithm is Augmented Memory23 which builds on REINVENT25,51 and casts the opti-281

mization process as an on-policy reinforcement learning (RL) problem. Following RL terminology,282

sampling from the generative model involves sampling trajectories, which in this case, are SMILES,283

and the desirability of the corresponding molecule is given by the reward.284

The underlying hypothesis of Beam Enumeration is that during the RL optimization process, partial285

trajectories provide a source of signal that can be exploited. Usually, full trajectories are sampled286

which map to a complete SMILES sequence that can be translated to a molecule. Our assumption287

is that partial trajectories (partial SMILES sequence) can be mapped to molecular substructures (a288

part of the full molecule). This statement is not guaranteed as SMILES and molecules are discrete289

and small perturbations often leads to invalid SMILES. We prove this assumption in Section C by290

showing that although the vast number of partial trajectories do not map to valid SMILES, the raw291

number is sufficient to extract a meaningful signal. Correspondingly, Beam Enumeration leverages292

partial trajectories on the assumption that molecular substructures are on track to becoming full293

molecules that would receive high reward.294

A.2 Enumerating Partial Trajectories295

In order to extract molecular substructures, a set of partial trajectories must be sampled from the296

generative model. Recalling the fact that on a successful optimization trajectory, it must become297

increasingly likely to generate desirable molecules, partial trajectories are sampled by enumerating298

the top k tokens, based on the conditional probability. Therefore, the process of enumerating partial299

trajectories involves sequentially extending each token sequence by their next top k probable tokens,300

resulting in the total number of partial trajectories as 2N where N is the number of beam steps, i.e.,301

how many tokens in the partial trajectory. We note that taking the top k most probable tokens does302

not guarantee that the partial trajectories are indeed the most probable, as paying a probability penalty303

early can lead to higher probabilities later. However, our assumption is that on average, this leads to a304

set of partial trajectories that are at the very least, amongst the most probable. Moreover, there is a305

practical limit to how many partial trajectories are sampled due to exponential growth which makes306

scaling quickly computationally prohibitive. In the later section, we discuss this thoroughly. Finally,307

from here, partial trajectories will be referred to as token sub-sequences.308

A.3 Extracting Molecular Substructures309

Given a set of token sub-sequences, the goal is to extract out the most frequent molecular substructures.310

This is done by taking each sequence, considering every (sub)-sub-sequence, and counting the number311

of valid substructures (Fig. A). For example, given the sub-sequence “ABCD”, the set of (sub)-sub-312

sequences are: “A”, “AB”, “ABC”, and “ABCD”. In practice, we only consider (sub)-sub-sequences313

with at least three characters (“ABC” and “ABCD”) since each character loosely maps to one atom314

and three is approximately the minimum for meaningful functional groups, e.g., “C=O”, a carbonyl.315

The set of most frequent substructures is assumed to be on track to receive a high reward.316

A.4 Defining Molecular Substructures: Scaffold vs. Structure317

As shown in Fig. A, molecular substructures can be defined on the Scaffold or Structure level.318

The former extracts the Bemis-Murcko54 scaffold while the latter extracts any valid structure. The319

any valid structure is an important distinction as our experiments find that extracting by Structure320

leads to the most frequent molecular substructures being small functional groups that do not have321

corresponding scaffolds. By contrast, extracting the scaffold always leads to ring structures. Moreover,322

extracting specifically the Bemis-Murcko scaffold is important as heavy atoms, e.g., nitrogen, are323

important for biological activity. Consequently, extracted substructures are also enforced to contain at324

least one heavy atom as we find that benzene, perhaps unsurprisingly, is commonly the most frequent325

substructure. See Section B for more details on the differing behavior of ‘Scaffold’ vs. ‘Structure’.326
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A.5 Self-conditioned Generation327

Self-conditioned generation is achieved by filtering sampled batches of molecules from the generative328

model to only keep the ones that possess at least one of the most frequent substructures. The effect329

is that the generative process is self-biased to focus on a narrower chemical space which we show330

can drastically improve sample efficiency at the expense of some diversity, which is acceptable331

when expensive high-fidelity oracles are used: we want to identify a small set of excellent candidate332

molecules under minimal oracle calls.333

A.6 Probabilistic Explainability334

The set of most frequent molecular substructures should be meaningful as otherwise, the model’s335

weights would not have been updated such that these substructures have become increasingly likely to336

be generated. We verify this statement in the illustrative experiment in the main text and in Section C.337

In the drug discovery case studies (Appendix D), the extracted substructures are more subtle in why338

they satisfy the target objective but certainly must possess meaning, however subtle, as otherwise,339

they would not receive a high reward. In the main text, we show that extracted substructures form340

core scaffolds and structural motifs in the generated molecules that complement the protein binding341

cavity. Finally, we emphasize that the correctness and usefulness of this explainability deeply depends342

on the oracle(s) being optimized for. The extracted substructures do not explain why the generated343

molecules satisfy the target objective. Rather, they explain why the generated molecules satisfy the344

oracle. The assumption in a generative design task is that optimizing the oracle is a good proxy345

for the target objective, e.g., generating molecules that dock well increases the likelihood of the346

molecules being true binders. This observation directly provides additional commentary on why347

sample efficiency is so important: the ability to directly optimize expensive high-fidelity oracles348

would inherently enhance the correctness of the extracted substructures.349

B Beam Enumeration: Findings from Hyperparameter Screening350

In this section, we introduce all seven hyperparameters of Beam Enumeration and then present results351

on an exhaustive hyperparameter search which elucidates the behavior and interactions of all the352

hyperparameters. In the end, we present our analyses and provide hyperparameter recommendations353

for Beam Enumeration which can serve as default values to promote out-of-the-box application.354

B.1 Beam Enumeration Hyperparameters355

Beam k. This hyperparameter denotes how many tokens to enumerate at each step. Given that our356

hypothesis is that the most probable sub-sequences yield meaningful substructures, we fix Beam k357

to 2. A larger value would also decrease the number of Beam Steps possible as the total number of358

sub-sequences is kN and the exponential growth quickly leads to computational infeasibility.359

Beam Steps N. This hyperparameter denotes how many token enumeration steps to execute and is360

the final token length of the enumerate sub-sequences. This parameter leads to exponential growth361

in the number of sequences which can quickly become computationally prohibitive. An important362

implication of this hyperparameter is that larger Beam Steps means that larger substructures can be363

extracted. In our experiments, we find that enforcing size in the extracted substructures can drastically364

improve sample efficiency with decreased diversity as the trade-off. We thoroughly discuss this in a365

later sub-section. Finally, in our experiments, the upper-limit investigated is 18 Beam Steps.366

Substructure Type. This hyperparameter has two possible values: Scaffold or Structure. Scaffold367

extracts Bemis-Murcko54 scaffolds while Structure extracts any valid substructure.368

Structure Structure Minimum Size. This hyperparameter enforces the partial SMILES to contain369

at least a certain number of characters. In effect, this enforces extracted molecular substructures370

to be larger than a Structure Minimum Size. From the illustrative experiment in the main text and371

Section C, Structure extraction often leads to small functional groups being the most frequent in the372
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sub-sequences. By enforcing a minimum structure size, Structure extraction leads to partial structures373

which may carry more meaning. We find that this hyperparameter greatly impacts sample efficiency374

and we present all our findings in a later sub-section.375

Pool Size. This hyperparameter controls how many molecular substructures to keep track of. These376

pooled substructures are what is used to perform self-conditioning. The hypothesis is that the most377

frequent ones carry the most meaning and thus, a very large pool size may not be desired.378

Patience. This hyperparameter controls how many successive reward improvements are required379

before Beam Enumeration executes and molecular substructures are extracted. Recalling the first fact380

in which Beam Enumeration was proposed on: On a successful optimization trajectory, the model’s381

weights must change such that desirable molecules are more likely to be generated, on average.382

Patience is effectively an answer to "when would extracted substructures be meaningful?" Too low383

a patience and stochasticity can lead to negative effects while too high a patience diminishes the384

benefits of Beam Enumeration on sample efficiency.385

Token Sampling Method. This hyperparameter has two possible values: "topk" or "sample" and386

denotes how tokens sub-sequences are enumerated. "topk" takes the top k most probable tokens387

at each Beam Step while "sample" samples from the distribution just like during batch generation.388

Our results show interesting observations surrounding this hyperparameter as "sample" can work389

just as well and sometimes even better than taking the "topk". These results were unexpected as the390

underlying hypothesis is that the most probable sub-sequences lead to the most useful substructures391

being extracted. However, our findings are not in contradiction as sampling the conditional probability392

distributions would still lead to sampling the top k tokens, on average. Moreover, after extensive393

experiments, we find that "sample" leads to more variance in performance across replicates which394

is in agreement with the assumption that sampling the distributions can lead to more improbable395

structures. We thoroughly discuss our findings in a later sub-section where we provide hyperparameter396

recommendations and analyses to the effects of tuning each hyperparameter.397

B.2 Hyperparameters: Grid Search398

We performed two exhaustive hyperparameter grid searches on the illustrative experiment which has399

the following multi-parameter optimization (MPO) objective: maximize topological polar surface400

area (tPSA), molecular weight < 350 Da, number of rings ≥ 2 with an oracle budget of 5,000. The401

first grid search investigated the following hyperparameter combinations:402

• Beam K = 2403

• Beam Steps = [15, 16, 17, 18]404

• Substructure Type = [Scaffold, Structure]405

• Pool Size = [3, 4, 5]406

• Patience = [3, 4, 5]407

• Token Sampling Method = [’topk’, ’sample’]408

All hyperparameter combinations (144) were tried and run for 10 replicates each for statistical409

reproducibility, total of 1,440 experiments. Next, an additional grid search was performed with the410

following hyperparameter combinations:411

• Beam K = 2412

• Beam Steps = [17, 18]413

• Substructure Type = [Scaffold, Structure]414

• Structure Structure Minimum Size = [10, 15]415

• Pool Size = [4, 5]416

• Patience = [4, 5]417
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• Token Sampling Method = [’topk’, ’sample’]418

We take the general trends from the first grid search and narrow down the most optimal hyperparame-419

ters to further investigate Substructure Type and structure Structure Minimum Size. As from before,420

all hyperparameter combinations (64) were tried and run for 10 replicates each for statistical421

reproducibility, total of 640 experiments.422

The following heatmaps performance by the Generative Yield and Oracle Burden (10) metrics at423

the > 0.8 reward threshold and under a 5,000 oracle budget. The Generative Yield measures how424

many unique molecules above 0.8 reward were generated. The Oracle Burden (10) measures how few425

oracle calls were required to generate 10 molecules above 0.8 reward. We note that all Oracle Burden426

metrics are computed by not allowing more than 10 molecules to possess the same Bemis-Murcko54427

scaffold, thus also explicitly considering diversity in the generated set.428

B.3 Analysis of Grid Search Results429

In this section, we summarize our analysis on the grid search experiments. Unless stated, each bullet430

point means the observation was observed for both Generative Yield and Oracle Burden (10). For431

example the point: Scaffold > Structure means Scaffold is generally more performant than Structure432

across all hyperparameters on both the Generative Yield and Oracle Burden (10).433

• For Scaffold, higher Pool, higher Patience, and higher Beam Steps improves performance434

• For Structure, lower pool and lower patience improves performance435

• Scaffold > Structure436

• Scaffold and Structure become more performant with increasing Structure Minimum Size437

• Scaffold and Structure with Structure Minimum Size: "sample" sampling can be better than438

"topk" sampling but with more variance439

Based on the above analysis, we propose the optimal hyperparameters for the illustrative experiment440

as:441

• Scaffold442

• "topk" sampling ("sample" sampling can be more performant but exhibits higher variance)443

• Patience = 5444

• Pool Size = 4445

• Beam Steps = 18446

Finally, we provide more commentary on interesting observations from the grid search results.447

Structure without Structure Minimum Size enforcing often leads to small functional groups being448

the most frequent molecular substructures extracted with Beam Enumeration. Enforcing Structure449

Minimum Size puts it almost on par with Scaffold, suggesting (perhaps not surprisingly) that larger450

substructures can carry more meaningful information. Moreover, when using "sample" sampling,451

the generative model undergoes more "filter rounds". Specifically, at each epoch, the sampled452

batch is filtered to contain the extracted substructures. When using "sample" sampling, the model453

is more prone to some epochs containing no molecules with the substructures. In practice, this454

is inconsequential as sampling is computationally inexpensive and a next batch of molecules can455

easily be sampled. However, specifically in the Structure with "sample" sampling and Structure456

Minimum Size = 15 experiment, "filter round" can be quite extensive, taking up to 100,000 epochs457

(maximum observed) for an oracle budget of 5,000 (adding about an hour to the wall time which is458

minor when the oracle is expensive). This means that many epochs contained molecules without the459

extracted substructures. There are two observations here: firstly, "sample" sampling can lead to more460

improbable substructures which are hence less likely to be sampled and secondly, Structure with461

Structure Minimum Size enforcement leads to extreme biasing (which improves sample efficiency).462
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Figure B5: illustrative experiment Generative Yield > 0.8. The IntDiv168 is annotated.
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Figure B6: illustrative experiment Generative Yield > 0.8 with Structure Minimum Size. The
IntDiv168 is annotated.
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Figure B7: illustrative experiment Generative Yield > 0.8 with Structure Minimum Size and "Sample"
token sampling. The IntDiv168 is annotated.
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Figure B8: illustrative experiment Oracle Burden (10) > 0.8
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Figure B9: illustrative experiment Oracle Burden (10) > 0.8 with Structure Minimum Size
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Figure B10: illustrative experiment Oracle Burden (10) > 0.8 with Structure Minimum Size and
"Sample" token sampling
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We believe the remarkable tolerability of the generative model sampling to such bias is an interesting463

observation. By contrast, Scaffold with Structure Minimum Size enforcement is not as prone to464

"filter rounds" because Scaffold "truncates" the substructure to its central shape (scaffold). For465

example, toluene (benzene with a methyl group) has a Bemis-Murcko54 scaffold of just benzene.466

The consequence is that Structure leads to more extreme biasing (it is more likely for a molecule to467

contain benzene than specifically toluene) which is in agreement with the general observation that the468

diversity of the generated set decreases when using Structure. Overall, both Scaffold and Structure469

with Structure Minimum Size enforcing exhibits the best performance and "sample" sampling can be470

more performant than "topk" sampling but exhibits notably higher variance.471

The set of optimal hyperparameters found here were used in drug discovery case studies. In order to472

be rigorous with our investigation, we only fix the following hyperparameters:473

• Patience = 5 (lower variance)474

• Pool Size = 4 (lower variance, higher Yield, lower Oracle Burden)475

• Beam Steps = 18 (lower variance, higher Yield, lower Oracle Burden)476

with these hyperparameters, we do a small grid search (on the drug discovery case studies) by477

changing the Structure Type, Token Sampling Method, and Structure Minimum Size hyperparameters478

as the optimal hyperparameters in the illustrative experiment are not necessarily the optimal ones479

in the drug discovery experiments. The purpose of this is not to necessarily report the best480

performance on the drug discovery case studies but to gain insights into the optimal general481

parameters such that Beam Enumeration can be used out-of-the-box. In real-world expensive482

oracle settings, tuning hyperparameters is infeasible.483

All results from the drug discovery case studies are shown in Section D.484

B.4 Beam Enumeration: Recommended default Hyperparameters485

Taking into consideration all grid search experiments for the illustrative experiment and Drug486

Discovery case studies, the following optimal hyperparameters are recommended: Patience = 5, Pool487

Size = 4, Beam Steps = 18, Structure, Structure Minimum Size = 15, "topk" sampling.488

Notable differences between the final recommended hyperparameters compared to those found489

from the illustrative experiment is that Structure and "topk" sampling are more performant than490

Scaffold and "sample" sampling. In the illustrative experiment, "sample" sampling was sometimes491

more performant than "topk" sampling. We rationalize these observations as follows: in MPO492

objectives that include physics-based oracles, structure specificity becomes increasingly important,493

e.g., specific chemical motifs dock well because they form interactions with the protein. Therefore,494

"topk" sampling is more robust as there is less variance in the extract substructures compared to495

"sample" sampling. We empirically observe the increased variance when using "sample" sampling496

measured by the standard deviation between replicate experiments (Appendix D). In the illustrative497

experiment where the oracle was more permissive, i.e., any rings saturated with heteroatoms would498

satisfy the MPO objective, small deviations in the extracted structure do not have as prominent499

an effect as physics-based oracles which require specificity. Another observation is that Structure500

sampling often extracts scaffolds with "branch points" which enforces extreme bias that can lead501

to more focused chemical space exploration. We discuss this in detail in Section D and believe the502

insights are generally interesting in the context of molecular optimization landscape.503

Finally, we end this section by stating that we cannot try every single hyperparameter combina-504

tion and the recommended values are from our grid search results which we make an effort to505

be robust, given that we perform 10 replicates of each experiment. We find that the optimal506

hyperparameters in the drug discovery case studies are generally the same as in the illustrative507

experiment.508
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B.5 Pseudo-code509

The pseudo-code for Beam Enumeration is presented here. The ⊕ operator denotes every element on510

the left is being extended by every element on the right.511

Algorithm 1: Beam Enumeration
Input: Generative Agent πθAgent , Top k, N Beam Steps
Output: Enumerated Token Sub-sequences S
Initialization:
Hidden State = None;
Sub-sequences = [Top k <START> Tokens];
Input Vector = top k number of start tokens;
for i = 1 to N do

Logits, New Hidden State← πθAgent (Input Vector, Hidden State);
TokensK ← top k tokens from Softmax(Logits);
if i = 1 then

Sub-sequences← TokensK ;
Input Vector← TokensK ;
Hidden State = New Hidden State;

else
Create empty list temp;
for each seq in Sub-sequences do

seq ← seq ⊕ TokensK ;
Append seq to temp;

Sub-sequences← temp;
Clear temp;
Input Vector← Flatten TokensK ;
Hidden State← (New Hidden State[i].repeat_interleave(top k, dim = 1))i=0,1;

return Sub-sequences

512

C Illustrative Experiment513

This section contains additional results from initial investigations into the feasibility of Beam Enu-514

meration. The illustrative experiment was performed with the following multi-parameter optimization515

(MPO) objective: maximize topological polar surface area (tPSA), molecular weight (MW) < 350516

Da, number of rings ≥ 2.517

C.1 Substructure Extraction518

The first experiments investigated whether a sufficient substructures signal could be extracted from519

enumerated sub-sequences. The two parameters of Beam Enumeration (without self-conditioning)520

are top k denoting the top k number of highest probability tokens to enumerate and N number of521

beam steps denoting how many steps to perform token expansion for (which is also the length of the522

final sub-sequence). Our hypothesis is that a lower top k is desirable as we are interested in the most523

probably substructures. Thus, the initial experiments were a grid-search with a top k of 2 and N524

beam steps of [15, 16, 17, 18]. The illustrative experiment was run for 100 epochs (6,400 oracle calls525

which is different from the 5,000 used in the main text experiments as this set of results is only to526

demonstrate that meaningful substructures can be extracted) and Beam Enumeration was applied at527

epochs 1, 20, 40, 60, 80, and 100.528

Table 3 shows the absolute counts and percentage of sub-sequences containing valid substructures.529

While the percentage may appear low, we note the absolute counts is more than enough to extract530

some notion of most probable substructures. We use N beam steps of 18 for all experiments as we531

hypothesize that larger substructures can carry more information. The reason the max beam steps532

investigated was 18 is because of the memory overhead required for sequence expansion.533
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Table 3: Feasibility of Beam Enumeration to extract valid substructures. Top-k = 2.

N Beam Steps Epoch 1 Epoch 20 Epoch 40 Epoch 60 Epoch 80 Epoch 100

15 2294/32768 3123/32768 5843/32768 5538/32768 5674/32768 8004/32768
(7.00%) (9.53%) (17.83%) (16.90%) (17.32%) (24.43%)

16 4789/65536 5890/65536 5771/65536 11159/65536 7657/65536 9771/65536
(7.31%) (8.99%) (8.81%) (17.03%) (11.68%) (14.91%)

17 9998/131072 15266/131072 26163/131072 24352/131072 21442/131072 31160/131072
(7.63%) (11.65%) (19.96%) (18.58%) (16.36%) (23.77%)

18 20747/262144 33969/262144 72126/262144 48417/262144 45349/262144 46994/262144
(7.91%) (12.96%) (27.51%) (18.47%) (17.30%) (17.93%)

Figure C11: Substructures extracted in the illustrative example at varying epochs based on Structure
and Scaffold.

C.2 Extracted Substructures534

To illustrate the capability of Beam Enumeration to extract meaningful substructures, Fig. C11 shows535

the top 5 most probable substructures at epochs 1, 20, 40, 60, 80, and 100 based on Structure (extract536

any valid structure) and Scaffold (extract valid Bemis-Murcko54 scaffold) using a top k of 2 and 18537

beam steps. We make two crucial observations here. Firstly, Structure often extracts small functional538

groups which makes the self-conditioned filtering much more permissive as it is more likely for a539

molecule to possess a specific functional group than a specific scaffold. Secondly, benzene appears540

often and perhaps unsurprisingly as it is ubiquitous in nature. Based on these observations, we design541

22



Beam Enumeration to only extract substructures containing at least one heteroatom on the assumption542

that heteroatoms are much more informative in forming polar interactions in drug molecules, e.g., a543

hydrogen-bond cannot form from benzene. Finally, the general observation is that the most probable544

substructures gradually contain more heteroatoms, as desired.545

C.3 Supplementary Main Text Results546

In this section, we present the same table as the main text illustrative experiment. The only difference547

is that the IntDiv169 is also annotated in the table here to show that the sample efficiency improvements548

of Beam Enumeration come only at a small trade-off in diversity (Table 4). In agreement with our549

observations in the hyperparameters grid search (Appendix A), Structure extraction with ’Structure550

Minimum Size’ enforcement leads to highly specific substructures which decrease diversity relative551

to Scaffold extraction but with potential gains in sample efficiency as evidenced in the drug discovery552

case studies (Appendix D). We further perform statistical testing using Welch’s t-test to compare all553

metrics for Scaffold with ’Structure Minimum Size’ = 15 and Baseline Augmented Memory23. For554

the experiments that had unsuccessful replicates, we use the total number of successful experiments,555

e.g., Oracle Burden>10 (100), the Baseline was unsuccessful in 69/100 replicates so a 31 sample size556

was used. Overall, all p-values are significant at the 95% confidence level.557

Table 4: Illustrative experiment: Beam Enumeration improves the sample efficiency of Augmented
Memory. All experiments were run for 100 replicates with an oracle budget of 5,000 calls and reported
values are the mean and standard deviation. Scaffold and Structure indicate the type of substructure
and the number after is the ’Structure Minimum Size’. Parentheses after Oracle Burden denote the
cut-off number of molecules. Parentheses after values represent the number of unsuccessful replicates
(for achieving the metric). The IntDiv168 is annotated under each Generative Yield. Welch’s t-test is
used to compare the difference between Scaffold with ’Structure Minimum Size’ = 15 and Baseline
Augmented Memory23. All p-values are significant.

Metric Augmented Memory Welch’s t-test (95%)
Beam Scaffold 15 Beam Structure 15 Beam Scaffold Beam Structure Baseline p-value (N=100)

Generative Yield>0.7 (↑) 1757 ± 305 1669 ± 389 1117 ± 278 864 ± 202 496 ± 108 2.60 ×10−75

- Diversity 0.77 ± 0.03 0.73 ± 0.04 0.79 ± 0.03 0.83 ± 0.03 0.85 ± 0.02

Generative Yield>0.8 (↑) 819 ± 291 700 ± 389 425 ± 256 199 ± 122 85 ± 56 3.70 ×10−48

- Diversity 0.73 ± 0.04 0.69 ± 0.05 0.75 ± 0.04 0.77 ± 0.04 0.78 ± 0.03

Oracle Burden>0.7 (1) (↓) 577 ± 310 616 ± 230 1037 ± 414 897 ± 347 1085 ± 483 3.06 ×10−19

Oracle Burden>0.7 (10) (↓) 947 ± 350 926 ± 332 1881 ± 259 1745 ± 292 2392 ± 216 4.99 ×10−87

Oracle Burden>0.7 (100) (↓) 1530 ± 468 1547 ± 513 2736 ± 335 2713 ± 402 3672 ± 197 2.34 ×10−86

Oracle Burden>0.8 (1) (↓) 1311 ± 628 1401 ± 695 2423 ± 487 2295 ± 482 3164 ± 492 6.07 ×10−65

Oracle Burden>0.8 (10) (↓) 1794 ± 617 (1) 2009 ± 804 (1) 3124 ± 497 3241 ± 492 4146 ± 326 6.48 ×10−79

Oracle Burden>0.8 (100) (↓) 2704 ± 689 (1) 2943 ± 811 (6) 3973 ± 592 (6) 4415 ± 437 (20) 4827 ± 170 (69) 6.17 ×10−21

C.4 Beam Enumeration works in Exploitation Scenarios558

In the main text illustrative experiment, Augmented Memory23 was used with Selective Memory559

Purge activated which is the mechanism to promote chemical space exploration, as described in the560

original work. For completeness, we show that Beam Enumeration also works in pure exploitation561

scenarios where the goal is only to generate high reward molecules even if the same molecule is562

repeatedly sampled (Table 5). We perform statistical testing using Welch’s t-test to compare all563

metrics for Scaffold with ’Structure Minimum Size’ = 15 and Baseline Augmented Memory23. For564

the experiments that had unsuccessful replicates, we use the total number of successful experiments,565

e.g., Oracle Burden>10 (100), the Baseline was unsuccessful in 69/100 replicates so a 31 sample size566

was used. Overall, all p-values are significant at the 95% confidence level.567

C.5 Self-conditioned Filtering: Structure vs Scaffold568

There is a clear discrepancy in the substructures extracted by Structure and Scaffold. In particular,569

Structure substructures contain small functional groups which is much more permissive when used as570

a filter criterion compared to full scaffolds. Therefore, one would expect that many molecules in the571
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Table 5: Beam Enumeration works in exploitation scenarios. all experiments were run for 100
replicates with an oracle budget of 5,000 calls and reported values are the mean and standard
deviation. Parentheses after Oracle Burden denote the cut-off number of molecules. The IntDiv168

is annotated under each Generative Yield. Welch’s t-test is used to compare the difference between
Scaffold with ’Structure Minimum Size’ = 15 and Baseline Augmented Memory23. All p-values are
significant.

Metric Augmented Memory Welch’s t-test (95%)
Beam Scaffold 15 Baseline p-value (N=100)

Generative Yield>0.7 (↑) 1325 ± 468 496 ± 108 1.54 ×10−29

- Diversity 0.76 ± 0.04 0.85 ± 0.02

Generative Yield>0.8 (↑) 601 ± 298 85 ± 56 1.35 ×10−28

- Diversity 0.70 ± 0.09 0.78 ± 0.03

Oracle Burden>0.7 (1) (↓) 626 ± 260 1085 ± 483 4.52 ×10−15

Oracle Burden>0.7 (10) (↓) 997 ± 326 2392 ± 216 2.26 ×10−80

Oracle Burden>0.7 (100) (↓) 1487 ± 352 3672 ± 197 4.01 ×10−100

Oracle Burden>0.8 (1) (↓) 1415 ± 645 3164 ± 492 2.21 ×10−53

Oracle Burden>0.8 (10) (↓) 1794 ± 553 (2) 4146 ± 326 1.14 ×10−76

Oracle Burden>0.8 (100) (↓) 2490 ± 576 (2) 4827 ± 170 (69) 1.68 ×10−25

Figure C12: Behaviour of Beam Enumeration using Structure and Scaffold on self-conditioning.

sampled batches would be kept when using Structure Beam Enumeration. We plot the average number572

of molecules kept out of 64 (batch size) across the generative run when using Beam Enumeration.573

Note that the experiments ran for variable epochs due to the stochasticity of Beam Enumeration574

self-filtering. The number of epochs shown in C12 is the minimum number of epochs out of 100575

replicates. Therefore, the average values shown are averaged over 100 replicates. It is evident576

that Structure is more lenient as many generated molecules make it through the filter compared to577

Scaffold which maintains a relatively strict filter. One interesting observation is that self-conditioning578

does not lead to obvious mode collapse. Self-conditioning is inherently biased and one would be579

concerned that the model gets stuck at generating the same molecules repeatedly. The fact that580

self-conditioning with Scaffold continues to filter throughout the entire generative run shows that the581

model is continually moving to new chemical space, supporting findings from the original Augmented582

Memory23 work that Selective Memory Purge (built-in diversity mechanism) is capable of preventing583

mode collapse.584

24



D Drug Discovery Case Studies585

This section contains information on the Autodock Vina61 docking protocol from receptor grid586

preparation to docking execution. The Beam Enumeration hyperparameters grid search results are587

presented for all three drug discovery case studies followed by analysis. Examples of extracted588

substructures are also shown and commentary provided to their significance and explainability.589

Finally, the wall times of all experiments are presented.590

D.1 AutoDock Vina Receptor Preparation and Docking591

All docking grids were prepared using DockStream70 which uses PDBFixer71 to refine receptor592

structures. The search box for all grids was 15Å x 15Å x 15Å. Docking was also performed through593

DockStream and followed a two step process: conformer generation using the RDKit Universal594

Force Field (UFF)72 with the maximum convergence set to 600 iterations and then Vina docking was595

parallelized over 36 CPU cores (Intel(R) Xeon(R) Platinum 8360Y processors).596

DRD2 - Dopamine Type 2 Receptor. The PDB ID is 6CM457 and the docking grid was centered at597

(x, y, z) = (9.93, 5.85, -9.58).598

MK2 - MK2 Kinase. The PDB ID is 3KC358 and one monomer was extracted. The docking grid for599

the extracted monomer was centered at (x, y, z) = (-61.62, 30.31, -21.9).600

AChE - Acetylcholinesterase. The PDB ID is 1EVE59 and the docking grid was centered at (x, y, z)601

= (2.78, 64.38, 67.97).602

D.2 Beam Enumeration Hyperparameters Grid Search Results603

We performed an additional hyperparameter grid search on all three drug discovey case studies based604

on the insights drawn from the illustrative experiment grid search results. We fix the following605

hyperparameters:606

• Beam K = 2607

• Beam Steps = 18608

• Pool Size = 4609

• Patience = 5610

and vary the following:611

• Optimization Algorithm = [Augmented Memory23, REINVENT25,64]612

• Substructure Type = [Scaffold, Structure]613

• Structure Minimum Size = [10, 15]614

• Token Sampling Method = ["topk", "sample"]615

All hyperparameter combinations (8) were tried and run for 3 replicates each for statistical616

reproducibility, total of 144 experiments. There are two main results we want to convey: firstly,617

the optimal hyperparameters are the same for all three drug discovery case studies and only the618

Substructure Type differs between the optimal hyperparameters here and the illustrative experiment.619

Secondly, Beam Enumeration is a task-agnostic general method that can be applied to existing620

algorithms including Augmented Memory23 and REINVENT25,51. At the end of this section, we621

present these hyperparameters and designate these the default values. All grid search results are now622

presented in following tables:623

Based on the results from the hyperparameters grid search in the drug discovery case studies, we624

make two key observations: firstly, Structure extraction with ’Structure Minimum Size’ = 15 is now625

the most performant, on average (for both Augmented Memory23 and REINVENT25,51). This is626
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Table 6: DRD257 case study hyperparameters grid search results for Augmented Memory23. All
experiments were run in triplicate and the reported values are the mean and standard deviation.
"Sample" denotes "sample" token sampling. All metrics are for the reward threshold > 0.8. The
IntDiv168 is annotated under Generative Yield. * and ** denote one and two replicates were
unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
Augmented Memory DRD2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 363 ± 195 322 ± 166 187 ± 51 711 ± 120 2558 ± 30∗

- Diversity 0.802 ± 0.019
Scaffold 957 ± 75 749 ± 62 82 ± 29 668 ± 25 1818 ± 107
- Diversity 0.765 ± 0.006
Scaffold Size 15 1607 ± 379 1023 ± 351 83 ± 29 571 ± 104 1056 ± 146
- Diversity 0.724 ± 0.027
Scaffold Sample 948 ± 123 776 ± 128 126 ± 89 505 ± 17 1746 ± 20
- Diversity 0.734 ± 0.018
Scaffold Sample Size 15 1552 ± 106 1274 ± 154 84 ± 29 598 ± 110 1511 ± 416
- Diversity 0.660 ± 0.041
Structure 887 ± 112 711 ± 133 63 ± 0 595 ± 63 1862 ± 154
- Diversity 0.764 ± 0.008
Structure Size 15 1780 ± 439 1323 ± 368 126 ± 90 582 ± 83 1120 ± 194
- Diversity 0.699 ± 0.020
Structure Sample 912 ± 86 757 ± 30 63 ± 0 583 ± 37 2132 ± 148
- Diversity 0.767 ± 0.015
Structure Sample Size 15 1752 ± 105 1352 ± 180 188 ± 103 776 ± 129 1289 ± 193
- Diversity 0.641 ± 0.059

Table 7: DRD257 case study hyperparameters grid search results for REINVENT25,51. All experi-
ments were run in triplicate and the reported values are the mean and standard deviation. "Sample"
denotes "sample" token sampling. The IntDiv168 is annotated under Generative Yield. All metrics are
for the reward threshold > 0.8. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
REINVENT DRD2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 102 ± 6 101 ± 6 168 ± 149 883 ± 105 4595 ± 0∗∗

- Diversity 0.833 ± 0.001
Scaffold 190 ± 32 184 ± 32 63 ± 1 836 ± 178 3516 ± 575
- Diversity 0.814 ± 0.007
Scaffold Size 15 687 ± 366 377 ± 204 127 ± 52 604 ± 71 2109 ± 1090
- Diversity 0.730 ± 0.013
Scaffold Sample 176 ± 86 149 ± 49 105 ± 59 720 ± 121 3875 ± 883
- Diversity 0.801 ± 0.030
Scaffold Sample Size 15 363 ± 249 225 ± 144 84 ± 30 754 ± 183 3170 ± 1188
- Diversity 0.704 ± 0.044
Structure 184 ± 14 183 ± 14 104 ± 31 897 ± 100 3426 ± 282
- Diversity 0.817 ± 0.006
Structure Size 15 417 ± 275 290 ± 178 63 ± 0 1099 ± 930 1928 ± 117∗

- Diversity 0.730 ± 0.014
Structure Sample 169 ± 24 167 ± 24 126 ± 52 711 ± 179 3568 ± 440
- Diversity 0.826 ± 0.003
Structure Sample Size 15 261 ± 225 182 ± 132 209 ± 128 840 ± 107 3690 ± 1266∗

- Diversity 0.734 ± 0.057

in contrast to Scaffold extraction in the illustrative experiment which we rationalize through the627

permissive nature of the experiment compared to the docking experiments which require structure628

specificity. Previously, small deviations in the substructures may not have a significant impact on the629

reward. In physics-based oracles such as Vina61 docking used here, small substructure differences630

can have an enormous impact on the outcome since the pose requires specific complementary to the631

protein binding site. The second observation we make which is in agreement with the illustrative632

experiment is that "sample" token sampling has more variance and does not perform better than "topk".633

The rationale is the same in that docking requires specificity and lower probability substructures634

exhibit more variable performance. Based on all the observations from the illustrative experiment635

and the drug discovery case studies, we designate the following default hyperparameter values:636

• Beam K = 2637

• Beam Steps = 18638
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Table 8: MK258 case study hyperparameters grid search results for Augmented Memory23. All
experiments were run in triplicate and the reported values are the mean and standard deviation.
"Sample" denotes "sample" token sampling. All metrics are for the reward threshold > 0.8. The
IntDiv168 is annotated under Generative Yield. * and ** denote one and two replicates were
unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
Augmented Memory MK2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 34 ± 13 32 ± 12 1360 ± 543 3833 ± 394 Failed
- Diversity 0.794 ± 0.008
Scaffold 179 ± 63 131 ± 16 1163 ± 457 2550 ± 148 4421 ± 344
- Diversity 0.743 ± 0.038
Scaffold Size 15 523 ± 438 330 ± 269 1221 ± 564 2426 ± 1525 2676 ± 403∗

- Diversity 0.676 ± 0.016
Scaffold Sample 106 ± 71 87 ± 58 1005 ± 573 3296 ± 1181 4592 ± 334∗

- Diversity 0.722 ± 0.017
Scaffold Sample Size 15 379 ± 357 257 ± 227 983 ± 540 1846 ± 680 3244 ± 1133∗

- Diversity 0.653 ± 0.026
Structure 66 ± 18 59 ± 20 1246 ± 716 2708 ± 232 Failed
- Diversity 0.769 ± 0.029
Structure Size 15 987 ± 211 610 ± 117 736 ± 166 1122 ± 154 2189 ± 181
- Diversity 0.704 ± 0.030
Structure Sample 40 ± 15 34 ± 11 1119 ± 1183 3516 ± 506 Failed
- Diversity 0.784 ± 0.024
Structure Sample Size 15 129 ± 52 117 ± 50 1208 ± 660 2799 ± 476 4037 ± 0∗∗

- Diversity 0.671 ± 0.073

Table 9: MK258 case study hyperparameters grid search results for REINVENT25,51. All experiments
were run in triplicate and the reported values are the mean and standard deviation. "Sample" denotes
"sample" token sampling. All metrics are for the reward threshold > 0.8. The IntDiv168 is annotated
under Generative Yield. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
REINVENT MK2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 2 ± 0 2 ± 0 1723 ± 802 Failed Failed
- Diversity 0.424 ± 0.031
Scaffold 7 ± 2 7 ± 2 1272 ± 884 4948 ± 0∗∗ Failed
- Diversity 0.704 ± 0.051
Scaffold Size 15 19 ± 7 18 ± 7 808 ± 524 3891 ± 631 Failed
- Diversity 0.674 ± 0.065
Scaffold Sample 6 ± 2 6 ± 2 1427 ± 343 Failed Failed
- Diversity 0.677 ± 0.075
Scaffold Sample Size 15 4 ± 2 3 ± 1 2600 ± 1455 Failed Failed
- Diversity 0.653 ± 0.026
Structure 3 ± 1 3 ± 1 2571 ± 1155 Failed Failed
- Diversity 0.571 ± 0.112
Structure Size 15 179 ± 241 70 ± 87 1110 ± 268 1778 ± 0∗∗ 3208 ± 0∗∗

- Diversity 0.670 ± 0.020
Structure Sample 1 ± 0 1 ± 0 1737 ± 1595 Failed Failed
- Diversity 0.192 ± 0.271
Structure Sample Size 15 8 ± 5 7 ± 4 1943 ± 1153 4851 ± 0∗∗ Failed
- Diversity 0.357 ± 0.255

• Pool Size = 4639

• Patience = 5640

• Substructure Type = Structure641

• Structure Minimum Size = 15642

• Token Sampling Method = "topk"643

D.3 Examples of Extracted Substructures: Structure Extraction with ’Structure Minimum644

Size’ = 15645

In this section, the top substructures at the end of the generative experiments (using Augmented646

Memory23) are shown for all three drug discovery case studies (3 replicates). All experiments are for647

Structure extraction with ’Structure Minimum Size’ = 15. The extracted substructures are commonly648

scaffolds with "branch points", i.e., a central scaffold with single carbon bond extensions outward,649
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Table 10: AChE59 case study hyperparameters grid search results for Augmented memory23. All
experiments were run in triplicate and the reported values are the mean and standard deviation.
"Sample" denotes "sample" token sampling. All metrics are for the reward threshold > 0.8. The
IntDiv168 is annotated under Generative Yield. * and ** denote one and two replicates were
unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
Augmented Memory AChE Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 556 ± 47 544 ± 50 62 ± 0 380 ± 0 2021 ± 89
- Diversity 0.838 ± 0.002
Scaffold 1058 ± 102 1006 ± 113 62 ± 0 430 ± 90 1469 ± 56
- Diversity 0.823 ± 0.005
Scaffold Size 15 2124 ± 326 1523 ± 260 63 ± 0 418 ± 27 884 ± 162
- Diversity 0.752 ± 0.029
Scaffold Sample 1187 ± 48 1075 ± 39 84 ± 29 409 ± 77 1519 ± 141
- Diversity 0.806 ± 0.003
Scaffold Sample Size 15 1295 ± 126 1168 ± 143 188 ± 103 602 ± 108 1440 ± 115
- Diversity 0.750 ± 0.021
Structure 992 ± 64 946 ± 52 105 ± 59 558 ± 94 1635 ± 81
- Diversity 0.823 ± 0.005
Structure Size 15 2059 ± 327 1552 ± 344 105 ± 29 462 ± 25 1110 ± 265
- Diversity 0.735 ± 0.017
Structure Sample 831 ± 126 790 ± 130 62 ± 1 357 ± 29 1617 ± 220
- Diversity 0.841 ± 0.003
Structure Sample Size 15 1277 ± 526 1031 ± 421 127 ± 52 800 ± 342 1879 ± 531
- Diversity 0.657 ± 0.070

Table 11: AChE59 case study hyperparameters grid search results for REINVENT25,51. All experi-
ments were run in triplicate and the reported values are the mean and standard deviation. "Sample"
denotes "sample" token sampling. The IntDiv168 is annotated under Generative Yield. All metrics are
for the reward threshold > 0.8. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
REINVENT AChE Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 147 ± 11 146 ± 11 83 ± 29 481 ± 108 3931 ± 286
- Diversity 0.852 ± 0.004
Scaffold 245 ± 50 244 ± 50 63 ± 0 566 ± 136 3360 ± 164
- Diversity 0.844 ± 0.003
Scaffold Size 15 310 ± 207 227 ± 159 84 ± 29 421 ± 120 3596 ± 678
- Diversity 0.744 ± 0.038
Scaffold Sample 257 ± 77 252 ± 76 63 ± 0 480 ± 60 2946 ± 460
- Diversity 0.847 ± 0.004
Scaffold Sample Size 15 310 ± 92 271 ± 70 148 ± 28 673 ± 107 2881 ± 475
- Diversity 0.759 ± 0.039
Structure 356 ± 22 351 ± 24 63 ± 0 294 ± 28 2284 ± 238
- Diversity 0.841 ± 0.002
Structure Size 15 323 ± 58 284 ± 71 62 ± 0 441 ± 132 3073 ± 427
- Diversity 0.795 ± 0.009
Structure Sample 213 ± 26 206 ± 22 84 ± 30 558 ± 222 3073 ± 279
- Diversity 0.844 ± 0.005
Structure Sample Size 15 316 ± 253 190 ± 146 125 ± 50 561 ± 140 2683 ± 320
- Diversity 0.721 ± 0.111

which heavily bias generation. We posit that this may be a reason why Structure extraction can650

be more performant than Scaffold, as observed in the hyperparameters grid search in the previous651

subsection.652

D.4 Wall Times653

The wall times for all drug discovery case studies with every algorithm is presented in Table 12.654

The reported values are averaged over 3 replicates. In general, adding Beam Enumeration to the655

base Augmented Memory23 and REINVENT25,51 algorithms increased wall times but only slightly656

and it is negligible when considering expensive oracles. An interesting observation is that "sample"657

token sampling increases wall time variance. This is because less probable substructures lead to658

more "filter rounds’, i.e., epochs where all the sampled molecules are discarded as none of them659

contain the Beam Enumeration extracted substructures. In addition, REINVENT generally has longer660

wall times even though the oracle budget is the same. The reason for this is because REINVENT661
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Figure D13: Augmented Memory23 DRD257 substructures with Structure extraction and ’Structure
Minimum Size’ = 15 after 5,000 oracle calls.

Figure D14: Augmented Memory23 MK258 substructures with Structure extraction and ’Structure
Minimum Size’ = 15 after 5,000 oracle calls.
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Figure D15: Augmented Memory23 AChE59 substructures with Structure extraction and ’Structure
Minimum Size’ = 15 after 5,000 oracle calls.

Table 12: Wall times for all drug discovery case studies hyperparameters grid search using Augmented
Memory23 and REINVENT25,51. "Sample" denotes "sample" token sampling. All experiments were
run in triplicate and the values are the mean and standard deviation.

Target Experiment Augmented Memory Wall Time REINVENT Wall Time
DRD2 Baseline 14h 0m ± 1h 26m 16h 36m ± 0h 55m

Scaffold 12h 58m ± 1h 11m 17h 9m ± 1h 28m
Scaffold Size 15 12h 56m ± 0h 46m 16h 51m ± 1h 58m
Scaffold Sample 12h 11m ± 0h 24m 16h 32m ± 1h 3m
Scaffold Sample Size 15 13h 32m ± 0h 50m 16h 26m ± 2h 58m
Structure 14h 30m ± 0h 51m 22h 5m ± 1h 52m
Structure Size 15 14h 54m ± 2h 24m 24h 33m ± 5h 8m
Structure Sample 13h 58m ± 0h 51m 20h 5m ± 1h 42m
Structure Sample Size 15 14h 52m ± 1h 32m 19h 52m ± 3h 22m

MK2 Baseline 10h 46m ± 0h 3m 15h 19m ± 0h 34m
Scaffold 11h 0m ± 0h 28m 16h 21m ± 0h 53m
Scaffold Size 15 11h 22m ± 2h 30m 16h 38m ± 1h 33m
Scaffold Sample 12h 56m ± 0h 36m 15h 49m ± 0h 36m
Scaffold Sample Size 15 11h 52m ± 1h 5m 16h 28m ± 0h 33m
Structure 12h 29m ± 0h 19m 19h 40m ± 1h 55m
Structure Size 15 11h 22m ± 1h 17m 18h 39m ± 1h 33m
Structure Sample 12h 22m ± 0h 28m 18h 12m ± 0h 57m
Structure Sample Size 15 12h 37m ± 0h 47m 16h 6m ± 1h 37m

AChE Baseline 10h 6m ± 0h 39m 14h 12m ± 0h 59m
Scaffold 11h 46m ± 0h 51m 15h 10m ± 1h 4m
Scaffold Size 15 11h 10m ± 0h 44m 15h 52m ± 1h 4m
Scaffold Sample 10h 55m ± 0h 44m 15h 27m ± 0h 57m
Scaffold Sample Size 15 10h 24m ± 0h 17m 14h 53m ± 0h 53m
Structure 13h 0m ± 0h 47m 19h 10m ± 0h 22m
Structure Size 15 11h 26m ± 0h 51m 18h 30m ± 0h 20m
Structure Sample 11h 23m ± 0h 22m 15h 36m ± 0h 20m
Structure Sample Size 15 17h 56m ± 4h 27m 19h 16m ± 2h 43m

optimizes the structure components of the MPO objective: QED62 and MW constraint to a lesser662

extent. Consequently, REINVENT generates larger molecules, on average, which take longer to dock663

with Vina61. This observation is in agreement with the original Augmented Memory work which664

compared to REINVENT.665
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E Augmented Memory and REINVENT Model Hyperparameters666

Table 13: LSTM model hyperparameters for Augmented Memory23 and REINVENT25,51

Cell Type LSTM

Number of Layers 3

Embedding Layer Size 256

Dropout 0

Training Batch Size 128

Sampling Batch Size 64

Learning Rate 0.001

The same pre-trained prior on ChEMBL73 was used for Augmented Memory23 and REINVENT25,51.667

All shared hyperparameters (sampling batch size and learning rate) are the same. Default additional668

hyperparameters for Augmented Memory were used based on the original work23: two augmentation669

rounds and using Selective Memory Purge to prevent mode collapse. Experience replay51,74 was kept670

default in REINVENT (randomly sample 10 molecules out of 100 from the replay buffer at each671

epoch).672
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