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ABSTRACT

In many submodular optimization applications, datasets are naturally partitioned
into disjoint subsets. These scenarios give rise to submodular optimization prob-
lems with partition-based constraints, where the desired solution set should be in
some sense balanced, fair, or resource-constrained across these partitions. While
existing work on submodular cover largely overlooks this structure, we initiate
a comprehensive study of the problem of Submodular Cover with Partition Con-
straints (SCP) and its key variants. Our main contributions are the development
and analysis of scalable bicriteria approximation algorithms for these NP-hard
optimization problems for both monotone and nonmonotone objectives. Notably,
the algorithms proposed for the monotone case achieve optimal approximation
guarantees while significantly reducing query complexity compared to existing
methods. Finally, empirical evaluations on real-world and synthetic datasets further
validate the efficiency and effectiveness of the proposed algorithms.

1 INTRODUCTION

Submodular optimization algorithms have emerged as a cornerstone of modern machine learning,
driving advancements across a range of impactful applications. From curating high-quality pretraining
and fine-tuning datasets for large language models Ji et al. (2024); Kumari et al. (2024); Agarwal et al.
(2024) to powering diversified online recommendation systems Hiranandani et al. (2020); Chen and
Crawford (2024a), multi-agent optimization in robotics Zhou and Tokekar (2022); Xu and Tzoumas
(2024), and enabling precise image attribution in computer vision Chen et al. (2024a). Submodular
functions informally satisfy a diminishing returns property that is exhibited by many objective
functions for fundamental optimization problems in machine learning. Formally, let f : 2U → R
be defined over subsets of a ground set U of size n. Then the function f is submodular if for all
A ⊆ B ⊆ U and x /∈ B, f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B). Further, f is monotone if
f(Y ) ≥ f(X) for every X ⊆ Y ⊆ U .

The submodular cover (SC) problem is an important optimization problem with a variety of applica-
tions Iyer and Bilmes (2013); Chen and Crawford (2024b); Crawford et al. (2019); Mirzasoleiman
et al. (2015). In the classical form, the goal of submodular cover is to find a subset S ⊆ U of
minimum cost such that f(S) ≥ τ , where the cost function is typically cardinality or some additive
cost. Existing results on SC take advantage of its relationship with submodular maximization Iyer
and Bilmes (2013); Chen and Crawford (2024b) which is to find argmax{f(S) : c(S) ≤ κ}. For
example, Chen and Crawford (2024b); Iyer and Bilmes (2013) proposed converting algorithms that
could convert any bicriteria algorithm for submodular maximization to an algorithm for SC. In
particular, an (α, β)-bicriteria approximation algorithm for the SC problem returns a solution X such
that |X| ≤ α|OPT | and f(X) ≥ βτ .

However, a significant limitation of these classical formulations is their inability to model critical
applications where the ground set U is partitioned into disjoint groups U1, . . . , UN , and the objective
is to find a subset that has a budget within each partition, or alternatively is balanced or fair across the
partitions. We further illustrate the submodular cover with partition constraints setting with several
applications. In video summarization Mirzasoleiman et al. (2018), the elements of U are frames
that are each associated with one of N consecutive regions of time in the video. A submodular
function f is formulated to measure how effectively a subset of frames X summarizes the entire
video U (Tschiatschek et al., 2014). The goal is to find a subset of frames that is a sufficiently
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good summary, i.e. f(X) ≥ τ , while limiting the proportion of frames from each time region in
the solution, i.e., c(X ∩ Ui) ≤ piv where pj ∈ [0, 1] and v is the budget on the cost. As a second
example, consider influence maximization (Tschiatschek et al., 2014), where the ground set of users
U may be divided into N partitions, reflecting demographics information such as language. In order
to choose a subset with balanced distribution across different partitions, we enforce the fairness
constraint where pj |S| ≤ |S∩Uj | ≤ qj |S|. Then the objective is to find a fair solution with minimum
cardinality such that f(S) ≥ τ . Many further applications exist in the literature, including neural
network pruning Chen et al. (2025), high-quality data selection for learning Killamsetty et al. (2021),
and data summarization El Halabi et al. (2020).

Despite the importance and widespread applications of this problem, prior work remains limited.
Chen et al. (2025) studied a special case of the submodular cover with constraints defined on partitions,
which is the fairness constraints. However, their proposed discrete method attains only a suboptimal
approximation ratio, while the continuous approach incurs prohibitively high query complexity. In
contrast, our approach achieves optimal bicriteria approximation ratios with significantly lower query
complexity on the problem of SC with fairness constraint.

In this work, we study several distinct submodular cover problems with constraints defined on
partitions of the universe U , including but not limited to the submodular cover with fairness constraints.
Our approach follows the general converting framework by developing converting algorithms that
can convert submodular maximization algorithms into submodular cover algorithms. In particular,
to construct solutions with objective values closer to the target threshold τ , we propose bicriteria
algorithms for submodular maximization with partition constraints. Notably, unlike traditional greedy
algorithms that add one feasible element at a time based on marginal gain, our method incrementally
selects blocks of elements in each round, where each block respects the cost distribution across
different partitions to ensure that elements are selected proportionally to the budget cost. This block-
greedy strategy is particularly effective in the submodular cover setting, where achieving values close
to the threshold τ may require selecting sets that exceed the feasibility limits of standard submodular
maximization algorithms. In particular, our contributions are summarized as follows.

1. In Section 2.1, we study the Submodular Cover with Partition Constraint (SCP) problem of
argminS⊆U{v : f(S) ≥ τ, |S∩Uj | ≤ pjv,∀j ∈ [N ]} in the case where f is nonmonotone.
We first propose a general converting algorithm to convert any randomized algorithms for
the dual problem of Submodular Maximization with Partition constraint (SMP), into an
algorithm for SCP. By proposing a bicriteria algorithm for SMP, we can obtain an algorithm
for nonmonotone SCP with a bicriteria approximation ratio of (O( (1+α)

ϵ ), 1/e− ϵ).

2. Section 2.2 addresses the problem of Monotone Submodular Cover with Knapsack Partition
Constraints (SCKP), which is to find argminS⊆U{v : f(S) ≥ τ, c(S ∩ Uj) ≤ pjv,∀j ∈
[N ]}. We first develop an algorithm for the dual optimization problem of Submodular
Maximization under Knapsack Partition Constraints (SMKP), which adopts the block-
greedy structure. By utilizing a converting procedure, we achieve a ( (1+α) ln 1/ϵ

ln 2 , 1 − ϵ)
bicriteria-approximation ratio for SCKP.

3. Section 2.3 considers the monotone Submodular Cover problem with Fairness Constraint
(SCF), which was recently introduced by Chen et al. (2025). The proposed algorithm
achieves the nearly optimal approximation ratio of (O(ln(1/ϵ)), 1− ϵ). This matches the
approximation ratio for the algorithm of Chen et al. (2025), but their method is continuous
and requires O(n

2(1+α) log2(n
ε ) logn

ε4α ) queries of f while our method only requires a query
complexity of O(n log(n)κ ln(1/ϵ)

ϵ ).

Finally, we conduct an experimental evaluation of our algorithms for nonmonotone SCP, monotone
SCKP, and monotone SCF. Our results demonstrate that our proposed algorithm for nonmonotone
SCP achieves a higher function value compared to the baseline algorithms, and SCKP achieves an
improvement in the budget of the cost. Additionally, our algorithm for SCF outperforms the other
algorithms proposed in Chen et al. (2025) in terms of the solution set size and fairness difference.
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1.1 RELATED WORK

In the context of submodular maximization, matroid constraints represent a fundamental and well-
studied class of feasibility constraints, with partition constraints serving as a class of particularly
prominent special case with widespread applications El Halabi et al. (2020); Chen et al. (2025).
Therefore, algorithms for submodular maximization with a general matroid constraint, which has
been extensively studied, can be employed Nemhauser et al. (1978); Fisher et al. (1978); Calinescu
et al. (2011); Badanidiyuru and Vondrák (2014); Chekuri and Quanrud (2019); Buchbinder and
Feldman (2024a). The best known approximation ratio for monotone submodular maximization with
a matroid constraint is 1 − 1/e Calinescu et al.; Buchbinder and Feldman. For the more general
maximization of a non-monotone submodular function with a matroid constraint, the best-known
hardness result is 0.478 (Gharan and Vondrák, 2011; Qi, 2024). The algorithm with the current
best approximation ratio is a continuous one that achieves 0.401 Buchbinder and Feldman (2024b).
The combinatorial algorithm with the best approximation ratio is that of Chen et al. (2024b), which
achieves a 0.305− ϵ approximation guarantee in O

(
k5 log(k)n/ϵ

)
queries of f . Partition type of

constraints are widely found in submodular optimization applications, but despite this there has
been little attention towards algorithms specifically designed for them. An exception is that fairness
constraints have recently been of interest El Halabi et al. (2020; 2023); Chen et al. (2025). El Halabi
et al. showed that maximization of a monotone submodular function under a fairness constraint can
be converted into monotone SM under a matroid constraint.

In the classical submodular cover problem with integral-valued objective functions, the standard
greedy algorithm—which repeatedly selects the element with the highest marginal gain until the
objective reaches a threshold τ—achieves an approximation ratio of O(logmaxe∈U f(e)) (Wolsey,
1982). For real-valued submodular functions, a common modification is to stop once the function
value reaches (1 − ϵ)τ , yielding algorithms with a (ln(1/ϵ), 1 − ε)-bicriteria approximation ra-
tio (Krause et al., 2008; Chen and Crawford, 2024b). For the Fair Submodular Cover (FSC) Chen
et al. (2025) problem, the discrete algorithm of Chen et al. achieves a bicriteria approximation ratio of
(O(1/ϵ), 1− ϵ) while our algorithm achieves an improved approximation ratio of (O(ln 1/ϵ), 1− ϵ),
which matches the approximation ratio of the continuous method proposed in Chen et al. but requires
much fewer queries.

2 ALGORITHMS AND THEORETICAL ANALYSES

We now present the main results of our paper1. We first address the general case of not necessarily
monotone, submodular cover with a partition constraint in Section 2.1. Next, we consider monotone
submodular cover with a partition constraint, and our results apply even for the more general knapsack
cost, in Section 2.2. Finally, we consider the more restricted, but with many interesting applications,
setting of fair submodular cover in Section 2.3.

Central to all of our results is the novel algorithmic framework proposed for submodular maximization
problems that achieves bicriteria approximation ratio by running greedy in blocks, where each block
is a feasible subset. This block-wise greedy strategy departs from prior approaches that focus on the
matroid structure of partition constraints. In contrast, our method exploits the intrinsic relationship
between partition constraints and cardinality constraints, leading to improved query complexity and
approximation ratio. Throughout the paper, we define the marginal gain of adding an element u ∈ U
to a set S ⊆ U is denoted as ∆f(S, u) = f(S ∪ u) − f(S). Besides, OPT is used to refer to the
optimal solution to the instance of submodular optimization that should be clear from the context.

2.1 NON-MONOTONE SUBMODULAR COVER WITH PARTITION CONSTRAINTS

In this section, we consider the general nonmonotone Submodular Cover with Partition Constraint
(SCP) problem, which is to find a set S ⊆ U that minimizes the value

{v : |S ∩ Uj | ≤ pjv,∀j ∈ [N ], f(S) ≥ τ}.

The v represents a budget to allocate over the partitioned sets, which our goal is to minimize while
ensuring f is sufficiently high. The pj represents the desired portion of the budget to allocate to

1We summarized our results in a table in the appendix. Please refer to Table 1.
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the j-th partition. Without loss of generality, we assume
∑

j∈[N ] pj = 1. If there is only one
single partition in the universe, i.e., N = 1, then the optimal value of v is |S|, and we recover the
classic submodular cover problem. To further illustrate the problem definition, consider the example
application of video summarization described in Section 1, where frames are grouped by scene or
content type and costs are uniform. Then this would mean the objective is to find a solution with
a minimum total budget, while maintaining a balanced allocation across different partitions and
ensuring that the summary achieves sufficiently high quality.

In our first result, taking advantage of the relationship between submodular cover and submodular
maximization, we introduce a converting algorithm, convert-rand, that can convert any ran-
domized bicriteria algorithm for nonmonotone Submodular Maximization with Partition matroid
constraint (SMP) into a bicriteria algorithm for nonmonotone SCP. In particular, the SMP with an
input budget v is defined as max{f(S) : |S ∩ Ui| ≤ piv,∀i ∈ [N ]}. We formally define the notion
of bicriteria approximation for both SMP and SCP in the following.
Definition 2.1. An (α, β)-approximation algorithm for SMP with input budget v returns a solution
X that satisfies

f(X) ≥ αf(OPT ),

|X ∩ Uj | ≤ βpjv,

where OPT is the optimal solution of SMP, i.e., OPT := argmax{f(S) : |S ∩ Ui| ≤ piv,∀i ∈
[N ]}.
Definition 2.2. An (α, β)-approximation algorithm for SCP returns a solution X with objective
value vX that satisfies

vX ≤ αvOPT ,

|X ∩ Uj | ≤ pjvX

f(X) ≥ βτ.

Here OPT is the optimal solution of SCP, i.e., OPT := argmin{v : |S ∩ Uj | ≤ pjv,∀j ∈
[N ], f(S) ≥ τ}. vOPT is the optimal value of SCP.

Notice that in Chen and Crawford (2024b), they proposed an algorithm to convert randomized
submodular maximization algorithms into submodular cover algorithms in the case of monotone
submodular objectives. In fact, a key challenge in this setting arises from the need to ensure a high-
probability guarantee on the function value f by repeatedly invoking the submodular maximization
subroutine and applying concentration inequalities. To reduce the number of oracle queries, the
algorithm in Chen and Crawford (2024b) applies Markov’s inequality and operates on a truncated
objective function fτ := min{τ, f} throughout the converting algorithm. However, the assumption
that fτ is submodular only holds when f is monotone. In contrast, our analysis extends to the
non-monotone setting by avoiding the truncated objective and instead employing a more delicate
analysis when applying the concentration inequality. Specifically, we analyze the deviation of the
random variable βf(OPTg)−f(Si) where Si is the output solution set of the randomized subroutine
algorithm for SMP.

We now present convert-rand and its theoretical guarantees. The pseudocode for
convert-rand is described in Algorithm 4 in Section B in the supplementary material.
convert-rand runs by iteratively guessing the value of the optimal budget v. For each guess,
convert-rand runs the corresponding dual submodular maximization algorithms over multiple
independent trials. The theoretical guarantee of convert-rand is provided in the Theorem 2.3.
We defer the analysis to Section B in the supplementary material.
Theorem 2.3. Any randomized (γ, β)-bicriteria approximation algorithm for nonmonotone SMP
that runs in time T (n) where γ holds only in expectation can be converted into an approximation
algorithm for nonmonotone SCP that with probability at least 1− δ is a ((1 + α)β, γ − ϵ)-bicriteria
approximation algorithm that runs in time O(log1+α(|OPT |) ln(1/δ)T (n)/ ln(β−γ+ϵ

β−γ )).

Since the best-known result of algorithms for nonmonotone submodular maximization over the
partition matroid is the one proposed in Chen et al. (2024b), which achieves an approximation ratio
of 0.305− ϵ. Therefore by applying Theorem 2.3 to the randomized algorithm in Chen et al. (2024b),
we have a (1 + α, 0.305− ϵ)-bicriteria approximation algorithm for SCP with high probability in
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Algorithm 1 nonmono-bi
1: Input: ϵ, partition constraint parameters, total budget v
2: Output: S ⊆ U
3: for i = 1 to 2

ϵ do
4: for j = 1 to N do
5: for l = 1 to pjv do
6: Let M ⊆ Uj/S be a set of size 2pjv

ϵ maximizing
∑

x∈M ∆f(S, x).
7: u← uniformly sample an element from M
8: S ← S ∪ {u}

O(n|OPT | log1+α(|OPT |) ln(1/δ)/ ln(1 + ϵ)) queries of f . However, a factor of 0.305− ϵ of τ is
not very close to a feasible solution, and a natural question arises whether an algorithm that achieves
a better feasibility guarantee exists. An important relevant result Crawford (2023) is that it has been
shown that a feasibility factor better than 1/2 is impossible for the nonmonotone submodular cover
problem. Since this problem is a special case of SCP, this result holds for SCP as well. Still, this
leaves us with uncertainty of whether there exist scalable algorithms with approximation ratios in the
gap between 0.305 to 0.5.

In the rest of this section, we present a scalable algorithm, nonmono-bi, that can output a so-
lution set arbitrarily close to τ/e. The pseudocode of nonmono-bi is provided in Algorithm 1.
nonmono-bi uses the idea of gradually developing a solution in blocks greedy algorithm, and
achieves the bicriteria-approximation ratio as below.

Theorem 2.4. Suppose that nonmono-bi is run for an instance of nonmonotone SMP with budget v,
then nonmono-bi outputs a solution S that satisfies a bicriteria approximation ratio of (1/e− ϵ, 2

ϵ )
in expectation in at most O(nvϵ ) number of queries.

The analysis and the proof are deferred to Section B in the supplementary material. From
the results, we can get that using nonmono-bi as a subroutine in convert-rand yields a
( 2(1+α)

ϵ , 1/e− 2ϵ)-bicriteria approximation algorithm for nonmonotone SCP. The algorithm runs in

O(
n|OPT | log1+α(|OPT |) ln(1/δ)

ϵ ln(1+ϵ2) ) number of queries.

2.2 MONOTONE SUBMODULAR COVER WITH KNAPSACK PARTITION CONSTRAINTS

We now consider the problem of Monotone Submodular Cover with Knapsack Partition Constraints
(SCKP). SCKP models the setting where we want to balance the cost across different partitions, and
the costs of different elements are nonuniform for different elements in the ground set. We illustrate
an example of SCKP. Consider a neural network training task in deep learning, we want to select
pretraining data points from N different predefined groups, and the goal is to select a subset of data
points with minimal budget of the cost, where the cost of each data point may reflect computational,
labeling, or storage expenses. Simultaneously, we would want a solution with balanced cost allocation
across predefined groups in the dataset while ensuring that the submodular utility function (e.g.,
coverage of diverse features) meets a specified threshold τ .

More formally, the definition of SCKP is as follows. Define a cost function c : U → R≥0, and let
c(S) =

∑
x∈S c(x) for any subset S ⊆ U . Then SCKP is:

min v

s.t. f(S) ≥ τ

c(S ∩ Uj) ≤ pjv, ∀j ∈ [N ]. (1)

In the definition of SCKP, v represents the budget for the total cost. More specifically, v is the upper
bound on the total cost. The second constraint ensures that the cost of the solution set S within each
partition Uj does not exceed a specified fraction, pj , of v. Without loss of generality, we assume that∑

j∈[N ] pj = 1.

This formulation naturally arises in various real-world applications, including influence maximization
in social network analysis, where activating different nodes incurs varying costs, pretraining data

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 greedy-knapsack-bi
1: Input: ϵ, an instance of SMKP
2: Output: solution set S ⊆ U

3: for i = 1 to ln 1
ϵ

ln 2 do
4: for j = 1 to N do
5: A← ∅, Bj ← pjv.
6: while true do
7: s← argmaxx∈Uj/S,c(x)≤Bj

∆f(S∪A,x)
c(x)

8: A← A ∪ {s}
9: if c(A) ≥ Bj then

10: S ← S ∪A
11: break
12: return S

selection for deep learning where different data points might require different computational or
memory costs, and task allocation in multi-agent system. Please see the Appendix C.1 for a detailed
discussion on the motivating examples. In the following part, we discuss the pretraining data selection
as a motivating example of the SCKP problem.

To address SCKP, we first propose an algorithm for the dual problem of Submodular Maximization
with Knapsack Partition Constraint (SMKP), which is defined as argmax{f(S) :

∑
s∈X∩Uj

c(s) ≤
pjv}. Notice that when the cost is uniform, i.e., c(s) = c,∀s ∈ U . SMKP is a monotone sub-
modular maximization problem with a partition matroid constraint. Therefore, we can apply any
submodular maximization algorithms with matroid constraint. However, the output of standard
algorithms can’t achieve an objective value arbitrarily close to the optimal. Therefore, we propose
the greedy-knapsack-bi algorithm, which proceeds in ϕ :=

ln 1
ϵ

ln 2 blocks. The pseudocode of
greedy-knapsack-bi is described in Algorithm 2. Within each block from Line 4 to Line 11,
the algorithm visits each partition Uj in the ground set U and adds elements greedily with highest
density of marginal gain. Below we present the theoretical guarantee of greedy-knapsack-bi
for SMKP.

Theorem 2.5. Suppose that greedy-knapsack-bi described in Algorithm 2 is run for an
instance of SMKP, then greedy-knapsack-bi outputs a solution set that satisfies

f(S) ≥ (1− ϵ)f(OPT )

c(S ∩ Uj) ≤
2 ln 1

ϵ

ln 2
pjv, ∀j ∈ [N ],

where OPT is the optimal solution of SMKP.

This theorem guarantees that the solution set returned by greedy-knapsack-bi achieves an ob-
jective value arbitrarily close to the optimal while the cost constraints are satisfied up to a violation fac-
tor of 2 ln 1

ϵ

ln 2 . In the special case of uniform costs, the theorem implies that greedy-knapsack-bi
achieves a (1− ϵ, O(ln 1

ϵ )) bicriteria approximation guarantee. This matches the best-known approx-
imation ratio for monotone submodular maximization under a cardinality constraint. The improved
performance stems from the blockwise structure of greedy-knapsack-bi, which effectively
leverages the intrinsic similarity between the submodular maximization problem under the cardinality
constraint and the partition matroid constraint. The proof and analysis of Theorem 2.5 are deferred to
Appendix C.3.

2.2.1 CONVERTING THEOREM FOR SCKP

In order to convert any bicriteria algorithms for SMKP into bicriteria algorithms for SCKP, we
propose and analyze the converting algorithm, denoted as convert. The pseudocode for convert
is in Algorithm 5, and its theoretical guarantee is outlined in Theorem C.3, both in Section C.4 of the
appendix. By leveraging the result in the converting theorem, we can obtain the following corollary.

6
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Corollary 2.6. By using the greedy-knapsack-bi as a subroutine for the converting algorithm
convert, we can obtain an algorithm for SCKP that returns a solution set S and vS that satisfies

vS ≤
2(1 + α) ln(1/ϵ)

ln 2
vOPT

f(S) ≥ (1− ϵ)τ

c(S ∩ Uj) ≤ pjvS

where OPT and vOPT are the optimal solution set and the optimal value of the problem SCKP defined
in (1) respectively. The total runtime of the algorithm is upper bounded by O(n2 log1+α(

cmaxn
cmin

)).
Here cmax and cmin are the maximum and minimum values of the cost of a single element respectively.

2.3 SUBMODULAR COVER WITH FAIRNESS CONSTRAINT

In this section, we consider the monotone Submodular Cover problem with Fairness Constraint (SCF),
recently proposed by Chen et al. (2025) (also referred to as Fair Submodular Cover in Chen et al.
(2025)). SCF is defined as follows: Given a monotone and submodular function f , a threshold τ , and
bounds pc and qc on the proportion limits of the elements in each group, SCF aims to find

argminS∈U |S|
s.t. pc|S| ≤ |S ∩ Uc| ≤ qc|S|, ∀c ∈ [N ]

f(S) ≥ τ.

Chen et al. proposed a converting approach that takes bicriteria algorithms for the dual problem
of Submodular Maximization with Fairness constraint (SMF) El Halabi et al. (2020) and converts
them into algorithms for SCF. Formally, SMF seeks to maximize f(S) subject to the constraint
that S ∈ Mfair. Mfair represents the fairness matroid and is defined as Mfair = {S ⊆ U :
|S ∩ Uc| ≤ uc,∀c ∈ [N ],

∑
c∈[N ] max{|S ∩ Uc|, lc} ≤ k}. If we set lc = 0 for all c ∈ [N ] and we

set k =
∑

c∈[N ] uc, thenMfair is equivalent toMfair = {S ⊆ U : |S ∩ Uc| ≤ uc,∀c ∈ [N ]}.
Therefore, SMF can be viewed as a generalized form of submodular maximization with a partition
matroid constraint. A bicriteria approximation guarantee for SMF is defined as follows.
Definition 2.7. A discrete algorithm for SMF with an (α, β)-bicriteria approximation ratio returns a
solution X such that

f(X) ≥ αf(OPT ),

|X ∩ Uc| ≤ βuc ∀c ∈ [N ],∑
c∈[N ]

max{|X ∩ Uc|, βlc} ≤ βk.

Here OPT is the optimal solution of the problem SMF, i.e., OPT = argmaxS∈Mfair
f(S).

Therefore, in order to leverage the conversion approach of Chen et al., we propose an algorithm for
SMF called Block-Fair-Bi that uses a greedy block formation technique. Block-Fair-Bi is
an improvement over the greedy-fairness-bi in Algorithm 5 in Chen et al. (2025) . This leads
to a bicriteria approximation guarantee for SCF of ( 1+ln 1

ϵ

ln 2 , 1− ϵ), which is a significant improvement
compared to the best-known results for discrete algorithms of ( 1ε + 1, 1−O(ε)) in Chen et al..

We now describe Block-Fair-Bi, pseudocode for which is presented in Algorithm 3.
Block-Fair-Bi adopts a similar approach of running greedy algorithms in blocks. By defi-
nition, the β-extension of the fairness matroid constraint Mfair is given by Mβ := {S ⊆ U :
|S ∩ Uc| ≤ βuc,∀c ∈ [N ],

∑
c∈[N ] max{|S ∩ Uc|, βlc} ≤ βκ} as introduced in Chen et al. (2025).

Therefore, an algorithm with a bicriteria approximation ratio of (α, β) for SMF problem outputs
a solution set that belongs toMβ . The key intuition behind Block-Fair-Bi is that any set in
theMβ can be expressed as the union of β subsets, each belonging toMfair. This motivates our
algorithm of dividing the capacity of the solution set into β blocks. Here β := ln(1/ϵ)

ln 2 . Within each
block from Line 5 to Line 9 in Algorithm 3, the algorithm operates in a greedy fashion: it iteratively
adds the element with the highest marginal gain while maintaining B ∈Mfair. The main theoretical
result is stated in Theorem 2.8 below. The proof of the theorem is deferred to Appendix D.
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Algorithm 3 Block-Fair-Bi
1: Input: fairness parameters
2: Output: S ∈ U
3: S ← ∅
4: for i = 1 to ln(1/ϵ)

ln 2 do
5: B ← ∅
6: while ∃s s.t. B ∪ {s} ∈ Mfair do
7: x← argmaxs∈U,B∪{s}∈Mfair

∆f(S, s)
8: B ← B ∪ {x}
9: S ← S ∪ {x}

return S
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Figure 1: The experimental results of running the algorithms on the euall dataset, the twitch dataset,
the Corel5k dataset, and the synthetic dataset. Budget: maxi∈[N ]

c(S∩Ui)
pi

. Cost: the size of the
solution. Fairness difference: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.

Theorem 2.8. Suppose that Block-Fair-Bi is run for an instance of SMF, then
Block-Fair-Bi outputs a solution S that satisfies a (1− ε,

ln 1
ε

ln 2 )-bicriteria approximation guar-
antee in at most O (nκ ln(1/ε)) queries of f .

3 EXPERIMENTS

In this section, we present an empirical evaluation of our proposed algorithms. In particular, we
evaluate our nonmono-bi algorithm on instances of graph cut in Section 3.1. Next, we evaluate
greedy-knapsack-bi on set cover instances and Block-Fair-Bi on both max cover and
image summarization tasks in Sections 3.2 and 3.3, respectively. Additional details about the
applications, setup, and results can be found in Section F in the supplementary material.

3.1 EXPERIMENTS ON NONMONOTONE SCP

We evaluate the performance of our algorithms on several instances of graph cut over social network
data. The dataset used in the main paper is the email-EuAll dataset (n = 265214, 420045 edges)
from the SNAP large network collection (Leskovec and Sosič, 2016). We compare the solutions
returned by the convert-rand algorithm with four subroutines including: (i). our nonmono-bi
algorithm ("BLOCK-G") (ii). the streaming algorithm from Feldman et al. (2018) ("STREAM"); (iii).
the randomized algorithm of Chen et al. (2024b), initialized with the twin-greedy solution proposed

8
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in Han et al. (2020) ("GUIDED-RG"). (iv). The random-greedy algorithm for the submodular
maximization problem with the cardinality constraint being the input guess of budget κ Buchbinder
et al. (2014) ("RG"). The algorithms are evaluated in terms of the function value f(S) returned by
the solution S, the query complexity, and the minimum value of budget v that satisfies the partition
constraints, i.e., maxi∈[N ]

|S∩Ui|
pi

, and the execution time. The results are compared for different
values of the threshold τ .

The results in terms of f and the minimum budget are described in Figure 1(a) and 1(b). From the
results, one can see that RG and BLOCK-G consistently achieve higher objective values f than
the other methods. This is consistent with our theoretical results as the approximation ratio on
the function value of these two algorithms satisfies f(S) ≥ (1/e − ϵ)τ and f(S) ≥ (1/e − 2ϵ)τ
respectively while the other two algorithms STREAM, GUIDED-RG achieve worse approximation
ratios on the function value of 1/0.583− ϵ, 0.305− 2ϵ respectively. However, in terms of budget,
we can see that the RG algorithm performs poorly, since it does not account for partition constraints,
resulting in imbalanced budget allocations. The STREAM and GUIDED-RG algorithm returns
solutions with smaller budget since both these two algorithms achieves a bicriteria approximation
ratio such that vS ≤ (1 + α)vOPT . While BLOCK-G has a higher budget due to its weaker bicriteria
guarantee of vS ≤ 2(1+α)

ϵ vOPT, it does achieve a significantly higher function value.

3.2 EXPERIMENTS ON SCKP

We evaluate three different algorithms on the instance of max cover: the converting algorithm
convert with two different subroutines: greedy-knapsack-bi ("BLOCK-G") and a standard
greedy algorithm without the block-wise structure ("GREEDY"), and the greedy algorithm for
submodular cover without the partition-knapsack constraint ("GREEDY-Knapsack"). Further details
regarding the GREEDY and the GREEDY-Knapsack algorithms, and the experimental setup are
provided in Appendix F.1.

The results in terms of the minimum budget, which can be calculated by maxi∈[N ]
c(S∩Ui)

pi
, and the

function value f are plotted in Figure 1(c) and Figure 1(d). From the results, one can see that the
f values of solutions returned by BLOCK-G, GREEDY-Knapsack, and GREEDY are nearly the
same. This is because the theoretical guarantees on f are about the same for the different algorithms.
However, the budget of the solution returned by our algorithm BLOCK-G is smaller than the other
two algorithms, which demonstrates the effectiveness of our approach of running greedy in blocks.

3.3 EXPERIMENTS ON SCF

For the SCF problem, we evaluate algorithms using the conversion framework from Chen et al. (2025)
with different subroutines: our Block-Fair-Bi algorithm ("BLOCK-G-Fair"), the standard greedy
algorithm ("GREEDY-Fair") and the threshold greedy algorithm ("THRES-Fair"). These algorithms
are compared in terms of solution cost (cardinality), fairness difference, objective function value,
query complexity, and execution time for varying values of the threshold τ . Here we set α = 0.2
for the converting algorithms in Algorithm 1 in Chen et al. (2025). The parameters in the fairness
constraint are set to be uc = 1.1/N, lc = 0.9/N . (where N is the number of groups). Additional
details about the applications, setup, and results can be found in Section F in the appendix.

Figures 1(e) and 1(g) illustrate the cost (cardinality) of the solution sets, while Figures 1(f) and 1(h)
show the fairness differences across varying τ values. In most cases, BLOCK-G-Fair achieves a
lower cost than THRES-Fair and GREEDY-Fair, aligning with our theoretical results. In the case
where τ is large on the corel dataset, the cost of the THRES-Fair is smaller than the BLOCK-G-Fair.
However, Figures 1(f) and 1(h) reveal that fairness differences in THRES-Fair and GREEDY-Fair
are significantly larger than in BLOCK-G-Fair, demonstrating that BLOCK-G-Fair produces more
balanced solutions. This is expected given that the fairness constraint from Chen et al. (2025)
ensures that β⌊pc|S|

β ⌋ ≤ |S ∩ Uc| ≤ β⌈ qc|S|
β ⌉, which means the solution set might break the fairness

constraint by an additive factor of β. Notably, β = O(1/ϵ) for the THRES-Fair and GREEDY-Fair
and β =

ln( 1
ϵ )

ln 2 for BLOCK-G-Fair, which means our method achieves an enhanced fairness guarantee.

9
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4 REPRODUCIBILITY STATEMENT

All theoretical results in this paper are supported by complete proofs, which are provided in the main
text and the appendix. Approximation guarantees and detailed proofs are described to ensure that the
theoretical contributions can be independently verified.
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Algorithm 4 convert-rand
Input: An SCP instance with threshold τ , a (γ, β)-bicriteria approximation algorithm for SMP,
α > 0
Output: S ⊆ U

1: Si ← ∅, ∀i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ
β−γ )}

2: g ← (1 + α)
3: while f(Si) < (γ − ϵ)τ ∀i do
4: for i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ )} do
5: Si ← (γ, β)-bicriteria approximation for SMP with objective function f and budget g
6: g ← (1 + α)g

7: return S

Problem Algorithm Approximation Ratio Query Complexity

Nonmonotone
SCP

convert-rand +
nonmono-bi

(
O
(
1+α
ϵ

)
, 1
e − ϵ

)
O
(
n2 log1+α n ln(1/δ)/ϵ/ ln(1 + ϵ)

)
Monotone SCKP greedy-knapsack-bi

+ convert

(
(1+α) ln(1/ϵ)

ln 2 , 1− ϵ
)

O
(
n2 log1+α

(
cmaxn
cmin

))
Monotone SCF Block-Fair-Bi +

convert-fair Chen et al.
(2025)

(O(ln(1/ϵ)), 1− ϵ) O
(

n lognκ ln(1/ϵ)
ϵ

)

Table 1: Summarization of approximation algorithms for Submodular Cover Problems in this paper.

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use Large Language Models solely to polish the writing to improve the clarity and
presentation. All theoretical results and technical contributions in this paper were not developed by
LLMs.

B APPENDIX FOR SECTION 2.1

In this section, we present missing content from Section 2.1, where we considered non-monotone
submodular cover with partition constraints. First, pseudocode for the converting algorithm
convert-rand, which we only informally described in Section 2.1, is given in Algorithm 4.
Next, we present the omitted proofs of Theorems 2.3 and Theorem 2.4.

Theorem 2.3. Any randomized (γ, β)-bicriteria approximation algorithm for SMP that runs in
time T (n) where γ holds only in expectation can be converted into a ((1 + α)β, γ − ϵ)-bicriteria
approximation algorithm for SCP that runs in time O(log1+α(|OPT |) ln(1/δ)T (n))/ ln(β−γ+ϵ

β−γ ))

where γ holds with probability at least 1− δ.

Proof. Consider the run of the algorithm for SMP on Line 5 of Algorithm 4 when the guess of
optimal value g falls into the region

vOPT ≤ g ≤ (1 + α)vOPT .

Let us denote the partition matroid with budget g asM, i.e.,M := {S ⊆ U : |S ∩ Uj | ≤ pjv,∀j ∈
[N ]}. The SMP problem is then defined to find argmax{f(S) : S ∈ M}. We denote the optimal
solution of the SMP problem with budget g as OPTg , i.e.,

OPTg := argmax{f(S) : |S ∩ Uj | ≤ pjv,∀j ∈ [N ]}.
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Besides, we define the optimal solution for SCP as OPT . By the fact that the optimal solution OPT
is feasible for SCP, we have that

|OPT ∩ Uj | ≤ pjvOPT ≤ pjv (2)

which means that OPT ∈ M, and therefore f(OPT ) ≤ maxS∈M f(S) = f(OPTg). Since
f(OPT ) ≥ τ , we have f(OPTg) ≥ τ . It then follows that for each i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ )},

P
(
f(Si) ≤ (γ − ϵ)τ

)
≤ P

(
f(Si) ≤ (γ − ϵ)f(OPTg)

)
≤ P

(
βf(OPTg)− f(Si) ≥ (β − γ + ϵ)f(OPTg)

)
By the theoretical guarantees of the algorithm for SMP, we have that for all i ∈
{1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ )}, we have that Ef(Si) ≥ γf(OPTg) and |Si ∩ Uj | ≤ pjβg for each
j ∈ [N ]. It then follows that

P
(
f(Si) ≤ (γ − ϵ)τ

)
≤ P

(
βf(OPTg)− f(Si) ≥

β − γ + ϵ

β − γ
(βf(OPTg)− Ef(Si))

)
Let us denoteMβ := {S ⊆ U : |S ∩ Uj | ≤ pjβg,∀j ∈ [N ]}, i.e.,Mβ is the β-extension of the
matroidM as is defined in Chen et al. (2025). Since Si satisfies |Si ∩ Uj | ≤ pjβg for any j ∈ [N ],
we have that Si ∈ Mβ for each i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ )}. Notice that for any set A ∈ Mβ ,
we can express A as the union of β disjoint subsets inM. Let us denote them as A1, A2, ..Am. Thus
we have that

f(A) = f(∪i∈[β]Ai)

≤
∑
i∈[β]

f(Ai) ≤ βf(OPTg),

where the first inequality follows from the submodularity of f . It then follows that maxS∈Mβ
f(S) ≤

βf(OPTg). Notice that Si ∈ Mβ , we have that βf(OPTg) − f(Si) ≥ 0. Thus, we can apply
Markov’s inequality on the random variable βf(OPTg)− f(Si). Therefore, we can get that for each
i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ )}

P
(
f(Si) ≤ (γ − ϵ)τ

)
≤ P

(
βf(OPTg)− f(Si) ≥

β − γ + ϵ

β − γ
(βf(OPTg)− Ef(Si))

)
≤ β − γ

β − γ + ϵ

Then the probability that none of the subsets Si can reach the stopping condition can be bounded by

P (f(Si) ≤ (γ − ϵ)τ,∀i) = P (f(Si) ≤ (γ − ϵ)τ,∀i)

=

ln(1/δ)/ ln( β−γ+ϵ
β−γ )∏

i=1

P (f(Si) ≤ (γ − ϵ)τ)

≤ (
β − γ

1 + ϵ− γ
)ln(1/δ)/ ln( β−γ+ϵ

β−γ ) = δ.

This means with probability at least 1− δ, convert-rand stops when g reaches the region where
vOPT ≤ g ≤ (1 + α)vOPT since the condition of the while loop is not satisfied. Therefore, by
the assumption that the subroutine algorithm is a (γ, β)-bicriteria approximation algorithm, we
have that the output solution S satisfies that |S ∩ Uj | ≤ pjβg ≤ pjβ(1 + α)vOPT . Then the
objective value of the optimal solution S can be set to be vS = β(1 + α)vOPT . It also implies
that there are at most O(log1+α vOPT ) number of guesses of the cardinality of the optimal solution.
Since for each guess, we run the SMP for ln(1/δ)/ ln(β−γ+ϵ

β−γ ) times, the algorithm runs in time

O(log1+α(vOPT ) ln(1/δ)T (n)/ ln(β−γ+ϵ
β−γ )).
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Next, we present the proof for the result in Theorem 2.4.

Theorem 2.4. Suppose that nonmono-bi is run for an instance of nonmonotone SMP with budget v,
then nonmono-bi outputs a solution S that satisfies a bicriteria approximation ratio of (1/e− ϵ, 2

ϵ )
in expectation in at most O(nvϵ ) number of queries.

Proof. Let us denote the solution set after adding the l-th element in j-th subgroup during the i-th
round of the outer for loop in Line 6 in Algorithm 1 as Si,j,l, and we define the solution set after
completing adding all the elements in the j-th subgroup during the i-th round in Algorithm 1 as Si,j .
For notation simplicity, we also define ϕ := 2

ϵ . From the greedy selection strategy, we have that

E[f(Si,j,l)− f(Si,j,l−1)] ≥
∑

a∈OPT∩Uj
∆f(Si,j,l−1, a)

pjvϕ
.

By submodularity, we would have that

E[f(Si,j,l)− f(Si,j,l−1)] ≥
∑

a∈OPT∩Uj
∆f(Si,j , a)

pjvϕ
.

By summing over all l ∈ [pjv], it then follows that

E[f(Si,j)− f(Si,j−1] ≥
∑

a∈OPT∩Uj
∆f(Si,j , a)

ϕ
.

Let us denote the solution after completing the entire i-th round as Si. By submodularity, it then
follows that

E[f(Si,j)− f(Si,j−1)] ≥
E[∆f(Si,j , OPTj)]

ϕ

≥ E[∆f(Si, OPTj)]

ϕ
,

By summing over all j ∈ [N ], we have

E[f(Si)− f(Si−1)] ≥
∑N

j=1 E[∆f(Si, OPTj)]

ϕ

≥ E[∆f(Si, OPT )]

ϕ
.

Then it follows that

E[f(Si)− f(Si−1)] ≥ E[
f(Si ∪OPT )− f(Si)

ϕ
].

Notice that by the greedy selection step, for each group j and each element a ∈ OPT ∩Uj appears in
Si with probability at most 1−(1− 1

pjvϕ
)pjvi. Since (1− 1

x )
x increases with x in the range of [1,+∞),

we have that (1− 1
pjvϕ

)pjvϕ ≥ (1− 1
ϕ )

ϕ. Therefore, we would get 1−(1− 1
pjvϕ

)pjvi ≤ 1−(1− 1
ϕ )

i.
From Lemma 2.2 in Buchbinder et al. (2014), we can conclude that

E[f(Si ∪OPT )] ≥ (1− 1

ϕ
)if(OPT ).

By rearranging the above inequality, we can get that

E[f(Si)] ≥
ϕ

ϕ+ 1
E[f(Si−1)] +

1

ϕ+ 1
(1− 1

ϕ
)if(OPT ).
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By induction, we have that the output solution set satisfies that

E[f(S)] = E[f(Sϕ)]

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ

ϕ+ 1
)ϕ−i(1− 1

ϕ
)if(OPT )

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ− 1

ϕ
)ϕ−i(1− 1

ϕ
)if(OPT )

≥ ϕ

ϕ+ 1
(1− 1

ϕ
)ϕf(OPT ) ≥ 1

e
(1− ϵ)f(OPT ). (3)

where the last inequality follows from the fact that (1 − 1
ϕ )

ϕ−1 ≥ e−1 for any ϕ > 1, and that
ϕ = 2

ϵ .

C APPENDIX FOR SECTION 2.2

We now present omitted content from Section 2.2, where we studied monotone submodular cover
with knapsack partition constraints. Our first goal is to provide additional detail to motivate and
explain our proposed optimization problem formulation. In particular, several detailed motivating
examples of SCKP are presented in Section C.1, and then further we provide detailed discussion on
the formulation of SCKP in Section C.2. Then in Section 2.2, we provide the omitted proofs from
Section 2.2 in the main paper. Namely, we present the missing proofs of the theoretical guarantee
for the Block-Greedy algorithm with Alg-SM as the subroutine, stated in Theorem 2.5, and we
present the converting algorithm convert for transforming an algorithm for SMKP to an algorithm
for SCKP, stated. in Theorem C.3.

C.1 MOTIVATING APPLICATIONS OF SCKP

In this portion of the appendix, we provide a series of examples to motivate our study of the
SCKP problem, where the objective is to find a solution set S which minimizes the total cost while
maintaining a certain level of utility (f(S) ≥ τ ) and a balanced cost constraint across different
partitions (c(S ∩ Uj) ≤ pjv). The motivating examples of this problem include

• Influence Maximization: In this application, we might want to select a set of nodes
with minimum cost (e.g., limited budget funds to be allocated) while ensuring a certain
level of influence spread. The cost should also be balanced among each partition of the
universe, which is splitted by the demographic or geographic attributes. Different nodes
(e.g., influential users or groups) may require different costs to be activated (e.g., through
targeted ads or promotions), and thus the cost is non-uniform among different nodes.

• Pretraining Data Selection: In pretraining data selection, the goal is to select a subset of
data points with minimal cost, where costs may reflect computational, labeling, or storage
expenses. The problem involves balancing costs across predefined groups in the dataset
while ensuring that the utility function (e.g., coverage of diverse features) meets a specified
threshold.

• Multi-Agent Task Allocation: The objective is to find a set of tasks that minimizes the
total cost of the assigned tasks while achieving an overall utility or performance of a
certain level and a balanced cost across different types of tasks (e.g., delivery, inspection,
or cleaning). Tasks have different execution costs depending on complexity, duration, or
required resources and thus the cost is nonuniform.

C.2 CLARIFICATION OF THE PROBLEM DEFINITION OF SCKP

In this section, we provide some illustrations of the problem formulation of SCKP defined in
Section 2.2 in the main paper. First of all, recall that the classical Minimum Cost Submodular
Cover (MCSC) studied in previous work Iyer and Bilmes (2013); Crawford (2019) is defined as
argmin{c(S) : f(S) ≥ τ} where c : 2U → R is a modular, positive cost function. In our setting,
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we also want to ensure a balanced budget allocation across different partitions. Therefore, one of the
definition of our problem should be argmin{c(S) : f(S) ≥ τ, c(S ∩ Uj) ≤ pjc(S),∀j ∈ [N ]}.
However, the problem defined above can have feasibility issues in many cases. In particular, the
constraint of c(S ∩ Uj) ≤ pjc(S) for each j ∈ [N ] can be really hard to satisfy, and can even render
the problem infeasible. For example, if we set pj = 1/N for each j ∈ [N ], and that for each s ∈ Uj1
c(s) = π, and each s ∈ Uj2 , c(s) = 1. From the definition of (P1), we can see that there is no subset
S ⊆ U that satisfies c(S ∩ Uj) ≤ pjc(S) for each j ∈ [N ].

To solve this feasibility issue, we can relax the constraint on the balanced solution such that it can
be slightly broken by the cost of a single element. Let us define cj = max{c(s) : s ∈ Uj} to be the
maximum singleton cost within the partition Uj . It then follows that the definition of the relaxed
problem should be argmin{c(S) : f(S) ≥ τ, c(S ∩ Uj) ≤ pjc(S) + cj ,∀j ∈ [N ]}
For notation simplicity, we use (P1) to denote this problem, i.e.,

(P1) : min
S⊆U

c(S)

f(S) ≥ τ

c(S ∩ Uj) ≤ pjc(S) + cj , ∀j ∈ [N ]. (4)

To solve this problem, we can slightly relax the constraint on the cost by introducing another variable
µ to the constraint, i.e., c(S ∩ Uj) ≤ pjµc(S) for each j ∈ [N ]. Notice that here we also want to
minimize the level of breaking the constraint, to do that, we replace the objective function from
minimizing c(S) to µc(S) in the optimization problem, Next, by replacing the term µc(S) with v, we
obtain the definition of the SCKP problem. Additionally, compared with the optimization problem
defined in (P1), the problem defined in SCKP in (1) preserves the feasibility as long as the threshold
τ satisfies f(U) ≥ τ .

(P2) : min
S⊆U

v(S)

f(S) ≥ τ

c(S ∩ Uj) ≤ pjv, ∀j ∈ [N ], (5)

Let us define the optimal solution and optimal value of (P1) as OPTP1 and vOPT respectively, and
we denote the optimal solution of SCKP defined as OPT . It is worth noting that the optimal solution
in the optimization problem (P1) has a similar quality to our SCKP problem (P2). In particular, we
have that the optimal value of P1 and (P2) satisfies the following lemma:

Lemma C.1. The optimal value of (P1) and (P2) satisfies

1. vOPT ≤ c(OPT1) + maxi∈[N ]
ci
pi

.

2. When the optimal value of (P2) satisfies that pjvOPT ≤ c(Uj), we have that c(OPT1) ≤
αvOPT +

∑
i∈[N ] cj , where α =

∑
j∈[N ] pj .

Proof. We first prove the first part of the lemma. Since OPT1 is feasible for problem (P1), it must
satisfy all constraints of (P1). In particular, for each j ∈ [N ], we have:

c(OPT1 ∩ Uj) ≤ pjc(OPT1) + cj

= pj

(
c(OPT1) +

cj
pj

)
≤ pj

(
c(OPT1) + max

i∈[N ]

ci
pi

)
(6)

Setting v = c(OPT1) + maxi∈[N ]
ci
pi

, we observe that S = OPT1 satisfies the constraints of the
SCKP problem defined in (P2). Therefore, vOPT ≤ v, proving the first result. We prove the second
result by constructing a set A by the following procedure.

1. Initialize A← OPT2.
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2. For j = 1 to N do:

(a) While c(A ∩ Uj) ≤ pjvOPT:
i. x← argminx′∈Uj\A c(x′)

ii. A← A ∪ {x}

Notice that for each j ∈ [N ], c(OPT2 ∩Uj) ≤ pjvOPT , and that c(Uj) ≥ pjvOPT . Therefore, upon
the termination of the above procedure, set A satisfies that

pjvOPT ≤ c(A ∩ Uj) ≤ pjvOPT + cj (7)

It then follows that
∑

j∈[N ] pjvOPT ≤
∑

j∈[N ] c(A ∩ Uj), and thus αvOPT ≤ c(A). Therefore, for
each j ∈ [N ], we have that

c(A ∩ Uj) ≤ pjvOPT + cj ≤ pjc(A) + cj (8)

It implies that A is feasible for problem (P1), therefore, we can conclude c(OPT1) ≤ c(A) ≤∑
j∈[N ] pjvOPT + cj ≤ αvOPT +

∑
j∈[N ] cj .

Besides, we want to point out that another benefit of the definition of our problem is that it preserves
the dual relationship between the SCKP problem and the SMKP problem, which is defined as
argmax f(S) :

∑
s∈X∩Uj

c(s) ≤ pjv. In particular, here the variable v in SMKP also serves as the
budget of the cost constraint. This property facilitates our application of converting theorems, which
is used to convert bicriteria algorithms for SMF to algorithms for SCF.

C.3 PROOF OF THEOREM 2.5

In this portion of the appendix, we present the missing proofs of the theoretical guarantee for the
Block-Greedy algorithm with Alg-SM as the subroutine. The theorem statement is provided in
Theorem 2.5.
Theorem 2.5. Suppose that greedy-knapsack-bi described in Algorithm 2 is run for an
instance of SMKP, then greedy-knapsack-bi outputs a solution set that satisfies

f(S) ≥ (1− ϵ)f(OPT )

c(S ∩ Uj) ≤
2 ln 1

ϵ

ln 2
pjv, ∀j ∈ [N ],

where OPT is the optimal solution of SMKP.

Let us denote the solution set after adding the l-th element in j-th subgroup during the i-th round of
the outer for loop from Line 4 to Line 11 in Algorithm 2 as Si,j,l, and we define the solution set after
completing adding all the elements in the j-th subgroup during the i-th round in in Algorithm 2 as
Si,j . Before we prove Theorem 2.5, we prove the result in the following lemma.
Lemma C.2. Let Si,j be the solution set of the algorithm greedy-knapsack-bi in Algorithm 2
after completing adding all the elements in the j-th subgroup during the i-th round in in Algorithm 2,
then we would get that

f(Si,j)− f(Si,j−1) ≥ ∆f(Si,j , OPTj)

where OPTj := OPT ∩Uj is the intersection of the optimal solution set OPT and the j-th partition
Uj , and that

Bj ≤ c(Si,j/Si,j−1) ≤ 2Bj .

Here Bj := pjv.

Proof. Let Ai,j,l be the set A after adding the l-th element to the subgroup j in the iteration i, and let
si,j,l be the l-th element s added to the set A during the i-th outer loop in the subgroup j in Algorithm
2. It then follows that for any element o ∈ OPTj ,

∆f(Si,j−1 ∪Ai,j,l−1, si,j,l)

c(si,j,l)
≥ ∆f(Si,j−1 ∪Ai,j,l−1, o)

c(o)
.
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By rearranging the above inequality, we can get

c(o)∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) ≥ c(si,j,l)∆f(Si,j−1 ∪Ai,j,l−1, o).

Summing over all o ∈ OPTj and by submodularity, we can get

c(OPTj)∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) ≥ c(si,j,l)∆f(Si,j−1 ∪Ai,j,l−1, OPTj)

Let us denote the total number of iterations in Algorithm 2 as T . By submodularity, it then follows
that

c(OPTj)∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) ≥ c(si,j,l)∆f(Si,j−1 ∪Ai,j,T , OPTj).

Since

∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) = f(Si,j−1 ∪Ai,j,l)− f(Si,j−1 ∪Ai,j,l−1),

we can sum over all l ∈ [T ] and get

c(OPTj){f(Si,j−1 ∪Ai,j,T )− f(S)} ≥ c(Ai,j,T )∆f(Si,j−1 ∪Ai,j,T , OPTj).

Since Si,j−1 ∪Ai,j,T = Si,j , we have

c(OPTj){f(Si,j)− f(S)} ≥ c(Ai,j,T )∆f(Si,j , OPTj).

By the stopping condition of Algorithm 2, we have that c(Ai,j,T−1) ≤ Bj , therefore,

Bj ≤ c(Ai,j,T ) ≤ 2Bj

Since c(OPTj) ≤ Bj , it then follows that

f(Si,j)− f(S) ≥ ∆f(Si,j , OPTj).

We can then conclude the proof by the fact that Ai,j,T = Si,j/Si,j−1.

With Lemma C.2, we can prove the result of Theorem 2.5 as follows.

Proof. Let us denote the solution set after completing the i-th round in Algorithm 2 as Si, i.e.,
Si = Si,N . By the result in Lemma C.2, it then follows that

f(Si,j)− f(Si,j−1) ≥ ∆f(Si,j , OPTj) ≥ ∆f(Si, OPTj),

where the second inequality follows from submodularity. Summing over all j ∈ [N ], we would get

f(Si)− f(Si−1) ≥
∑
j∈[N ]

∆f(Si, OPTj) ≥ ∆f(Si, OPT )

Therefore, f(Si) ≥ f(Si−1)+f(OPT )
2 . By induction, we have that the final output solution set S

satisfies

f(S) = f(Sϕ) ≥ (1− ϵ)f(OPT ).

Notice that S = ∪ϕi=1Si/Si−1. From Lemma C.2, we can get c((Si/Si−1) ∩Uj) ≤ 2pjv. Therefore

c(S ∩ Uj) =
∑ϕ

i=1 c((Si/Si−1) ∩ Uj) ≤
2 ln 1

ϵ

ln 2 pjv.

C.4 THEORETICAL ANALYSIS OF ALGORITHM 5

In this portion of the appendix, we present the converting algorithm convert for transforming an
algorithm for SMKP to an algorithm for SCKP. The pseudocode is described in Algorithm 5. The
theoretical guarantee of convert is provided in Theorem C.3.
Theorem C.3. Suppose that we have an algorithm Alg-SM for SMKP, and given budget v, Alg-SM
is guaranteed to return a set S such that f(S) ≥ γf(OPTSM ) and c(S ∩ Uj) ≤ βpjv, in time
T (n), where OPTSM is the optimal solution of SMKP. Then the algorithm convert using Alg-SM
as a subroutine returns a set S and a value vS in time O(log1+α(

cmaxn
cmin

)T (n)) such that vS ≤
β(1 + α)vOPT , c(S ∩ Uj) ≤ pjvS and f(S) ≥ γτ. Here vOPT is the optimal value of SCKP. cmax

and cmin are the maximum and minimum values of the cost of a single element respectively.
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Algorithm 5 convert
Input: α, ϵ
Output: S ⊆ U

1: vg ← (1 + α)cmin, S ← ∅
2: while f(S) < γτ do
3: S ← Algorithm for SMKP run with budget parameter v = vg
4: vg ← (1 + α)vg
5: vS = βvg
6: return S, vS

Proof. Let OPT be the optimal solution to the instance of SCKP. Consider the iteration of convert
where vg has just increased above vOPT , i.e., vOPT ≤ vg ≤ (1 + α)vOPT . Then we run Alg-SM
with budget vOPT ≤ vg ≤ (1 + α)vOPT . Then by the assumptions on Alg-SM we have that

f(S) ≥ γf(OPTSM ). (9)

Notice that the optimal solution OPT for SCKP satisfies that c(OPT ∩ Uj) ≤ pjvOPT ≤ pjvg. It
then follows that OPT is feasible for the SMKP problem with input vg. Let us denote the optimal
solution of SMKP as OPTSM . Then we have that

f(OPTSM ) ≥ f(OPT ).

Since OPT is the optimal solution for SCKP, then

f(OPTSM ) ≥ f(OPT ) ≥ τ.

Combining the above inequality with the result in (9), we can get that f(S) ≥ γτ . Therefore, the
algorithm stops before vg reaches (1 + α)vOPT . The cost of each partition would satisfy

c(S ∩ Uj) ≤ βpjvg ≤ (1 + α)βpjvOPT

The proof is completed by setting vS = βvg .

D APPENDIX FOR SECTION 2.3

In this section, we present the missing proofs of theoretical results of Block-Fair-Bi from
Section 2.3. The theorem statement is provided in Theorem 2.8.
Theorem 2.8. Suppose that Block-Fair-Bi is run for an instance of SMF, then
Block-Fair-Bi outputs a solution S that satisfies a (1− ε,

ln 1
ε

ln 2 )-bicriteria approximation guar-
antee in at most O (nκ ln(1/ε)) queries of f .

Proof. Denote the solution set after the i-th chunk as Si, and we denote the subset B after the i-th
chunk as Bi, then it follows that Si = Si−1 ∪ {Bi}. We can prove the following lemma.

Lemma D.1. For any i ≤ ln 1/ϵ
ln 2 , the solution set Si satisfies that

f(Si)− f(Si−1) ≥ f(OPT )− f(Si)

and that

|Si ∩ Uc| ≤ uci,∑
c∈[N ]

max{|Si ∩ Uc|, lci} ≤ ki.

Proof. Let us denote the solution set after adding the j-th element to the solution set S during the
i-th chunk as Si,j . In addition, we denote the j-th element adding to Bi as bj , and that Bi,j =
(b1, . . . , bj−1). By the definition of matroid, there exists a mapping from the set B to the optimal
solution OPT = {o1, ..., oκ} s.t. Bi,j ∪ {oj} ∈ Pfair.

f(Si,j)− f(Si,j−1) ≥ f(Si,j−1 ∪ {oi})− f(Si,j−1) ≥ ∆f(Si,κ, oi)
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Summing over all j, it follows that

f(Si,κ)− f(Si,0) ≥
κ∑

i=1

∆f(Si,κ, oi) ≥ f(OPT )− f(Si,0).

Since f(Si,κ) = f(Si+1,0) = f(Si+1),

f(Si+1)− f(Si) ≥ f(OPT )− f(Si+1)

Next, we prove the result on the size of the solution set S. When i = 1, S1 = B1. By the fact that
B1 ∈Mfair, we have that the result in the lemma holds. Let us assume that the result in the lemma
holds for i. Then for i+1, we have that |Si+1∩Uc| = |Si∪Bi∩Uc| ≤ |Si∩Uc|+|Bi∩Uc| ≤ uc(i+1).
For the total cardinality constraint,

max{|Si+1 ∩ Uc|, lc(i+ 1)} ≤ max{|Si ∩ Uc|+ |Bi ∩ Uc|, lc(i+ 1)}
≤ max{|Si ∩ Uc|, lci}+max{|Bi ∩ Uc|, lc}

where the first inequality comes from the fact that Si+1 = Si ∪Bi. The second inequality is due to
the inequality of max{a+ b, c+ d} ≤ max{a, c}+max{b, d}. It then follows that∑
c∈[N ]

max{|Si+1 ∩ Uc|, lc(i+ 1)} ≤
∑
c∈[N ]

max{|Si ∩ Uc|, lci}+
∑
c∈[N ]

max{|Bi ∩ Uc|, lc} ≤ κ(i+ 1)

Next, by leveraging this Lemma D.1, we can prove the results in Theorem 2.8. Denote ϕ = ln 1/ϵ
ln 2 ,

then by the Lemma, we have that

|Sϕ ∩ Uc| ≤ ucϕ,∑
c∈[N ]

max{|Sϕ ∩ Uc|, lcϕ} ≤ kϕ.

Since f(Si) ≥ f(OPT )+f(Si−1)
2 , by induction, it follows that

f(Sϕ) ≥ (1− 1

2ϕ
)f(OPT ) = (1− ϵ)f(OPT ).

E SUBMODULAR MAXIMIZATION UNDER PARTITION MATROID CONSTRAINT

In the previous sections and in the main paper, we demonstrated that block-greedy algorithms can
be effective for solving submodular cover problems under partition-based constraints. Interestingly,
this block-greedy approach also proves to be valuable in designing algorithms for submodular maxi-
mization problems. In this section, we introduce Block-Greedy, a novel algorithmic framework
tailored for submodular maximization subject to a partition matroid constraint.

Block-Greedy proceeds by greedily adding blocks—i.e., sets of elements—to the solution. Our
algorithms improve upon existing methods in both solution quality and query complexity.

This section is structured as follows. We first present our main results in Sections E.1, E.2, and E.3.
Section E.1 introduces the block-greedy framework that underpins the algorithms discussed through-
out. Then, we address two specific settings: monotone submodular maximization with a partition
matroid constraint (monotone SMP) in Section E.2, and nonmonotone submodular maximization
with a partition matroid constraint (nonmonotone SMP) in Section E.3.

Finally, we include additional content and discussions in Section E.4 and Section E.5. Section E.4
provides the missing discussion and proof of Theorem E.2 from Section E.2.1, while Section E.5
elaborates on omitted content from Section E.2.2.
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Algorithm 6 Block-Greedy
1: Input: Partitions of the ground set U1, U2, ..., UN , problem definition and parameters
2: Output: S ⊆ U
3: S ← ∅
4: for i = 1 to ϕ do
5: for j = 1 to N do
6: Greedy-Subroutine (S, i, j)
7: return S

E.1 BLOCK GREEDY FRAMEWORK

The Block-Greedy algorithm serves as the core framework for most of our proposed algo-
rithms, except for the Block-Fair-Bi algorithm used in the Fair Submodular Cover problem.
Block-Greedy repeatedly runs a greedy subroutine. In each of the subroutines, a “block” of
elements is added into the final solution from each of the partitions of the universe U . The value of the
parameter ϕ and the subroutine Greedy-Subroutine are problem-specific and vary depending
on the submodular optimization problem being solved. The pseudocode for Block-Greedy is in
Algorithm 6. In the following part, we introduce the subroutine algorithm for different problems and
present the analysis for these proposed algorithms.

E.2 MONOTONE SMP

We first consider the classic problem of Monotone Submodular Maximization with a Partition
Matroid Constraint (SMP). Given positive integers k1, · · · kN such that kj ≤ |Uj | for any j ∈ [N ],
the partition matroid constraint is defined as P = {S ⊆ U : |S ∩ Uj | ≤ kj ,∀j ∈ [N ]}. The
monotone SMP is defined to find the set argmaxS∈P f(S) for a monotone, submodular objective
function f . Before presenting our algorithm, we illustrate the intuitions and benefits of our proposed
algorithm in contrast to the standard greedy algorithm through a tight hardness result.

E.2.1 TIGHT EXAMPLES

The standard greedy algorithm iteratively selects the element with the highest marginal gain while
maintaining feasibility. It is well-known that this algorithm achieves a 1/2-approximation ratio for
monotone submodular maximization with general matroid constraint. Despite partition matroids
being a simpler special case, in the theorem below, we prove this ratio is tight by constructing a class
of instances where the standard greedy algorithm cannot achieve an approximation ratio better than
1/2.

Theorem E.1. For any given positive integers k1, ..., kN , there exists an instance of monotone SMP
with size constraints k1, ..., kN , i.e.,

max
S∈P

f(S)

where P := {S ⊆ U : |S ∩ Ui| ≤ ki}, such that the best approximation ratio achievable by the
standard greedy algorithm is 1/2.

We defer the detailed proof of Theorem E.1 to the supplementary material in Section E.4. We give
a brief illustration of the proof by constructing a toy example. Suppose U = [8] which is split into
two groups U1 = {1, 2, 3, 4}, U2 = {5, 6, 7, 8}. Let t : U → M be a function that assigns tags to
each element in the universe: t(1) = t(5) = t(7) = t(8) = ”a”, t(2) = t(6) = ”b”, t(3) = ”c”, and
t(4) = ”d”. Define a set cover function f that maps a subset to the number of unique tags covered,
f(S) = | ∪s∈S t(s)|. Here, the partition matroid is defined by k1 = k2 = 2. In this case, the standard
greedy algorithm might first select elements 1 and 2. Subsequently, all remaining elements either
become infeasible or have zero marginal gain, yielding a solution set S with f(S) = 2, whereas the
optimal solution set OPT = 3, 4, 5, 6 achieves f(OPT ) = 4. Therefore, f(S) = f(OPT )/2. Thus
we can conclude the proof.

This example highlights a key limitation of the standard greedy algorithm: it greedily adds the
element with the highest marginal gain by searching over all feasible elements in each step, which
can lead certain partitions to quickly reach their cardinality limits, making remaining elements in
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those subgroups infeasible for later selections. This strategy prevents the standard greedy algorithm
from achieving a better approximation ratio.

In fact, in most of the continuous methods developed in existing works Badanidiyuru and Vondrák
(2014); Calinescu et al. (2011), the key idea for achieving the optimal approximation ratio of 1− 1/e
is by incrementally increasing some coordinates by small fractions in each step. This technique
ensures that all of the elements in the ground set U remain feasible throughout most of the algorithm’s
execution. Inspired by this insight, the Block-Greedy algorithm carefully balances the number of
elements being added to the solution set across different partitions during each round. In particular, the
number of elements selected by Block-Greedy at each round within each partition i is proportional
to the budget capacity ki of the partition to ensure the feasibility of the elements for the majority
of the algorithm’s runtime, thereby effectively addressing this limitation. We provide a detailed
description of our proposed algorithm for monotone SMP in the next section.

E.2.2 SUBROUTINE ALGORITHM FOR MONOTONE SMP

We propose the subroutine algorithm Greedy-Subroutine-Mono (Algorithm 7), to be used
in Block-Greedy along with the parameter ϕ = ⌊

√
mini∈[N ] ki⌋ − 1, and show that it can be

used to achieve an approximate solution that is at least as good as the standard greedy and often
strictly better. Further, Block-Greedy makes fewer queries to f , depending on the structure of the
partition matroid constraint. Here the parameter rj is defined as rj := ⌊kj/ϕ⌋ for each j ∈ [N ].

Algorithm 7 Greedy-Subroutine-Mono (S, i, j)

1: Input: S, i, j
2: for l = 1 to rj do
3: S ← S ∪ argmaxx∈Uj ∆f(S, x)

Theorem E.2. Suppose that Block-Greedy is run for an instance of monotone SMP with
the subroutine algorithm Greedy-Subroutine-Mono as described in Algorithm 7, then
Block-Greedy outputs a solution set S that satisfies an approximation ratio of 1 − 1/e − 1

ϕ+1

where ϕ = ⌊
√
mini∈[N ] ki⌋ − 1.

Intuitively, Block-Greedy achieves an approximation close to 1− 1/e when the parameters ki
are large. The reason that the term involving ϕ arises in Theorem E.2 is because there are a total
of ϕ rounds in the outer loop of Block-Greedy. In particular, if ϕ ≥ 7, then the approximation
guarantee described in Theorem E.2 is strictly better than 1/2. To further ensure the bound is better
than 1/2, we can greedily add new elements with maximum marginal gain to the returned solution by
Block-Greedy algorithm until the cardinality of the solution set reaches the rank of the partition
matroid, in which case the approximation ratio of Block-Greedy is max{1/2, 1− 1/e− 1

ϕ+1}
(see Appendix E.5 for proof).

Notably, the difference between the approximation ratio for Block-Greedy and the optimal result
of 1− 1/e is bounded by O( 1√

kmin
) where kmin = mini∈[N ] ki. In particular, in some cases where

k1 = k2 = · · · = kN , the bound can be improved further to O( 1
k1
), as shown in the following

corollary:
Corollary E.3. Suppose Block-Greedy with the Greedy-Subroutine-Mono subroutine is
run for instance of monotone SMP with k1 = k2 = ... = kN . If we set ϕ = k1 and rj = 1 for each j,
then Block-Greedy outputs a solution set S with an approximation ratio of 1− 1/e− 1/k1.

The corollary can be proved by applying the Theorem E.8, which is presented and analyzed in
Appendix E.5.

An additional important benefit to Block-Greedy compared to the standard greedy algorithm is that
its query complexity is potentially much better. This improvement arises because Block-Greedy
selects elements with maximum marginal gain within one partition rather than over the entire universe
U . In particular, the query complexity of Block-Greedy is upper bounded by

∑
i∈[N ] |Ui|ki ≤

n(
∑

i∈[N ] ki).

Next, we present the proof of the theorem. First of all, we prove the result in Lemma E.4.
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Lemma E.4. Let us define the partition matroid of {S ⊆ U : |S ∩ Uj | ≤ rjϕ} as P ′, and we define
the optimal solution of the problem maxS∈P′ f(S) as OPT ′. Let us denote the input and output of
Algorithm 7 as S and S′ respectively, then it follows that

f(S′)− f(S) ≥ ∆f(S′, OPTj)

ϕ
,

where OPTj = OPT ′ ∩ Uj .

Proof. For notation simplicity, we define the solution set after the l-th step in the for loop of Algorithm
7 as S(l). By the greedy selection step in Line 3, we have that for any o ∈ OPTj := OPT ′ ∩ Uj ,

f(S(l))− f(S(l−1)) ≥ ∆f(S(l−1), o).

Therefore,

f(S(l))− f(S(l−1)) ≥
∑

o∈OPTj
∆f(S(l−1), o)

|OPTj |

≥
∑

o∈OPTj
∆f(S(l−1), o)

rjϕ

≥
∑

o∈OPTj
∆f(S(rj), o)

rjϕ

≥ ∆f(S(rj), OPTj)

rjϕ
,

where the second inequality follows from the fact that OPT ′ ∈ P ′, and therefore |OPTj | ≤ rjϕ.
Summing over all l ∈ [rj ], it follows that

f(S(rj))− f(S(0)) ≥ ∆f(S(rj), OPTj)

ϕ
.

Notice that S(0) is the input of the algorithm and S(l) is the output of the algorithm, so we can prove
the result.

With the result in Lemma E.4, we can prove the result in Theorem E.2.

Proof. Let Si,j represent the solution set after executing the subroutine algorithm
Greedy-Subroutine-Mono on the j-th subgroup during the i-th iteration of the outer
for loop in Line 4 in Algorithm 6, and we define Si as the solution set after completing the i-th round
of the outer for loop in Algorithm 6, i.e., Si = Si,N . Then by the result in Lemma E.4, we have that
we have that

f(Si,j)− f(Si,j−1) ≥
∆f(Si,j , OPTj)

ϕ

Since Si,j ⊆ Si,N for any j ∈ [N ], by submodularity, we have that ∆f(Si, OPTj) =
∆f(Si,N , OPTj) ≤ ∆f(Si,j , OPTj). Then

f(Si,j)− f(Si,j−1) ≥
∆f(Si, OPTj)

ϕ

Summing over all j, it then follows that

f(Si,N )− f(Si,0) ≥
∑

j∈[N ] ∆f(Si, OPTj)

ϕ

≥ ∆f(Si, OPT ′)

ϕ
,
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Algorithm 8 Greedy-Subroutine-Nonmono (S, i, j)

1: Input: S, i, j
2: for l = 1 to rj do
3: Let M ⊆ U/S be a set of size rjϕ maximizing

∑
x∈M ∆f(S, x).

4: u← uniformly sample an element from M
5: S ← S ∪ argmaxx∈Uj ∆f(S, x)

where the last inequality follows from submodularity and the fact that OPT ′ = ∪j∈[N ]OPTj . Notice
that here Si,N is equivalent to Si, and that Si,0 is equivalent to Si−1. Then we get

f(Si)− f(Si−1) ≥
f(OPT ′ ∪ Si)− f(Si)

ϕ

≥ f(OPT ′)− f(Si)

ϕ
.

By rearranging the inequality and by induction, we have that

f(Sϕ)− f(∅) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT ′).

By the definition of ϕ that ϕ = ⌊
√
mini∈[N ] ki⌋ − 1, we have that ki − ϕ⌊ki/ϕ⌋ ≤ ⌊ki/ϕ⌋ for any

i ∈ [N ]. By Lemma E.7, it follows that

max
S∈P′

f(S) ≥ ϕ

ϕ+ 1
max
S∈P

f(S).

Therefore,

f(Sϕ) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT ′)

≥ (1− (
ϕ

ϕ+ 1
)ϕ)(

ϕ

ϕ+ 1
)f(OPT )

≥ (1− e−1 − 1

ϕ+ 1
)f(OPT ).

E.3 NONMONOTONE SMP

In this section, we propose the algorithm for the problem of nonmonotone Submodular Maximization
over Partition matroid (SMP). The proposed algorithm follows the framework in Algorithm 6 with
ϕ = ⌊

√
mini∈[N ] ki⌋ − 1, and the subroutine algorithm Greedy-Subroutine-Nonmono is

described in Algorithm 8. Here the parameter rj := ⌊kj/ϕ⌋. The algorithm uniformly selects an
element from the set of elements with the top rjϕ marginal gain to add to the solution set. The intuition
behind the Greedy-Subroutine-Nonmono algorithm is similar to that of the Random Greedy
algorithm proposed in Buchbinder et al. (2014). However, in Greedy-Subroutine-Nonmono,
the size of the candidate set considered for inclusion in the solution is adjusted to rjϕ to ensure an
important result that E[f(Si ∪ OPT ′)] ≥ (1 − 1

ϕ )
if(OPT ′) where P ′ = {S ⊆ U : |S ∩ Ui| ≤

riϕ,∀i ∈ [N ]} and OPT ′ = argmaxS∈P′ f(S).

Below we present the main result of Block-Greedy for the problem of nonmonotone SMP.
Theorem E.5. Suppose that Block-Greedy is run for an instance of nonmonotone SMP with
the subroutine algorithm Greedy-Subroutine-Nonmono as described in Algorithm 7, then
Block-Greedy outputs a solution S that satisfies an approximation ratio of 1

e −
3

e(ϕ+1) where
ϕ =

√
mini∈[N ] ki − 1 in expectation.

Notice that the approximation ratio is close to 1/e, which matches the bound of the random greedy
algorithm for submodular maximization under cardinality constraint, with the difference bounded by
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O( 1√
kmin

), where kmin = mini∈[N ] ki. In this sense, the proposed algorithm achieves an approxi-
mation ratio for Nonmonotone SMP that bridges the gap between submodular maximization over
cardinality constraint and partition matroid constraint. The proof of Theorem E.5 is provided below.

Let us define P ′ = {S ⊆ U : |S ∩ Ui| ≤ riϕ, ∀i ∈ [N ]} and we denote the optimal solution set of
OPT ′ = argmaxS∈P′ f(S). First of all, we prove the following lemma for the subroutine algorithm
Greedy-Subroutine-Nonmono.
Lemma E.6. Let us denote the input and output of Algorithm 8 as S and S′ respectively, then it
follows that

E[f(S′)− f(S)] ≥ E[∆f(S′, OPTj)]

ϕ
,

where OPTj = OPT ′ ∩ Uj .

Proof. Let us denote the solution set after adding the l-th element as S(l). Similar to the proof of
Theorem E.2 for the monotone SMP, we have that

E[f(S(l))− f(S(l−1))] ≥
∑

a∈OPT ′∩Uj
∆f(S(l−1), a)

rjϕ
.

By submodularity, we would have that

E[f(S(l))− f(S(l−1))] ≥ E[
∑

a∈OPT ′∩Uj
∆f(S(l−1), a)

rjϕ
]

≥ E[
∑

a∈OPT ′∩Uj
∆f(S′, a)

rjϕ
].

By summing over all l ∈ [rj ], it follows that

E[f(S′)− f(S)] ≥ E[
∑

a∈OPT ′∩Uj
∆f(S′, a)

ϕ
]

≥ E[
∆f(S′, OPTj)

ϕ
].

Next, leveraging the result in Lemma E.6, we prove the approximation ratio in Theorem E.5.

Proof. Similar to the proof of Theorem E.2, we denote the solution set after running the subroutine
algorithm in j-th subgroup during the i-th round of the outer for loop in Line 4 in Algorithm 6 as Si,j ,
and we define the solution set after completing the i-th round in Algorithm 6 as Si. From Lemma
E.6, we have that

E[f(Si,j)− f(Si,j−1)] ≥
E[∆f(Si,j , OPTj)]

ϕ

≥ E[∆f(Si, OPTj)]

ϕ
,

By summing over all j ∈ [N ], we have

E[f(Si)− f(Si−1)] ≥
∑N

j=1 E[∆f(Si, OPTj)]

ϕ

≥ E[∆f(Si, OPT ′)]

ϕ
.

Then it follows that

E[f(Si)− f(Si−1)] ≥ E[
f(Si ∪OPT ′)− f(Si)

ϕ
].
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Notice that by the greedy selection step, for each group j and each element a ∈ OPT ′∩Uj appears in
Si with probability at most 1− (1− 1

rjϕ
)rji. Since (1− 1

x )
x increases with x in the range of [1,+∞),

we have that (1− 1
rjϕ

)rjϕ ≥ (1− 1
ϕ )

ϕ. Therefore, we would get 1− (1− 1
rjϕ

)rji ≤ 1− (1− 1
ϕ )

i.
From Lemma 2.2 in Buchbinder et al. (2014), we can conclude that

E[f(Si ∪OPT ′)] ≥ (1− 1

ϕ
)if(OPT ′).

By rearranging the above inequality, we can get that

E[f(Si)] ≥
ϕ

ϕ+ 1
E[f(Si−1)] +

1

ϕ+ 1
(1− 1

ϕ
)if(OPT ′).

By induction, we have that the output solution set satisfies that
E[f(S)] = E[f(Sϕ)]

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ

ϕ+ 1
)ϕ−i(1− 1

ϕ
)if(OPT ′)

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ− 1

ϕ
)ϕ−i(1− 1

ϕ
)if(OPT ′)

≥ ϕ

ϕ+ 1
(1− 1

ϕ
)ϕf(OPT ′) ≥ 1

e
(1− 2

ϕ+ 1
)f(OPT ′).

where the last inequality follows from the fact that (1 − 1
ϕ )

ϕ−1 ≥ e−1 for any ϕ > 1. From the
definition that ϕ = ⌊

√
mini∈[N ] ki⌋− 1, it then follows that ki−ϕ⌊ki/ϕ⌋ ≤ ⌊ki/ϕ⌋ for any i ∈ [N ].

Therefore, from the result in Lemma E.7, we get that

f(OPT ′) ≥ ϕ

ϕ+ 1
f(OPT ) (10)

where OPT is the optimal solution to the submodular maximization problem argmaxS∈P f(S). By
combining (3) and (10) together, we can prove the result in the Lemma.

Lemma E.7. Suppose the ground set U is divided into N disjoint subgroups U1, U2,..., UN , then
for any partition matroid P = {S ⊆ U : |S ∩ Uj | ≤ kj ,∀j ∈ [N ]}, let us define the matroid
P ′ = {S ⊆ U : |S ∩ Uj | ≤ ⌊kj

c ⌋c,∀j ∈ [N ]} for some positive integer c. If for any j ∈ [N ], it
satisfies that ⌊kj

c ⌋ ≥ kj − c⌊kj

c ⌋, then it follows that for any submodular function f , we have

max
S∈P′

f(S) ≥ c

c+ 1
max
S∈P

f(S).

Proof. For notation simplicity, we also define rj = ⌊kj

c ⌋ where j ∈ [N ], and we define two matroids
P0 = {S ⊆ U : |S ∩ Uj | ≤ rj ,∀j ∈ [N ]} and P1 = {S ⊆ U : |S ∩ Uj | ≤ rj(c + 1),∀j ∈ [N ]}.
Let us denote the optimal solution of maxS∈P1 f(S) as OPT ′′. Then by definition, we can see that
OPT ′′ can be divided into (c+ 1) disjoint subsets O1, ..., Oc+1 such that each Oi ∈ P0. Without
loss of generality, we assume that the subsets are chosen greedily such that the index satisfies
∆f(∪j∈[i−1]Oj , Oi) ≥ ∆f(∪j∈[i−1]Oj , Ol) for any 1 ≤ i ≤ c and l > i. It then follows that by
submodularity, ∆f(∪j∈[i−1]Oj , Oi) ≥ ∆f(∪j∈[i−1]Oj , Ol) ≥ ∆f(∪j∈[l−1]Oj , Ol) for any l > i.
Therefore,

f(OPT ′′)− f(∪j∈[c]Oj) = ∆f(∪j∈[c]Oj , Oc+1)

≤
∑

i∈[c] ∆f(∪j∈[i−1]Oj , Oi)

c

=
f(∪j∈[c]Oj)− f(∅)

c
.

By rearranging the above inequality, we would get that f(∪j∈[c]Oj) ≥ c
c+1f(OPT ′′). Since

∪j∈[c]Oj ∈ P ′, then we have that maxS∈P′ f(S) ≥ c
c+1f(OPT ′′). Notice that ⌊kj

c ⌋(c+ 1) ≥ kj
implies that for any subset S ∈ P , it also satisfies that S ∈ P1. Therefore, maxS∈P1

f(S) ≥
maxS∈P f(S) and we can conclude the proof.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.4 PROOF OF THEOREM E.1

In this section, we present the omitted proof of Theorem E.1. To prove the theorem, we construct a
class of instances to demonstrate that the standard greedy algorithm can’t achieve an approximation
ratio better than 1/2. We begin by presenting relevant definitions of the set functions and constraints,
followed by a formal description of the hardness instance.

Suppose the ground set U is partitioned into N disjoint subsets U1, U2, . . . , UN , with each subset
Ui containing 2ki elements. Define a set function t : U → 2M , where M is a finite set, and let
c : 2M → R+ be a non-negative, monotone, modular function. We define the submodular function
f : 2U → R+ as follows:

f(S) = c

(⋃
s∈S

t(s)

)
=

∑
x∈

⋃
s∈S t(s)

c(x).

The partition matroid is denoted as P = {S ⊆ U : |S ∩ Ui| ≤ ki,∀i ∈ [N ]}. Without loss of
generality, we assume the partition matroid constraint parameters satisfy that k1 ≤ k2 ≤, ... ≤ kN .
For notation simplicity, let us denote the j-th element in group Ui as s(i)j . The hardness example is
defined as follows. Suppose ϵ is a constant such that ϵ ∈ (0, 1/2), then

1. Set Assignments in U1: In the first partition U1, assume that the sets t(s(1)j1
) and t(s

(1)
j2

) are

disjoint for any distinct j1, j2, i.e., t(s(1)j1
) ∩ t(s

(1)
j2

) = ∅.
2. Function Values in U1: Set the modular function values for the elements in U1 as follows:

• For j ≤ k1, c(t(s(1)j )) = 1
2 + ϵ.

• For k1 < j ≤ 2k1, c(t(s(1)j )) = 1
2 .

3. Set Assignments and Function Values for i > 1: For each i1, i2 such that 1 < i1, i2 ≤ N ,
define:

• If j ≤ k1, then t(s
(i1)
j ) = t(s

(i2)
j ) ⊆ t(s

(1)
j ).

• If j > k1, then t(s
(i1)
j ) = t(s

(i2)
j ) = t(s

(i1)
1 ).

• Set c(t(s(i)j )) = 1
2 for any i > 1 and j ∈ [2ki].

Given this construction, the standard greedy algorithm proceeds as follows: for the first k1 steps, the
algorithm would add the elements s(1)1 , s

(1)
2 , ..., s

(1)
k1

from U1, yielding a marginal gain of 1
2 + ϵ per

step. Thus, the total value after these steps is k1

2 + k1ϵ. After the first k1 steps, the algorithm can
only select elements from partitions Ui where i > 1, with a marginal gain of 0 at each step due to the
structure of f under the current set assignments. Therefore, the value of the submodular objective
returned by the standard greedy algorithm is k1

2 + k1ϵ.

Next, we consider the optimal solution of the constructed example. Notice that for any of the
partitions Ui such that i > 1, f(Ui) = k1/2. Besides, by the construction, we have that

⋃
s∈U1

t(s) =⋃
s∈U2

t(s) for any i1, i2 > 1. Therefore, f(
⋃

i>1 Ui) = k1/2. It then follows that for any subset
S ⊆ U ,

f(S ∩
⋃
i>1

Ui) ≤ k1/2. (11)

Next, we claim that optimal solution should satisfy that f(OPT ) ≤ k1. We prove the claim by
considering the following cases. For any S ∈ P , then

1. If f(S ∩
⋃

i>1 Ui) = k1/2, which means
⋃

s∈S∩
⋃

i>1 Ui
t(s) =

⋃
j≤k1

t(s
(2)
j ), then for

each j ≤ k1, the marginal gain of adding the j-th element in the first partition to the
the set S ∩

⋃
i>1 Ui satisfies that ∆f(S ∩

⋃
i>1 Ui, s

(1)
j ) = c(t(s

(1)
j )) − c(t(s

(2)
j )) = ϵ

, and for each j > k1, ∆f(S ∩
⋃

i>1 Ui, s
(1)
j ) = f(s

(1)
j ) = 1/2 . It then follows that

∆f(S ∩
⋃

i>1 Ui, S ∩ U1) ≤
∑

s∈S∩U1
∆f(S ∩

⋃
i>1 Ui, s) ≤ k1/2. Therefore, f(S) =

∆f(S ∩
⋃

i>1 Ui, S ∩ U1) + f(S ∩
⋃

i>1 Ui) ≤ k1.
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2. If f(S∩
⋃

i>1 Ui) < k1/2, then we have that there exists at least one element s(2)j for j ≤ k1

such that the set t(s(2)j ) /∈
⋃

s∈S∩
⋃

i>1 Ui
t(s) . Let us denote E = {j ≤ k1 : t(s

(2)
j ) /∈

S ∩
⋃

i>1 Ui}. It then follows that f(S ∩
⋃

i>1 Ui) =
k1−|E|

2 . For each j ≤ k1, if j ∈ E,
∆f(S ∩

⋃
i>1 Ui, s

(1)
j ) = c(t(s

(1)
j )) = 1/2 + ϵ, if j /∈ E, then ∆f(S ∩

⋃
i>1 Ui, s

(1)
j ) =

c(t(s
(1)
j )) − c(t(s

(2)
j )) = ϵ. For each j > k1, ∆f(S ∩

⋃
i>1 Ui, s

(1)
j ) = f(s

(1)
j ) = 1/2.

Similarly, we have that ∆f(S∩
⋃

i>1 Ui, S∩U1) ≤
∑

s
(1)
j ∈S∩U1

∆f(S∩
⋃

i>1 Ui, s
(1)
j ) ≤

|E|(1/2 + ϵ) + (k1 − |E|)/2 = |E|ϵ + k1/2. Therefore, we can conclude that f(S) =
∆f(S ∩

⋃
i>1 Ui, S ∩ U1) + f(S ∩

⋃
i>1 Ui) ≤ k1 − |E|(1/2− ϵ) ≤ k1.

It then follows that the f(OPT) ≤ k1. Notice that the set O = {s(1)k1+1, ...s
(1)
2k1

, s
(2)
1 , ..., s

(2)
k1
} achieves

an objective value of: f(O) = k1. Therefore, f(OPT) = k1. Consequently, the approximation
ratio of standard greedy algorithm should be k1/2+k1ϵ

k1
= 1/2 + ϵ. When ϵ approaches 0, then the

approximation ratio goes to 1/2.

E.5 DISCUSSION ON THEOREM E.2

In this portion of the appendix, we illustrate the results of the Theorem E.2. First of all, we
discuss the difference between the approximation ratio of our proposed algorithm Block-Greedy
and the optimal approximation ratio 1 − 1/e achieved by the previous continuous method. In
particular, the difference isO( 1√

kmin
) with kmin = mini∈[N ] ki. In fact, we notice that this difference

results from the fact that it scales in the order of O( 1ϕ ). In the algorithm Block-Greedy with
Greedy-Subroutine-Mono as the subroutine in Section E.2, ϕ is set to be ϕ = ⌊

√
kmin⌋ − 1,

which is designed to bound the difference between ki and ⌊ki

ϕ ⌋ϕ to ensure that the optimal value of
the monotone maxS∈P′ f(S) approximates the optimal value of maxS∈P f(S) where P ′ := {S ⊆
U : |S ∩ Ui| ≤ ⌊ki

ϕ ⌋ϕ, ∀i ∈ [N ]} and P := {S ⊆ U : |S ∩ Ui| ≤ ki,∀i ∈ [N ]}.

This motivates the following result: in some cases, if we can design the parameter ϕ such that
⌊ki

ϕ ⌋ =
ki

ϕ for any i ∈ [N ], then the partition matroid P = P ′ and we don’t need to bound the
difference of maxS∈P′ f(S) and maxS∈P f(S). Therefore, we can further refine the difference
between the approximation ratio of Block-Greedy and the optimal result of 1− 1/e. The result is
stated as follows.

Theorem E.8. Suppose that gcd(k1, k2, . . . , kN ) = c, and that Block-Greedy with
Greedy-Subroutine-Mono as a subroutine and ϕ = c and rj = kj/c for each j ∈ [N ] is run
for an instance of monotone SMP over partition matroid P := {S ⊆ U : |S ∩ Ui| ≤ ki,∀i ∈ [N ]},
then Block-Greedy outputs a solution set S that satisfies an approximation ratio of 1−1/e−1/c.

Proof. Following the similar proof of Theorem E.2, we can get that the output solution set S satisfies

f(S)− f(∅) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT ′),

where OPT ′ = argmaxS∈P′ f(S) and P ′ := {S ⊆ U : |S ∩ Ui| ≤ riϕ, ∀i ∈ [N ]}. By the
assignment of ri and ϕ in this case, we can get that riϕ = ki. It then follows that P ′ = P and that
OPT ′ is also the optimal solution to our problem. Therefore,

f(S) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT )

≥ (1− 1/e− 1/ϕ)f(OPT ) = (1− 1/e− 1/c)f(OPT ).

In particular, if c = O(kmin) such as in the case where k1 = k2 =, ... = kN = k, we have that the
approximation ratio is 1− 1/e− 1/k. Therefore, the difference between the approximation ratio and
the optimal one is decreased to O( 1

kmin
). The result is stated in Corollary E.3
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Next, we prove that we can improve the approximation ratio of Block-Greedy algorithm by
adding more elements to the solution set. First, we notice that there are two drawbacks of the
proposed algorithm Block-Greedy compared with the standard greedy algorithm. First of all,
the approximation ratio of 1− 1/e− 1

⌊
√

mini∈[N] ki⌋
is only better than the approximation ratio of

the standard greedy algorithm, which is 1/2, when the capacity ki within partition Ui satisfies that
ki ≥ 64 for each i ∈ [N ].

Second, the output solution satisfies that |S ∩ Ui| ≤ riϕ for each i ∈ [N ]. Notice that riϕ ≤ ki.
If riϕ < ki, we can add more elements to the solution set S until it reaches the full rank of the
partition matroid. Since the objective function is monotone, we can see that adding more ele-
ments would not incur a decrease in the marginal gain. In the following part, we claim that if
the standard greedy procedure (Algorithm 9) is applied to the output of Block-Greedy with
Greedy-Subroutine-Mono as the subroutine, the resulting solution set achieves an approxima-
tion ratio of max{1/2, 1− 1/e− 1

ϕ+1}.

Algorithm 9 Greedy
1: Input: the output solution set S obtained by running Block-Greedy with

Greedy-Subroutine-Mono as the subroutine and ϕ = ⌊
√
mini∈[N ] ki⌋ − 1 and rj :=

⌊kj/ϕ⌋
2: Output: A ∈ U
3: A← S
4: while ∃x such that A ∪ {x} ∈ P do
5: A← A ∪ argmaxx∈U,A∪{x}∈P ∆f(A, x)

return A

Theorem E.9. Suppose we run the standard greedy algorithm in Algorithm 9 with input being
the output solution set of the Block-Greedy algorithm, then the output solution set achieves an
approximation ratio of max{1/2, 1− 1/e− 1

ϕ+1} where ϕ = ⌊
√
mini∈[N ] ki⌋ − 1.

Proof. First of all, notice that S ⊆ A, by the result of Theorem E.2, we can see that f(S) ≥
(1− 1/e− 1

ϕ+1 )f(OPT ). Since f is monotone, f(A) ≥ f(S) ≥ (1− 1/e− 1
ϕ+1 )f(OPT ). Then

to prove the result in the Theorem E.9, it suffices to prove that f(A) ≥ f(OPT )/2. Here we use the
same notations as in the proof of Theorem E.2, which means that we define the partition matroid of
{S ⊆ U : |S ∩ Uj | ≤ rjϕ} as P ′, and we define the optimal solution of the problem maxS∈P′ f(S)
as OPT ′. Denote the solution set after completing the i-th round of the outer for loop in Line 4 in
Algorithm 6 as Si. Following the similar idea in the proof of Theorem E.2, we can see that for any
O ∈ P ′, it holds that

f(Si)− f(Si−1) ≥
∆f(Si, O)

ϕ

≥ ∆f(S,O)

ϕ
,

where the last inequality follows from submodularity and the fact that Si ⊆ Sϕ = S. Summing over
all i, then we get

f(S)− f(∅) ≥ ∆f(S,O). (12)

Let us define the partition matroid P ′′ := {S ⊆ U : |S ∩ Ui| ≤ ki − riϕ, ∀i ∈ [N ]}. Let us
define the solution set A before the i-th round in Algorithm 9 as Ai, and the element added in the
i-th round as ai. Since P ′′ is a matroid, we have that for any O′ ∈ P ′′, there exists an ordering
of O′ = {o′1, o′2, ..., o′t} such that for each i ∈ [t], Ai/S ∪ {o′i} ∈ P ′′. Therefore, for each i ∈ [t],
Ai ∪ {o′i} ∈ P . By the greedy selection rule in Algorithm 9, we have that

∆f(Ai, ai) ≥ ∆f(Ai, o
′
i) ≥ ∆f(A, o′i),

where the second inequality follows from the fact that A is the output of Algorithm 9 and that Ai ⊆ A.
Summing over all i, we can get that

f(A)− f(S) ≥
∑
i

∆f(A, o′i) ≥ ∆f(A,O′). (13)
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Summing over (12) and (13), we can get that
f(A)− f(∅) ≥ ∆f(A,O′) + ∆f(S,O)

≥ ∆f(A,O′) + ∆f(A,O)

≥ ∆f(A,O′ ∪O).

Since the above inequality holds for any O ∈ P ′ and O′ ∈ P ′′. Therefore,
f(A)− f(∅) ≥ max

O∈P′,O′∈P′′
∆f(A,O′ ∪O).

Notice that any set inP can be decomposed into the union of a set inP ′ and a set inP ′′. It then follows
that maxO∈P′,O′∈P′′ ∆f(A,O′ ∪O) ≥ ∆f(A,OPT ). Therefore, f(A) ≥ f(OPT )/2.

F APPENDIX FOR SECTION 3

In this section, we present the additional experimental setup and results omitted in Section 3. In
particular, we present additional details about the experimental setup in Section F.1, and additional
experimental results in Section F.2.

F.1 EXPERIMENTAL SETUP

In this section, we provide additional details about the applications used to evaluate our algorithms,
which include set cover, max cover, and graph cut. Below, we define each application and describe
the associated setup in detail.

In the application of set cover, the function f is defined to be the number of tags covered by the
elements in a subset. The problem is defined as follows.
Definition F.1. (Set Cover) Suppose there are a total of n elements denoted as U . Let T be a set
of tags. Each element in U is tagged with a set of elements from T via function t : U → 2T . The
function f is defined as

f(S) = | ∪s∈S t(s)|, ∀S ∈ U.

Next, we introduce the definition of max cover, which is a monotone submodular function defined on
graphs.
Definition F.2. (Max Cut) Let G = (V,E) be a graph, and w : E → R≥0 be a function that assigns
a weight for every edge in the graph. The function f : 2V → R≥0 maps a subset of vertices X ⊆ V
to the total weight of edges between X and V \X . More specifically,

f(X) =
∑

x∈X or y∈X

w(x, y).

We also evaluate our experiments on the instance of image summarization. For this task, we use a
subset of the ImageNet dataset (ImageNet_50).
Definition F.3. (Image Summarization) Let N ⊆ Rd denote the ground set, where each item x ∈ N
(e.g., an image) is represented by a feature vector. The objective is to maximize the Determinantal
Point Process (DPP) function (Iyer and Bilmes, 2015), which is a monotone submodular function
defined as:

f(S) = log det(I +KS),

where I is the identity matrix, K ∈ R|N |×|N | is a positive semidefinite kernel matrix, and KS denotes
the principal submatrix of K indexed by the subset S ⊆ N .

For general SCP, where f can be nonmonotone, the application we consider is where f is a graph cut
function, which is a submodular but not necessarily monotone function.
Definition F.4. (Graph Cut) Let G = (V,E) be a graph, and w : E → R≥0 be a function that
assigns a weight for every edge in the graph. The function f : 2V → R≥0 maps a subset of vertices
X ⊆ V to the total weight of edges between X and V \X . More specifically,

f(X) =
∑

x∈X,y∈V \X

w(x, y).
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Next, we present more details about the experimental setup in the order of the problems we consider.
For the experiments on nonmonotone SCP, the dataset is the email-Euall dataset, where the dataset
is partitioned into 5 different subgroups based on the synthetic labels of the dataset. The group
proportions are uniform, i.e., the parameter pj used in this experiment satisfies p1 = p2 = · · · =
p5 = 1/5. To speed up the experiments, the conversion algorithm’s subroutine is parallelized across
10 threads. Additional details about the values of the parameters in the experiments are presented as
follows. The parameter α = 0.2, ϵ = 0.05 and δ = 0.1.

For the experiments on monotone SCKP, we run the experiments on two instances, which include
max cover and set cover. For the max cover instance, we use a subset of the Twitch Gamers
dataset (Rozemberczki and Sarkar, 2021), selecting 2,000 users speaking six major languages which
include English, German, French, Spanish, Russian, or Chinese. For the set cover instance, we
use two datasets here. The first one is the core dataset, which is the Corel5k set of images in
Duygulu et al. (2002) (n = 4500). We assign a label to each element in the dataset uniformly
selected from {0, 1, 2, 3, 4}. Another dataset we use here is the synthetic dataset. The synthetic
dataset is generated with 5 partitions with 40 ∗ i + 200 number of elements in partition i for each
i ∈ [4]. The synthetic dataset has a similar structure as the tightness example in Section E.4 in the
appendix. In the first partition, each element is mapped to a disjoint set of tags. For the elements
partition i where i > 1, the mapped set of tags of 100 elements are the same, with the other elements
mapped to disjoint sets of 25 tags. The cost of each element in the synthetic dataset and in the
twitch dataset is generated randomly in the range of [0.001, 10]. The other parameters include:
α = 0.2, ϵ = 0.05. The parameter pj used in this experiment satisfies p1 = p2 = · · · = p5 = 1/5.
Next, we illustrate the two algorithms used in the experiments. The GREEDY algorithm uses the
converting theorem in Algorithm 4 with the subroutine being a greedy algorithm. In particular, the
subroutine greedy algorithm adds the element s = argmaxx:S∪x∈P

∆f(S,x)
c(x) to the solution set S,

where P = {S ⊆ U : c(S ∩ Uj) ≤ pjv,∀j ∈ [N ]}. Here the subroutine algorithm of GREEDY
is not guaranteed with any approximation ratio. In this sense, this algorithm can be regarded as a
heuristic algorithm. The GREEDY-Knapsack algorithm runs by iteratively adding the element with
the highest density of marginal gain, i.e., s = argmaxx∈U

∆f(S,x)
c(x) until f(S) ≥ (1− ϵ)τ .

For the SCF experiments, we consider the same synthetic dataset and the corel dataset used in the
experiment for SCKP. Apart from these datasets, we also consider the image summarization task,
where the goal is to select a diverse and representative image subset across all classes. The dataset
used here is ImageNet Deng et al. (2009), consisting of 50 classes and 26,112 images (ImageNet_50).
Each image is represented by a feature vector extracted using ResNet-18. Additionally, in our
experiment, we set K as a Gaussian kernel matrix such that Kij = e−||xi−xj ||2/σ2

.

To ensure a fair comparison among the used algorithms, we keep the approximation ratio on the
function value f the same by setting ε = 0.05 for THRES-Fair and ε = 0.1 for GREEDY-Fair and
BLOCK-G-Fair while keeping the other parameters the same.

F.2 ADDITIONAL EXPERIMENTAL RESULTS

The additional experimental results comparing different algorithms for different problems are pre-
sented in Figure 2 and 3. The additional experimental results for SCKP algorithms on the corel
dataset and the synthetic dataset are presented in Figure 2. The results demonstrate that our algorithm,
BLOCK-G, achieves a slightly lower cost compared to GREEDY and significantly outperforms
GREEDY-Knapsack in this regard. Additionally, BLOCK-G requires substantially fewer function
queries and has much faster runtime than GREEDY, highlighting its practical efficiency. Further
results on the query complexity and runtime for the non-monotone SCP problem are provided in
Figures 3(i) and 3(j). From the results, we can see that the BLOCK-G algorithm runs faster then
the STREAM algorithm and the GUIDED-RG algorithm, which demonstrates the efficiency of our
algorithm.

The additional results of comparing different algorithms in terms of the query complexity for the
experiments on the SCF problem are presented in Figure 3(c) and 3(g). From the results, we can
see that the query complexity of the BLOCK-G-Fair algorithm is better than that of the GREEDY-
Fair algorithm, and is worse than THRES-Fair. This is because these three algorithms differ in
the subroutine algorithm used in the converting algorithm in Algorithm 1 in Chen et al. (2025)
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Figure 2: The experimental results of running the algorithms on the Corel5k dataset and the synthetic
dataset. Samples: the number of queries. Budget: maxi∈[N ]

c(S∩Ui)
pi

.

developed to convert an algorithm for SMF to SCF. Specifically, THRES-Fair used the threshold
greedy algorithm, which runs in time complexity of O(nϵ log

n
ϵ ) while the subroutine algorithms for

BLOCK-G-Fair and GREEDY-Fair both run in time O(nkgβ) where kg is the guess of |OPT | and
the parameter β refers to the approximation ratio. Therefore, the query complexity of BLOCK-G-Fair
is lower than GREEDY-Fair because the parameter β for BLOCK-G-Fair is ln 1

ϵ

ln 2 , which is smaller
than the GREEDY-Fair, which is O( 1ϵ ).
The results of the function values for different assignments of τ on the experiments of SCF are
presented in Figure 3(f) and 3(b). From the plots, we can see that the function value of the returned
solutions of different algorithms are almost the same, and are linear in the threshold value τ . This
aligns with our theoretical guarantee of different algorithms, which requires that f(S) ≥ 0.9τ for
all of the algorithms. Finally, we also provide the results of the execution time of running different
algorithms in Figure 3(d), and 3(h).

The additional experimental results on the ImageNet_50 dataset are presented in Figure 4. From these
results, we observe that block-greedy consistently achieves significantly better fairness performance
and, in many cases, returns solutions with lower or comparable cost to baselines. This demonstrates
its practical effectiveness, especially in fairness-sensitive applications.

Finally, we also plot the distribution of different labels in the solutions produced by these algorithms
on the corel dataset with τ = 300, as is presented in Figure 5(a), 5(b), and 5(c). From the plots, we
can see that over 30% of the elements in the solution returned by GREEDY-Fair and THRES-Fair
have the label 1, which indicates a lack of fairness in the output distribution. While the solutions
produced by our algorithm BLOCK-G-Fair exhibit significantly fairer distributions across different
labels, demonstrating the effectiveness of our proposed algorithms.

G BROADER IMPACT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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Figure 3: The experimental results of running the algorithms on the Corel5k dataset and the syn-
thetic dataset. Samples: the number of queries. Cost: the size of the returned solution. Budget:
maxi∈[N ]

c(S∩Ui)
pi

. Fairness difference: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.
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Figure 4: The experimental results of running the algorithms on the ImageNet_50 dataset on the SCF
problem. Samples: the number of queries. Cost: the size of the returned solution. Fairness difference:
(maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.
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Figure 5: Radar plots of the label distributions for the experiments on the instance of SCF on the
corel dataset with τ = 300.
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