
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BICRITERIA ALGORITHMS FOR SUBMODULAR COVER
WITH PARTITION AND FAIRNESS CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

In many submodular optimization applications, datasets are naturally partitioned
into disjoint subsets. These scenarios give rise to submodular optimization prob-
lems with partition-based constraints, where the desired solution set should be in
some sense balanced, fair, or resource-constrained across these partitions. While
existing work on submodular cover largely overlooks this structure, we initiate
a comprehensive study of the problem of Submodular Cover with Partition Con-
straints (SCP) and its key variants. Our main contributions are the development
and analysis of scalable bicriteria approximation algorithms for these NP-hard
optimization problems for both monotone and nonmonotone objectives. Notably,
the algorithms proposed for the monotone case achieve optimal approximation
guarantees while significantly reducing query complexity compared to existing
methods. Finally, empirical evaluations on real-world and synthetic datasets further
validate the efficiency and effectiveness of the proposed algorithms.

1 INTRODUCTION

Submodular optimization algorithms have emerged as a cornerstone of modern machine learning,
driving advancements across a range of impactful applications. From curating high-quality pretraining
and fine-tuning datasets for large language models Ji et al. (2024); Kumari et al. (2024); Agarwal et al.
(2024) to powering diversified online recommendation systems Hiranandani et al. (2020); Chen and
Crawford (2024a), multi-agent optimization in robotics Zhou and Tokekar (2022); Xu and Tzoumas
(2024), and enabling precise image attribution in computer vision Chen et al. (2024a). Submodular
functions informally satisfy a diminishing returns property that is exhibited by many objective
functions for fundamental optimization problems in machine learning. Formally, let f : 2U → R
be defined over subsets of a ground set U of size n. Then the function f is submodular if for all
A ⊆ B ⊆ U and x /∈ B, f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B). Further, f is monotone if
f(Y) ≥ f(X) for every X ⊆ Y ⊆ U .

The submodular cover (SC) problem is an important optimization problem with a variety of applica-
tions Iyer and Bilmes (2013); Chen and Crawford (2024b); Crawford et al. (2019); Mirzasoleiman
et al. (2015). In the classical form, the goal of submodular cover is to find a subset S ⊆ U of
minimum cost such that f(S) ≥ τ , where the cost function is typically cardinality or some additive
cost. Existing results on SC take advantage of its relationship with submodular maximization Iyer
and Bilmes (2013); Chen and Crawford (2024b) which is to find argmax{f(S) : c(S) ≤ κ}. For
example, Chen and Crawford (2024b); Iyer and Bilmes (2013) proposed converting algorithms that
could convert any bicriteria algorithm for submodular maximization to an algorithm for SC. In
particular, an (α, β)-bicriteria approximation algorithm for the SC problem returns a solution X such
that |X| ≤ α|OPT | and f(X) ≥ βτ .

However, a significant limitation of these classical formulations is their inability to model critical
applications where the ground set U is partitioned into disjoint groups U1, . . . , UN , and the objective
is to find a subset that has a budget within each partition, or alternatively is balanced or fair across the
partitions. We further illustrate the submodular cover with partition constraints setting with several
applications. In video summarization Mirzasoleiman et al. (2018), the elements of U are frames
that are each associated with one of N consecutive regions of time in the video. A submodular
function f is formulated to measure how effectively a subset of frames X summarizes the entire
video U (Tschiatschek et al., 2014). The goal is to find a subset of frames that is a sufficiently

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

good summary, i.e. f(X) ≥ τ , while limiting the proportion of frames from each time region in
the solution, i.e., c(X ∩ Ui) ≤ piv where pj ∈ [0, 1] and v is the budget on the cost. As a second
example, consider influence maximization (Tschiatschek et al., 2014), where the ground set of users
U may be divided into N partitions, reflecting demographics information such as language. In order
to choose a subset with balanced distribution across different partitions, we enforce the fairness
constraint where pj |S| ≤ |S∩Uj | ≤ qj |S|. Then the objective is to find a fair solution with minimum
cardinality such that f(S) ≥ τ . Many further applications exist in the literature, including neural
network pruning Chen et al. (2025), high-quality data selection for learning Killamsetty et al. (2021),
and data summarization El Halabi et al. (2020).

Despite the importance and widespread applications of this problem, prior work remains limited.
Chen et al. (2025) studied a special case of the submodular cover with constraints defined on partitions,
which is the fairness constraints. However, their proposed discrete method attains only a suboptimal
approximation ratio, while the continuous approach incurs prohibitively high query complexity. In
contrast, our approach achieves optimal bicriteria approximation ratios with significantly lower query
complexity on the problem of SC with fairness constraint.

In this work, we study several distinct submodular cover problems with constraints defined on
partitions of the universe U , including but not limited to the submodular cover with fairness constraints.
Our approach follows the general converting framework by developing converting algorithms that
can convert submodular maximization algorithms into submodular cover algorithms. In particular,
to construct solutions with objective values closer to the target threshold τ , we propose bicriteria
algorithms for submodular maximization with partition constraints. Notably, unlike traditional greedy
algorithms that add one feasible element at a time based on marginal gain, our method incrementally
selects blocks of elements in each round, where each block respects the cost distribution across
different partitions to ensure that elements are selected proportionally to the budget cost. This block-
greedy strategy is particularly effective in the submodular cover setting, where achieving values close
to the threshold τ may require selecting sets that exceed the feasibility limits of standard submodular
maximization algorithms. In particular, our contributions are summarized as follows.

1. In Section 2.1, we study the Submodular Cover with Partition Constraint (SCP) problem of
argminS⊆U{v : f(S) ≥ τ, |S∩Uj | ≤ pjv,∀j ∈ [N]} in the case where f is nonmonotone.
We first propose a general converting algorithm to convert any randomized algorithms for
the dual problem of Submodular Maximization with Partition constraint (SMP), into an
algorithm for SCP. By proposing a bicriteria algorithm for SMP, we can obtain an algorithm
for nonmonotone SCP with a bicriteria approximation ratio of (O((1+α)

ϵ), 1/e− ϵ).

2. Section 2.2 addresses the problem of Monotone Submodular Cover with Knapsack Partition
Constraints (SCKP), which is to find argminS⊆U{v : f(S) ≥ τ, c(S ∩ Uj) ≤ pjv,∀j ∈
[N]}. We first develop an algorithm for the dual optimization problem of Submodular
Maximization under Knapsack Partition Constraints (SMKP), which adopts the block-
greedy structure. By utilizing a converting procedure, we achieve a ((1+α) ln 1/ϵ

ln 2 , 1 − ϵ)
bicriteria-approximation ratio for SCKP.

3. Section 2.3 considers the monotone Submodular Cover problem with Fairness Constraint
(SCF), which was recently introduced by Chen et al. (2025). The proposed algorithm
achieves the nearly optimal approximation ratio of (O(ln(1/ϵ)), 1− ϵ). This matches the
approximation ratio for the algorithm of Chen et al. (2025), but their method is continuous
and requires O(n

2(1+α) log2(n
ε) logn

ε4α) queries of f while our method only requires a query
complexity of O(n log(n)κ ln(1/ϵ)

ϵ).

Finally, we conduct an experimental evaluation of our algorithms for nonmonotone SCP, monotone
SCKP, and monotone SCF. Our results demonstrate that our proposed algorithm for nonmonotone
SCP achieves a higher function value compared to the baseline algorithms, and SCKP achieves an
improvement in the budget of the cost. Additionally, our algorithm for SCF outperforms the other
algorithms proposed in Chen et al. (2025) in terms of the solution set size and fairness difference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

In the context of submodular maximization, matroid constraints represent a fundamental and well-
studied class of feasibility constraints, with partition constraints serving as a class of particularly
prominent special case with widespread applications El Halabi et al. (2020); Chen et al. (2025).
Therefore, algorithms for submodular maximization with a general matroid constraint, which has
been extensively studied, can be employed Nemhauser et al. (1978); Fisher et al. (1978); Calinescu
et al. (2011); Badanidiyuru and Vondrák (2014); Chekuri and Quanrud (2019); Buchbinder and
Feldman (2024a). The best known approximation ratio for monotone submodular maximization with
a matroid constraint is 1 − 1/e Calinescu et al.; Buchbinder and Feldman. For the more general
maximization of a non-monotone submodular function with a matroid constraint, the best-known
hardness result is 0.478 (Gharan and Vondrák, 2011; Qi, 2024). The algorithm with the current
best approximation ratio is a continuous one that achieves 0.401 Buchbinder and Feldman (2024b).
The combinatorial algorithm with the best approximation ratio is that of Chen et al. (2024b), which
achieves a 0.305− ϵ approximation guarantee in O

(
k5 log(k)n/ϵ

)
queries of f . Partition type of

constraints are widely found in submodular optimization applications, but despite this there has
been little attention towards algorithms specifically designed for them. An exception is that fairness
constraints have recently been of interest El Halabi et al. (2020; 2023); Chen et al. (2025). El Halabi
et al. showed that maximization of a monotone submodular function under a fairness constraint can
be converted into monotone SM under a matroid constraint.

In the classical submodular cover problem with integral-valued objective functions, the standard
greedy algorithm—which repeatedly selects the element with the highest marginal gain until the
objective reaches a threshold τ—achieves an approximation ratio of O(logmaxe∈U f(e)) (Wolsey,
1982). For real-valued submodular functions, a common modification is to stop once the function
value reaches (1 − ϵ)τ , yielding algorithms with a (ln(1/ϵ), 1 − ε)-bicriteria approximation ra-
tio (Krause et al., 2008; Chen and Crawford, 2024b). For the Fair Submodular Cover (FSC) Chen
et al. (2025) problem, the discrete algorithm of Chen et al. achieves a bicriteria approximation ratio of
(O(1/ϵ), 1− ϵ) while our algorithm achieves an improved approximation ratio of (O(ln 1/ϵ), 1− ϵ),
which matches the approximation ratio of the continuous method proposed in Chen et al. but requires
much fewer queries.

2 ALGORITHMS AND THEORETICAL ANALYSES

We now present the main results of our paper1. We first address the general case of not necessarily
monotone, submodular cover with a partition constraint in Section 2.1. Next, we consider monotone
submodular cover with a partition constraint, and our results apply even for the more general knapsack
cost, in Section 2.2. Finally, we consider the more restricted, but with many interesting applications,
setting of fair submodular cover in Section 2.3.

Central to all of our results is the novel algorithmic framework proposed for submodular maximization
problems that achieves bicriteria approximation ratio by running greedy in blocks, where each block
is a feasible subset. This block-wise greedy strategy departs from prior approaches that focus on the
matroid structure of partition constraints. In contrast, our method exploits the intrinsic relationship
between partition constraints and cardinality constraints, leading to improved query complexity and
approximation ratio. Throughout the paper, we define the marginal gain of adding an element u ∈ U
to a set S ⊆ U is denoted as ∆f(S, u) = f(S ∪ u) − f(S). Besides, OPT is used to refer to the
optimal solution to the instance of submodular optimization that should be clear from the context.

2.1 NON-MONOTONE SUBMODULAR COVER WITH PARTITION CONSTRAINTS

In this section, we consider the general nonmonotone Submodular Cover with Partition Constraint
(SCP) problem, which is to find a set S ⊆ U that minimizes the value

{v : |S ∩ Uj | ≤ pjv,∀j ∈ [N], f(S) ≥ τ}.

The v represents a budget to allocate over the partitioned sets, which our goal is to minimize while
ensuring f is sufficiently high. The pj represents the desired portion of the budget to allocate to

1We summarized our results in a table in the appendix. Please refer to Table 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the j-th partition. Without loss of generality, we assume
∑

j∈[N] pj = 1. If there is only one
single partition in the universe, i.e., N = 1, then the optimal value of v is |S|, and we recover the
classic submodular cover problem. To further illustrate the problem definition, consider the example
application of video summarization described in Section 1, where frames are grouped by scene or
content type and costs are uniform. Then this would mean the objective is to find a solution with
a minimum total budget, while maintaining a balanced allocation across different partitions and
ensuring that the summary achieves sufficiently high quality.

In our first result, taking advantage of the relationship between submodular cover and submodular
maximization, we introduce a converting algorithm, convert-rand, that can convert any ran-
domized bicriteria algorithm for nonmonotone Submodular Maximization with Partition matroid
constraint (SMP) into a bicriteria algorithm for nonmonotone SCP. In particular, the SMP with an
input budget v is defined as max{f(S) : |S ∩ Ui| ≤ piv,∀i ∈ [N]}. We formally define the notion
of bicriteria approximation for both SMP and SCP in the following.
Definition 2.1. An (α, β)-approximation algorithm for SMP with input budget v returns a solution
X that satisfies

f(X) ≥ αf(OPT),

|X ∩ Uj | ≤ βpjv,

where OPT is the optimal solution of SMP, i.e., OPT := argmax{f(S) : |S ∩ Ui| ≤ piv,∀i ∈
[N]}.
Definition 2.2. An (α, β)-approximation algorithm for SCP returns a solution X with objective
value vX that satisfies

vX ≤ αvOPT ,

|X ∩ Uj | ≤ pjvX

f(X) ≥ βτ.

Here OPT is the optimal solution of SCP, i.e., OPT := argmin{v : |S ∩ Uj | ≤ pjv,∀j ∈
[N], f(S) ≥ τ}. vOPT is the optimal value of SCP.

Notice that in Chen and Crawford (2024b), they proposed an algorithm to convert randomized
submodular maximization algorithms into submodular cover algorithms in the case of monotone
submodular objectives. In fact, a key challenge in this setting arises from the need to ensure a high-
probability guarantee on the function value f by repeatedly invoking the submodular maximization
subroutine and applying concentration inequalities. To reduce the number of oracle queries, the
algorithm in Chen and Crawford (2024b) applies Markov’s inequality and operates on a truncated
objective function fτ := min{τ, f} throughout the converting algorithm. However, the assumption
that fτ is submodular only holds when f is monotone. In contrast, our analysis extends to the
non-monotone setting by avoiding the truncated objective and instead employing a more delicate
analysis when applying the concentration inequality. Specifically, we analyze the deviation of the
random variable βf(OPTg)−f(Si) where Si is the output solution set of the randomized subroutine
algorithm for SMP.

We now present convert-rand and its theoretical guarantees. The pseudocode for
convert-rand is described in Algorithm 4 in Section B in the supplementary material.
convert-rand runs by iteratively guessing the value of the optimal budget v. For each guess,
convert-rand runs the corresponding dual submodular maximization algorithms over multiple
independent trials. The theoretical guarantee of convert-rand is provided in the Theorem 2.3.
We defer the analysis to Section B in the supplementary material.
Theorem 2.3. Any randomized (γ, β)-bicriteria approximation algorithm for nonmonotone SMP
that runs in time T (n) where γ holds only in expectation can be converted into an approximation
algorithm for nonmonotone SCP that with probability at least 1− δ is a ((1 + α)β, γ − ϵ)-bicriteria
approximation algorithm that runs in time O(log1+α(|OPT |) ln(1/δ)T (n)/ ln(β−γ+ϵ

β−γ)).

Since the best-known result of algorithms for nonmonotone submodular maximization over the
partition matroid is the one proposed in Chen et al. (2024b), which achieves an approximation ratio
of 0.305− ϵ. Therefore by applying Theorem 2.3 to the randomized algorithm in Chen et al. (2024b),
we have a (1 + α, 0.305− ϵ)-bicriteria approximation algorithm for SCP with high probability in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 nonmono-bi
1: Input: ϵ, partition constraint parameters, total budget v
2: Output: S ⊆ U
3: for i = 1 to 2

ϵ do
4: for j = 1 to N do
5: for l = 1 to pjv do
6: Let M ⊆ Uj/S be a set of size 2pjv

ϵ maximizing
∑

x∈M ∆f(S, x).
7: u← uniformly sample an element from M
8: S ← S ∪ {u}

O(n|OPT | log1+α(|OPT |) ln(1/δ)/ ln(1 + ϵ)) queries of f . However, a factor of 0.305− ϵ of τ is
not very close to a feasible solution, and a natural question arises whether an algorithm that achieves
a better feasibility guarantee exists. An important relevant result Crawford (2023) is that it has been
shown that a feasibility factor better than 1/2 is impossible for the nonmonotone submodular cover
problem. Since this problem is a special case of SCP, this result holds for SCP as well. Still, this
leaves us with uncertainty of whether there exist scalable algorithms with approximation ratios in the
gap between 0.305 to 0.5.

In the rest of this section, we present a scalable algorithm, nonmono-bi, that can output a so-
lution set arbitrarily close to τ/e. The pseudocode of nonmono-bi is provided in Algorithm 1.
nonmono-bi uses the idea of gradually developing a solution in blocks greedy algorithm, and
achieves the bicriteria-approximation ratio as below.

Theorem 2.4. Suppose that nonmono-bi is run for an instance of nonmonotone SMP with budget v,
then nonmono-bi outputs a solution S that satisfies a bicriteria approximation ratio of (1/e− ϵ, 2

ϵ)
in expectation in at most O(nvϵ) number of queries.

The analysis and the proof are deferred to Section B in the supplementary material. From
the results, we can get that using nonmono-bi as a subroutine in convert-rand yields a
(2(1+α)

ϵ , 1/e− 2ϵ)-bicriteria approximation algorithm for nonmonotone SCP. The algorithm runs in

O(
n|OPT | log1+α(|OPT |) ln(1/δ)

ϵ ln(1+ϵ2)) number of queries.

2.2 MONOTONE SUBMODULAR COVER WITH KNAPSACK PARTITION CONSTRAINTS

We now consider the problem of Monotone Submodular Cover with Knapsack Partition Constraints
(SCKP). SCKP models the setting where we want to balance the cost across different partitions, and
the costs of different elements are nonuniform for different elements in the ground set. We illustrate
an example of SCKP. Consider a neural network training task in deep learning, we want to select
pretraining data points from N different predefined groups, and the goal is to select a subset of data
points with minimal budget of the cost, where the cost of each data point may reflect computational,
labeling, or storage expenses. Simultaneously, we would want a solution with balanced cost allocation
across predefined groups in the dataset while ensuring that the submodular utility function (e.g.,
coverage of diverse features) meets a specified threshold τ .

More formally, the definition of SCKP is as follows. Define a cost function c : U → R≥0, and let
c(S) =

∑
x∈S c(x) for any subset S ⊆ U . Then SCKP is:

min v

s.t. f(S) ≥ τ

c(S ∩ Uj) ≤ pjv, ∀j ∈ [N]. (1)

In the definition of SCKP, v represents the budget for the total cost. More specifically, v is the upper
bound on the total cost. The second constraint ensures that the cost of the solution set S within each
partition Uj does not exceed a specified fraction, pj , of v. Without loss of generality, we assume that∑

j∈[N] pj = 1.

This formulation naturally arises in various real-world applications, including influence maximization
in social network analysis, where activating different nodes incurs varying costs, pretraining data

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 greedy-knapsack-bi
1: Input: ϵ, an instance of SMKP
2: Output: solution set S ⊆ U

3: for i = 1 to ln 1
ϵ

ln 2 do
4: for j = 1 to N do
5: A← ∅, Bj ← pjv.
6: while true do
7: s← argmaxx∈Uj/S,c(x)≤Bj

∆f(S∪A,x)
c(x)

8: A← A ∪ {s}
9: if c(A) ≥ Bj then

10: S ← S ∪A
11: break
12: return S

selection for deep learning where different data points might require different computational or
memory costs, and task allocation in multi-agent system. Please see the Appendix C.1 for a detailed
discussion on the motivating examples. In the following part, we discuss the pretraining data selection
as a motivating example of the SCKP problem.

To address SCKP, we first propose an algorithm for the dual problem of Submodular Maximization
with Knapsack Partition Constraint (SMKP), which is defined as argmax{f(S) :

∑
s∈X∩Uj

c(s) ≤
pjv}. Notice that when the cost is uniform, i.e., c(s) = c,∀s ∈ U . SMKP is a monotone sub-
modular maximization problem with a partition matroid constraint. Therefore, we can apply any
submodular maximization algorithms with matroid constraint. However, the output of standard
algorithms can’t achieve an objective value arbitrarily close to the optimal. Therefore, we propose
the greedy-knapsack-bi algorithm, which proceeds in ϕ :=

ln 1
ϵ

ln 2 blocks. The pseudocode of
greedy-knapsack-bi is described in Algorithm 2. Within each block from Line 4 to Line 11,
the algorithm visits each partition Uj in the ground set U and adds elements greedily with highest
density of marginal gain. Below we present the theoretical guarantee of greedy-knapsack-bi
for SMKP.

Theorem 2.5. Suppose that greedy-knapsack-bi described in Algorithm 2 is run for an
instance of SMKP, then greedy-knapsack-bi outputs a solution set that satisfies

f(S) ≥ (1− ϵ)f(OPT)

c(S ∩ Uj) ≤
2 ln 1

ϵ

ln 2
pjv, ∀j ∈ [N],

where OPT is the optimal solution of SMKP.

This theorem guarantees that the solution set returned by greedy-knapsack-bi achieves an ob-
jective value arbitrarily close to the optimal while the cost constraints are satisfied up to a violation fac-
tor of 2 ln 1

ϵ

ln 2 . In the special case of uniform costs, the theorem implies that greedy-knapsack-bi
achieves a (1− ϵ, O(ln 1

ϵ)) bicriteria approximation guarantee. This matches the best-known approx-
imation ratio for monotone submodular maximization under a cardinality constraint. The improved
performance stems from the blockwise structure of greedy-knapsack-bi, which effectively
leverages the intrinsic similarity between the submodular maximization problem under the cardinality
constraint and the partition matroid constraint. The proof and analysis of Theorem 2.5 are deferred to
Appendix C.3.

2.2.1 CONVERTING THEOREM FOR SCKP

In order to convert any bicriteria algorithms for SMKP into bicriteria algorithms for SCKP, we
propose and analyze the converting algorithm, denoted as convert. The pseudocode for convert
is in Algorithm 5, and its theoretical guarantee is outlined in Theorem C.3, both in Section C.4 of the
appendix. By leveraging the result in the converting theorem, we can obtain the following corollary.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Corollary 2.6. By using the greedy-knapsack-bi as a subroutine for the converting algorithm
convert, we can obtain an algorithm for SCKP that returns a solution set S and vS that satisfies

vS ≤
2(1 + α) ln(1/ϵ)

ln 2
vOPT

f(S) ≥ (1− ϵ)τ

c(S ∩ Uj) ≤ pjvS

where OPT and vOPT are the optimal solution set and the optimal value of the problem SCKP defined
in (1) respectively. The total runtime of the algorithm is upper bounded by O(n2 log1+α(

cmaxn
cmin

)).
Here cmax and cmin are the maximum and minimum values of the cost of a single element respectively.

2.3 SUBMODULAR COVER WITH FAIRNESS CONSTRAINT

In this section, we consider the monotone Submodular Cover problem with Fairness Constraint (SCF),
recently proposed by Chen et al. (2025) (also referred to as Fair Submodular Cover in Chen et al.
(2025)). SCF is defined as follows: Given a monotone and submodular function f , a threshold τ , and
bounds pc and qc on the proportion limits of the elements in each group, SCF aims to find

argminS∈U |S|
s.t. pc|S| ≤ |S ∩ Uc| ≤ qc|S|, ∀c ∈ [N]

f(S) ≥ τ.

Chen et al. proposed a converting approach that takes bicriteria algorithms for the dual problem
of Submodular Maximization with Fairness constraint (SMF) El Halabi et al. (2020) and converts
them into algorithms for SCF. Formally, SMF seeks to maximize f(S) subject to the constraint
that S ∈ Mfair. Mfair represents the fairness matroid and is defined as Mfair = {S ⊆ U :
|S ∩ Uc| ≤ uc,∀c ∈ [N],

∑
c∈[N] max{|S ∩ Uc|, lc} ≤ k}. If we set lc = 0 for all c ∈ [N] and we

set k =
∑

c∈[N] uc, thenMfair is equivalent toMfair = {S ⊆ U : |S ∩ Uc| ≤ uc,∀c ∈ [N]}.
Therefore, SMF can be viewed as a generalized form of submodular maximization with a partition
matroid constraint. A bicriteria approximation guarantee for SMF is defined as follows.
Definition 2.7. A discrete algorithm for SMF with an (α, β)-bicriteria approximation ratio returns a
solution X such that

f(X) ≥ αf(OPT),

|X ∩ Uc| ≤ βuc ∀c ∈ [N],∑
c∈[N]

max{|X ∩ Uc|, βlc} ≤ βk.

Here OPT is the optimal solution of the problem SMF, i.e., OPT = argmaxS∈Mfair
f(S).

Therefore, in order to leverage the conversion approach of Chen et al., we propose an algorithm for
SMF called Block-Fair-Bi that uses a greedy block formation technique. Block-Fair-Bi is
an improvement over the greedy-fairness-bi in Algorithm 5 in Chen et al. (2025) . This leads
to a bicriteria approximation guarantee for SCF of (1+ln 1

ϵ

ln 2 , 1− ϵ), which is a significant improvement
compared to the best-known results for discrete algorithms of (1ε + 1, 1−O(ε)) in Chen et al..

We now describe Block-Fair-Bi, pseudocode for which is presented in Algorithm 3.
Block-Fair-Bi adopts a similar approach of running greedy algorithms in blocks. By defi-
nition, the β-extension of the fairness matroid constraint Mfair is given by Mβ := {S ⊆ U :
|S ∩ Uc| ≤ βuc,∀c ∈ [N],

∑
c∈[N] max{|S ∩ Uc|, βlc} ≤ βκ} as introduced in Chen et al. (2025).

Therefore, an algorithm with a bicriteria approximation ratio of (α, β) for SMF problem outputs
a solution set that belongs toMβ . The key intuition behind Block-Fair-Bi is that any set in
theMβ can be expressed as the union of β subsets, each belonging toMfair. This motivates our
algorithm of dividing the capacity of the solution set into β blocks. Here β := ln(1/ϵ)

ln 2 . Within each
block from Line 5 to Line 9 in Algorithm 3, the algorithm operates in a greedy fashion: it iteratively
adds the element with the highest marginal gain while maintaining B ∈Mfair. The main theoretical
result is stated in Theorem 2.8 below. The proof of the theorem is deferred to Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 3 Block-Fair-Bi
1: Input: fairness parameters
2: Output: S ∈ U
3: S ← ∅
4: for i = 1 to ln(1/ϵ)

ln 2 do
5: B ← ∅
6: while ∃s s.t. B ∪ {s} ∈ Mfair do
7: x← argmaxs∈U,B∪{s}∈Mfair

∆f(S, s)
8: B ← B ∪ {x}
9: S ← S ∪ {x}

return S

3 4 5 6 7
threshold τ ×105

0.0

0.6

1.2

1.8

2.4

Va
lu

e
of

 f

×105

STREAM
RG
BLOCK-G
GUIDED-RG

(a) euall f

3 4 5 6 7
threshold τ ×105

0

200

400

600

800

Bu
dg

et
 v

STREAM
RG
BLOCK-G
GUIDED-RG

(b) euall budget

200 400 600
threshold τ

0

200

400

600

800

Va
lu

e
of

 f

GREEDY
BLOCK-G
GREEDY-Knapsack

(c) twitch f

200 400 600
threshold τ

0

400

800

1200

1600

Bu
dg

et
 v

GREEDY
BLOCK-G
GREEDY-Knapsack

(d) twitch budget

100 200 300 400
Value of the given threshold

0

150

300

450

Co
st

THRES-Fair
GREEDY-Fair
BLOCK-G-Fair

(e) corel cost

100 200 300 400
Value of the given threshold

0.0

0.2

0.4

0.6

0.8

Fa
ir

ne
ss

 d
iff

er
en

ce

THRES-Fair
GREEDY-Fair
BLOCK-G-Fair

(f) corel fairness differ-
ence

1000 2000 3000 4000 5000
Value of the given threshold

0

200

400

600

800

Co
st

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(g) synthetic cost

1000 2000 3000 4000 5000
Value of the given threshold

0.00

0.15

0.30

0.45

0.60

Fa
ir

ne
ss

 d
iff

er
en

ce

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(h) synthetic fairness dif-
ference

Figure 1: The experimental results of running the algorithms on the euall dataset, the twitch dataset,
the Corel5k dataset, and the synthetic dataset. Budget: maxi∈[N]

c(S∩Ui)
pi

. Cost: the size of the
solution. Fairness difference: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.

Theorem 2.8. Suppose that Block-Fair-Bi is run for an instance of SMF, then
Block-Fair-Bi outputs a solution S that satisfies a (1− ε,

ln 1
ε

ln 2)-bicriteria approximation guar-
antee in at most O (nκ ln(1/ε)) queries of f .

3 EXPERIMENTS

In this section, we present an empirical evaluation of our proposed algorithms. In particular, we
evaluate our nonmono-bi algorithm on instances of graph cut in Section 3.1. Next, we evaluate
greedy-knapsack-bi on set cover instances and Block-Fair-Bi on both max cover and
image summarization tasks in Sections 3.2 and 3.3, respectively. Additional details about the
applications, setup, and results can be found in Section F in the supplementary material.

3.1 EXPERIMENTS ON NONMONOTONE SCP

We evaluate the performance of our algorithms on several instances of graph cut over social network
data. The dataset used in the main paper is the email-EuAll dataset (n = 265214, 420045 edges)
from the SNAP large network collection (Leskovec and Sosič, 2016). We compare the solutions
returned by the convert-rand algorithm with four subroutines including: (i). our nonmono-bi
algorithm ("BLOCK-G") (ii). the streaming algorithm from Feldman et al. (2018) ("STREAM"); (iii).
the randomized algorithm of Chen et al. (2024b), initialized with the twin-greedy solution proposed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

in Han et al. (2020) ("GUIDED-RG"). (iv). The random-greedy algorithm for the submodular
maximization problem with the cardinality constraint being the input guess of budget κ Buchbinder
et al. (2014) ("RG"). The algorithms are evaluated in terms of the function value f(S) returned by
the solution S, the query complexity, and the minimum value of budget v that satisfies the partition
constraints, i.e., maxi∈[N]

|S∩Ui|
pi

, and the execution time. The results are compared for different
values of the threshold τ .

The results in terms of f and the minimum budget are described in Figure 1(a) and 1(b). From the
results, one can see that RG and BLOCK-G consistently achieve higher objective values f than
the other methods. This is consistent with our theoretical results as the approximation ratio on
the function value of these two algorithms satisfies f(S) ≥ (1/e − ϵ)τ and f(S) ≥ (1/e − 2ϵ)τ
respectively while the other two algorithms STREAM, GUIDED-RG achieve worse approximation
ratios on the function value of 1/0.583− ϵ, 0.305− 2ϵ respectively. However, in terms of budget,
we can see that the RG algorithm performs poorly, since it does not account for partition constraints,
resulting in imbalanced budget allocations. The STREAM and GUIDED-RG algorithm returns
solutions with smaller budget since both these two algorithms achieves a bicriteria approximation
ratio such that vS ≤ (1 + α)vOPT . While BLOCK-G has a higher budget due to its weaker bicriteria
guarantee of vS ≤ 2(1+α)

ϵ vOPT, it does achieve a significantly higher function value.

3.2 EXPERIMENTS ON SCKP

We evaluate three different algorithms on the instance of max cover: the converting algorithm
convert with two different subroutines: greedy-knapsack-bi ("BLOCK-G") and a standard
greedy algorithm without the block-wise structure ("GREEDY"), and the greedy algorithm for
submodular cover without the partition-knapsack constraint ("GREEDY-Knapsack"). Further details
regarding the GREEDY and the GREEDY-Knapsack algorithms, and the experimental setup are
provided in Appendix F.1.

The results in terms of the minimum budget, which can be calculated by maxi∈[N]
c(S∩Ui)

pi
, and the

function value f are plotted in Figure 1(c) and Figure 1(d). From the results, one can see that the
f values of solutions returned by BLOCK-G, GREEDY-Knapsack, and GREEDY are nearly the
same. This is because the theoretical guarantees on f are about the same for the different algorithms.
However, the budget of the solution returned by our algorithm BLOCK-G is smaller than the other
two algorithms, which demonstrates the effectiveness of our approach of running greedy in blocks.

3.3 EXPERIMENTS ON SCF

For the SCF problem, we evaluate algorithms using the conversion framework from Chen et al. (2025)
with different subroutines: our Block-Fair-Bi algorithm ("BLOCK-G-Fair"), the standard greedy
algorithm ("GREEDY-Fair") and the threshold greedy algorithm ("THRES-Fair"). These algorithms
are compared in terms of solution cost (cardinality), fairness difference, objective function value,
query complexity, and execution time for varying values of the threshold τ . Here we set α = 0.2
for the converting algorithms in Algorithm 1 in Chen et al. (2025). The parameters in the fairness
constraint are set to be uc = 1.1/N, lc = 0.9/N . (where N is the number of groups). Additional
details about the applications, setup, and results can be found in Section F in the appendix.

Figures 1(e) and 1(g) illustrate the cost (cardinality) of the solution sets, while Figures 1(f) and 1(h)
show the fairness differences across varying τ values. In most cases, BLOCK-G-Fair achieves a
lower cost than THRES-Fair and GREEDY-Fair, aligning with our theoretical results. In the case
where τ is large on the corel dataset, the cost of the THRES-Fair is smaller than the BLOCK-G-Fair.
However, Figures 1(f) and 1(h) reveal that fairness differences in THRES-Fair and GREEDY-Fair
are significantly larger than in BLOCK-G-Fair, demonstrating that BLOCK-G-Fair produces more
balanced solutions. This is expected given that the fairness constraint from Chen et al. (2025)
ensures that β⌊pc|S|

β ⌋ ≤ |S ∩ Uc| ≤ β⌈ qc|S|
β ⌉, which means the solution set might break the fairness

constraint by an additive factor of β. Notably, β = O(1/ϵ) for the THRES-Fair and GREEDY-Fair
and β =

ln(1
ϵ)

ln 2 for BLOCK-G-Fair, which means our method achieves an enhanced fairness guarantee.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 REPRODUCIBILITY STATEMENT

All theoretical results in this paper are supported by complete proofs, which are provided in the main
text and the appendix. Approximation guarantees and detailed proofs are described to ensure that the
theoretical contributions can be independently verified.

REFERENCES

Baijun Ji, Xiangyu Duan, Zhenyu Qiu, Tong Zhang, Junhui Li, Hao Yang, and Min Zhang.
Submodular-based in-context example selection for llms-based machine translation. In Pro-
ceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pages 15398–15409, 2024.

Lilly Kumari, Shengjie Wang, Arnav Das, Tianyi Zhou, and Jeff Bilmes. An end-to-end submodular
framework for data-efficient in-context learning. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 3293–3308, 2024.

Ishika Agarwal, Krishnateja Killamsetty, Lucian Popa, and Marina Danilevksy. Delift: Data efficient
language model instruction fine tuning. arXiv preprint arXiv:2411.04425, 2024.

Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen,
and Branislav Kveton. Cascading linear submodular bandits: Accounting for position bias and
diversity in online learning to rank. In Uncertainty in Artificial Intelligence, pages 722–732. PMLR,
2020.

Wenjing Chen and Victoria G Crawford. Linear submodular maximization with bandit feedback.
arXiv preprint arXiv:2407.02601, 2024a.

Lifeng Zhou and Pratap Tokekar. Risk-aware submodular optimization for multirobot coordination.
IEEE Transactions on Robotics, 38(5):3064–3084, 2022.

Zirui Xu and Vasileios Tzoumas. Performance-aware self-configurable multi-agent networks: A
distributed submodular approach for simultaneous coordination and network design. arXiv preprint
arXiv:2409.01411, 2024.

Ruoyu Chen, Hua Zhang, Siyuan Liang, Jingzhi Li, and Xiaochun Cao. Less is more: Fewer
interpretable region via submodular subset selection. arXiv preprint arXiv:2402.09164, 2024a.

Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. Advances in neural information processing systems, 26, 2013.

Wenjing Chen and Victoria Crawford. Bicriteria approximation algorithms for the submodular cover
problem. Advances in Neural Information Processing Systems, 36, 2024b.

Victoria Crawford, Alan Kuhnle, and My Thai. Submodular cost submodular cover with an ap-
proximate oracle. In International Conference on Machine Learning, pages 1426–1435. PMLR,
2019.

Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas Krause. Dis-
tributed submodular cover: Succinctly summarizing massive data. Advances in Neural Information
Processing Systems, 28, 2015.

Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming non-monotone submodular
maximization: Personalized video summarization on the fly. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures
of submodular functions for image collection summarization. Advances in neural information
processing systems, 27, 2014.

Wenjing Chen, Shuo Xing, Samson Zhou, and Victoria G Crawford. Fair submodular cover. In The
Thirteenth International Conference on Learning Representations, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 8110–8118, 2021.

Marwa El Halabi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakab Tardos, and Jakub M Tarnawski.
Fairness in streaming submodular maximization: Algorithms and hardness. Advances in Neural
Information Processing Systems, 33:13609–13622, 2020.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of approximations for
maximizing submodular set functions—II. Springer, 1978.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766, 2011.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular functions.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1497–1514. SIAM, 2014.

Chandra Chekuri and Kent Quanrud. Submodular function maximization in parallel via the multilinear
relaxation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 303–322. SIAM, 2019.

Niv Buchbinder and Moran Feldman. Deterministic algorithm and faster algorithm for submodular
maximization subject to a matroid constraint. arXiv preprint arXiv:2408.03583, 2024a.

Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. ACM Transactions on Algorithms (TALG), 14(3):1–20, 2018.

Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages
1098–1116. SIAM, 2011.

Benjamin Qi. On maximizing sums of non-monotone submodular and linear functions. Algorithmica,
86(4):1080–1134, 2024.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via new bounds for
dr-submodular functions. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 1820–1831, 2024b.

Yixin Chen, Ankur Nath, Chunli Peng, and Alan Kuhnle. Discretely beyond 1/e: Guided combinato-
rial algortihms for submodular maximization. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024b.

Marwa El Halabi, Federico Fusco, Ashkan Norouzi-Fard, Jakab Tardos, and Jakub Tarnawski.
Fairness in streaming submodular maximization over a matroid constraint. In International
Conference on Machine Learning, pages 9150–9171. PMLR, 2023.

Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Comb., 2(4):385–393, 1982.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular
observation selection. Journal of Machine Learning Research, 9(12), 2008.

Victoria Crawford. Scalable bicriteria algorithms for non-monotone submodular cover. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 9517–9537. PMLR, 2023.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming submodular
maximization with subsampling. Advances in Neural Information Processing Systems, 31, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kai Han, Shuang Cui, Benwei Wu, et al. Deterministic approximation for submodular maximization
over a matroid in nearly linear time. Advances in Neural Information Processing Systems, 33:
430–441, 2020.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1433–1452. SIAM, 2014.

Victoria G Crawford. An efficient evolutionary algorithm for minimum cost submodular cover. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages 1227–1233,
2019.

Rishabh Iyer and Jeffrey Bilmes. Submodular point processes with applications to machine learning.
In Artificial Intelligence and Statistics, pages 388–397. PMLR, 2015.

Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity preserving
and structural role-based node embeddings. arXiv preprint arXiv:2101.03091, 2021.

Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and David A Forsyth. Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In Computer Vision—ECCV
2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002
Proceedings, Part IV 7, pages 97–112. Springer, 2002.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 4 convert-rand
Input: An SCP instance with threshold τ , a (γ, β)-bicriteria approximation algorithm for SMP,
α > 0
Output: S ⊆ U

1: Si ← ∅, ∀i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ
β−γ)}

2: g ← (1 + α)
3: while f(Si) < (γ − ϵ)τ ∀i do
4: for i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ)} do
5: Si ← (γ, β)-bicriteria approximation for SMP with objective function f and budget g
6: g ← (1 + α)g

7: return S

Problem Algorithm Approximation Ratio Query Complexity

Nonmonotone
SCP

convert-rand +
nonmono-bi

(
O
(
1+α
ϵ

)
, 1
e − ϵ

)
O
(
n2 log1+α n ln(1/δ)/ϵ/ ln(1 + ϵ)

)
Monotone SCKP greedy-knapsack-bi

+ convert

(
(1+α) ln(1/ϵ)

ln 2 , 1− ϵ
)

O
(
n2 log1+α

(
cmaxn
cmin

))
Monotone SCF Block-Fair-Bi +

convert-fair Chen et al.
(2025)

(O(ln(1/ϵ)), 1− ϵ) O
(

n lognκ ln(1/ϵ)
ϵ

)

Table 1: Summarization of approximation algorithms for Submodular Cover Problems in this paper.

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use Large Language Models solely to polish the writing to improve the clarity and
presentation. All theoretical results and technical contributions in this paper were not developed by
LLMs.

B APPENDIX FOR SECTION 2.1

In this section, we present missing content from Section 2.1, where we considered non-monotone
submodular cover with partition constraints. First, pseudocode for the converting algorithm
convert-rand, which we only informally described in Section 2.1, is given in Algorithm 4.
Next, we present the omitted proofs of Theorems 2.3 and Theorem 2.4.

Theorem 2.3. Any randomized (γ, β)-bicriteria approximation algorithm for SMP that runs in
time T (n) where γ holds only in expectation can be converted into a ((1 + α)β, γ − ϵ)-bicriteria
approximation algorithm for SCP that runs in time O(log1+α(|OPT |) ln(1/δ)T (n))/ ln(β−γ+ϵ

β−γ))

where γ holds with probability at least 1− δ.

Proof. Consider the run of the algorithm for SMP on Line 5 of Algorithm 4 when the guess of
optimal value g falls into the region

vOPT ≤ g ≤ (1 + α)vOPT .

Let us denote the partition matroid with budget g asM, i.e.,M := {S ⊆ U : |S ∩ Uj | ≤ pjv,∀j ∈
[N]}. The SMP problem is then defined to find argmax{f(S) : S ∈ M}. We denote the optimal
solution of the SMP problem with budget g as OPTg , i.e.,

OPTg := argmax{f(S) : |S ∩ Uj | ≤ pjv,∀j ∈ [N]}.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Besides, we define the optimal solution for SCP as OPT . By the fact that the optimal solution OPT
is feasible for SCP, we have that

|OPT ∩ Uj | ≤ pjvOPT ≤ pjv (2)

which means that OPT ∈ M, and therefore f(OPT) ≤ maxS∈M f(S) = f(OPTg). Since
f(OPT) ≥ τ , we have f(OPTg) ≥ τ . It then follows that for each i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ)},

P
(
f(Si) ≤ (γ − ϵ)τ

)
≤ P

(
f(Si) ≤ (γ − ϵ)f(OPTg)

)
≤ P

(
βf(OPTg)− f(Si) ≥ (β − γ + ϵ)f(OPTg)

)
By the theoretical guarantees of the algorithm for SMP, we have that for all i ∈
{1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ)}, we have that Ef(Si) ≥ γf(OPTg) and |Si ∩ Uj | ≤ pjβg for each
j ∈ [N]. It then follows that

P
(
f(Si) ≤ (γ − ϵ)τ

)
≤ P

(
βf(OPTg)− f(Si) ≥

β − γ + ϵ

β − γ
(βf(OPTg)− Ef(Si))

)
Let us denoteMβ := {S ⊆ U : |S ∩ Uj | ≤ pjβg,∀j ∈ [N]}, i.e.,Mβ is the β-extension of the
matroidM as is defined in Chen et al. (2025). Since Si satisfies |Si ∩ Uj | ≤ pjβg for any j ∈ [N],
we have that Si ∈ Mβ for each i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ)}. Notice that for any set A ∈ Mβ ,
we can express A as the union of β disjoint subsets inM. Let us denote them as A1, A2, ..Am. Thus
we have that

f(A) = f(∪i∈[β]Ai)

≤
∑
i∈[β]

f(Ai) ≤ βf(OPTg),

where the first inequality follows from the submodularity of f . It then follows that maxS∈Mβ
f(S) ≤

βf(OPTg). Notice that Si ∈ Mβ , we have that βf(OPTg) − f(Si) ≥ 0. Thus, we can apply
Markov’s inequality on the random variable βf(OPTg)− f(Si). Therefore, we can get that for each
i ∈ {1, ..., ln(1/δ)/ ln(β−γ+ϵ

β−γ)}

P
(
f(Si) ≤ (γ − ϵ)τ

)
≤ P

(
βf(OPTg)− f(Si) ≥

β − γ + ϵ

β − γ
(βf(OPTg)− Ef(Si))

)
≤ β − γ

β − γ + ϵ

Then the probability that none of the subsets Si can reach the stopping condition can be bounded by

P (f(Si) ≤ (γ − ϵ)τ,∀i) = P (f(Si) ≤ (γ − ϵ)τ,∀i)

=

ln(1/δ)/ ln(β−γ+ϵ
β−γ)∏

i=1

P (f(Si) ≤ (γ − ϵ)τ)

≤ (
β − γ

1 + ϵ− γ
)ln(1/δ)/ ln(β−γ+ϵ

β−γ) = δ.

This means with probability at least 1− δ, convert-rand stops when g reaches the region where
vOPT ≤ g ≤ (1 + α)vOPT since the condition of the while loop is not satisfied. Therefore, by
the assumption that the subroutine algorithm is a (γ, β)-bicriteria approximation algorithm, we
have that the output solution S satisfies that |S ∩ Uj | ≤ pjβg ≤ pjβ(1 + α)vOPT . Then the
objective value of the optimal solution S can be set to be vS = β(1 + α)vOPT . It also implies
that there are at most O(log1+α vOPT) number of guesses of the cardinality of the optimal solution.
Since for each guess, we run the SMP for ln(1/δ)/ ln(β−γ+ϵ

β−γ) times, the algorithm runs in time

O(log1+α(vOPT) ln(1/δ)T (n)/ ln(β−γ+ϵ
β−γ)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Next, we present the proof for the result in Theorem 2.4.

Theorem 2.4. Suppose that nonmono-bi is run for an instance of nonmonotone SMP with budget v,
then nonmono-bi outputs a solution S that satisfies a bicriteria approximation ratio of (1/e− ϵ, 2

ϵ)
in expectation in at most O(nvϵ) number of queries.

Proof. Let us denote the solution set after adding the l-th element in j-th subgroup during the i-th
round of the outer for loop in Line 6 in Algorithm 1 as Si,j,l, and we define the solution set after
completing adding all the elements in the j-th subgroup during the i-th round in Algorithm 1 as Si,j .
For notation simplicity, we also define ϕ := 2

ϵ . From the greedy selection strategy, we have that

E[f(Si,j,l)− f(Si,j,l−1)] ≥
∑

a∈OPT∩Uj
∆f(Si,j,l−1, a)

pjvϕ
.

By submodularity, we would have that

E[f(Si,j,l)− f(Si,j,l−1)] ≥
∑

a∈OPT∩Uj
∆f(Si,j , a)

pjvϕ
.

By summing over all l ∈ [pjv], it then follows that

E[f(Si,j)− f(Si,j−1] ≥
∑

a∈OPT∩Uj
∆f(Si,j , a)

ϕ
.

Let us denote the solution after completing the entire i-th round as Si. By submodularity, it then
follows that

E[f(Si,j)− f(Si,j−1)] ≥
E[∆f(Si,j , OPTj)]

ϕ

≥ E[∆f(Si, OPTj)]

ϕ
,

By summing over all j ∈ [N], we have

E[f(Si)− f(Si−1)] ≥
∑N

j=1 E[∆f(Si, OPTj)]

ϕ

≥ E[∆f(Si, OPT)]

ϕ
.

Then it follows that

E[f(Si)− f(Si−1)] ≥ E[
f(Si ∪OPT)− f(Si)

ϕ
].

Notice that by the greedy selection step, for each group j and each element a ∈ OPT ∩Uj appears in
Si with probability at most 1−(1− 1

pjvϕ
)pjvi. Since (1− 1

x)
x increases with x in the range of [1,+∞),

we have that (1− 1
pjvϕ

)pjvϕ ≥ (1− 1
ϕ)

ϕ. Therefore, we would get 1−(1− 1
pjvϕ

)pjvi ≤ 1−(1− 1
ϕ)

i.
From Lemma 2.2 in Buchbinder et al. (2014), we can conclude that

E[f(Si ∪OPT)] ≥ (1− 1

ϕ
)if(OPT).

By rearranging the above inequality, we can get that

E[f(Si)] ≥
ϕ

ϕ+ 1
E[f(Si−1)] +

1

ϕ+ 1
(1− 1

ϕ
)if(OPT).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

By induction, we have that the output solution set satisfies that

E[f(S)] = E[f(Sϕ)]

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ

ϕ+ 1
)ϕ−i(1− 1

ϕ
)if(OPT)

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ− 1

ϕ
)ϕ−i(1− 1

ϕ
)if(OPT)

≥ ϕ

ϕ+ 1
(1− 1

ϕ
)ϕf(OPT) ≥ 1

e
(1− ϵ)f(OPT). (3)

where the last inequality follows from the fact that (1 − 1
ϕ)

ϕ−1 ≥ e−1 for any ϕ > 1, and that
ϕ = 2

ϵ .

C APPENDIX FOR SECTION 2.2

We now present omitted content from Section 2.2, where we studied monotone submodular cover
with knapsack partition constraints. Our first goal is to provide additional detail to motivate and
explain our proposed optimization problem formulation. In particular, several detailed motivating
examples of SCKP are presented in Section C.1, and then further we provide detailed discussion on
the formulation of SCKP in Section C.2. Then in Section 2.2, we provide the omitted proofs from
Section 2.2 in the main paper. Namely, we present the missing proofs of the theoretical guarantee
for the Block-Greedy algorithm with Alg-SM as the subroutine, stated in Theorem 2.5, and we
present the converting algorithm convert for transforming an algorithm for SMKP to an algorithm
for SCKP, stated. in Theorem C.3.

C.1 MOTIVATING APPLICATIONS OF SCKP

In this portion of the appendix, we provide a series of examples to motivate our study of the
SCKP problem, where the objective is to find a solution set S which minimizes the total cost while
maintaining a certain level of utility (f(S) ≥ τ) and a balanced cost constraint across different
partitions (c(S ∩ Uj) ≤ pjv). The motivating examples of this problem include

• Influence Maximization: In this application, we might want to select a set of nodes
with minimum cost (e.g., limited budget funds to be allocated) while ensuring a certain
level of influence spread. The cost should also be balanced among each partition of the
universe, which is splitted by the demographic or geographic attributes. Different nodes
(e.g., influential users or groups) may require different costs to be activated (e.g., through
targeted ads or promotions), and thus the cost is non-uniform among different nodes.

• Pretraining Data Selection: In pretraining data selection, the goal is to select a subset of
data points with minimal cost, where costs may reflect computational, labeling, or storage
expenses. The problem involves balancing costs across predefined groups in the dataset
while ensuring that the utility function (e.g., coverage of diverse features) meets a specified
threshold.

• Multi-Agent Task Allocation: The objective is to find a set of tasks that minimizes the
total cost of the assigned tasks while achieving an overall utility or performance of a
certain level and a balanced cost across different types of tasks (e.g., delivery, inspection,
or cleaning). Tasks have different execution costs depending on complexity, duration, or
required resources and thus the cost is nonuniform.

C.2 CLARIFICATION OF THE PROBLEM DEFINITION OF SCKP

In this section, we provide some illustrations of the problem formulation of SCKP defined in
Section 2.2 in the main paper. First of all, recall that the classical Minimum Cost Submodular
Cover (MCSC) studied in previous work Iyer and Bilmes (2013); Crawford (2019) is defined as
argmin{c(S) : f(S) ≥ τ} where c : 2U → R is a modular, positive cost function. In our setting,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

we also want to ensure a balanced budget allocation across different partitions. Therefore, one of the
definition of our problem should be argmin{c(S) : f(S) ≥ τ, c(S ∩ Uj) ≤ pjc(S),∀j ∈ [N]}.
However, the problem defined above can have feasibility issues in many cases. In particular, the
constraint of c(S ∩ Uj) ≤ pjc(S) for each j ∈ [N] can be really hard to satisfy, and can even render
the problem infeasible. For example, if we set pj = 1/N for each j ∈ [N], and that for each s ∈ Uj1
c(s) = π, and each s ∈ Uj2 , c(s) = 1. From the definition of (P1), we can see that there is no subset
S ⊆ U that satisfies c(S ∩ Uj) ≤ pjc(S) for each j ∈ [N].

To solve this feasibility issue, we can relax the constraint on the balanced solution such that it can
be slightly broken by the cost of a single element. Let us define cj = max{c(s) : s ∈ Uj} to be the
maximum singleton cost within the partition Uj . It then follows that the definition of the relaxed
problem should be argmin{c(S) : f(S) ≥ τ, c(S ∩ Uj) ≤ pjc(S) + cj ,∀j ∈ [N]}
For notation simplicity, we use (P1) to denote this problem, i.e.,

(P1) : min
S⊆U

c(S)

f(S) ≥ τ

c(S ∩ Uj) ≤ pjc(S) + cj , ∀j ∈ [N]. (4)

To solve this problem, we can slightly relax the constraint on the cost by introducing another variable
µ to the constraint, i.e., c(S ∩ Uj) ≤ pjµc(S) for each j ∈ [N]. Notice that here we also want to
minimize the level of breaking the constraint, to do that, we replace the objective function from
minimizing c(S) to µc(S) in the optimization problem, Next, by replacing the term µc(S) with v, we
obtain the definition of the SCKP problem. Additionally, compared with the optimization problem
defined in (P1), the problem defined in SCKP in (1) preserves the feasibility as long as the threshold
τ satisfies f(U) ≥ τ .

(P2) : min
S⊆U

v(S)

f(S) ≥ τ

c(S ∩ Uj) ≤ pjv, ∀j ∈ [N], (5)

Let us define the optimal solution and optimal value of (P1) as OPTP1 and vOPT respectively, and
we denote the optimal solution of SCKP defined as OPT . It is worth noting that the optimal solution
in the optimization problem (P1) has a similar quality to our SCKP problem (P2). In particular, we
have that the optimal value of P1 and (P2) satisfies the following lemma:

Lemma C.1. The optimal value of (P1) and (P2) satisfies

1. vOPT ≤ c(OPT1) + maxi∈[N]
ci
pi

.

2. When the optimal value of (P2) satisfies that pjvOPT ≤ c(Uj), we have that c(OPT1) ≤
αvOPT +

∑
i∈[N] cj , where α =

∑
j∈[N] pj .

Proof. We first prove the first part of the lemma. Since OPT1 is feasible for problem (P1), it must
satisfy all constraints of (P1). In particular, for each j ∈ [N], we have:

c(OPT1 ∩ Uj) ≤ pjc(OPT1) + cj

= pj

(
c(OPT1) +

cj
pj

)
≤ pj

(
c(OPT1) + max

i∈[N]

ci
pi

)
(6)

Setting v = c(OPT1) + maxi∈[N]
ci
pi

, we observe that S = OPT1 satisfies the constraints of the
SCKP problem defined in (P2). Therefore, vOPT ≤ v, proving the first result. We prove the second
result by constructing a set A by the following procedure.

1. Initialize A← OPT2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. For j = 1 to N do:

(a) While c(A ∩ Uj) ≤ pjvOPT:
i. x← argminx′∈Uj\A c(x′)

ii. A← A ∪ {x}

Notice that for each j ∈ [N], c(OPT2 ∩Uj) ≤ pjvOPT , and that c(Uj) ≥ pjvOPT . Therefore, upon
the termination of the above procedure, set A satisfies that

pjvOPT ≤ c(A ∩ Uj) ≤ pjvOPT + cj (7)

It then follows that
∑

j∈[N] pjvOPT ≤
∑

j∈[N] c(A ∩ Uj), and thus αvOPT ≤ c(A). Therefore, for
each j ∈ [N], we have that

c(A ∩ Uj) ≤ pjvOPT + cj ≤ pjc(A) + cj (8)

It implies that A is feasible for problem (P1), therefore, we can conclude c(OPT1) ≤ c(A) ≤∑
j∈[N] pjvOPT + cj ≤ αvOPT +

∑
j∈[N] cj .

Besides, we want to point out that another benefit of the definition of our problem is that it preserves
the dual relationship between the SCKP problem and the SMKP problem, which is defined as
argmax f(S) :

∑
s∈X∩Uj

c(s) ≤ pjv. In particular, here the variable v in SMKP also serves as the
budget of the cost constraint. This property facilitates our application of converting theorems, which
is used to convert bicriteria algorithms for SMF to algorithms for SCF.

C.3 PROOF OF THEOREM 2.5

In this portion of the appendix, we present the missing proofs of the theoretical guarantee for the
Block-Greedy algorithm with Alg-SM as the subroutine. The theorem statement is provided in
Theorem 2.5.
Theorem 2.5. Suppose that greedy-knapsack-bi described in Algorithm 2 is run for an
instance of SMKP, then greedy-knapsack-bi outputs a solution set that satisfies

f(S) ≥ (1− ϵ)f(OPT)

c(S ∩ Uj) ≤
2 ln 1

ϵ

ln 2
pjv, ∀j ∈ [N],

where OPT is the optimal solution of SMKP.

Let us denote the solution set after adding the l-th element in j-th subgroup during the i-th round of
the outer for loop from Line 4 to Line 11 in Algorithm 2 as Si,j,l, and we define the solution set after
completing adding all the elements in the j-th subgroup during the i-th round in in Algorithm 2 as
Si,j . Before we prove Theorem 2.5, we prove the result in the following lemma.
Lemma C.2. Let Si,j be the solution set of the algorithm greedy-knapsack-bi in Algorithm 2
after completing adding all the elements in the j-th subgroup during the i-th round in in Algorithm 2,
then we would get that

f(Si,j)− f(Si,j−1) ≥ ∆f(Si,j , OPTj)

where OPTj := OPT ∩Uj is the intersection of the optimal solution set OPT and the j-th partition
Uj , and that

Bj ≤ c(Si,j/Si,j−1) ≤ 2Bj .

Here Bj := pjv.

Proof. Let Ai,j,l be the set A after adding the l-th element to the subgroup j in the iteration i, and let
si,j,l be the l-th element s added to the set A during the i-th outer loop in the subgroup j in Algorithm
2. It then follows that for any element o ∈ OPTj ,

∆f(Si,j−1 ∪Ai,j,l−1, si,j,l)

c(si,j,l)
≥ ∆f(Si,j−1 ∪Ai,j,l−1, o)

c(o)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By rearranging the above inequality, we can get

c(o)∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) ≥ c(si,j,l)∆f(Si,j−1 ∪Ai,j,l−1, o).

Summing over all o ∈ OPTj and by submodularity, we can get

c(OPTj)∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) ≥ c(si,j,l)∆f(Si,j−1 ∪Ai,j,l−1, OPTj)

Let us denote the total number of iterations in Algorithm 2 as T . By submodularity, it then follows
that

c(OPTj)∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) ≥ c(si,j,l)∆f(Si,j−1 ∪Ai,j,T , OPTj).

Since

∆f(Si,j−1 ∪Ai,j,l−1, si,j,l) = f(Si,j−1 ∪Ai,j,l)− f(Si,j−1 ∪Ai,j,l−1),

we can sum over all l ∈ [T] and get

c(OPTj){f(Si,j−1 ∪Ai,j,T)− f(S)} ≥ c(Ai,j,T)∆f(Si,j−1 ∪Ai,j,T , OPTj).

Since Si,j−1 ∪Ai,j,T = Si,j , we have

c(OPTj){f(Si,j)− f(S)} ≥ c(Ai,j,T)∆f(Si,j , OPTj).

By the stopping condition of Algorithm 2, we have that c(Ai,j,T−1) ≤ Bj , therefore,

Bj ≤ c(Ai,j,T) ≤ 2Bj

Since c(OPTj) ≤ Bj , it then follows that

f(Si,j)− f(S) ≥ ∆f(Si,j , OPTj).

We can then conclude the proof by the fact that Ai,j,T = Si,j/Si,j−1.

With Lemma C.2, we can prove the result of Theorem 2.5 as follows.

Proof. Let us denote the solution set after completing the i-th round in Algorithm 2 as Si, i.e.,
Si = Si,N . By the result in Lemma C.2, it then follows that

f(Si,j)− f(Si,j−1) ≥ ∆f(Si,j , OPTj) ≥ ∆f(Si, OPTj),

where the second inequality follows from submodularity. Summing over all j ∈ [N], we would get

f(Si)− f(Si−1) ≥
∑
j∈[N]

∆f(Si, OPTj) ≥ ∆f(Si, OPT)

Therefore, f(Si) ≥ f(Si−1)+f(OPT)
2 . By induction, we have that the final output solution set S

satisfies

f(S) = f(Sϕ) ≥ (1− ϵ)f(OPT).

Notice that S = ∪ϕi=1Si/Si−1. From Lemma C.2, we can get c((Si/Si−1) ∩Uj) ≤ 2pjv. Therefore

c(S ∩ Uj) =
∑ϕ

i=1 c((Si/Si−1) ∩ Uj) ≤
2 ln 1

ϵ

ln 2 pjv.

C.4 THEORETICAL ANALYSIS OF ALGORITHM 5

In this portion of the appendix, we present the converting algorithm convert for transforming an
algorithm for SMKP to an algorithm for SCKP. The pseudocode is described in Algorithm 5. The
theoretical guarantee of convert is provided in Theorem C.3.
Theorem C.3. Suppose that we have an algorithm Alg-SM for SMKP, and given budget v, Alg-SM
is guaranteed to return a set S such that f(S) ≥ γf(OPTSM) and c(S ∩ Uj) ≤ βpjv, in time
T (n), where OPTSM is the optimal solution of SMKP. Then the algorithm convert using Alg-SM
as a subroutine returns a set S and a value vS in time O(log1+α(

cmaxn
cmin

)T (n)) such that vS ≤
β(1 + α)vOPT , c(S ∩ Uj) ≤ pjvS and f(S) ≥ γτ. Here vOPT is the optimal value of SCKP. cmax

and cmin are the maximum and minimum values of the cost of a single element respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 5 convert
Input: α, ϵ
Output: S ⊆ U

1: vg ← (1 + α)cmin, S ← ∅
2: while f(S) < γτ do
3: S ← Algorithm for SMKP run with budget parameter v = vg
4: vg ← (1 + α)vg
5: vS = βvg
6: return S, vS

Proof. Let OPT be the optimal solution to the instance of SCKP. Consider the iteration of convert
where vg has just increased above vOPT , i.e., vOPT ≤ vg ≤ (1 + α)vOPT . Then we run Alg-SM
with budget vOPT ≤ vg ≤ (1 + α)vOPT . Then by the assumptions on Alg-SM we have that

f(S) ≥ γf(OPTSM). (9)

Notice that the optimal solution OPT for SCKP satisfies that c(OPT ∩ Uj) ≤ pjvOPT ≤ pjvg. It
then follows that OPT is feasible for the SMKP problem with input vg. Let us denote the optimal
solution of SMKP as OPTSM . Then we have that

f(OPTSM) ≥ f(OPT).

Since OPT is the optimal solution for SCKP, then

f(OPTSM) ≥ f(OPT) ≥ τ.

Combining the above inequality with the result in (9), we can get that f(S) ≥ γτ . Therefore, the
algorithm stops before vg reaches (1 + α)vOPT . The cost of each partition would satisfy

c(S ∩ Uj) ≤ βpjvg ≤ (1 + α)βpjvOPT

The proof is completed by setting vS = βvg .

D APPENDIX FOR SECTION 2.3

In this section, we present the missing proofs of theoretical results of Block-Fair-Bi from
Section 2.3. The theorem statement is provided in Theorem 2.8.
Theorem 2.8. Suppose that Block-Fair-Bi is run for an instance of SMF, then
Block-Fair-Bi outputs a solution S that satisfies a (1− ε,

ln 1
ε

ln 2)-bicriteria approximation guar-
antee in at most O (nκ ln(1/ε)) queries of f .

Proof. Denote the solution set after the i-th chunk as Si, and we denote the subset B after the i-th
chunk as Bi, then it follows that Si = Si−1 ∪ {Bi}. We can prove the following lemma.

Lemma D.1. For any i ≤ ln 1/ϵ
ln 2 , the solution set Si satisfies that

f(Si)− f(Si−1) ≥ f(OPT)− f(Si)

and that

|Si ∩ Uc| ≤ uci,∑
c∈[N]

max{|Si ∩ Uc|, lci} ≤ ki.

Proof. Let us denote the solution set after adding the j-th element to the solution set S during the
i-th chunk as Si,j . In addition, we denote the j-th element adding to Bi as bj , and that Bi,j =
(b1, . . . , bj−1). By the definition of matroid, there exists a mapping from the set B to the optimal
solution OPT = {o1, ..., oκ} s.t. Bi,j ∪ {oj} ∈ Pfair.

f(Si,j)− f(Si,j−1) ≥ f(Si,j−1 ∪ {oi})− f(Si,j−1) ≥ ∆f(Si,κ, oi)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Summing over all j, it follows that

f(Si,κ)− f(Si,0) ≥
κ∑

i=1

∆f(Si,κ, oi) ≥ f(OPT)− f(Si,0).

Since f(Si,κ) = f(Si+1,0) = f(Si+1),

f(Si+1)− f(Si) ≥ f(OPT)− f(Si+1)

Next, we prove the result on the size of the solution set S. When i = 1, S1 = B1. By the fact that
B1 ∈Mfair, we have that the result in the lemma holds. Let us assume that the result in the lemma
holds for i. Then for i+1, we have that |Si+1∩Uc| = |Si∪Bi∩Uc| ≤ |Si∩Uc|+|Bi∩Uc| ≤ uc(i+1).
For the total cardinality constraint,

max{|Si+1 ∩ Uc|, lc(i+ 1)} ≤ max{|Si ∩ Uc|+ |Bi ∩ Uc|, lc(i+ 1)}
≤ max{|Si ∩ Uc|, lci}+max{|Bi ∩ Uc|, lc}

where the first inequality comes from the fact that Si+1 = Si ∪Bi. The second inequality is due to
the inequality of max{a+ b, c+ d} ≤ max{a, c}+max{b, d}. It then follows that∑
c∈[N]

max{|Si+1 ∩ Uc|, lc(i+ 1)} ≤
∑
c∈[N]

max{|Si ∩ Uc|, lci}+
∑
c∈[N]

max{|Bi ∩ Uc|, lc} ≤ κ(i+ 1)

Next, by leveraging this Lemma D.1, we can prove the results in Theorem 2.8. Denote ϕ = ln 1/ϵ
ln 2 ,

then by the Lemma, we have that

|Sϕ ∩ Uc| ≤ ucϕ,∑
c∈[N]

max{|Sϕ ∩ Uc|, lcϕ} ≤ kϕ.

Since f(Si) ≥ f(OPT)+f(Si−1)
2 , by induction, it follows that

f(Sϕ) ≥ (1− 1

2ϕ
)f(OPT) = (1− ϵ)f(OPT).

E SUBMODULAR MAXIMIZATION UNDER PARTITION MATROID CONSTRAINT

In the previous sections and in the main paper, we demonstrated that block-greedy algorithms can
be effective for solving submodular cover problems under partition-based constraints. Interestingly,
this block-greedy approach also proves to be valuable in designing algorithms for submodular maxi-
mization problems. In this section, we introduce Block-Greedy, a novel algorithmic framework
tailored for submodular maximization subject to a partition matroid constraint.

Block-Greedy proceeds by greedily adding blocks—i.e., sets of elements—to the solution. Our
algorithms improve upon existing methods in both solution quality and query complexity.

This section is structured as follows. We first present our main results in Sections E.1, E.2, and E.3.
Section E.1 introduces the block-greedy framework that underpins the algorithms discussed through-
out. Then, we address two specific settings: monotone submodular maximization with a partition
matroid constraint (monotone SMP) in Section E.2, and nonmonotone submodular maximization
with a partition matroid constraint (nonmonotone SMP) in Section E.3.

Finally, we include additional content and discussions in Section E.4 and Section E.5. Section E.4
provides the missing discussion and proof of Theorem E.2 from Section E.2.1, while Section E.5
elaborates on omitted content from Section E.2.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 6 Block-Greedy
1: Input: Partitions of the ground set U1, U2, ..., UN , problem definition and parameters
2: Output: S ⊆ U
3: S ← ∅
4: for i = 1 to ϕ do
5: for j = 1 to N do
6: Greedy-Subroutine (S, i, j)
7: return S

E.1 BLOCK GREEDY FRAMEWORK

The Block-Greedy algorithm serves as the core framework for most of our proposed algo-
rithms, except for the Block-Fair-Bi algorithm used in the Fair Submodular Cover problem.
Block-Greedy repeatedly runs a greedy subroutine. In each of the subroutines, a “block” of
elements is added into the final solution from each of the partitions of the universe U . The value of the
parameter ϕ and the subroutine Greedy-Subroutine are problem-specific and vary depending
on the submodular optimization problem being solved. The pseudocode for Block-Greedy is in
Algorithm 6. In the following part, we introduce the subroutine algorithm for different problems and
present the analysis for these proposed algorithms.

E.2 MONOTONE SMP

We first consider the classic problem of Monotone Submodular Maximization with a Partition
Matroid Constraint (SMP). Given positive integers k1, · · · kN such that kj ≤ |Uj | for any j ∈ [N],
the partition matroid constraint is defined as P = {S ⊆ U : |S ∩ Uj | ≤ kj ,∀j ∈ [N]}. The
monotone SMP is defined to find the set argmaxS∈P f(S) for a monotone, submodular objective
function f . Before presenting our algorithm, we illustrate the intuitions and benefits of our proposed
algorithm in contrast to the standard greedy algorithm through a tight hardness result.

E.2.1 TIGHT EXAMPLES

The standard greedy algorithm iteratively selects the element with the highest marginal gain while
maintaining feasibility. It is well-known that this algorithm achieves a 1/2-approximation ratio for
monotone submodular maximization with general matroid constraint. Despite partition matroids
being a simpler special case, in the theorem below, we prove this ratio is tight by constructing a class
of instances where the standard greedy algorithm cannot achieve an approximation ratio better than
1/2.

Theorem E.1. For any given positive integers k1, ..., kN , there exists an instance of monotone SMP
with size constraints k1, ..., kN , i.e.,

max
S∈P

f(S)

where P := {S ⊆ U : |S ∩ Ui| ≤ ki}, such that the best approximation ratio achievable by the
standard greedy algorithm is 1/2.

We defer the detailed proof of Theorem E.1 to the supplementary material in Section E.4. We give
a brief illustration of the proof by constructing a toy example. Suppose U = [8] which is split into
two groups U1 = {1, 2, 3, 4}, U2 = {5, 6, 7, 8}. Let t : U → M be a function that assigns tags to
each element in the universe: t(1) = t(5) = t(7) = t(8) = ”a”, t(2) = t(6) = ”b”, t(3) = ”c”, and
t(4) = ”d”. Define a set cover function f that maps a subset to the number of unique tags covered,
f(S) = | ∪s∈S t(s)|. Here, the partition matroid is defined by k1 = k2 = 2. In this case, the standard
greedy algorithm might first select elements 1 and 2. Subsequently, all remaining elements either
become infeasible or have zero marginal gain, yielding a solution set S with f(S) = 2, whereas the
optimal solution set OPT = 3, 4, 5, 6 achieves f(OPT) = 4. Therefore, f(S) = f(OPT)/2. Thus
we can conclude the proof.

This example highlights a key limitation of the standard greedy algorithm: it greedily adds the
element with the highest marginal gain by searching over all feasible elements in each step, which
can lead certain partitions to quickly reach their cardinality limits, making remaining elements in

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

those subgroups infeasible for later selections. This strategy prevents the standard greedy algorithm
from achieving a better approximation ratio.

In fact, in most of the continuous methods developed in existing works Badanidiyuru and Vondrák
(2014); Calinescu et al. (2011), the key idea for achieving the optimal approximation ratio of 1− 1/e
is by incrementally increasing some coordinates by small fractions in each step. This technique
ensures that all of the elements in the ground set U remain feasible throughout most of the algorithm’s
execution. Inspired by this insight, the Block-Greedy algorithm carefully balances the number of
elements being added to the solution set across different partitions during each round. In particular, the
number of elements selected by Block-Greedy at each round within each partition i is proportional
to the budget capacity ki of the partition to ensure the feasibility of the elements for the majority
of the algorithm’s runtime, thereby effectively addressing this limitation. We provide a detailed
description of our proposed algorithm for monotone SMP in the next section.

E.2.2 SUBROUTINE ALGORITHM FOR MONOTONE SMP

We propose the subroutine algorithm Greedy-Subroutine-Mono (Algorithm 7), to be used
in Block-Greedy along with the parameter ϕ = ⌊

√
mini∈[N] ki⌋ − 1, and show that it can be

used to achieve an approximate solution that is at least as good as the standard greedy and often
strictly better. Further, Block-Greedy makes fewer queries to f , depending on the structure of the
partition matroid constraint. Here the parameter rj is defined as rj := ⌊kj/ϕ⌋ for each j ∈ [N].

Algorithm 7 Greedy-Subroutine-Mono (S, i, j)

1: Input: S, i, j
2: for l = 1 to rj do
3: S ← S ∪ argmaxx∈Uj ∆f(S, x)

Theorem E.2. Suppose that Block-Greedy is run for an instance of monotone SMP with
the subroutine algorithm Greedy-Subroutine-Mono as described in Algorithm 7, then
Block-Greedy outputs a solution set S that satisfies an approximation ratio of 1 − 1/e − 1

ϕ+1

where ϕ = ⌊
√
mini∈[N] ki⌋ − 1.

Intuitively, Block-Greedy achieves an approximation close to 1− 1/e when the parameters ki
are large. The reason that the term involving ϕ arises in Theorem E.2 is because there are a total
of ϕ rounds in the outer loop of Block-Greedy. In particular, if ϕ ≥ 7, then the approximation
guarantee described in Theorem E.2 is strictly better than 1/2. To further ensure the bound is better
than 1/2, we can greedily add new elements with maximum marginal gain to the returned solution by
Block-Greedy algorithm until the cardinality of the solution set reaches the rank of the partition
matroid, in which case the approximation ratio of Block-Greedy is max{1/2, 1− 1/e− 1

ϕ+1}
(see Appendix E.5 for proof).

Notably, the difference between the approximation ratio for Block-Greedy and the optimal result
of 1− 1/e is bounded by O(1√

kmin
) where kmin = mini∈[N] ki. In particular, in some cases where

k1 = k2 = · · · = kN , the bound can be improved further to O(1
k1
), as shown in the following

corollary:
Corollary E.3. Suppose Block-Greedy with the Greedy-Subroutine-Mono subroutine is
run for instance of monotone SMP with k1 = k2 = ... = kN . If we set ϕ = k1 and rj = 1 for each j,
then Block-Greedy outputs a solution set S with an approximation ratio of 1− 1/e− 1/k1.

The corollary can be proved by applying the Theorem E.8, which is presented and analyzed in
Appendix E.5.

An additional important benefit to Block-Greedy compared to the standard greedy algorithm is that
its query complexity is potentially much better. This improvement arises because Block-Greedy
selects elements with maximum marginal gain within one partition rather than over the entire universe
U . In particular, the query complexity of Block-Greedy is upper bounded by

∑
i∈[N] |Ui|ki ≤

n(
∑

i∈[N] ki).

Next, we present the proof of the theorem. First of all, we prove the result in Lemma E.4.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Lemma E.4. Let us define the partition matroid of {S ⊆ U : |S ∩ Uj | ≤ rjϕ} as P ′, and we define
the optimal solution of the problem maxS∈P′ f(S) as OPT ′. Let us denote the input and output of
Algorithm 7 as S and S′ respectively, then it follows that

f(S′)− f(S) ≥ ∆f(S′, OPTj)

ϕ
,

where OPTj = OPT ′ ∩ Uj .

Proof. For notation simplicity, we define the solution set after the l-th step in the for loop of Algorithm
7 as S(l). By the greedy selection step in Line 3, we have that for any o ∈ OPTj := OPT ′ ∩ Uj ,

f(S(l))− f(S(l−1)) ≥ ∆f(S(l−1), o).

Therefore,

f(S(l))− f(S(l−1)) ≥
∑

o∈OPTj
∆f(S(l−1), o)

|OPTj |

≥
∑

o∈OPTj
∆f(S(l−1), o)

rjϕ

≥
∑

o∈OPTj
∆f(S(rj), o)

rjϕ

≥ ∆f(S(rj), OPTj)

rjϕ
,

where the second inequality follows from the fact that OPT ′ ∈ P ′, and therefore |OPTj | ≤ rjϕ.
Summing over all l ∈ [rj], it follows that

f(S(rj))− f(S(0)) ≥ ∆f(S(rj), OPTj)

ϕ
.

Notice that S(0) is the input of the algorithm and S(l) is the output of the algorithm, so we can prove
the result.

With the result in Lemma E.4, we can prove the result in Theorem E.2.

Proof. Let Si,j represent the solution set after executing the subroutine algorithm
Greedy-Subroutine-Mono on the j-th subgroup during the i-th iteration of the outer
for loop in Line 4 in Algorithm 6, and we define Si as the solution set after completing the i-th round
of the outer for loop in Algorithm 6, i.e., Si = Si,N . Then by the result in Lemma E.4, we have that
we have that

f(Si,j)− f(Si,j−1) ≥
∆f(Si,j , OPTj)

ϕ

Since Si,j ⊆ Si,N for any j ∈ [N], by submodularity, we have that ∆f(Si, OPTj) =
∆f(Si,N , OPTj) ≤ ∆f(Si,j , OPTj). Then

f(Si,j)− f(Si,j−1) ≥
∆f(Si, OPTj)

ϕ

Summing over all j, it then follows that

f(Si,N)− f(Si,0) ≥
∑

j∈[N] ∆f(Si, OPTj)

ϕ

≥ ∆f(Si, OPT ′)

ϕ
,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 8 Greedy-Subroutine-Nonmono (S, i, j)

1: Input: S, i, j
2: for l = 1 to rj do
3: Let M ⊆ U/S be a set of size rjϕ maximizing

∑
x∈M ∆f(S, x).

4: u← uniformly sample an element from M
5: S ← S ∪ argmaxx∈Uj ∆f(S, x)

where the last inequality follows from submodularity and the fact that OPT ′ = ∪j∈[N]OPTj . Notice
that here Si,N is equivalent to Si, and that Si,0 is equivalent to Si−1. Then we get

f(Si)− f(Si−1) ≥
f(OPT ′ ∪ Si)− f(Si)

ϕ

≥ f(OPT ′)− f(Si)

ϕ
.

By rearranging the inequality and by induction, we have that

f(Sϕ)− f(∅) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT ′).

By the definition of ϕ that ϕ = ⌊
√
mini∈[N] ki⌋ − 1, we have that ki − ϕ⌊ki/ϕ⌋ ≤ ⌊ki/ϕ⌋ for any

i ∈ [N]. By Lemma E.7, it follows that

max
S∈P′

f(S) ≥ ϕ

ϕ+ 1
max
S∈P

f(S).

Therefore,

f(Sϕ) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT ′)

≥ (1− (
ϕ

ϕ+ 1
)ϕ)(

ϕ

ϕ+ 1
)f(OPT)

≥ (1− e−1 − 1

ϕ+ 1
)f(OPT).

E.3 NONMONOTONE SMP

In this section, we propose the algorithm for the problem of nonmonotone Submodular Maximization
over Partition matroid (SMP). The proposed algorithm follows the framework in Algorithm 6 with
ϕ = ⌊

√
mini∈[N] ki⌋ − 1, and the subroutine algorithm Greedy-Subroutine-Nonmono is

described in Algorithm 8. Here the parameter rj := ⌊kj/ϕ⌋. The algorithm uniformly selects an
element from the set of elements with the top rjϕ marginal gain to add to the solution set. The intuition
behind the Greedy-Subroutine-Nonmono algorithm is similar to that of the Random Greedy
algorithm proposed in Buchbinder et al. (2014). However, in Greedy-Subroutine-Nonmono,
the size of the candidate set considered for inclusion in the solution is adjusted to rjϕ to ensure an
important result that E[f(Si ∪ OPT ′)] ≥ (1 − 1

ϕ)
if(OPT ′) where P ′ = {S ⊆ U : |S ∩ Ui| ≤

riϕ,∀i ∈ [N]} and OPT ′ = argmaxS∈P′ f(S).

Below we present the main result of Block-Greedy for the problem of nonmonotone SMP.
Theorem E.5. Suppose that Block-Greedy is run for an instance of nonmonotone SMP with
the subroutine algorithm Greedy-Subroutine-Nonmono as described in Algorithm 7, then
Block-Greedy outputs a solution S that satisfies an approximation ratio of 1

e −
3

e(ϕ+1) where
ϕ =

√
mini∈[N] ki − 1 in expectation.

Notice that the approximation ratio is close to 1/e, which matches the bound of the random greedy
algorithm for submodular maximization under cardinality constraint, with the difference bounded by

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

O(1√
kmin

), where kmin = mini∈[N] ki. In this sense, the proposed algorithm achieves an approxi-
mation ratio for Nonmonotone SMP that bridges the gap between submodular maximization over
cardinality constraint and partition matroid constraint. The proof of Theorem E.5 is provided below.

Let us define P ′ = {S ⊆ U : |S ∩ Ui| ≤ riϕ, ∀i ∈ [N]} and we denote the optimal solution set of
OPT ′ = argmaxS∈P′ f(S). First of all, we prove the following lemma for the subroutine algorithm
Greedy-Subroutine-Nonmono.
Lemma E.6. Let us denote the input and output of Algorithm 8 as S and S′ respectively, then it
follows that

E[f(S′)− f(S)] ≥ E[∆f(S′, OPTj)]

ϕ
,

where OPTj = OPT ′ ∩ Uj .

Proof. Let us denote the solution set after adding the l-th element as S(l). Similar to the proof of
Theorem E.2 for the monotone SMP, we have that

E[f(S(l))− f(S(l−1))] ≥
∑

a∈OPT ′∩Uj
∆f(S(l−1), a)

rjϕ
.

By submodularity, we would have that

E[f(S(l))− f(S(l−1))] ≥ E[
∑

a∈OPT ′∩Uj
∆f(S(l−1), a)

rjϕ
]

≥ E[
∑

a∈OPT ′∩Uj
∆f(S′, a)

rjϕ
].

By summing over all l ∈ [rj], it follows that

E[f(S′)− f(S)] ≥ E[
∑

a∈OPT ′∩Uj
∆f(S′, a)

ϕ
]

≥ E[
∆f(S′, OPTj)

ϕ
].

Next, leveraging the result in Lemma E.6, we prove the approximation ratio in Theorem E.5.

Proof. Similar to the proof of Theorem E.2, we denote the solution set after running the subroutine
algorithm in j-th subgroup during the i-th round of the outer for loop in Line 4 in Algorithm 6 as Si,j ,
and we define the solution set after completing the i-th round in Algorithm 6 as Si. From Lemma
E.6, we have that

E[f(Si,j)− f(Si,j−1)] ≥
E[∆f(Si,j , OPTj)]

ϕ

≥ E[∆f(Si, OPTj)]

ϕ
,

By summing over all j ∈ [N], we have

E[f(Si)− f(Si−1)] ≥
∑N

j=1 E[∆f(Si, OPTj)]

ϕ

≥ E[∆f(Si, OPT ′)]

ϕ
.

Then it follows that

E[f(Si)− f(Si−1)] ≥ E[
f(Si ∪OPT ′)− f(Si)

ϕ
].

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Notice that by the greedy selection step, for each group j and each element a ∈ OPT ′∩Uj appears in
Si with probability at most 1− (1− 1

rjϕ
)rji. Since (1− 1

x)
x increases with x in the range of [1,+∞),

we have that (1− 1
rjϕ

)rjϕ ≥ (1− 1
ϕ)

ϕ. Therefore, we would get 1− (1− 1
rjϕ

)rji ≤ 1− (1− 1
ϕ)

i.
From Lemma 2.2 in Buchbinder et al. (2014), we can conclude that

E[f(Si ∪OPT ′)] ≥ (1− 1

ϕ
)if(OPT ′).

By rearranging the above inequality, we can get that

E[f(Si)] ≥
ϕ

ϕ+ 1
E[f(Si−1)] +

1

ϕ+ 1
(1− 1

ϕ
)if(OPT ′).

By induction, we have that the output solution set satisfies that
E[f(S)] = E[f(Sϕ)]

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ

ϕ+ 1
)ϕ−i(1− 1

ϕ
)if(OPT ′)

≥ 1

ϕ+ 1

ϕ∑
i=1

(
ϕ− 1

ϕ
)ϕ−i(1− 1

ϕ
)if(OPT ′)

≥ ϕ

ϕ+ 1
(1− 1

ϕ
)ϕf(OPT ′) ≥ 1

e
(1− 2

ϕ+ 1
)f(OPT ′).

where the last inequality follows from the fact that (1 − 1
ϕ)

ϕ−1 ≥ e−1 for any ϕ > 1. From the
definition that ϕ = ⌊

√
mini∈[N] ki⌋− 1, it then follows that ki−ϕ⌊ki/ϕ⌋ ≤ ⌊ki/ϕ⌋ for any i ∈ [N].

Therefore, from the result in Lemma E.7, we get that

f(OPT ′) ≥ ϕ

ϕ+ 1
f(OPT) (10)

where OPT is the optimal solution to the submodular maximization problem argmaxS∈P f(S). By
combining (3) and (10) together, we can prove the result in the Lemma.

Lemma E.7. Suppose the ground set U is divided into N disjoint subgroups U1, U2,..., UN , then
for any partition matroid P = {S ⊆ U : |S ∩ Uj | ≤ kj ,∀j ∈ [N]}, let us define the matroid
P ′ = {S ⊆ U : |S ∩ Uj | ≤ ⌊kj

c ⌋c,∀j ∈ [N]} for some positive integer c. If for any j ∈ [N], it
satisfies that ⌊kj

c ⌋ ≥ kj − c⌊kj

c ⌋, then it follows that for any submodular function f , we have

max
S∈P′

f(S) ≥ c

c+ 1
max
S∈P

f(S).

Proof. For notation simplicity, we also define rj = ⌊kj

c ⌋ where j ∈ [N], and we define two matroids
P0 = {S ⊆ U : |S ∩ Uj | ≤ rj ,∀j ∈ [N]} and P1 = {S ⊆ U : |S ∩ Uj | ≤ rj(c + 1),∀j ∈ [N]}.
Let us denote the optimal solution of maxS∈P1 f(S) as OPT ′′. Then by definition, we can see that
OPT ′′ can be divided into (c+ 1) disjoint subsets O1, ..., Oc+1 such that each Oi ∈ P0. Without
loss of generality, we assume that the subsets are chosen greedily such that the index satisfies
∆f(∪j∈[i−1]Oj , Oi) ≥ ∆f(∪j∈[i−1]Oj , Ol) for any 1 ≤ i ≤ c and l > i. It then follows that by
submodularity, ∆f(∪j∈[i−1]Oj , Oi) ≥ ∆f(∪j∈[i−1]Oj , Ol) ≥ ∆f(∪j∈[l−1]Oj , Ol) for any l > i.
Therefore,

f(OPT ′′)− f(∪j∈[c]Oj) = ∆f(∪j∈[c]Oj , Oc+1)

≤
∑

i∈[c] ∆f(∪j∈[i−1]Oj , Oi)

c

=
f(∪j∈[c]Oj)− f(∅)

c
.

By rearranging the above inequality, we would get that f(∪j∈[c]Oj) ≥ c
c+1f(OPT ′′). Since

∪j∈[c]Oj ∈ P ′, then we have that maxS∈P′ f(S) ≥ c
c+1f(OPT ′′). Notice that ⌊kj

c ⌋(c+ 1) ≥ kj
implies that for any subset S ∈ P , it also satisfies that S ∈ P1. Therefore, maxS∈P1

f(S) ≥
maxS∈P f(S) and we can conclude the proof.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.4 PROOF OF THEOREM E.1

In this section, we present the omitted proof of Theorem E.1. To prove the theorem, we construct a
class of instances to demonstrate that the standard greedy algorithm can’t achieve an approximation
ratio better than 1/2. We begin by presenting relevant definitions of the set functions and constraints,
followed by a formal description of the hardness instance.

Suppose the ground set U is partitioned into N disjoint subsets U1, U2, . . . , UN , with each subset
Ui containing 2ki elements. Define a set function t : U → 2M , where M is a finite set, and let
c : 2M → R+ be a non-negative, monotone, modular function. We define the submodular function
f : 2U → R+ as follows:

f(S) = c

(⋃
s∈S

t(s)

)
=

∑
x∈

⋃
s∈S t(s)

c(x).

The partition matroid is denoted as P = {S ⊆ U : |S ∩ Ui| ≤ ki,∀i ∈ [N]}. Without loss of
generality, we assume the partition matroid constraint parameters satisfy that k1 ≤ k2 ≤, ... ≤ kN .
For notation simplicity, let us denote the j-th element in group Ui as s(i)j . The hardness example is
defined as follows. Suppose ϵ is a constant such that ϵ ∈ (0, 1/2), then

1. Set Assignments in U1: In the first partition U1, assume that the sets t(s(1)j1
) and t(s

(1)
j2

) are

disjoint for any distinct j1, j2, i.e., t(s(1)j1
) ∩ t(s

(1)
j2

) = ∅.
2. Function Values in U1: Set the modular function values for the elements in U1 as follows:

• For j ≤ k1, c(t(s(1)j)) = 1
2 + ϵ.

• For k1 < j ≤ 2k1, c(t(s(1)j)) = 1
2 .

3. Set Assignments and Function Values for i > 1: For each i1, i2 such that 1 < i1, i2 ≤ N ,
define:

• If j ≤ k1, then t(s
(i1)
j) = t(s

(i2)
j) ⊆ t(s

(1)
j).

• If j > k1, then t(s
(i1)
j) = t(s

(i2)
j) = t(s

(i1)
1).

• Set c(t(s(i)j)) = 1
2 for any i > 1 and j ∈ [2ki].

Given this construction, the standard greedy algorithm proceeds as follows: for the first k1 steps, the
algorithm would add the elements s(1)1 , s

(1)
2 , ..., s

(1)
k1

from U1, yielding a marginal gain of 1
2 + ϵ per

step. Thus, the total value after these steps is k1

2 + k1ϵ. After the first k1 steps, the algorithm can
only select elements from partitions Ui where i > 1, with a marginal gain of 0 at each step due to the
structure of f under the current set assignments. Therefore, the value of the submodular objective
returned by the standard greedy algorithm is k1

2 + k1ϵ.

Next, we consider the optimal solution of the constructed example. Notice that for any of the
partitions Ui such that i > 1, f(Ui) = k1/2. Besides, by the construction, we have that

⋃
s∈U1

t(s) =⋃
s∈U2

t(s) for any i1, i2 > 1. Therefore, f(
⋃

i>1 Ui) = k1/2. It then follows that for any subset
S ⊆ U ,

f(S ∩
⋃
i>1

Ui) ≤ k1/2. (11)

Next, we claim that optimal solution should satisfy that f(OPT) ≤ k1. We prove the claim by
considering the following cases. For any S ∈ P , then

1. If f(S ∩
⋃

i>1 Ui) = k1/2, which means
⋃

s∈S∩
⋃

i>1 Ui
t(s) =

⋃
j≤k1

t(s
(2)
j), then for

each j ≤ k1, the marginal gain of adding the j-th element in the first partition to the
the set S ∩

⋃
i>1 Ui satisfies that ∆f(S ∩

⋃
i>1 Ui, s

(1)
j) = c(t(s

(1)
j)) − c(t(s

(2)
j)) = ϵ

, and for each j > k1, ∆f(S ∩
⋃

i>1 Ui, s
(1)
j) = f(s

(1)
j) = 1/2 . It then follows that

∆f(S ∩
⋃

i>1 Ui, S ∩ U1) ≤
∑

s∈S∩U1
∆f(S ∩

⋃
i>1 Ui, s) ≤ k1/2. Therefore, f(S) =

∆f(S ∩
⋃

i>1 Ui, S ∩ U1) + f(S ∩
⋃

i>1 Ui) ≤ k1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. If f(S∩
⋃

i>1 Ui) < k1/2, then we have that there exists at least one element s(2)j for j ≤ k1

such that the set t(s(2)j) /∈
⋃

s∈S∩
⋃

i>1 Ui
t(s) . Let us denote E = {j ≤ k1 : t(s

(2)
j) /∈

S ∩
⋃

i>1 Ui}. It then follows that f(S ∩
⋃

i>1 Ui) =
k1−|E|

2 . For each j ≤ k1, if j ∈ E,
∆f(S ∩

⋃
i>1 Ui, s

(1)
j) = c(t(s

(1)
j)) = 1/2 + ϵ, if j /∈ E, then ∆f(S ∩

⋃
i>1 Ui, s

(1)
j) =

c(t(s
(1)
j)) − c(t(s

(2)
j)) = ϵ. For each j > k1, ∆f(S ∩

⋃
i>1 Ui, s

(1)
j) = f(s

(1)
j) = 1/2.

Similarly, we have that ∆f(S∩
⋃

i>1 Ui, S∩U1) ≤
∑

s
(1)
j ∈S∩U1

∆f(S∩
⋃

i>1 Ui, s
(1)
j) ≤

|E|(1/2 + ϵ) + (k1 − |E|)/2 = |E|ϵ + k1/2. Therefore, we can conclude that f(S) =
∆f(S ∩

⋃
i>1 Ui, S ∩ U1) + f(S ∩

⋃
i>1 Ui) ≤ k1 − |E|(1/2− ϵ) ≤ k1.

It then follows that the f(OPT) ≤ k1. Notice that the set O = {s(1)k1+1, ...s
(1)
2k1

, s
(2)
1 , ..., s

(2)
k1
} achieves

an objective value of: f(O) = k1. Therefore, f(OPT) = k1. Consequently, the approximation
ratio of standard greedy algorithm should be k1/2+k1ϵ

k1
= 1/2 + ϵ. When ϵ approaches 0, then the

approximation ratio goes to 1/2.

E.5 DISCUSSION ON THEOREM E.2

In this portion of the appendix, we illustrate the results of the Theorem E.2. First of all, we
discuss the difference between the approximation ratio of our proposed algorithm Block-Greedy
and the optimal approximation ratio 1 − 1/e achieved by the previous continuous method. In
particular, the difference isO(1√

kmin
) with kmin = mini∈[N] ki. In fact, we notice that this difference

results from the fact that it scales in the order of O(1ϕ). In the algorithm Block-Greedy with
Greedy-Subroutine-Mono as the subroutine in Section E.2, ϕ is set to be ϕ = ⌊

√
kmin⌋ − 1,

which is designed to bound the difference between ki and ⌊ki

ϕ ⌋ϕ to ensure that the optimal value of
the monotone maxS∈P′ f(S) approximates the optimal value of maxS∈P f(S) where P ′ := {S ⊆
U : |S ∩ Ui| ≤ ⌊ki

ϕ ⌋ϕ, ∀i ∈ [N]} and P := {S ⊆ U : |S ∩ Ui| ≤ ki,∀i ∈ [N]}.

This motivates the following result: in some cases, if we can design the parameter ϕ such that
⌊ki

ϕ ⌋ =
ki

ϕ for any i ∈ [N], then the partition matroid P = P ′ and we don’t need to bound the
difference of maxS∈P′ f(S) and maxS∈P f(S). Therefore, we can further refine the difference
between the approximation ratio of Block-Greedy and the optimal result of 1− 1/e. The result is
stated as follows.

Theorem E.8. Suppose that gcd(k1, k2, . . . , kN) = c, and that Block-Greedy with
Greedy-Subroutine-Mono as a subroutine and ϕ = c and rj = kj/c for each j ∈ [N] is run
for an instance of monotone SMP over partition matroid P := {S ⊆ U : |S ∩ Ui| ≤ ki,∀i ∈ [N]},
then Block-Greedy outputs a solution set S that satisfies an approximation ratio of 1−1/e−1/c.

Proof. Following the similar proof of Theorem E.2, we can get that the output solution set S satisfies

f(S)− f(∅) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT ′),

where OPT ′ = argmaxS∈P′ f(S) and P ′ := {S ⊆ U : |S ∩ Ui| ≤ riϕ, ∀i ∈ [N]}. By the
assignment of ri and ϕ in this case, we can get that riϕ = ki. It then follows that P ′ = P and that
OPT ′ is also the optimal solution to our problem. Therefore,

f(S) ≥ (1− (
ϕ

ϕ+ 1
)ϕ)f(OPT)

≥ (1− 1/e− 1/ϕ)f(OPT) = (1− 1/e− 1/c)f(OPT).

In particular, if c = O(kmin) such as in the case where k1 = k2 =, ... = kN = k, we have that the
approximation ratio is 1− 1/e− 1/k. Therefore, the difference between the approximation ratio and
the optimal one is decreased to O(1

kmin
). The result is stated in Corollary E.3

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Next, we prove that we can improve the approximation ratio of Block-Greedy algorithm by
adding more elements to the solution set. First, we notice that there are two drawbacks of the
proposed algorithm Block-Greedy compared with the standard greedy algorithm. First of all,
the approximation ratio of 1− 1/e− 1

⌊
√

mini∈[N] ki⌋
is only better than the approximation ratio of

the standard greedy algorithm, which is 1/2, when the capacity ki within partition Ui satisfies that
ki ≥ 64 for each i ∈ [N].

Second, the output solution satisfies that |S ∩ Ui| ≤ riϕ for each i ∈ [N]. Notice that riϕ ≤ ki.
If riϕ < ki, we can add more elements to the solution set S until it reaches the full rank of the
partition matroid. Since the objective function is monotone, we can see that adding more ele-
ments would not incur a decrease in the marginal gain. In the following part, we claim that if
the standard greedy procedure (Algorithm 9) is applied to the output of Block-Greedy with
Greedy-Subroutine-Mono as the subroutine, the resulting solution set achieves an approxima-
tion ratio of max{1/2, 1− 1/e− 1

ϕ+1}.

Algorithm 9 Greedy
1: Input: the output solution set S obtained by running Block-Greedy with

Greedy-Subroutine-Mono as the subroutine and ϕ = ⌊
√
mini∈[N] ki⌋ − 1 and rj :=

⌊kj/ϕ⌋
2: Output: A ∈ U
3: A← S
4: while ∃x such that A ∪ {x} ∈ P do
5: A← A ∪ argmaxx∈U,A∪{x}∈P ∆f(A, x)

return A

Theorem E.9. Suppose we run the standard greedy algorithm in Algorithm 9 with input being
the output solution set of the Block-Greedy algorithm, then the output solution set achieves an
approximation ratio of max{1/2, 1− 1/e− 1

ϕ+1} where ϕ = ⌊
√
mini∈[N] ki⌋ − 1.

Proof. First of all, notice that S ⊆ A, by the result of Theorem E.2, we can see that f(S) ≥
(1− 1/e− 1

ϕ+1)f(OPT). Since f is monotone, f(A) ≥ f(S) ≥ (1− 1/e− 1
ϕ+1)f(OPT). Then

to prove the result in the Theorem E.9, it suffices to prove that f(A) ≥ f(OPT)/2. Here we use the
same notations as in the proof of Theorem E.2, which means that we define the partition matroid of
{S ⊆ U : |S ∩ Uj | ≤ rjϕ} as P ′, and we define the optimal solution of the problem maxS∈P′ f(S)
as OPT ′. Denote the solution set after completing the i-th round of the outer for loop in Line 4 in
Algorithm 6 as Si. Following the similar idea in the proof of Theorem E.2, we can see that for any
O ∈ P ′, it holds that

f(Si)− f(Si−1) ≥
∆f(Si, O)

ϕ

≥ ∆f(S,O)

ϕ
,

where the last inequality follows from submodularity and the fact that Si ⊆ Sϕ = S. Summing over
all i, then we get

f(S)− f(∅) ≥ ∆f(S,O). (12)

Let us define the partition matroid P ′′ := {S ⊆ U : |S ∩ Ui| ≤ ki − riϕ, ∀i ∈ [N]}. Let us
define the solution set A before the i-th round in Algorithm 9 as Ai, and the element added in the
i-th round as ai. Since P ′′ is a matroid, we have that for any O′ ∈ P ′′, there exists an ordering
of O′ = {o′1, o′2, ..., o′t} such that for each i ∈ [t], Ai/S ∪ {o′i} ∈ P ′′. Therefore, for each i ∈ [t],
Ai ∪ {o′i} ∈ P . By the greedy selection rule in Algorithm 9, we have that

∆f(Ai, ai) ≥ ∆f(Ai, o
′
i) ≥ ∆f(A, o′i),

where the second inequality follows from the fact that A is the output of Algorithm 9 and that Ai ⊆ A.
Summing over all i, we can get that

f(A)− f(S) ≥
∑
i

∆f(A, o′i) ≥ ∆f(A,O′). (13)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Summing over (12) and (13), we can get that
f(A)− f(∅) ≥ ∆f(A,O′) + ∆f(S,O)

≥ ∆f(A,O′) + ∆f(A,O)

≥ ∆f(A,O′ ∪O).

Since the above inequality holds for any O ∈ P ′ and O′ ∈ P ′′. Therefore,
f(A)− f(∅) ≥ max

O∈P′,O′∈P′′
∆f(A,O′ ∪O).

Notice that any set inP can be decomposed into the union of a set inP ′ and a set inP ′′. It then follows
that maxO∈P′,O′∈P′′ ∆f(A,O′ ∪O) ≥ ∆f(A,OPT). Therefore, f(A) ≥ f(OPT)/2.

F APPENDIX FOR SECTION 3

In this section, we present the additional experimental setup and results omitted in Section 3. In
particular, we present additional details about the experimental setup in Section F.1, and additional
experimental results in Section F.2.

F.1 EXPERIMENTAL SETUP

In this section, we provide additional details about the applications used to evaluate our algorithms,
which include set cover, max cover, and graph cut. Below, we define each application and describe
the associated setup in detail.

In the application of set cover, the function f is defined to be the number of tags covered by the
elements in a subset. The problem is defined as follows.
Definition F.1. (Set Cover) Suppose there are a total of n elements denoted as U . Let T be a set
of tags. Each element in U is tagged with a set of elements from T via function t : U → 2T . The
function f is defined as

f(S) = | ∪s∈S t(s)|, ∀S ∈ U.

Next, we introduce the definition of max cover, which is a monotone submodular function defined on
graphs.
Definition F.2. (Max Cut) Let G = (V,E) be a graph, and w : E → R≥0 be a function that assigns
a weight for every edge in the graph. The function f : 2V → R≥0 maps a subset of vertices X ⊆ V
to the total weight of edges between X and V \X . More specifically,

f(X) =
∑

x∈X or y∈X

w(x, y).

We also evaluate our experiments on the instance of image summarization. For this task, we use a
subset of the ImageNet dataset (ImageNet_50).
Definition F.3. (Image Summarization) Let N ⊆ Rd denote the ground set, where each item x ∈ N
(e.g., an image) is represented by a feature vector. The objective is to maximize the Determinantal
Point Process (DPP) function (Iyer and Bilmes, 2015), which is a monotone submodular function
defined as:

f(S) = log det(I +KS),

where I is the identity matrix, K ∈ R|N |×|N | is a positive semidefinite kernel matrix, and KS denotes
the principal submatrix of K indexed by the subset S ⊆ N .

For general SCP, where f can be nonmonotone, the application we consider is where f is a graph cut
function, which is a submodular but not necessarily monotone function.
Definition F.4. (Graph Cut) Let G = (V,E) be a graph, and w : E → R≥0 be a function that
assigns a weight for every edge in the graph. The function f : 2V → R≥0 maps a subset of vertices
X ⊆ V to the total weight of edges between X and V \X . More specifically,

f(X) =
∑

x∈X,y∈V \X

w(x, y).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Next, we present more details about the experimental setup in the order of the problems we consider.
For the experiments on nonmonotone SCP, the dataset is the email-Euall dataset, where the dataset
is partitioned into 5 different subgroups based on the synthetic labels of the dataset. The group
proportions are uniform, i.e., the parameter pj used in this experiment satisfies p1 = p2 = · · · =
p5 = 1/5. To speed up the experiments, the conversion algorithm’s subroutine is parallelized across
10 threads. Additional details about the values of the parameters in the experiments are presented as
follows. The parameter α = 0.2, ϵ = 0.05 and δ = 0.1.

For the experiments on monotone SCKP, we run the experiments on two instances, which include
max cover and set cover. For the max cover instance, we use a subset of the Twitch Gamers
dataset (Rozemberczki and Sarkar, 2021), selecting 2,000 users speaking six major languages which
include English, German, French, Spanish, Russian, or Chinese. For the set cover instance, we
use two datasets here. The first one is the core dataset, which is the Corel5k set of images in
Duygulu et al. (2002) (n = 4500). We assign a label to each element in the dataset uniformly
selected from {0, 1, 2, 3, 4}. Another dataset we use here is the synthetic dataset. The synthetic
dataset is generated with 5 partitions with 40 ∗ i + 200 number of elements in partition i for each
i ∈ [4]. The synthetic dataset has a similar structure as the tightness example in Section E.4 in the
appendix. In the first partition, each element is mapped to a disjoint set of tags. For the elements
partition i where i > 1, the mapped set of tags of 100 elements are the same, with the other elements
mapped to disjoint sets of 25 tags. The cost of each element in the synthetic dataset and in the
twitch dataset is generated randomly in the range of [0.001, 10]. The other parameters include:
α = 0.2, ϵ = 0.05. The parameter pj used in this experiment satisfies p1 = p2 = · · · = p5 = 1/5.
Next, we illustrate the two algorithms used in the experiments. The GREEDY algorithm uses the
converting theorem in Algorithm 4 with the subroutine being a greedy algorithm. In particular, the
subroutine greedy algorithm adds the element s = argmaxx:S∪x∈P

∆f(S,x)
c(x) to the solution set S,

where P = {S ⊆ U : c(S ∩ Uj) ≤ pjv,∀j ∈ [N]}. Here the subroutine algorithm of GREEDY
is not guaranteed with any approximation ratio. In this sense, this algorithm can be regarded as a
heuristic algorithm. The GREEDY-Knapsack algorithm runs by iteratively adding the element with
the highest density of marginal gain, i.e., s = argmaxx∈U

∆f(S,x)
c(x) until f(S) ≥ (1− ϵ)τ .

For the SCF experiments, we consider the same synthetic dataset and the corel dataset used in the
experiment for SCKP. Apart from these datasets, we also consider the image summarization task,
where the goal is to select a diverse and representative image subset across all classes. The dataset
used here is ImageNet Deng et al. (2009), consisting of 50 classes and 26,112 images (ImageNet_50).
Each image is represented by a feature vector extracted using ResNet-18. Additionally, in our
experiment, we set K as a Gaussian kernel matrix such that Kij = e−||xi−xj ||2/σ2

.

To ensure a fair comparison among the used algorithms, we keep the approximation ratio on the
function value f the same by setting ε = 0.05 for THRES-Fair and ε = 0.1 for GREEDY-Fair and
BLOCK-G-Fair while keeping the other parameters the same.

F.2 ADDITIONAL EXPERIMENTAL RESULTS

The additional experimental results comparing different algorithms for different problems are pre-
sented in Figure 2 and 3. The additional experimental results for SCKP algorithms on the corel
dataset and the synthetic dataset are presented in Figure 2. The results demonstrate that our algorithm,
BLOCK-G, achieves a slightly lower cost compared to GREEDY and significantly outperforms
GREEDY-Knapsack in this regard. Additionally, BLOCK-G requires substantially fewer function
queries and has much faster runtime than GREEDY, highlighting its practical efficiency. Further
results on the query complexity and runtime for the non-monotone SCP problem are provided in
Figures 3(i) and 3(j). From the results, we can see that the BLOCK-G algorithm runs faster then
the STREAM algorithm and the GUIDED-RG algorithm, which demonstrates the efficiency of our
algorithm.

The additional results of comparing different algorithms in terms of the query complexity for the
experiments on the SCF problem are presented in Figure 3(c) and 3(g). From the results, we can
see that the query complexity of the BLOCK-G-Fair algorithm is better than that of the GREEDY-
Fair algorithm, and is worse than THRES-Fair. This is because these three algorithms differ in
the subroutine algorithm used in the converting algorithm in Algorithm 1 in Chen et al. (2025)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

100 200 300
threshold τ

0.0

0.5

1.0

1.5

2.0

ex
ec

ut
io

n
ti

m
e

BLOCK-G
GREEDY-Knapsack
GREEDY

(a) corel time (SCKP)

100 200 300
threshold τ

0

100

200

300

400

Va
lu

e
of

 f

BLOCK-G
GREEDY-Knapsack
GREEDY

(b) corel f (SCKP)

100 200 300
threshold τ

0.0

0.8

1.6

2.4

3.2

qu
er

ie
s

×106

BLOCK-G
GREEDY-Knapsack
GREEDY

(c) corel queries (SCKP)

100 200 300
threshold τ

0

600

1200

1800

2400

Bu
dg

et
 v

BLOCK-G
GREEDY-Knapsack
GREEDY

(d) corel budget (SCKP)

1 2 3 4 5
threshold τ ×103

0.0

1.5

3.0

4.5

ex
ec

ut
io

n
ti

m
e

GREEDY
BLOCK-G
GREEDY-Knapsack

(e) synthetic time (SCKP)

1 2 3 4 5
threshold τ ×103

0.0

1.5

3.0

4.5

6.0

Va
lu

e
of

 f

×103

GREEDY
BLOCK-G
GREEDY-Knapsack

(f) synthetic f (SCKP)

1 2 3 4 5
threshold τ ×103

0.0

1.5

3.0

4.5

qu
er

ie
s

×106

GREEDY
BLOCK-G
GREEDY-Knapsack

(g) synthetic queries
(SCKP)

1 2 3 4 5
threshold τ ×103

0.0

0.6

1.2

1.8

2.4

Bu
dg

et
 v

×103

GREEDY
BLOCK-G
GREEDY-Knapsack

(h) synthetic budget
(SCKP)

Figure 2: The experimental results of running the algorithms on the Corel5k dataset and the synthetic
dataset. Samples: the number of queries. Budget: maxi∈[N]

c(S∩Ui)
pi

.

developed to convert an algorithm for SMF to SCF. Specifically, THRES-Fair used the threshold
greedy algorithm, which runs in time complexity of O(nϵ log

n
ϵ) while the subroutine algorithms for

BLOCK-G-Fair and GREEDY-Fair both run in time O(nkgβ) where kg is the guess of |OPT | and
the parameter β refers to the approximation ratio. Therefore, the query complexity of BLOCK-G-Fair
is lower than GREEDY-Fair because the parameter β for BLOCK-G-Fair is ln 1

ϵ

ln 2 , which is smaller
than the GREEDY-Fair, which is O(1ϵ).
The results of the function values for different assignments of τ on the experiments of SCF are
presented in Figure 3(f) and 3(b). From the plots, we can see that the function value of the returned
solutions of different algorithms are almost the same, and are linear in the threshold value τ . This
aligns with our theoretical guarantee of different algorithms, which requires that f(S) ≥ 0.9τ for
all of the algorithms. Finally, we also provide the results of the execution time of running different
algorithms in Figure 3(d), and 3(h).

The additional experimental results on the ImageNet_50 dataset are presented in Figure 4. From these
results, we observe that block-greedy consistently achieves significantly better fairness performance
and, in many cases, returns solutions with lower or comparable cost to baselines. This demonstrates
its practical effectiveness, especially in fairness-sensitive applications.

Finally, we also plot the distribution of different labels in the solutions produced by these algorithms
on the corel dataset with τ = 300, as is presented in Figure 5(a), 5(b), and 5(c). From the plots, we
can see that over 30% of the elements in the solution returned by GREEDY-Fair and THRES-Fair
have the label 1, which indicates a lack of fairness in the output distribution. While the solutions
produced by our algorithm BLOCK-G-Fair exhibit significantly fairer distributions across different
labels, demonstrating the effectiveness of our proposed algorithms.

G BROADER IMPACT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

200 400 600
threshold τ

0.0

0.8

1.6

2.4

qu
er

ie
s

×106

GREEDY
BLOCK-G
GREEDY-Knapsack

(a) twitch q (SCKP)

100 200 300 400
Value of the given threshold

0

100

200

300

400

Va
lu

e
of

 f

THRES-Fair
GREEDY-Fair
BLOCK-G-Fair

(b) corel f (SCF)

100 200 300 400
Value of the given threshold

0.0

1.5

3.0

4.5

6.0

qu
er

ie
s

×106

THRES-Fair
GREEDY-Fair
BLOCK-G-Fair

(c) corel queries (SCF)

100 200 300 400
Value of the given threshold

0.0

0.5

1.0

1.5

2.0

ex
ec

ut
io

n
ti

m
e

THRES-Fair
GREEDY-Fair
BLOCK-G-Fair

(d) corel time (SCF)

200 400 600
threshold τ

0

10

20

30

40

ex
ec

ut
io

n
ti

m
e

GREEDY
BLOCK-G
GREEDY-Knapsack

(e) twitch time
(SCKP)

1000 2000 3000 4000 5000
Value of the given threshold

0.0

1.5

3.0

4.5

6.0

Va
lu

e
of

 f

×103

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(f) synthetic f (SCF)

1000 2000 3000 4000 5000
Value of the given threshold

0.0

1.5

3.0

4.5

qu
er

ie
s

×106

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(g) synthetic queries (SCF)

1000 2000 3000 4000 5000
Value of the given threshold

0

6

12

18

24

ex
ec

ut
io

n
ti

m
e

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(h) synthetic time (SCF)

3 4 5 6 7
threshold τ ×105

0.0

1.5

3.0

4.5

6.0

qu
er

ie
s

×1010

STREAM
RG
BLOCK-G
GUIDED-RG

(i) euall queries (nonmono-
tone SCP)

3 4 5 6 7
threshold τ ×105

0.0

1.5

3.0

4.5

6.0

ex
ec

ut
io

n
ti

m
e

×104

STREAM
RG
BLOCK-G
GUIDED-RG

(j) euall time (nonmono-
tone SCP)

Figure 3: The experimental results of running the algorithms on the Corel5k dataset and the syn-
thetic dataset. Samples: the number of queries. Cost: the size of the returned solution. Budget:
maxi∈[N]

c(S∩Ui)
pi

. Fairness difference: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.

40 60 80 100 120
threshold τ

0

40

80

120

Va
lu

e
of

 f

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(a) ImageNet_50 f (SCF)

40 60 80 100 120
threshold τ

0.0

0.3

0.6

0.9

1.2

qu
er

ie
s

×107

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(b) ImageNet_50 queries
(SCF)

40 60 80 100 120
threshold τ

0.00

0.08

0.16

0.24

0.32

Fa
ir

ne
ss

 d
iff

er
en

ce

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(c) ImageNet_50 fairness
difference (SCF)

40 60 80 100 120
threshold τ

80

160

240

320

Co
st

GREEDY-Fair
THRES-Fair
BLOCK-G-Fair

(d) ImageNet_50 cost
(SCF)

Figure 4: The experimental results of running the algorithms on the ImageNet_50 dataset on the SCF
problem. Samples: the number of queries. Cost: the size of the returned solution. Fairness difference:
(maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

3

2

14

0

3

0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

fairness

(a) THRES-Fair

3

2

14

0

3

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fairness

(b) GREEDY-Fair

3

2

14

0

3

0.05

0.10

0.15

0.20

0.25

fairness

(c) BLOCK-G-Fair

Figure 5: Radar plots of the label distributions for the experiments on the instance of SCF on the
corel dataset with τ = 300.

35

	Introduction
	Related Work

	Algorithms and Theoretical Analyses
	Non-Monotone Submodular Cover with Partition Constraints
	Monotone Submodular Cover with Knapsack Partition Constraints
	Converting Theorem for SCKP

	Submodular Cover with Fairness Constraint

	Experiments
	Experiments on Nonmonotone SCP
	Experiments on SCKP
	Experiments on SCF

	Reproducibility statement
	The Use of Large Language Models (LLMs)
	Appendix for Section 2.1
	Appendix for Section 2.2
	Motivating Applications of SCKP
	Clarification of the Problem Definition of SCKP
	Proof of Theorem 2.5
	Theoretical Analysis of Algorithm 5

	Appendix for Section 2.3
	Submodular Maximization under Partition Matroid Constraint
	Block Greedy Framework
	Monotone SMP
	Tight Examples
	Subroutine Algorithm for Monotone SMP

	Nonmonotone SMP
	Proof of Theorem E.1
	Discussion on Theorem E.2

	Appendix for Section 3
	Experimental setup
	Additional experimental results

	Broader Impact

