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Abstract

We study recovering fluid density and velocity from sparse multiview videos.
Existing neural dynamic reconstruction methods predominantly rely on optical
flows; therefore, they cannot accurately estimate the density and uncover the
underlying velocity due to the inherent visual ambiguities of fluid velocity, as
fluids are often shapeless and lack stable visual features. The challenge is further
pronounced by the turbulent nature of fluid flows, which calls for properly designed
fluid velocity representations. To address these challenges, we propose hybrid
neural fluid fields (HyFluid), a neural approach to jointly infer fluid density and
velocity fields. Specifically, to deal with visual ambiguities of fluid velocity,
we introduce a set of physics-based losses that enforce inferring a physically
plausible velocity field, which is divergence-free and drives the transport of density.
To deal with the turbulent nature of fluid velocity, we design a hybrid neural
velocity representation that includes a base neural velocity field that captures
most irrotational energy and a vortex particle-based velocity that models residual
turbulent velocity. We show that our method enables recovering vortical flow
details. Our approach opens up possibilities for various learning and reconstruction
applications centered around 3D incompressible flow, including fluid re-simulation
and editing, future prediction, and neural dynamic scene composition. Project
website: https://kovenyu.com/HyFluid/.

1 Introduction

Fluid is ubiquitous in our surroundings, from a small breeze in the morning to large-scale atmosphere
flow that would affect the weather in the following week. Understanding and predicting fluid
dynamics play a central role in climate forecasting (Bauer et al., 2015), vehicle design (Bushnell
& Moore, 1991), visual special effect (Pfaff et al., 2010), etc. Yet, it remains an open problem in
scientific machine learning to accurately recover fluid flows from visual observations. Flow motions
can only be seen indirectly, and, unlike solids that have certain shapes and simple constrained motion
patterns, fluid systems have intricate and complex dynamics that exhibit different features across
spatial scales. These characteristics pose unique challenges in the representations and algorithms to
recover physically correct velocity. Recently, physics-informed neural networks (Raissi et al., 2019)
have shown promise in recovering velocity fields from density fields for scientific computing. These
neural methods are scalable and flexible compared to traditional grid-based methods, yet they require
accurate density fields that are unavailable in uncontrolled ordinary scenes.

In this work, we focus on recovering the density† and velocity of fluids from sparsely captured
multiview videos (see Fig. 1 for illustration). We identify three key challenges. Firstly, the fluid
velocity is ambiguous from visual observations. Unlike solid objects characterized by consistent

∗Equal contributions.
†“Density” refers to the concentration of the fluid substance such as smoke soot. Not to be confused with the

physical density, i.e., mass over volume.
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Figure 1: We aim at inferring hybrid neural fluid representations of density and velocity from sparse multi-view
videos. This allows novel view video synthesis, re-simulation, and dynamic scene composition.

shapes and stable visual features, fluids are inherently shapeless, often monochromatic, and semi-
transparent. This lack of physical definition makes visual tracking an implausible task, contributing to
pronounced visual ambiguity, particularly in regions of laminar flow where the fluid appearance hardly
changes. This challenge is beyond the capacity of general-purpose neural dynamic reconstruction
methods (Li et al., 2021; Du et al., 2021), as they predominantly depend on optical flow which is
ineffective in this context.

Secondly, accurately depicting fluid velocity necessitates appropriate representations that respect
its turbulent features. Fluid flows exhibit varying features across multiple spatial scales (Frisch &
Donnelly, 1996), a phenomenon that is challenging to capture within a single neural representation
due to its spectral bias (Rahaman et al., 2019). At the human scale, fluid motions express not only
laminar flows but also turbulence (Pope, 2000). This results in a complicated entanglement of
rotational, shearing, and smooth motions. The turbulent flows are high-frequency in both space and
time. Therefore, the representation of such flow should be able to accommodate a broad spectrum of
signal frequencies while also preserving the unique structure of rotational flows.

Lastly, it is inherently ambiguous to reconstruct physically plausible 3D density fields from sparse
observations. Recovering fluid density and appearance from limited 2D videos is ill-posed primarily
due to the intricate non-linear absorption and scattering processes associated with semi-transparent
fluids (Max, 1995). Consequently, the reconstruction of under-constrained continuous density fields
from sparse observations is an intrinsically difficult task.

To address these challenges, we propose hybrid neural fluid fields (HyFluid), a neural approach to
jointly infer fluid density and velocity from sparse-view videos. At the core of HyFluid are two
key technical contributions including a set of simple yet effective physics-based losses and a hybrid
neural velocity representation. Our physics-based losses leverage physical constraints from the
Navier-Stokes equations to jointly learn physically plausible fluid density and velocity fields. The
physics-based losses enforce inferring a divergence-free velocity field that drives the transport of the
density field. In addition to the new losses, we propose a hybrid fluid velocity representation as it
is difficult for a single neural representation to capture turbulent fluid velocity. The main idea is to
decompose our fluid velocity field into a base and a residual turbulent velocity field. The base velocity
field is represented by a neural field that captures most irrotational energy, and the residual velocity
field is represented by vortex particles that feature highly rotational and shearing velocities. In order
to address the 2D-to-3D density ambiguity, we leverage both visual imaging signals by differentiable
volume rendering and the physical fluid transport constraint to regularize the density field.

We demonstrate that HyFluid can yield high-fidelity recovery of density and velocity, allowing novel
view video synthesis, re-simulation, editing, future prediction, and neural dynamic scene composition
(Fig. 1). In summary, our contributions are three-folded: (1) We propose hybrid neural fluid fields
(HyFluid), a neural approach to infer fluid density and velocity from sparse multiview videos. (2)
We show that using simple physics-based losses and a hybrid neural velocity representation allows
uncovering turbulent fluid motion from sparse observations. (3) We evaluate our method on novel-
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view re-simulation and novel-view future prediction to benchmark joint reconstruction for real fluids,
and we show that our approach delivers high-fidelity synthesis and reconstructions in comparison to
state-of-the-art neural methods.

2 Preliminaries

Incompressible Navier-Stokes equations. Our motion representation and learning signals are
motivated by incompressible Navier-Stokes equations. With a low flow speed, fluid motion is
considered incompressible and can be well described by:

Du

Dt
=

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇ · ∇u+ f , (1)

∇ · u = 0. (2)

Here, Eqn. 1 is known as the momentum equation, where the LHS is the material derivative for
velocity, Du

Dt = ∂u
∂t + u · ∇u, which represents the time rate of change of velocity u of a fluid parcel,

and the RHS is the momentum induced by pressure gradient − 1
ρ∇p (where ρ denotes the physical

density of the fluid parcel), viscosity ν∇ · ∇u, and some external force f . We consider inviscid fluid
and thus drop the viscosity term. Eqn. 2 is known as the mass conservation equation, meaning that
the mass flowing into a controlled volume should be equal to the mass flowing out of the volume.

Differentiable volume rendering. We integrate volume rendering for joint learning of visual
appearance, density, and velocity from videos. Volume rendering is a suitable model for translucent
materials and participating media like smoke and fog (Kajiya & Von Herzen, 1984). In volume
rendering, the radiance L(o,d) arriving at the camera location o from direction d (a.k.a. the radiance
of a camera ray r(t) = o− td) with near and far bounds tn and tf is given by

L(o,d) =

∫ tf

tn

T (t)σ(r(t))Le(r(t),d)dt, (3)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds) denotes the transmittance along the ray from tn to t, Le denotes

the emitting radiance, and σ denotes the optical density which can be considered proportional to the
concentration density of fluid substance according to Beer-Lambert law. Following recent neural
rendering methods (Mildenhall et al., 2020), we use quadrature to discretize it (Max, 1995).

3 Hybrid Neural Fluid Fields

Our goal is to recover the fluid appearance, density, and velocity from sparse multiview RGB videos.
To this end, we propose hybrid neural fluid fields (HyFluid). At the core of HyFluid are a set of
simple physics-based losses and a hybrid neural velocity representation. In particular, HyFluid aims
to infer a neural density field σ(x, y, z, t), the appearance of the fluid Le, and the underlying velocity
u(x, y, z, t) = ubase(x, y, z, t) + uvort(x, y, z, t), where we decompose it into a base neural velocity
field ubase and a residual vortex particle-driven turbulent velocity. u = [u, v, w] denotes the velocity
along x, y, z axis, respectively. In the following, we first introduce the physics-based losses, then we
describe our hybrid velocity representation, and finally, we summarize our learning signals for the
joint inference. We show a conceptual illustration in Fig. 2.

Physics-based losses. We propose physics-based losses Lphysics including a density loss, a projection
loss, and a laminar regularization loss.

Density loss. While the neural density field can be learned through differentiable volume rendering,
the underlying velocity field is hidden from the visual observations. Unlike solids that have regular
shapes and invariant visual features to track, fluids are often shapeless, monochromatic, and semi-
transparent. This makes it implausible to visually track it. To uncover the hidden velocity from
visual observations, we resort to the density transport equation in incompressible flows, Dσ

Dt = 0, and
introduce a physics-informed supervision signal:

Ldensity = E
x,y,z,t

[
∂σ

∂t
+ u · ∂σ

∂x
+ v · ∂σ

∂y
+ w · ∂σ

∂z

]
. (4)
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Figure 2: Illustration of hybrid neural fluid fields (HyFluid) which aims to jointly infer fluid density and velocity
from videos using visual signals via differentiable volume rendering and physics-based losses. To facilitate
learning turbulent velocity, we decompose the velocity field into a base velocity and a vortex particle-driven
velocity. See the main text for detailed descriptions.

This loss says that the 3D velocity field (u, v, w) at any given moment t should transport the density
field σ such that it evolves to the density field at the next moment, in a similar spirit to scene
flow (Vedula et al., 1999).

Projection loss. Another important physical property of incompressible flow is mass conservation
depicted in Eqn. 2, that is, the velocity field should be divergence-free. A straightforward way to
enforce divergence-free condition is to impose a loss on the divergence of velocity, ∂u

∂x + ∂v
∂y + ∂w

∂z .
However, we find that this empirically leads to a degenerated solution, where only the laminar flows
(i.e., smooth, direct-current flows) can be uncovered as this is a trivial local minimum for every point.
Yet, the incompressibility of fluid flows is confined through a global dynamic system, modulated by
the pressure of the fluid.

Therefore, we need a globally-aware, physically-plausible supervision that does not conform to trivial
local minima. Motivated by the commonly used pressure projection solver in computational fluid
dynamics, we propose a projection loss that constrains our learned velocity to be divergence-free:

Lproj = E
x,y,z,t

[
∥u− up∥2

]
, (5)

where up = project(u) are the pressure-projected velocity field, using a pressure project solver.
A project solver implements a Helmholtz decomposition by solving a global linear system for
pressure, and it projects the velocity field u to a divergence-free manifold using the gradient of the
solved pressure. Also, we notice that any divergence-free velocity field u incurs zero projection loss
as it is an identity mapping for divergence-free fields. Thus, this projection loss essentially constrains
the uncovered velocity within a divergence-free subspace, and it is not subject to trivial local minima
of pure direct-current flows.

Laminar regularization loss. These density and projection losses do not warrant physically-correct
velocity reconstruction for laminar flows. In laminar flows, all partial derivatives of density are zero,
so any velocity, e.g., all-zero velocity, incurs zero Ldensity. As for Lproject, all-zero velocity fields also
incur a zero loss. Hence, we introduce a laminar regularization loss:

Llaminar = E
x,y,z,t

[max(0, γσ − ∥u∥)] , (6)

which is a hinge loss that encourages high-density regions to have non-zero velocity, and γ denotes a
hyperparameter to scale the threshold according to the velocity magnitude unit. These three losses
are complementary and interconnected to uncover a physically plausible fluid flow.

Hybrid neural velocity representation. At the human scale, fluid flows are often turbulent. They
exhibit complex dynamic features including circular and shearing flows. In addition to the common
challenges of reconstructing non-turbulent flows, turbulent flows are even more intricate and difficult
to model and capture. They are high-frequency flows in both space and time. This demands that the
velocity representation be able to accommodate a wide range of signal frequencies and the particular
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structure of rotational flows. However, neural representations are known to have certain spectral
inductive biases toward representing low-frequency signals (Rahaman et al., 2019). While this can be
alleviated by position embedding (Tancik et al., 2020) or sinusoidal activation functions (Sitzmann
et al., 2020), they still lack a proper structure to capture and represent highly detailed turbulent flows.

We propose a hybrid neural velocity representation to tackle this challenge. The main idea is to
decompose the underlying flow field u = ubase + uvort into a base neural velocity field ubase and a
residual vorticity-driven velocity uvort. The base neural velocity field captures the large-scale flow
motion, and the vorticity-driven velocity is a dedicated representation of the small-scale vortex details
that are hard to characterize by the base field. For the base velocity field ubase, we extend instance
neural graphics primitive (iNGP) (Müller et al., 2022) representation to the temporal domain.

The residual vorticity-driven flow uvort is complementary to the base flow by leveraging the physical
structure of turbulent fluid flows. The physical model behind the vorticity-driven flow is prescribed
by the curl form of the Navier-Stokes equations (see Cottet et al. (2000) for more details):

Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇ · ∇ω +∇× f , (7)

where ω = ∇× u denotes the vorticity. We assume inviscid fluid and conservative body force, and
thus only the vortex stretching term ω · ∇u is non-zero on the RHS. In this case, Eqn. 7 becomes the
vorticity transport equation, saying that vorticity is stretched and advected by the velocity flow.

This physical model has been widely used in fluid simulation (Cottet et al., 2000), known as vortex
methods. In particular, we consider the vortex particle methods (Selle et al., 2005), where we use a
particle-based representation for vorticity, which is low-dimensional, is easy to temporally evolve, and
well embeds the circular physical flow structures in it. We represent a vortex particle p at some time
stamp t by a triplet {Ip,xt

p,ω
t
p} of its intensity Ip, position xt

p, and vorticity ωt
p. Our vorticity-driven

flow uvort(x, t) induced by vortex particles is represented by:

uvort(x, t) =
∑
p

Ip(Np × ω̃p), Np = (xt
p − x)/∥xt

p − x∥, ω̃p = K(x− xt
p)ω

t
p, (8)

where K(x) = exp(−∥x∥2/2r2)/(r3(2π)3/2) is a Gaussian distribution kernel. Intuitively, every
vortex particle “carries” a local circular momentum, which is itself transported with the flow prescribed
by Eqn. 7. Collectively, a set of vortex particles allows learning complex flow details which are hard
to capture by the base velocity field.

However, naively learning the vortex particles leads to poor local minima due to the complex
interdependence of u and {Ip,xt

p,ω
t
p}. Thus, we make two simplifications. First, we assume that

most energy is captured by the base flow and only use the base flow to transport vortex particles.
This is achieved by first learning the base flow and then freezing the base flow to learn the residual
flow. Second, we introduce a seeding strategy to disentangle learnable parameters from the particle
transport: we seed overly many vortex particles on high-curl spatio-temporal locations and pre-
compute the trajectory {xt

p} and {ωt
p} for all t and p by the learned base flow. Therefore, the

learnable parameters are reduced to {Ip}. The redundant vortex particles are automatically suppressed
by learning to have zero intensities. We leave more details of the seeding strategy in the Appendix.

Joint inference of fluid fields. It is a highly ill-posed problem to recover density and appearance
from sparse visual observations, as the imaging process for semi-transparent fluids involves complex
non-linear absorption and scattering. The visual appearance of fluids depends not only on density
but also lighting and fluid substance properties. Therefore, recovering turbulent, under-constrained
continuous density fields from limited observations is inherently challenging.

To address this challenge, we leverage both visual imaging signals and physical fluid transport
constraints by jointly learning density, appearance, and velocity. The visual signal supervision
through differentiable volume rendering is given by:

Lrender = E
o,d,t

[
∥Lrender(o,d)− Lobserve(o,d)∥2

]
, (9)

where Lrender is our volume rendered values by Eqn. 3 and Lobserve is sampled from video frames.
Notice that we sample rays continuously in the viewing frustums instead of sampling through only
pixel centers as NeRF-like methods do (Mildenhall et al., 2020), as we aim to learn continuous fields
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and we rely on good partial derivatives from the fields. The physical transport constraint is provided
by Eqn. 4, i.e., we supervise the partial derivatives of the density field. We compute all derivatives by
auto-differentiation (Paszke et al., 2017). Our loss function is given by:

L = βrenderLrender + βdensityLdensity + βprojLproj + βlaminarLlaminar, (10)

where all the βs are loss weights.

Another inherent ambiguity is between emitting radiance and density. As in Eqn. 3, the emitting
radiance is multiplied by density, which means that an unconstrained spatially-varying emitting
radiance field admits all sorts of trivial solutions for density. Empirically, we find little differences
between using learned spatially-varying color and using a constant color. Thus, we set emitting
radiance to be constant to remove this ambiguity.

4 Related Work

Fluid reconstruction. Fluid flow reconstruction from visible light measurement has been widely
studied in science and engineering. Well-established methods used in controlled lab environments
include active sensing techniques such as laser scanners (Hawkins et al., 2005), light path (Ji et al.,
2013), and structural light (Gu et al., 2012), as well as passive marker-based methods such as particle
imaging velocimetry (PIV) (Adrian & Westerweel, 2011; Elsinga et al., 2006) which injects passive
particles into the fluid flows. These methods allow accurate flow measurement, yet they require
specialized setup for markers, lighting, and capturing devices.

Recent methods also seek to reconstruct fluid flows from casual visible light measurements without a
specialized setup. Earlier works use tomography and linear imaging formation to reconstruct density
grids from visual observations (Gregson et al., 2014; Okabe et al., 2015) and then estimate velocity
using physical priors (Gregson et al., 2014; Eckert et al., 2018). This line of work has been extended
to joint optimization for both velocity and density (Eckert et al., 2019) to improve reconstruction
quality. Since this is a highly unconstrained problem, synthesized view supervision is proposed
to regularize the reconstruction (Zang et al., 2020). Franz et al. (2021) introduce a density-based
rendering formation with a global differentiable simulation framework. They use manually calibrate
lighting directions and fluid source location to allow consistent differentiable simulation optimization.
However, these methods ignore the visual appearance, suffering from the inherent visual ambiguity
of fluid density and appearance.

Neural dynamic scene representations. Using neural networks as implicit visual scene repre-
sentations have been made effective and popular. Earlier works use neural representations for
geometry (Park et al., 2019; Mescheder et al., 2019) and visual appearance (Sitzmann et al., 2019).
As a seminal work, neural radiance fields (NeRFs) (Mildenhall et al., 2020) incorporate volume
rendering to learn implicit geometry and appearance from images. Follow-ups of NeRFs extend ap-
plications from novel view synthesis to dynamic scene reconstruction (Li et al., 2021; Pumarola et al.,
2021), relighting (Zhang et al., 2021; Yu et al., 2023), scene segmentation (Yu et al., 2022; Sajjadi
et al., 2022), robot manipulation (Le Cleac’h et al., 2023; Tian et al., 2023), system identification (Li
et al., 2023), etc.

Generic dynamic NeRFs incorporate deformation fields (Park et al., 2021b; Pumarola et al., 2021;
Park et al., 2021a) or scene flow fields (Li et al., 2021; Du et al., 2021; Xian et al., 2021; Li et al.,
2022) to represent motion. These motion representations essentially rely on stable visual features such
as color gradients and edges, and thus they are not suitable for uncovering fluid flows which generally
do not exhibit stable visual features. Notably, (Chu et al., 2022) is the most relevant work to ours. Chu
et al. (2022) propose the physics-informed neural fields (PINF) that incorporate physics-informed
losses (Raissi et al., 2019) to reconstruct fluid flows from sparse-view videos with learned priors from
synthetic data. However, PINF does not consider the inherent physical structures of real fluid flows
and thus only reconstructs laminar flows. Our HyFluid allows uncovering turbulent real flows by
novel physics-based losses and the hybrid neural velocity representation.

Learning fluid dynamics. Learning fluid dynamics holds the promise to accelerate simulation and aid
fluid reconstruction. Earlier work on learning fluid dynamics to accelerate simulation includes using
convolutional networks to evolve fluid states (Tompson et al., 2017; Ummenhofer et al., 2019; Prantl
et al., 2022) or learning latent simulation (Wiewel et al., 2019; Kim et al., 2019), supervised by 3D
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HyFluid (Ours) GTPINF NeRFlowNeuroFluid

Figure 3: Visualization of novel view synthesis results on a real capture. Note that ours more faithfully recovers
the density distribution of the fluid without floaters or missing regions.

PINF Ground truthNeRFlow HyFluid (Ours)GlobTrans

Figure 4: Visualization of re-simulation results on a real capture. Ours synthesizes reasonable re-simulation.

fluid simulation data. While these methods learn from 3D fluid data, a few recent work such as Guan
et al. (2022) and Liu et al. (2023) learn simulators from multi-view videos. However, both of them
assume to have groundtruth reconstructed initial fluid states, restricting the applications to synthetic
data. Thus, it still remains open how existing methods may help fluid reconstruction. An exception
is Deng et al. (2023) that use low-dimensional vortex particles to represent fluid velocity fields and
thus allow reconstructing fluid velocity from a single video, yet their formulation is restricted to 2D
domain due to complex vortex stretching in 3D vortex dynamics.

5 Experiments

Datasets. We use both real captures and synthetic simulation for evaluation. For real captures, we
use the ScalarFlow dataset (Eckert et al., 2019) which consists of videos of buoyancy-driven rising
smoke plumes. We use the first five scenes from the real captures. For each scene, there are five video
recordings. The five cameras are fixed-position throughout capture and distributed evenly across a
120◦ arc centered at the rising smoke. Each video has 150 frames with 1062× 600 resolution. These
videos have been post-processed to remove backgrounds. We follow Chu et al. (2022) to use 120
frames for each video. For each scene, we use four videos for training, and one held-out video for
testing (i.e., as the groundtruth for the novel view).

Synthetic simulation allows evaluating 3D velocity and density against the groundtruth. We use
ScalarFlow synthetic dataset generation code (Eckert et al., 2019). We generate five examples with
different inflow source with higher viscosity and another five examples with lower viscosity.

Evaluation metrics. For real fluid flows we do not have volumetric 3D groundtruth, so we use
novel view video rendering to evaluate the reconstruction quality. In particular, we use the following
three tasks: novel view video synthesis, novel view re-simulation, and novel view future prediction.
Re-simulation and future prediction require high-fidelity velocity reconstruction and thus provide
a means to evaluate velocity reconstruction. We use peak signal-noise ratio (PSNR), structural
similarity index measure (SSIM), and the perceptual metric LPIPS (Zhang et al., 2018).

For synthetic data, we can evaluate the reconstruction results against the simulation groundtruth.
Since the simulation groundtruth are up to a scale, we use scale-invariant RMSE to measure the
performance. We only compute metrics where groundtruth density is greater than 0.1 to rule out
empty space (which is otherwise dominant) for clearer quantitative comparison. In particular, we
consider volumetric density error (by querying density networks at the simulation grid points) to
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Figure 5: Visualization of future prediction results on a real capture. Notice how our plume expands while
PINF (Chu et al., 2022) only moves the plume up.

Models Novel view synthesis Re-simulation Future prediction

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRFlow (Du et al., 2021) 18.01 0.7880 0.1958 17.20 0.8174 0.1658 - - –
GlobTran (Franz et al., 2021) 25.97 0.9312 0.0783 24.55 0.8988 0.1017 - - -
NeuroFluid (Guan et al., 2022) 22.41 0.8452 0.1560 - - - - - -
PINF (Chu et al., 2022) 29.55 0.9244 0.0881 24.97 0.9109 0.1278 24.19 0.8366 0.2155
HyFluid (ours) 31.14 0.9330 0.0966 28.37 0.9158 0.1171 26.12 0.8448 0.1968

Table 1: Comparison on renderings for three tasks on real captures.

evaluate density prediction, and warp error (i.e., using velocity to advect density and comparing to
GT density) to evaluate both density and velocity prediction.

Baselines. We consider three recent flow reconstruction methods: NeRFlow (Du et al., 2021), a neural
dynamic reconstruction method for fluid reconstruction; GlobTran (Franz et al., 2021), a grid-based
fluid reconstruction method; and PINF (Chu et al., 2022), the latest neural fluid reconstruction method.
We also compare to NeuroFluid (Guan et al., 2022), a recent fluid dynamics learning approach. Since
NeuroFluid requires having 3D density and velocity at the first frame, we use PINF reconstructed
fields for it. We leave training details and compute resources in Appendix.

5.1 Novel view video synthesis

In this task, we aim to evaluate the inferred density fields by synthesizing novel view videos. We use
all 120 frames from the held-out test view for all scenes and report the average numbers. As shown
in Table 1, our method is comparable to the state-of-the-art method PINF (Chu et al., 2022). Notice
that ours is better in PSNR which is an objective metric that measures the optical similarity of the
synthesized image and the groundtruth. GlobTrans (Franz et al., 2021) uses adversarial loss together
with a specific rendering formulation, which may contribute to better perceptual LPIPS performances.
Yet, this compromises objective fidelity as reflected by lower PSNR. Qualitative results in Fig. 3
showcase the capability of our method to accurately reconstruct density fields, which paves the way
for the inference of high-fidelity physically-plausible velocity fields.

5.2 Re-simulation

HyFluid (Ours)PINF Reference

Figure 6: Velocity slice on a real capture.

The re-simulation task accesses the ability of
the models to infer the velocity fields accurately.
Specifically, we use the reconstructed density
from the first frame and advect the density across
time to the last frame using the learned velocity.
We use the standard MacCormack method (Selle
et al., 2008) for advection. As for fluid source,
we use the reconstructed density field in the
bottom of the scenes. Results in Table 1 and
Fig. 4 show that our method generates reason-
able results, whereas PINF (Chu et al., 2022)
and NeRFlow (Du et al., 2021) completely fail.
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Figure 7: Visualization of velocity field inferred by HyFluid from a real 3-view capture.

Low vis. Den. err.↓ Warp err.↓ PSNR↑ SSIM↑ LPIPS↓

PINF 5.01 4.84 23.43 0.8555 0.2153
Ours 2.94 3.37 27.28 0.8616 0.1285

High vis. Den. err.↓ Warp err.↓ PSNR↑ SSIM↑ LPIPS↓

PINF 4.91 4.93 27.26 0.8728 0.1537
Ours 2.85 3.21 28.57 0.8670 0.1233

Table 2: Evaluation on synthetic data of different lev-
els of viscosity.

HyFluid (Ours) GTPINF
Figure 8: Novel view re-simulation on synthetic data.

We further visualize the velocity field by slicing it in Fig. 6, which demonstrates that our method
effectively captures the velocity details that are missed by the baseline methods, which tend to default
to trivial solutions where all the velocity is upward-directed.

5.3 Future prediction

In the future prediction task, we extrapolate the fluid motion into the future based on the inferred
velocity fields at a single frame. In particular, we follow the standard grid-based fluid simulation (Fed-
kiw et al., 2001) to evolve the velocity fields by self-advecting them using the MacCormack method,
followed by a projection step to ensure the divergence-free constraint. Table 1 shows that our method
predicts future frames that are quantitatively better than PINF. Fig. 5 illustrates that compared to
PINF, the future fluid state predicted by our method maintains its original structure and continues
to follow a natural upward trajectory, and also produces natural details. These results underline the
robustness of our method in inferring complex fluid velocity.

5.4 Inference on in-the-wild real capture

While ScalarFlow dataset provides real captures of plumes from a controlled environment, we are
also interested in inferring fluid fields from uncontrolled in-the-wild videos. We use three cameras to
capture sparse multi-view videos of a lit incense, and we show a visualization of the inferred density
(top row) and velocity (bottom row) in Fig. 7. While the fluid in this example is much thinner than
plumes, HyFluid allows plausible inference of fluid fields.

5.5 Evaluation on synthetic data

We include synthetic examples for evaluating 3D density and velocity fields against the groundtruth.
We compare to PINF which has shown state-of-the-art results in 3D fluid fields reconstruction. We
show 3D fields evaluation results together with novel view re-simulation results in Table 2 and Fig. 8.
We observe that ours outperforms PINF on both 3D fields and 2D rendering, especially in preserving
the vortical structures and intricate shape details. This is validated by larger performance margins in
low-viscosity examples, since there is more turbulence that is hard to capture by PINF.

5.6 Additional applications

The inherent properties of neural representation in our method allow for its applicability in a variety
of additional contexts, such as editing and scene composition. As seen in Fig. 1, the results obtained
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Reconstructed Edited

Figure 9: Visualization of our turbulence editing by intensifying
the learned vortex particles on a real capture.

Naive +ℒlaminar+ℒproject Full GT

Figure 10: Ablation study by re-simulation.

from our method can be effortlessly integrated into dynamic NeRF scenes (Sara Fridovich-Keil and
Giacomo Meanti et al., 2023) or imported into professional-grade graphics software.

Our hybrid neural velocity representation naturally supports turbulence editing in re-simulation. In
particular, we multiply our vortex particle intensity by a factor of 4 and showcase a visualization of
edited re-simulation in Fig. 9. This shows that the high-quality velocity estimation from our hybrid
neural velocity representation allows easily synthesizing vortical flow details.

5.7 Ablation study

We show qualitative results in Fig. 10 to evaluate the proposed physics-based losses, the vortex
particle-driven velocity representation, and the joint training supervision. Starting from “Naive”
where we only use the rendering loss for recovering density and the density loss for recovering
velocity, we gradually add back laminar loss (“+Llaminar)”), projection loss (“+Lproject”), and vortex
particle-driven residual velocity (“Full”). From Fig. 10 we observe that our physical losses allow
better velocity recovery. In particular, the projection loss enables recovering physically correct
velocity that reconstructs the plume shape in re-simulation. Vortex particle-driven velocity allows
capturing more details and thus more consistent re-simulation.

6 Conclusion

In this work, we study recovering fluid density and velocity from sparse multi-view videos. We
propose hybrid neural fluid fields (HyFluid) which features physics-based losses to address inherent
visual ambiguities and a hybrid neural velocity representation for capturing the complex turbulent
fluid flow. We show that our simple designs can already lead to physically plausible estimation of
fluid fields that supports applications such as re-simulation, editing, and dynamic scene composition.

Limitations. Our method assumes inviscid fluid and only considers gas but not liquid. Liquid features
free surface that may require further physical modeling and constraints.
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A Appendix: Implementation details

Model architecture. For both the density field σ(x, y, z, t) and the base velocity field ubase(x, y, z, t)
we use a 4D extension of iNGP (Müller et al., 2022). Specifically, we add a temporal dimension
to the original static iNGP. For the spatial dimensions, we use a base resolution 16 and the finest
resolution 256. For the temporal dimension we set the finest resolution to 128 which is comparable
to the number of video frames (120 frames), as higher resolutions create hash encoding features that
are never directly supervised and can lead to unstable gradients.

Training and hyperparameters. Our training can be divided into three stages. In the first stage, we
pre-train our density network σ(x, y, z, t) and the constant learnable appearance (radiance) Le using
the rendering loss only, which forms an initial estimate of both quantities. In the second stage, we
jointly train the density σ(x, y, z, t), appearance Le, and the base velocity ubase(x, y, z, t) using the
full loss. Finally, we jointly train the density σ(x, y, z, t), appearance Le, and the vortex particles
{Ip}. We use an Adam optimizer with a learning rate 0.01. In the first stage, we train the density
and radiance for 200, 000 iterations. In the second stage, we jointly train the model for 50, 000
iterations. In the third stage, we do training for 5, 000 iterations. We empirically set the loss weights
to βrender = 10, 000, βdensity = 0.001, βproj = 1, βlaminar = 10. For the laminar loss, we set the
coefficient γ = 0.2.

Projection loss. For the projection routine, we use a multi-grid preconditioned conjugate gradient
(MGPCG) solver (Ashby & Falgout, 1996). We implement it using Taichi (Hu et al., 2019) language.
We use three levels of multi-grid, with the spatial resolution 1283. Note that we use the same
resolution for our re-simulation and future prediction experiments for all compared methods.

Seeding strategy. In our experiments, we seed 50 vortex particles for each scene. To place initial
vortex particles, we take the insight from vortex confinement methods (Fedkiw et al., 2001). We
densely sample continuous spatio-temporal locations and compute curl values from the trained base
velocity network, and then we place vortex particles at locations with the highest curl values.

Compute usage. We train our model on a single A100 GPU for around 9 hours in total. The first
stage takes half an hour, the second stage takes around 8 hours (this is significantly slower than the
first stage as it requires computing derivatives for the density loss), and the third stage takes half an
hour.
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