
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SYSIDBENCH: A BENCHMARK FOR SYSTEM IDENTIFI-
CATION METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling the behaviour of dynamic systems is a difficult problem because (i)
there is a plenitude of existing system identification methods and (ii) the broadly
varying characteristics of different dynamic systems are not all addressed by a
single best method. While benchmarking of system identification methods has
been recognized to constitute an important asset for developers who want to
select the most suitable method for their problem, these benchmarks currently lack
capabilities that developers require for systematic benchmarking. Analysing related
work and our own, we have worked out five requirements on the benchmarking
of system identification methods that have shaped the design of SYSIDBENCH,
our novel benchmark, which comprises data sets with specifically tailored data
types, data splits and evaluation metrics. In particular, SYSIDBENCH comprises
a principle-based summarizing evaluation metrics using predictions of energy as
key measurement target, it allows for judging generalization capabilities of system
identification methods, and it investigates the fulfillment of physical principles.
The code for our benchmark, including the links to the datasets, is available at
anonymous.github.repository

1 INTRODUCTION

Given an initial state x0 ∈ Rn and an input signal u := (uk)k=0,...,N−1, dynamic system models
predict the output signal ŷ := (ŷk)k=0,...,N−1 of a physical system. System identification algorithms
determine the model parameters such that the predicted output signals closely match the output
signals from the physical, but unknown, system, for example, the dynamics of a ship (Baier & Staab,
2022), the vibration of an aircraft wing (Noël & Schoukens, 2020a), or the fluid flow in the wake of a
moving cylinder (Decuyper et al., 2024). The parametrized models are used for simulation, controller
design, or as a sub-model of a complex system.

When selecting an algorithm for parameterizing such models from input-output sequences, users
are facing the challenge of choosing from many different algorithms stemming from the systems
and control (Pillonetto et al., 2022; Forgione & Piga, 2021b; Beintema et al., 2023b;a) as well as
the machine learning community (Baier et al., 2023; Mohajerin & Waslander, 2019; Hu et al., 2024;
Bonassi et al., 2024; Gu et al., 2021). The choice is further complicated by the different objectives the
user may impose on the resulting model. When the model is used for simulation, one is interested in
highly accurate multi-step predictions for previously unseen input signals. For controller design, one
aims for closed-loop guarantees, where the model is in a feedback-interconnection with the controller.
These guarantees can be achieved when the identified model provides uncertainty bounds (Hillebrecht
& Unger, 2022) or its structure is supported by controller design methodologies (Suykens et al.,
1995).

Existing benchmarks either deal with synthetic data only (Bhamidipaty et al., 2023), provide only a
single evaluation metric (Schoukens & Noël, 2017; Champneys et al., 2024), or are specialized for a
specific model class (Zhong et al., 2021) or dataset (Dulny et al., 2023).

Individual studies introduce domain-specific evaluation criteria, such as the custom vessel distance
measure (Mathioudakis et al., 2025), dynamic error budgeting (Jabben, 2007), or faithfulness (Baier
et al., 2023). These metrics are designed by domain experts and tailored for a specific system class or
require a certain model structure. To the best of our knowledge, no benchmark currently exists that

1

anonymous.github.repository

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

systematically evaluates identified models based on the requirements developer have on the resulting
model. With SYSIDBENCH we rethink the construction of a benchmark for system identification
methods by first mapping out a set of requirements. The satisfaction of these requirements should
then be used as the selection criterion for an identification method rather than relying on individual
metrics. To achieve this novel benchmark, we make the following contributions:

• Extracts domain-independent developer requirements from the system identification litera-
ture.

• Integrate dynamic-aware preprocessing by identifying a simple linear model to detect
transients, derive a truncation length for efficient parameter optimization, and separating a
out-of-distribution (OOD) dataset.

• Systematically evaluates prediction as well as generalization capabilities and tests the
identified model on robustness to noisy inputs.

With SYSIDBENCH we provide a benchmark that allows a developer to make an informed decision
about which identification algorithm to use.

2 RELATED WORK

For an extensive list of identification methods, we refer the reader to the books by Schoukens et al.
(2016); Ljung (1998); Pillonetto et al. (2022) and references therein. In these established methods,
generalization evaluation is unnecessary because of a bounded model class that is assumed to contain
the unknown system. It is the developer’s task to hand-pick the model class (Schoukens & Ljung,
2019). When higher-dimensional models are considered for system identification the developer can
leave the task of finding a suitable model to the optimizer involved. A prominent example of high
dimensional models is neural network archtiectures (Pillonetto et al., 2025) such as recurrent neural
networks (Hochreiter & Schmidhuber, 1997; Goodfellow et al., 2016). These models can achieve
high prediction accuracy when used for system identification (Mohajerin & Waslander, 2019; Gu
et al., 2021; Hu et al., 2024). The high dimensionality comes at the price of overfitting to the training
data and the requirements of evaluating generalization capabilities.

The benchmark (Bhamidipaty et al., 2023) consists of 20 synthetic datasets with in-distribution (ID)
and OOD evaluation. The nonlinear benchmark1 (Schoukens & Noël, 2017) is a collection of 13
datasets taken from real physical systems. This benchmark includes system identification baselines
both from the systems and control as well as the machine learning community,

The robustness of neural networks, which is considered to be a safety feature, is analyzed in a series
of paper that enforce rigorous input-output (Fazlyab et al., 2019; Revay et al., 2020; Pauli et al., 2021)
or input-to-state (Bonassi et al., 2021) guarantees. From these methods, we draw inspiration to design
empirical robustness measures that are relevant for practical use-cases.

3 DEVELOPER REQUIREMENTS

We have synthesized developer requirements for system identification in different application domains
by surveying evaluation techniques over an extensive range of system identification papers.

Papers on system identification have commonly measured accuracy by comparing the predictions
made by the parametrized model with the outputs given in the dataset. The prediction as well as the
measured output signals are in the time domain. (Ljung, 1998; Pillonetto et al., 2022; Forgione &
Piga, 2021a; Beintema et al., 2023b; Baier et al., 2023). As a result, we state accurate predictions as
the first developer requirement.

Requirement 1 (Accuracy). Judging prediction capabilities in the time domain.

Related work has demonstrated that the system identification methods may fail to predict the correct
phase of a function, but predict a phase-shifted function (cf. (Billings, 2013; Pintelon & Schoukens,
2012)). When evaluating the prediction capabilities with root mean squared error (RMSE), Gaussian

1https://www.nonlinearbenchmark.org/benchmarks

2

https://www.nonlinearbenchmark.org/benchmarks

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

noise seemingly was a better predictor than a phase-shifted ground truth. Therefore, we posit that
prediction capabilities must not only be judged by RMSE in the time domain, but also by an evaluation
in the frequency domain and state it in the following requirement:
Requirement 2 (Frequency recovery). Judging prediction capabilities in the frequency domain.

Dynamic system models operate in various domains, including acceleration prediction on aircraft
wings (Noël & Schoukens, 2020a), displacement estimation of a mass (Frank, 2025), and velocity
and angular-velocity prediction for ships (Baier & Staab, 2022). In multi-output models, differences
in physical units can strongly influence performance assessment. For instance, a model may appear
highly accurate if it predicts forward velocity well, even when its estimates of angular velocity
deviate substantially — simply because the two outputs lie on very different scales. We refer to
output signals with different physical units as heterogeneous. Consequently, evaluation metrics for
system identification models must handle heterogeneous outputs in a way that is independent of their
numerical ranges. We capture this need in the following requirement:
Requirement 3 (Heterogeneity). Judging prediction capabilities for heterogeneous outputs.

Simulation models are used to predict the behavior of dynamic systems in unknown scenarios (Lazar,
2024). A model with high generalization capabilities makes accurate predictions when faced with
input signals (and initial states) not seen before (Baier et al., 2023). Unknown input signals, used to
assess generalization capabilities empirically, are not available in datasets in general. Generalization
capabilities are significant for simulation models (Revay et al., 2020; Srivastava et al., 2014; Hu et al.,
2024). Since generating new experiments to obtain real OOD data is impractical, we extract a OOD
dataset from the existing recordings, allowing us to evaluate generalization capabilities.
Requirement 4 (OOD Generalization). Judging generalization capabilities to OOD input signals.

When identifying dynamic systems in a high-dimensional space, there exists a significant risk of ob-
taining unstable models, which can lead to unsafe behavior or model failure during inference (Bonassi
et al., 2021; Revay et al., 2020). Instability can arise from ID input signals and thus might not be
detected by evaluations on the OOD dataset. Therefore, we develop analyses that generate specific
input signals to test the robustness of the model with respect to input disturbances. Robustness is
the capability of a model to make accurate predictions in the presence of perturbed noisy signals (cf.
(Fazlyab et al., 2019; Madry et al., 2017; Pauli et al., 2021; Cohen et al., 2019))
Requirement 5 (Robustness). Judging model robustness for disturbed input signals.

In summary, we found that existing performance comparisons of models for dynamic systems are not
suitable for high-dimensional models that outperform classic methods in terms of their predictive
accuracy.

4 OVERVIEW OF SYSIDBENCH AND NOTATION

We have developed SYSIDBENCH to allow the developer to compare different system identification
algorithms according to the judgement criteria stated in the five requirements 1 - 5. An overview of
our novel methodology realized in SYSIDBENCH is provided in Figure 1.

SYSIDBENCH uses four publicly available datasets and incorporates six evaluation metrics on five
different identification algorithms. Our methodology takes as input signal a dataset of input-output
measurements from an unknown dynamic system and a system identification method, and outputs
evaluation metrics along with a parametrized model. We assume that the system identification
method is a black-box that learns by adapting its model parameters based on the training data. The
development of new algorithms is not part of this benchmark.

We denote the raw recording provided by the user as a set of tuples D = {(u,y)i}Mi=1 that are the
input-output measurements taken from the unknown system. Subsets are indicated by a subscript.
In particular, we will have two test sets denoted by Dtest = DID ∪ DOOD for ID and OOD test sets,
respectively. While the ID dataset has the same data distribution as the training dataset, the OOD
datasets stems from a different distribution. The training and validation sets are denoted by Dtrain

and Dval. We assume the measurements to be finite and assume trajectories in D have length N , the
recordings are not required to have the same length.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

D

SHIP
MSD
HYST.
F16

Dataset
Section 5

Dtrain, Dval,
Dtest ⊂ D

Dynamic-aware
data splitting

Preprocessing
Section 6

u,x0 → Sθ → ŷ

Training and
Hyp.par. opt.

Baselines
Section 8

Verify satisfaction of
Requirement 1 - 5

with metrics:

- NRMSE
- E-MSE (ours)

- PSD-RMSE (ours)
- γ∗ (ours)

On DID, DOOD.

Metrics
Section 7

D
Dtrain,
Dval Sθ

DID,
DOOD

SYSIDBENCH

Figure 1: SYSIDBENCH supports systematic evaluation and comparison of system identification
methods by assessing the methods according to requirements 1–5. The training dataset Dtrain is used
to learn the parameters θ, and the validation dataset Dval is used to optimize the hyperparameters.
Test data DID, DOOD, is used for final evaluation.

The algorithm to parametrize a dynamic system model is called an identification or learning algorithm.
While identification is rather used in systems and control, learning is the term used in machine learning.
We denote a parametrized model by Sθ where θ ∈ Rn is a set of parameters to be identified. The
model Sθ maps an input signal u and an initial state x0 to an output signal ŷ = Sθ(u,x

0).

The structure of this paper will follow the flow shown in Figure 1, in Section 5 we will given an
overview of the considered datasets. We introduce our novel dynamic-aware preprocessing method in
Section 6 and discuss the derived metrics for evaluation in Section 7. Baseline results are provided in
Section 8.2 and we conclude our paper in Section 9.

5 DATA SETS

The four currently available datasets are a ship that moves in open water SHIP, a coupled-mass-
spring-damper system MSD, a hysteretic system HYST. and a vibration test of an aircraft wing
F16.

The SHIP dataset simulates the normal operation of a ship in open water and provides multiple input
and output signals. It is generated from random maneuvers an operator would do. The measured
output signals are the velocities in two directions and two rotation rates. The input signals are the
propeller speed, the rudder angle, and wind measurements. The complexity of the dynamics arise
from a nonlinear mapping between wind and the rotations rates (see Figure 2a). MSD represents
a mass-spring-damper system with four masses in which the nonlinearity is static and stems from
the force profile of the spring, it has no memory, and has one input and one output (see Figure 2b).
The HYST. dataset serves as a toy example that exhibits complex nonlinear behavior, with known
underlying differential equations. It has one input and one output (see Figure 2c. F16 consists of
dedicated experiments conducted in a controlled environment on a real-world aircraft wing, with
one input and multiple output signals. The input signals are carefully designed by experts to excite
specific frequencies.

6 DATA PREPROCESSING

We differentiate two different kind of datasets, (i) A dataset that provides a split into training,
validation, and testing. (ii) A dataset that provides a split into training, validation, ID testing, and
OOD testing. The type of dataset determines which preprocessing steps are required. In the first
step, we determine the sequence length used to identify the dynamic system model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

SHIP ∆t = 1

M = 125

N = 3600

nu = 6

ny = 4

(a) (Baier & Staab, 2022)

MSD ∆t = 0.2

M = 14

N = 108477

nu = 1

ny = 1

(b) (Frank, 2025)

HYST. ∆t = 1/750

M = 14

N = 108477

nu = 1

ny = 1

(c) (Noël & Schoukens,
2020b)

F16 ∆t = 0.0025

M = 700

N = 13500

nu = 1

ny = 3

(d) (Noël & Schoukens,
2020a)

Figure 2: Overview of datasets used in the benchmark. M refers to the number of recordings that are
available, nu, ny refer to the number of inputs and output signals, respectively, and N refers to the
length of one recording. With ∆t, we refer to the discrete sampling time.

6.1 TRUNCATION LENGTH

Optimization on long sequences is computationally expensive and can not be parallelized (Ribeiro
et al., 2020; Forgione & Piga, 2020; Beintema et al., 2023a). For models with a large number of
parameters, this becomes a bottleneck. In Ribeiro et al. (2020), it was shown that the optimization
landscape is smoother on shorter sequences. In Beintema et al. (2023b;a), this was termed the
truncation length, describing the length of subsequences used for training. The truncation length is a
design parameter that depends on the system’s dynamics and the sample time used for discretization.
In machine learning related publications, this is often termed the prediction horizon (Baier et al.,
2023; Mohajerin & Waslander, 2019).

For our benchmark, we aim for a unifying approach to obtain the truncation length without having
prior knowledge about the system. In this dynamic-aware preprocessing, we describe a method to get
the truncation length based on the transient time of a linear approximation model. With this approach,
we remain general with respect to the system’s domain but take into account the dynamics and the
sampling time.

After obtaining a linear state space model from the available training data, we use the linear matrices
to get the steady state response. Then we apply a step function to the linear model and analyse the
output. The time until the linear dynamics reach a steady state is called the transient time. For a linear
system, it tells us how long you have to observe the output signal in order to recover its dynamics.

We use N4SID, a subspace identification method (Van Overschee & De Moor, 1994; Ljung, 1998),
to obtain a linear state space model of the form:(

xk+1
lin

ŷk
lin

)
=

(
Alin Blin

Clin Dlin

)(
xk
lin

uk
lin

)
. (1)

Where xk
lin ∈ Rnxlin represents the internal state of the linear model, and the input and output sizes

match the size of the physical system ne = nelin and nd = ndlin
. From the linear approximation

model, we extract the transient time, which is defined as the time it takes for a system to reach a
steady state after a step input. The steady state can be computed by solving the eigenvalue problem
of the matrix Alin in equation 1. More details about N4SID can be found in the appendix A.1.
Definition 1. We define the transient time τ > 0 as the time it takes until the linear model’s output
reaches a steady-state when fed with a step input.

k∗ = min
k

∥ŷk
lin − ȳ∥ < ϵymax (2)

where yss refers to the steady state and

ymax = max
k

∥ŷk
lin − ȳ∥ (3)

is the maximum deviation from the steady state. The transient time follows as the minimal time index
k∗ and the sample time ∆t, τ = k∗∆t.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

The transient time is a property of the step response and depends on the dynamics of the model.
We use the transient time to obtain the truncation length h used during training. We also derive the
window length w used for initialization based on the horizon. We choose ϵ = 0.02, corresponding to
reaching the steady state within 2% of the maximum deviation.

More details about the transient-time, how the steady-state is calculated, and the step response,
especially for models with multiple inputs and outputs, are found in the appendix A.2.

Based on the truncation length, we can split the raw recordings given in D into subsequences of
length h+ w + 1 and use them for training. In the next step, we develop a methodology to extract a
OOD dataset from the subsequences.

6.2 OUT OF DISTRIBUTION DATASET

After the truncation length is fixed, we separate an OOD dataset to assess models’ generalization
capabilities. The OOD separation is based on the signal energy which is defined as follows:

Eu := ∥u∥22 =

N−1∑
k=0

(uk)Tuk for N > 0. (4)

We assume the sequences to be square summable, i.e. ∥u∥2 < ∞.

It measures the energy injected into the system by the input signal. The energy is computed for each
subsequence of the recordings, and the subsequences with the highest energy are selected for the
OOD dataset. This approach allows us to evaluate the model’s generalization capabilities without
requiring expensive new experiments or expert knowledge about the system.
Remark 1. Conservation of energy is a fundamental property of physical systems. A dynamic system
is subject to these properties and converts energy. It is irrelevant which physical states are being
considered or influenced. By considering energy, systems from different domains can be compared,
making this perspective appropriate for our benchmark.

The subsequences are selected such that
DOOD = {(uk, ek) ∈ {Dtest,Dtrain,Dval} | ∥u∥2 > τood}, (5)

The threshold τood defines the minimum energy required for a subsequence to be included in the
OOD dataset. We choose τood such that the size of the OOD dataset is 10% of D. The remaining
subsequences are randomly split into training, validation, and ID testing subsets.

After the dynamic-aware data preprocessing, we get a training dataset Dtrain that contains subse-
quences of length h+ w + 1, a dataset Dval for hyperparameter optimization, and two test sets for
the final evaluation DID and DOOD.

7 METRICS FOR EVALUATING DEVELOPER REQUIREMENTS

Based on the developer requirements defined in Section 3, we now derive evaluation metrics that
allow a developer to verify the requirements are satisfied.

7.1 PREDICTION CAPABILITIES IN TIME DOMAIN (REQUIREMENT 1)

To evaluate the accuracy of model predictions in the time domain, we use the normalized root mean
squared error (NRMSE) and the fit-metric, which are also used in existing benchmarks (Champneys
et al., 2024). The NRMSE measures the deviation per channel.

NRMSEm(u,y) :=
1

σm

√√√√ 1

Mh

M∑
i=1

h−1∑
k=0

((ykm)i − (ŷkm)i)2 for m = 1, . . . , ny , (u,y) ∈ Dtest,

(6)

where σm =
√∑M

i=1

∑N−1
k=0 (((ykm)i − ȳm)) refers to the standard deviation of the output channel

and is calculated from the training subsequences. The NRMSE is computed for each output channel
m separately, allowing for a more detailed analysis of the prediction quality across different outputs.
A low NRMSE valuereferstomoreaccuratepredictions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

7.2 PREDICTION CAPABILITIES IN THE FREQUENCY DOMAIN (REQUIREMENT 2)

While the NRMSE provides a good indication of the quality in the time domain, it might not capture
whether the model has learned to reproduce the oscillatory behavior of the system. A model that
predicts the mean value of an oscillatory output can achieve a low NRMSE, but it fails to capture the
oscillatory nature of the system. To address this limitation, we propose a frequency-based evaluation
metric that compares the power spectral density (PSD).

The power PSD of the output signal y is estimated using the Welch (Welch, 1967) method as

Syy(f) = lim
k→∞

1

N

∣∣F{yk}
∣∣2 , (7)

where F{·} denotes the discrete Fourier transform (DFT), k is the discrete-time index, N is the
number of samples, and f the frequency. The signal yk is considered in the limit as N → ∞ and the
sampling interval approaches zero. Welch’s approach partitions the signal into overlapping segments,
applies a window function to each, computes the periodogram for each segment, and then averages
them to reduce variance in the PSD estimate. The resulting estimate provides a practical measure for
frequency-domain analysis and recovery.

To evaluate the difference between the PSD of the true output y and the predicted output ŷ, we define
the RMSE on the PSD as

PSD-RMSE =

√√√√ 1

Nf

Nf∑
i=1

(Syy(fi)− Sŷŷ(fi))
2
, (8)

where Sŷŷ(f) is the PSD of the predicted output ŷ, Nf is the number of frequency bins, and fi
represents the i-th frequency bin.

7.3 CAPABILITIES FOR HETEROGENIOUS PREDICTIONS (REQUIREMENT 3)

In addition to the metrics in the time domain equation 6 we propose an alternative metric that captures
the deviation in energy and is independent of the physical states of the system. The energy of the
output signal is defined in equation 4. The energy error is defined as

E-MSE =
|Ey − Êy|

Ey
, (9)

where Ey is the energy of the output signal and Êy is the energy of the predicted trajectory.

7.4 GENERALIZATION TO OUT-OF-DISTRIBUTION INPUT SIGNALS (REQUIREMENT 4)

To evaluate the generalization capabilities of the identified model, we use the OOD test dataset that
was separated during preprocessing of the data (see Section 6 for details). We evaluate the OOD
dataset on the same metrics as the ID test dataset.

7.5 ROBUSTNESS TO DISTURBED INPUT SIGNALS (REQUIREMENT 5)

To assess the robustness of a model to unknown input signals, we aim to produce outputs that
violate physical laws, such as energy conservation. The setup is comparable to adversarial attacks in
classification problems, where the goal is to find a small input perturbation that leads to large changes
in the output. In regression problems this is more challenging since there is no true output class.
However, we use the energy perspective to design adversarial attacks that lead to output prediction by
the model that violate energy conservation.

The first metric to assess model robustness is inspired by the maximum amplification. We aim to find
an input signal that maximizes the amplification of energy, i.e., we solve the optimization problem

γ∗ = max
u

∥ŷ∥2
∥u∥2

s.t. ŷ = Sθ(u,x
0), ∥u∥2 ≤ Emax (10)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

The optimization problem is solved using gradient-based optimization, where the gradient of the
output energy with respect to the input signal is computed using backpropagation through the model
Sθ.

In the second metric, we consider the sensitivity as the objective of the opimization. The sensitivity
measures how small input changes effect the output of a model. This is also known as the Lipschitz
constant

L = max
(u)a,(u)b

∥(ŷ)a − (ŷ)b∥2
∥(u)a − (u)b∥2

s.t. a ̸= b, ŷ = Sθ(u,x
0) (11)

8 VALIDATION OF THE BENCHMARK WITH SELECTED SYSTEM
IDENTIFICATION METHODS

In this section we first present the chosen baslines and then discuss the results when the identification
algorithms are used to identify the datasets from Section 5.

8.1 SELECTED BASELINE SYSTEM IDENTIFICATION METHODS

Recurrent neural network (RNN) models are infinitely-dimensional (Pillonetto et al., 2025) and thus
capable of identifying complex dynamics. We use LSTM and RNN to represent the recurrent neural
network architectures, which also cover a wide range of other state space neural network structures,
such as (Beintema et al., 2023a; Forgione & Piga, 2020; Mohajerin & Waslander, 2019). The recurrent
structure makes the model class flexible, but comes at the price of high computational complexity
when dealing with long signals (Beintema et al., 2023a; Ribeiro et al., 2020). Structured state space
models (Gu et al., 2021; Gu & Dao, 2023; Hu et al., 2024; Bonassi et al., 2024) overcome this
computational bottleneck by simplifying the network structure. These novel models are represented
in our benchmark by DEEPSUBENC. Another problem with RNNs is that they overfit the training data.
Regularization promises to overcome overfitting by constraining the trainable parameters (Fazlyab
et al., 2019; Bonassi et al., 2021; Baier et al., 2023) we represent this model class by RELINET (Baier
et al., 2023).

8.2 BENCHMARK RESULTS FOR SELECTED BASELINE METHODS

We run the baselines from Section 8.1 on the set of datasets described in Section 5. The results are
shown in Table 1 and we report the NRMSE (cf. 6) to assess the accuracy in the time domain, the
PSD-RMSE (cf. 8) to assess the frequency recovery, and the E-MSE (cf. 9) to assess the performance
on heterogeneous outputs. For judging the robustness, we report the worst-case amplification (cf. 10).

By taking into account multiple evaluation metrics, developers can trade off prediction accuracy
versus sensitivity. This is, for example, shown on the MSD dataset, where the RNN and the LSTM
have comparable prediction accuracy in terms of NRMSE, but the RNN is significantly more robust
in terms of its Lipschitz constant, which is shown by a lower L value.

9 CONCLUSION

With SYSIDBENCH, we provide an initial step toward systematic benchmarking system identification
methods, enabling developers to select the most suitable approach for their specific problem. We
mapped out five key requirements, derived from both the literature and our own experiments.

Our experiments show that high-dimensional models are capable of capturing complex dynamics and
achieving high prediction accuracy in both the time and frequency domains. This aligns with findings
from the system identification literature. However, these models also exhibit a downside: they can
become highly sensitive, as indicated by the metrics for Requirement 5.

Overall, SYSIDBENCH lays the groundwork for systematic evaluation of dynamic system models,
while offering clear avenues for future extension and refinement.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 1: Comparison of different identification methods across different datasets

Method Dataset NRMSE 6 PSD-RMSE 8 E-MSE 9 γ∗ 10 L 11 #Pars
ID OOD ID OOD ID OOD

SHIP

LSTM
[
0.50 0.43 1.20 0.34

] [
0.67 0.56 0.86 0.30

]
0.50 1.12 0.14 0.04 65.39 154.89 334340

RNN
[
0.41 0.35 1.29 0.31

] [
0.50 0.55 0.96 0.30

]
0.31 0.84 0.08 0.03 41.15 13.85 83972

S4
[
0.10 0.20 1.00 0.20

] [
0.33 0.49 0.99 0.22

]
0.18 0.67 0.00 0.02 11.77 8.88 9338

RELINET - - - - - - -

MSD

LSTM
[
0.18

] [
0.40

]
6.09 61.59 0.06 0.23 2.06 46.58 331393

RNN
[
0.21

] [
0.30

]
6.28 54.41 0.11 0.18 3.49 10.27 82945

S4
[
0.26

] [
1.05

]
12.15 134.87 0.06 0.42 1.24 130.97 2887

RELINET - - - - - - -

HYST.

LSTM
[
0.38

] [
0.39

]
0.00 0.00 0.01 0.03 11.60 23.48 331393

RNN
[
0.38

] [
0.39

]
0.00 0.00 0.02 0.04 4.64 29.31 82945

S4
[
0.47

] [
0.45

]
0.00 0.00 0.03 0.16 3.07 36.35 2887

RELINET
[
0.42

] [
0.40

]
0.00 0.00 0.15 0.13 7.28 4.04 420736

F16

LSTM
[
0.26 0.35 0.40

] [
0.36 0.50 0.59

]
3.25 11.73 0.02 0.16 5.90 8.32 331651

RNN
[
0.41 0.60 0.65

] [
0.43 0.72 0.79

]
6.09 17.13 0.02 0.04 29.64 1284.44 83203

S4
[
0.57 0.81 0.84

] [
0.54 0.81 0.86

]
11.38 20.95 0.58 0.28 2.73 2.59 2891

RELINET - - - - - - -

REFERENCES

Alexandra Baier and Steffen Staab. A Simulated 4-DOF Ship Motion Dataset for System Iden-
tification under Environmental Disturbances, 2022. URL https://doi.org/10.18419/
darus-2905.

Alexandra Baier, Decky Aspandi, and Steffen Staab. Relinet: stable and explainable multistep
prediction with recurrent linear parameter varying networks. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, pp. 3461–3469, 2023.

Gerben I Beintema, Maarten Schoukens, and Roland Tóth. Deep subspace encoders for nonlinear
system identification. Automatica, 156:111210, 2023a.

Gerben Izaak Beintema, Maarten Schoukens, and Roland Tóth. Continuous-time identification of
dynamic state-space models by deep subspace encoding. 2023b. URL https://openreview.
net/forum?id=_4n3k3d1ob.

Logan M Bhamidipaty, Tommy Bruzzese, Caryn Tran, Rami Ratl Mrad, and Maxinder S Kanwal.
Dynadojo: An extensible platform for benchmarking scaling in dynamical system identification.
Advances in Neural Information Processing Systems, 36:15519–15530, 2023.

Stephen A Billings. Nonlinear system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains. John Wiley & Sons, 2013.

Fabio Bonassi, Marcello Farina, and Riccardo Scattolini. Stability of discrete-time feed-forward
neural networks in narx configuration. IFAC-PapersOnLine, 54(7):547–552, 2021.

Fabio Bonassi, Carl Andersson, Per Mattsson, and Thomas B Schön. Structured state-space models
are deep wiener models. IFAC-PapersOnLine, 58(15):247–252, 2024.

Max Champneys, Gerben I Beintema, Roland Tóth, Maarten Schoukens, and Timothy J Rogers.
Baseline results for selected nonlinear system identification benchmarks. IFAC-PapersOnLine, 58
(15):474–479, 2024.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pp. 1310–1320. PMLR, 2019.

J. Decuyper, T. De Troyer, and M. C. Runacres. Canonical systems for unsteady fluid mechanics: A
new family of nonlinear benchmarks. Technical report, FLOW, Vrije Universiteit Brussel, Belgium,
2024.

Andrzej Dulny, Andreas Hotho, and Anna Krause. Dynabench: A benchmark dataset for learning
dynamical systems from low-resolution data. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 438–455. Springer, 2023.

9

https://doi.org/10.18419/darus-2905
https://doi.org/10.18419/darus-2905
https://openreview.net/forum?id=_4n3k3d1ob
https://openreview.net/forum?id=_4n3k3d1ob

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Marco Forgione and Dario Piga. Model structures and fitting criteria for system identification with
neural networks. In 2020 IEEE 14th International Conference on Application of Information and
Communication Technologies (AICT), pp. 1–6. IEEE, 2020.

Marco Forgione and Dario Piga. Continuous-time system identification with neural networks: Model
structures and fitting criteria. European Journal of Control, 59:69–81, 2021a.

Marco Forgione and Dario Piga. dynonet: A neural network architecture for learning dynamical
systems. International Journal of Adaptive Control and Signal Processing, 35(4):612–626, 2021b.

Daniel Frank. Coupled mass-spring-damper system for nonlinear system identification - actuated with
random static inputs - synthetically generated, 2025. URL https://doi.org/10.18419/
DARUS-4768.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Birgit Hillebrecht and Benjamin Unger. Certified machine learning: A posteriori error estimation for
physics-informed neural networks. In 2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Zheyuan Hu, Nazanin Ahmadi Daryakenari, Qianli Shen, Kenji Kawaguchi, and George Em Kar-
niadakis. State-space models are accurate and efficient neural operators for dynamical systems.
arXiv preprint arXiv:2409.03231, 2024.

Leon Jabben. Mechatronic design of a magnetically suspended rotating platform. Delft, Netherlands:
Technical University Delft, 2007.

Mircea Lazar. A universal reproducing kernel hilbert space for learning nonlinear systems operators.
arXiv preprint arXiv:2412.18360, 2024.

L. Ljung. System Identification: Theory for the User. Pearson Education, 1998. ISBN 9780132440530.
URL https://books.google.de/books?id=fYSrk4wDKPsC.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Michail Mathioudakis, Christos Papandreou, Theodoros Stouraitis, Vicky Margari, Antonios Niki-
takis, Stavros Paschalakis, Konstantinos Kyriakopoulos, and Kostas J Spyrou. Towards real-world
validation of a physics-based ship motion prediction model. arXiv preprint arXiv:2501.13804,
2025.

Nima Mohajerin and Steven L Waslander. Multistep prediction of dynamic systems with recurrent
neural networks. IEEE transactions on neural networks and learning systems, 30(11):3370–3383,
2019.

Jean-Philippe Noël and Maarten Schoukens. F-16 aircraft benchmark based on ground vibration test
data, 2020a. URL https://data.4tu.nl/articles/dataset/F-16_Aircraft_
Benchmark_Based_on_Ground_Vibration_Test_Data/12954911/1.

10

https://doi.org/10.18419/DARUS-4768
https://doi.org/10.18419/DARUS-4768
https://books.google.de/books?id=fYSrk4wDKPsC
https://data.4tu.nl/articles/dataset/F-16_Aircraft_Benchmark_Based_on_Ground_Vibration_Test_Data/12954911/1
https://data.4tu.nl/articles/dataset/F-16_Aircraft_Benchmark_Based_on_Ground_Vibration_Test_Data/12954911/1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jean-Philippe Noël and Maarten Schoukens. Hysteretic benchmark with a dynamic non-
linearity, 2020b. URL https://data.4tu.nl/articles/dataset/Hysteretic_
Benchmark_with_a_Dynamic_Nonlinearity/12967592/1.

Patricia Pauli, Dennis Gramlich, Julian Berberich, and Frank Allgöwer. Linear systems with neural
network nonlinearities: Improved stability analysis via acausal zames-falb multipliers. In 2021
60th IEEE Conference on Decision and Control (CDC), pp. 3611–3618. IEEE, 2021.

Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung.
Regularized system identification: Learning dynamic models from data. Springer Nature, 2022.

Gianluigi Pillonetto, Aleksandr Aravkin, Daniel Gedon, Lennart Ljung, Antônio H Ribeiro, and
Thomas B Schön. Deep networks for system identification: a survey. Automatica, 171:111907,
2025.

R. Pintelon and J. Schoukens. System Identification: A Frequency Domain Approach. Wiley, 2012.
ISBN 9781118287392. URL https://books.google.de/books?id=3lGJWtjGDzsC.

Max Revay, Ruigang Wang, and Ian R Manchester. A convex parameterization of robust recurrent
neural networks. IEEE Control Systems Letters, 5(4):1363–1368, 2020.

Antônio H Ribeiro, Koen Tiels, Jack Umenberger, Thomas B Schön, and Luis A Aguirre. On the
smoothness of nonlinear system identification. Automatica, 121:109158, 2020.

Johan Schoukens and Lennart Ljung. Nonlinear system identification: A user-oriented road map.
IEEE Control Systems Magazine, 39(6):28–99, 2019.

Johan Schoukens, Mark Vaes, and Rik Pintelon. Linear system identification in a nonlinear set-
ting: Nonparametric analysis of the nonlinear distortions and their impact on the best linear
approximation. IEEE Control Systems Magazine, 36(3):38–69, 2016.

Maarten Schoukens and Jean Philippe Noël. Three benchmarks addressing open challenges in
nonlinear system identification. IFAC-PapersOnLine, 50(1):446–451, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Johan AK Suykens, Joos PL Vandewalle, and Bart L De Moor. Artificial neural networks for
modelling and control of non-linear systems. Springer Science & Business Media, 1995.

Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the identification of
combined deterministic-stochastic systems. Automatica, 30(1):75–93, 1994.

Peter D Welch. The use of fast fourier transform for the estimation of power spectra: A method
based on time averaging over short, modified periodograms. IEEE Transactions on audio and
electroacoustics, 15(2):70–73, 1967.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Benchmarking energy-conserving
neural networks for learning dynamics from data. In Learning for dynamics and control, pp.
1218–1229. PMLR, 2021.

A APPENDIX

A.1 N4SID ALGORITHM

The Numerical Subspace State Space System Identification (N4SID) algorithm is a subspace-based
method for identifying state-space models directly from input–output data. It constructs block Hankel
matrices from measured signals, employs numerical linear algebra techniques such as singular value
decomposition (SVD) to estimate the system order, and computes state sequences in a least-squares
sense. From these estimates, the system matrices of a minimal realization are obtained without
requiring nonlinear optimization. N4SID is valued for its numerical robustness, computational
efficiency, and ability to handle multivariable systems.

11

https://data.4tu.nl/articles/dataset/Hysteretic_Benchmark_with_a_Dynamic_Nonlinearity/12967592/1
https://data.4tu.nl/articles/dataset/Hysteretic_Benchmark_with_a_Dynamic_Nonlinearity/12967592/1
https://books.google.de/books?id=3lGJWtjGDzsC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Table 2: Experiment configuration

Dataset Model nh Epochs Batch Size Learning Rate loss nu ny dropout # layers

F16 lstm 128 1000 16 0.001 mse 1 3 0.25 3
F16 rnn 128 1000 16 0.001 mse 1 3 NaN 3
F16 s4 128 1000 16 0.001 mse 1 3 NaN 5
hyst lstm 128 1000 16 0.001 mse 1 1 0.25 3
hyst rnn 128 1000 16 0.001 mse 1 1 NaN 3
hyst s4 128 1000 16 0.001 mse 1 1 NaN 5
msd lstm 128 1000 16 0.001 mse 1 1 0.25 3
msd rnn 128 1000 16 0.001 mse 1 1 NaN 3
msd s4 128 1000 16 0.001 mse 1 1 NaN 5
ship lstm 128 1000 16 0.001 mse 6 4 0.25 3
ship rnn 128 1000 16 0.001 mse 6 4 NaN 3
ship s4 128 1000 16 0.001 mse 6 4 NaN 5

A.2 TRANSIENT TIME

We are interested in the case xk+1
lin = xk

lin and the respective output. Solving the linear equation leads
to the steady-state output

ēlin =
(
Dlin − Clin (Alin − I)

−1
Blin

)
d (12)

A.3 EXAMPLES OF ENERGY RESPONSES

A.4 ENERGY-TO-PEAK GAIN

The energy-to-peak gain of a linear, stable system characterizes the maximum instantaneous output
amplitude in response to a finite-energy input. In the stochastic setting, it describes how large
the system’s response can become when excited by white noise. The energy-to-peak gain focuses
specifically on the largest possible transient. In system identification the energy-to-peak gain is
valuable for assessing physical plausibility. For instance, a real ship, due to its mass and damping,
responds gradually to small random rudder inputs. A learned model with a high energy-to-peak gain
might instead produce sharp, nonphysical yaw deviations—indicating that, despite low average error,
it fails to reproduce key dynamic behaviors.

A.5 EXPERIMENTAL SETUP

The hyperparameters used for our experiments are shown in Table 2

A.6 POWER SPECTRAL DENSITY EXAMPLE

In this section, we compare the predictions of a trained model with those of a noise baseline. In the
time domain, the RMSE shows that predicting noise performs only slightly worse than the trained
model. In the plots of Figure 4 one observes a slight phase shift made by the LSTM which leads to
errors that are comparable to predicting noise, even though the correct frequency is recovered. This
observation motivates a deeper analysis in the frequency domain. Table 3 reports the mean error
across all outputs in both domains. While the errors in the time domain are comparable, the LSTM
clearly outperforms the noise baseline in the frequency domain. This advantage is also evident in
Figure 3, where the LSTM accurately recovers frequencies up to 15 Hz, whereas the noise model
fails to capture the true frequency components.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table 3: Comparison between prediction made by an LSTM and a noise model in time and frequency
domain on the F16-GVT example (Noël & Schoukens, 2020a).

Model RMSE PSD-RMSE

Noise 1.22 36.70
LSTM 1.17 24.92

(a) Noise model. (b) LSTM .

Figure 3: Power spectral density over frequencies.

(a) Noise model. (b) LSTM .

Figure 4: Prediction in time domain.

13

	Introduction
	Related Work
	Developer Requirements
	Overview of SysIdBench and Notation
	Data sets
	Data Preprocessing
	Truncation length
	Out of distribution dataset

	Metrics for evaluating Developer Requirements
	Prediction capabilities in time domain (Requirement 1)
	Prediction capabilities in the frequency domain (Requirement 2)
	Capabilities for heterogenious predictions (Requirement 3)
	Generalization to ood input signals (Requirement 4)
	Robustness to disturbed input signals (Requirement 5)

	Validation of the Benchmark with Selected System Identification Methods
	Selected Baseline System Identification Methods
	Benchmark Results for Selected Baseline Methods

	Conclusion
	Appendix
	N4SID algorithm
	Transient time
	Examples of energy responses
	Energy-to-peak gain
	Experimental setup
	Power spectral density example

