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ABSTRACT

Modeling the behaviour of dynamic systems is a difficult problem because (i)
there is a plenitude of existing system identification methods and (ii) the broadly
varying characteristics of different dynamic systems are not all addressed by a
single best method. While benchmarking of system identification methods has
been recognized to constitute an important asset for developers who want to
select the most suitable method for their problem, these benchmarks currently lack
capabilities that developers require for systematic benchmarking. Analysing related
work and our own, we have worked out five requirements on the benchmarking
of system identification methods that have shaped the design of SYSIDBENCH,
our novel benchmark, which comprises data sets with specifically tailored data
types, data splits and evaluation metrics. In particular, SYSIDBENCH comprises
a principle-based summarizing evaluation metrics using predictions of energy as
key measurement target, it allows for judging generalization capabilities of system
identification methods, and it investigates the fulfillment of physical principles.
The code for our benchmark, including the links to the datasets, is available at
anonymous.github.repository

1 INTRODUCTION

Given an initial state x0 ∈ Rn and an input signal u := (uk)k=0,...,N−1, dynamic system models
predict the output signal ŷ := (ŷk)k=0,...,N−1 of a physical system. System identification algorithms
determine the model parameters such that the predicted output signals closely match the output
signals from the physical, but unknown, system, for example, the dynamics of a ship (Baier & Staab,
2022), the vibration of an aircraft wing (Noël & Schoukens, 2020a), or the fluid flow in the wake of a
moving cylinder (Decuyper et al., 2024). The parametrized models are used for simulation, controller
design, or as a sub-model of a complex system.

When selecting an algorithm for parameterizing such models from input-output sequences, users
are facing the challenge of choosing from many different algorithms stemming from the systems
and control (Pillonetto et al., 2022; Forgione & Piga, 2021b; Beintema et al., 2023b;a) as well as
the machine learning community (Baier et al., 2023; Mohajerin & Waslander, 2019; Hu et al., 2024;
Bonassi et al., 2024; Gu et al., 2021). The choice is further complicated by the different objectives the
user may impose on the resulting model. When the model is used for simulation, one is interested in
highly accurate multi-step predictions for previously unseen input signals. For controller design, one
aims for closed-loop guarantees, where the model is in a feedback-interconnection with the controller.
These guarantees can be achieved when the identified model provides uncertainty bounds (Hillebrecht
& Unger, 2022) or its structure is supported by controller design methodologies (Suykens et al.,
1995).

Existing benchmarks either deal with synthetic data only (Bhamidipaty et al., 2023), provide only a
single evaluation metric (Schoukens & Noël, 2017; Champneys et al., 2024), or are specialized for a
specific model class (Zhong et al., 2021) or dataset (Dulny et al., 2023).

Individual studies introduce domain-specific evaluation criteria, such as the custom vessel distance
measure (Mathioudakis et al., 2025), dynamic error budgeting (Jabben, 2007), or faithfulness (Baier
et al., 2023). These metrics are designed by domain experts and tailored for a specific system class or
require a certain model structure. To the best of our knowledge, no benchmark currently exists that
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systematically evaluates identified models based on the requirements developer have on the resulting
model. With SYSIDBENCH we rethink the construction of a benchmark for system identification
methods by first mapping out a set of requirements. The satisfaction of these requirements should
then be used as the selection criterion for an identification method rather than relying on individual
metrics. To achieve this novel benchmark, we make the following contributions:

• Extracts domain-independent developer requirements from the system identification litera-
ture.

• Integrate dynamic-aware preprocessing by identifying a simple linear model to detect
transients, derive a truncation length for efficient parameter optimization, and separating a
out-of-distribution (OOD) dataset.

• Systematically evaluates prediction as well as generalization capabilities and tests the
identified model on robustness to noisy inputs.

With SYSIDBENCH we provide a benchmark that allows a developer to make an informed decision
about which identification algorithm to use.

2 RELATED WORK

For an extensive list of identification methods, we refer the reader to the books by Schoukens et al.
(2016); Ljung (1998); Pillonetto et al. (2022) and references therein. In these established methods,
generalization evaluation is unnecessary because of a bounded model class that is assumed to contain
the unknown system. It is the developer’s task to hand-pick the model class (Schoukens & Ljung,
2019). When higher-dimensional models are considered for system identification the developer can
leave the task of finding a suitable model to the optimizer involved. A prominent example of high
dimensional models is neural network archtiectures (Pillonetto et al., 2025) such as recurrent neural
networks (Hochreiter & Schmidhuber, 1997; Goodfellow et al., 2016). These models can achieve
high prediction accuracy when used for system identification (Mohajerin & Waslander, 2019; Gu
et al., 2021; Hu et al., 2024). The high dimensionality comes at the price of overfitting to the training
data and the requirements of evaluating generalization capabilities.

The benchmark (Bhamidipaty et al., 2023) consists of 20 synthetic datasets with in-distribution (ID)
and OOD evaluation. The nonlinear benchmark1 (Schoukens & Noël, 2017) is a collection of 13
datasets taken from real physical systems. This benchmark includes system identification baselines
both from the systems and control as well as the machine learning community,

The robustness of neural networks, which is considered to be a safety feature, is analyzed in a series
of paper that enforce rigorous input-output (Fazlyab et al., 2019; Revay et al., 2020; Pauli et al., 2021)
or input-to-state (Bonassi et al., 2021) guarantees. From these methods, we draw inspiration to design
empirical robustness measures that are relevant for practical use-cases.

3 DEVELOPER REQUIREMENTS

We have synthesized developer requirements for system identification in different application domains
by surveying evaluation techniques over an extensive range of system identification papers.

Papers on system identification have commonly measured accuracy by comparing the predictions
made by the parametrized model with the outputs given in the dataset. The prediction as well as the
measured output signals are in the time domain. (Ljung, 1998; Pillonetto et al., 2022; Forgione &
Piga, 2021a; Beintema et al., 2023b; Baier et al., 2023). As a result, we state accurate predictions as
the first developer requirement.

Requirement 1 (Accuracy). Judging prediction capabilities in the time domain.

Related work has demonstrated that the system identification methods may fail to predict the correct
phase of a function, but predict a phase-shifted function (cf. (Billings, 2013; Pintelon & Schoukens,
2012)). When evaluating the prediction capabilities with root mean squared error (RMSE), Gaussian

1https://www.nonlinearbenchmark.org/benchmarks
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noise seemingly was a better predictor than a phase-shifted ground truth. Therefore, we posit that
prediction capabilities must not only be judged by RMSE in the time domain, but also by an evaluation
in the frequency domain and state it in the following requirement:
Requirement 2 (Frequency recovery). Judging prediction capabilities in the frequency domain.

Dynamic system models operate in various domains, including acceleration prediction on aircraft
wings (Noël & Schoukens, 2020a), displacement estimation of a mass (Frank, 2025), and velocity
and angular-velocity prediction for ships (Baier & Staab, 2022). In multi-output models, differences
in physical units can strongly influence performance assessment. For instance, a model may appear
highly accurate if it predicts forward velocity well, even when its estimates of angular velocity
deviate substantially — simply because the two outputs lie on very different scales. We refer to
output signals with different physical units as heterogeneous. Consequently, evaluation metrics for
system identification models must handle heterogeneous outputs in a way that is independent of their
numerical ranges. We capture this need in the following requirement:
Requirement 3 (Heterogeneity). Judging prediction capabilities for heterogeneous outputs.

Simulation models are used to predict the behavior of dynamic systems in unknown scenarios (Lazar,
2024). A model with high generalization capabilities makes accurate predictions when faced with
input signals (and initial states) not seen before (Baier et al., 2023). Unknown input signals, used to
assess generalization capabilities empirically, are not available in datasets in general. Generalization
capabilities are significant for simulation models (Revay et al., 2020; Srivastava et al., 2014; Hu et al.,
2024). Since generating new experiments to obtain real OOD data is impractical, we extract a OOD
dataset from the existing recordings, allowing us to evaluate generalization capabilities.
Requirement 4 (OOD Generalization). Judging generalization capabilities to OOD input signals.

When identifying dynamic systems in a high-dimensional space, there exists a significant risk of ob-
taining unstable models, which can lead to unsafe behavior or model failure during inference (Bonassi
et al., 2021; Revay et al., 2020). Instability can arise from ID input signals and thus might not be
detected by evaluations on the OOD dataset. Therefore, we develop analyses that generate specific
input signals to test the robustness of the model with respect to input disturbances. Robustness is
the capability of a model to make accurate predictions in the presence of perturbed noisy signals (cf.
(Fazlyab et al., 2019; Madry et al., 2017; Pauli et al., 2021; Cohen et al., 2019))
Requirement 5 (Robustness). Judging model robustness for disturbed input signals.

In summary, we found that existing performance comparisons of models for dynamic systems are not
suitable for high-dimensional models that outperform classic methods in terms of their predictive
accuracy.

4 OVERVIEW OF SYSIDBENCH AND NOTATION

We have developed SYSIDBENCH to allow the developer to compare different system identification
algorithms according to the judgement criteria stated in the five requirements 1 - 5. An overview of
our novel methodology realized in SYSIDBENCH is provided in Figure 1.

SYSIDBENCH uses four publicly available datasets and incorporates six evaluation metrics on five
different identification algorithms. Our methodology takes as input signal a dataset of input-output
measurements from an unknown dynamic system and a system identification method, and outputs
evaluation metrics along with a parametrized model. We assume that the system identification
method is a black-box that learns by adapting its model parameters based on the training data. The
development of new algorithms is not part of this benchmark.

We denote the raw recording provided by the user as a set of tuples D = {(u,y)i}Mi=1 that are the
input-output measurements taken from the unknown system. Subsets are indicated by a subscript.
In particular, we will have two test sets denoted by Dtest = DID ∪ DOOD for ID and OOD test sets,
respectively. While the ID dataset has the same data distribution as the training dataset, the OOD
datasets stems from a different distribution. The training and validation sets are denoted by Dtrain

and Dval. We assume the measurements to be finite and assume trajectories in D have length N , the
recordings are not required to have the same length.
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D

SHIP
MSD
HYST.
F16

Dataset
Section 5

Dtrain, Dval,
Dtest ⊂ D

Dynamic-aware
data splitting

Preprocessing
Section 6

u,x0 → Sθ → ŷ

Training and
Hyp.par. opt.

Baselines
Section 8

Verify satisfaction of
Requirement 1 - 5

with metrics:

- NRMSE
- E-MSE (ours)

- PSD-RMSE (ours)
- γ∗ (ours)

On DID, DOOD.

Metrics
Section 7

D
Dtrain,
Dval Sθ

DID,
DOOD

SYSIDBENCH

Figure 1: SYSIDBENCH supports systematic evaluation and comparison of system identification
methods by assessing the methods according to requirements 1–5. The training dataset Dtrain is used
to learn the parameters θ, and the validation dataset Dval is used to optimize the hyperparameters.
Test data DID, DOOD, is used for final evaluation.

The algorithm to parametrize a dynamic system model is called an identification or learning algorithm.
While identification is rather used in systems and control, learning is the term used in machine learning.
We denote a parametrized model by Sθ where θ ∈ Rn is a set of parameters to be identified. The
model Sθ maps an input signal u and an initial state x0 to an output signal ŷ = Sθ(u,x

0).

The structure of this paper will follow the flow shown in Figure 1, in Section 5 we will given an
overview of the considered datasets. We introduce our novel dynamic-aware preprocessing method in
Section 6 and discuss the derived metrics for evaluation in Section 7. Baseline results are provided in
Section 8.2 and we conclude our paper in Section 9.

5 DATA SETS

The four currently available datasets are a ship that moves in open water SHIP, a coupled-mass-
spring-damper system MSD, a hysteretic system HYST. and a vibration test of an aircraft wing
F16.

The SHIP dataset simulates the normal operation of a ship in open water and provides multiple input
and output signals. It is generated from random maneuvers an operator would do. The measured
output signals are the velocities in two directions and two rotation rates. The input signals are the
propeller speed, the rudder angle, and wind measurements. The complexity of the dynamics arise
from a nonlinear mapping between wind and the rotations rates (see Figure 2a). MSD represents
a mass-spring-damper system with four masses in which the nonlinearity is static and stems from
the force profile of the spring, it has no memory, and has one input and one output (see Figure 2b).
The HYST. dataset serves as a toy example that exhibits complex nonlinear behavior, with known
underlying differential equations. It has one input and one output (see Figure 2c. F16 consists of
dedicated experiments conducted in a controlled environment on a real-world aircraft wing, with
one input and multiple output signals. The input signals are carefully designed by experts to excite
specific frequencies.

6 DATA PREPROCESSING

We differentiate two different kind of datasets, (i) A dataset that provides a split into training,
validation, and testing. (ii) A dataset that provides a split into training, validation, ID testing, and
OOD testing. The type of dataset determines which preprocessing steps are required. In the first
step, we determine the sequence length used to identify the dynamic system model.

4
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SHIP ∆t = 1

M = 125

N = 3600

nu = 6

ny = 4

(a) (Baier & Staab, 2022)

MSD ∆t = 0.2

M = 14

N = 108477

nu = 1

ny = 1

(b) (Frank, 2025)

HYST. ∆t = 1/750

M = 14

N = 108477

nu = 1

ny = 1

(c) (Noël & Schoukens,
2020b)

F16 ∆t = 0.0025

M = 700

N = 13500

nu = 1

ny = 3

(d) (Noël & Schoukens,
2020a)

Figure 2: Overview of datasets used in the benchmark. M refers to the number of recordings that are
available, nu, ny refer to the number of inputs and output signals, respectively, and N refers to the
length of one recording. With ∆t, we refer to the discrete sampling time.

6.1 TRUNCATION LENGTH

Optimization on long sequences is computationally expensive and can not be parallelized (Ribeiro
et al., 2020; Forgione & Piga, 2020; Beintema et al., 2023a). For models with a large number of
parameters, this becomes a bottleneck. In Ribeiro et al. (2020), it was shown that the optimization
landscape is smoother on shorter sequences. In Beintema et al. (2023b;a), this was termed the
truncation length, describing the length of subsequences used for training. The truncation length is a
design parameter that depends on the system’s dynamics and the sample time used for discretization.
In machine learning related publications, this is often termed the prediction horizon (Baier et al.,
2023; Mohajerin & Waslander, 2019).

For our benchmark, we aim for a unifying approach to obtain the truncation length without having
prior knowledge about the system. In this dynamic-aware preprocessing, we describe a method to get
the truncation length based on the transient time of a linear approximation model. With this approach,
we remain general with respect to the system’s domain but take into account the dynamics and the
sampling time.

After obtaining a linear state space model from the available training data, we use the linear matrices
to get the steady state response. Then we apply a step function to the linear model and analyse the
output. The time until the linear dynamics reach a steady state is called the transient time. For a linear
system, it tells us how long you have to observe the output signal in order to recover its dynamics.

We use N4SID, a subspace identification method (Van Overschee & De Moor, 1994; Ljung, 1998),
to obtain a linear state space model of the form:(

xk+1
lin

ŷk
lin

)
=

(
Alin Blin

Clin Dlin

)(
xk
lin

uk
lin

)
. (1)

Where xk
lin ∈ Rnxlin represents the internal state of the linear model, and the input and output sizes

match the size of the physical system ne = nelin and nd = ndlin
. From the linear approximation

model, we extract the transient time, which is defined as the time it takes for a system to reach a
steady state after a step input. The steady state can be computed by solving the eigenvalue problem
of the matrix Alin in equation 1. More details about N4SID can be found in the appendix A.1.
Definition 1. We define the transient time τ > 0 as the time it takes until the linear model’s output
reaches a steady-state when fed with a step input.

k∗ = min
k

∥ŷk
lin − ȳ∥ < ϵymax (2)

where yss refers to the steady state and

ymax = max
k

∥ŷk
lin − ȳ∥ (3)

is the maximum deviation from the steady state. The transient time follows as the minimal time index
k∗ and the sample time ∆t, τ = k∗∆t.
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The transient time is a property of the step response and depends on the dynamics of the model.
We use the transient time to obtain the truncation length h used during training. We also derive the
window length w used for initialization based on the horizon. We choose ϵ = 0.02, corresponding to
reaching the steady state within 2% of the maximum deviation.

More details about the transient-time, how the steady-state is calculated, and the step response,
especially for models with multiple inputs and outputs, are found in the appendix A.2.

Based on the truncation length, we can split the raw recordings given in D into subsequences of
length h+ w + 1 and use them for training. In the next step, we develop a methodology to extract a
OOD dataset from the subsequences.

6.2 OUT OF DISTRIBUTION DATASET

After the truncation length is fixed, we separate an OOD dataset to assess models’ generalization
capabilities. The OOD separation is based on the signal energy which is defined as follows:

Eu := ∥u∥22 =

N−1∑
k=0

(uk)Tuk for N > 0. (4)

We assume the sequences to be square summable, i.e. ∥u∥2 < ∞.

It measures the energy injected into the system by the input signal. The energy is computed for each
subsequence of the recordings, and the subsequences with the highest energy are selected for the
OOD dataset. This approach allows us to evaluate the model’s generalization capabilities without
requiring expensive new experiments or expert knowledge about the system.
Remark 1. Conservation of energy is a fundamental property of physical systems. A dynamic system
is subject to these properties and converts energy. It is irrelevant which physical states are being
considered or influenced. By considering energy, systems from different domains can be compared,
making this perspective appropriate for our benchmark.

The subsequences are selected such that
DOOD = {(uk, ek) ∈ {Dtest,Dtrain,Dval} | ∥u∥2 > τood}, (5)

The threshold τood defines the minimum energy required for a subsequence to be included in the
OOD dataset. We choose τood such that the size of the OOD dataset is 10% of D. The remaining
subsequences are randomly split into training, validation, and ID testing subsets.

After the dynamic-aware data preprocessing, we get a training dataset Dtrain that contains subse-
quences of length h+ w + 1, a dataset Dval for hyperparameter optimization, and two test sets for
the final evaluation DID and DOOD.

7 METRICS FOR EVALUATING DEVELOPER REQUIREMENTS

Based on the developer requirements defined in Section 3, we now derive evaluation metrics that
allow a developer to verify the requirements are satisfied.

7.1 PREDICTION CAPABILITIES IN TIME DOMAIN (REQUIREMENT 1)

To evaluate the accuracy of model predictions in the time domain, we use the normalized root mean
squared error (NRMSE) and the fit-metric, which are also used in existing benchmarks (Champneys
et al., 2024). The NRMSE measures the deviation per channel.

NRMSEm(u,y) :=
1

σm

√√√√ 1

Mh

M∑
i=1

h−1∑
k=0

((ykm)i − (ŷkm)i)2 for m = 1, . . . , ny , (u,y) ∈ Dtest,

(6)

where σm =
√∑M

i=1

∑N−1
k=0 (((ykm)i − ȳm)) refers to the standard deviation of the output channel

and is calculated from the training subsequences. The NRMSE is computed for each output channel
m separately, allowing for a more detailed analysis of the prediction quality across different outputs.
A low NRMSE valuereferstomoreaccuratepredictions.
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7.2 PREDICTION CAPABILITIES IN THE FREQUENCY DOMAIN (REQUIREMENT 2)

While the NRMSE provides a good indication of the quality in the time domain, it might not capture
whether the model has learned to reproduce the oscillatory behavior of the system. A model that
predicts the mean value of an oscillatory output can achieve a low NRMSE, but it fails to capture the
oscillatory nature of the system. To address this limitation, we propose a frequency-based evaluation
metric that compares the power spectral density (PSD).

The power PSD of the output signal y is estimated using the Welch (Welch, 1967) method as

Syy(f) = lim
k→∞

1

N

∣∣F{yk}
∣∣2 , (7)

where F{·} denotes the discrete Fourier transform (DFT), k is the discrete-time index, N is the
number of samples, and f the frequency. The signal yk is considered in the limit as N → ∞ and the
sampling interval approaches zero. Welch’s approach partitions the signal into overlapping segments,
applies a window function to each, computes the periodogram for each segment, and then averages
them to reduce variance in the PSD estimate. The resulting estimate provides a practical measure for
frequency-domain analysis and recovery.

To evaluate the difference between the PSD of the true output y and the predicted output ŷ, we define
the RMSE on the PSD as

PSD-RMSE =

√√√√ 1

Nf

Nf∑
i=1

(Syy(fi)− Sŷŷ(fi))
2
, (8)

where Sŷŷ(f) is the PSD of the predicted output ŷ, Nf is the number of frequency bins, and fi
represents the i-th frequency bin.

7.3 CAPABILITIES FOR HETEROGENIOUS PREDICTIONS (REQUIREMENT 3)

In addition to the metrics in the time domain equation 6 we propose an alternative metric that captures
the deviation in energy and is independent of the physical states of the system. The energy of the
output signal is defined in equation 4. The energy error is defined as

E-MSE =
|Ey − Êy|

Ey
, (9)

where Ey is the energy of the output signal and Êy is the energy of the predicted trajectory.

7.4 GENERALIZATION TO OUT-OF-DISTRIBUTION INPUT SIGNALS (REQUIREMENT 4)

To evaluate the generalization capabilities of the identified model, we use the OOD test dataset that
was separated during preprocessing of the data (see Section 6 for details). We evaluate the OOD
dataset on the same metrics as the ID test dataset.

7.5 ROBUSTNESS TO DISTURBED INPUT SIGNALS (REQUIREMENT 5)

To assess the robustness of a model to unknown input signals, we aim to produce outputs that
violate physical laws, such as energy conservation. The setup is comparable to adversarial attacks in
classification problems, where the goal is to find a small input perturbation that leads to large changes
in the output. In regression problems this is more challenging since there is no true output class.
However, we use the energy perspective to design adversarial attacks that lead to output prediction by
the model that violate energy conservation.

The first metric to assess model robustness is inspired by the maximum amplification. We aim to find
an input signal that maximizes the amplification of energy, i.e., we solve the optimization problem

γ∗ = max
u

∥ŷ∥2
∥u∥2

s.t. ŷ = Sθ(u,x
0), ∥u∥2 ≤ Emax (10)

7
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The optimization problem is solved using gradient-based optimization, where the gradient of the
output energy with respect to the input signal is computed using backpropagation through the model
Sθ.

In the second metric, we consider the sensitivity as the objective of the opimization. The sensitivity
measures how small input changes effect the output of a model. This is also known as the Lipschitz
constant

L = max
(u)a,(u)b

∥(ŷ)a − (ŷ)b∥2
∥(u)a − (u)b∥2

s.t. a ̸= b, ŷ = Sθ(u,x
0) (11)

8 VALIDATION OF THE BENCHMARK WITH SELECTED SYSTEM
IDENTIFICATION METHODS

In this section we first present the chosen baslines and then discuss the results when the identification
algorithms are used to identify the datasets from Section 5.

8.1 SELECTED BASELINE SYSTEM IDENTIFICATION METHODS

Recurrent neural network (RNN) models are infinitely-dimensional (Pillonetto et al., 2025) and thus
capable of identifying complex dynamics. We use LSTM and RNN to represent the recurrent neural
network architectures, which also cover a wide range of other state space neural network structures,
such as (Beintema et al., 2023a; Forgione & Piga, 2020; Mohajerin & Waslander, 2019). The recurrent
structure makes the model class flexible, but comes at the price of high computational complexity
when dealing with long signals (Beintema et al., 2023a; Ribeiro et al., 2020). Structured state space
models (Gu et al., 2021; Gu & Dao, 2023; Hu et al., 2024; Bonassi et al., 2024) overcome this
computational bottleneck by simplifying the network structure. These novel models are represented
in our benchmark by DEEPSUBENC. Another problem with RNNs is that they overfit the training data.
Regularization promises to overcome overfitting by constraining the trainable parameters (Fazlyab
et al., 2019; Bonassi et al., 2021; Baier et al., 2023) we represent this model class by RELINET (Baier
et al., 2023).

8.2 BENCHMARK RESULTS FOR SELECTED BASELINE METHODS

We run the baselines from Section 8.1 on the set of datasets described in Section 5. The results are
shown in Table 1 and we report the NRMSE (cf. 6) to assess the accuracy in the time domain, the
PSD-RMSE (cf. 8) to assess the frequency recovery, and the E-MSE (cf. 9) to assess the performance
on heterogeneous outputs. For judging the robustness, we report the worst-case amplification (cf. 10).

By taking into account multiple evaluation metrics, developers can trade off prediction accuracy
versus sensitivity. This is, for example, shown on the MSD dataset, where the RNN and the LSTM
have comparable prediction accuracy in terms of NRMSE, but the RNN is significantly more robust
in terms of its Lipschitz constant, which is shown by a lower L value.

9 CONCLUSION

With SYSIDBENCH, we provide an initial step toward systematic benchmarking system identification
methods, enabling developers to select the most suitable approach for their specific problem. We
mapped out five key requirements, derived from both the literature and our own experiments.

Our experiments show that high-dimensional models are capable of capturing complex dynamics and
achieving high prediction accuracy in both the time and frequency domains. This aligns with findings
from the system identification literature. However, these models also exhibit a downside: they can
become highly sensitive, as indicated by the metrics for Requirement 5.

Overall, SYSIDBENCH lays the groundwork for systematic evaluation of dynamic system models,
while offering clear avenues for future extension and refinement.
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Table 1: Comparison of different identification methods across different datasets

Method Dataset NRMSE 6 PSD-RMSE 8 E-MSE 9 γ∗ 10 L 11 #Pars
ID OOD ID OOD ID OOD

SHIP

LSTM
[
0.50 0.43 1.20 0.34

] [
0.67 0.56 0.86 0.30

]
0.50 1.12 0.14 0.04 65.39 154.89 334340

RNN
[
0.41 0.35 1.29 0.31

] [
0.50 0.55 0.96 0.30

]
0.31 0.84 0.08 0.03 41.15 13.85 83972

S4
[
0.10 0.20 1.00 0.20

] [
0.33 0.49 0.99 0.22

]
0.18 0.67 0.00 0.02 11.77 8.88 9338

RELINET - - - - - - -

MSD

LSTM
[
0.18

] [
0.40

]
6.09 61.59 0.06 0.23 2.06 46.58 331393

RNN
[
0.21

] [
0.30

]
6.28 54.41 0.11 0.18 3.49 10.27 82945

S4
[
0.26

] [
1.05

]
12.15 134.87 0.06 0.42 1.24 130.97 2887

RELINET - - - - - - -

HYST.

LSTM
[
0.38

] [
0.39

]
0.00 0.00 0.01 0.03 11.60 23.48 331393

RNN
[
0.38

] [
0.39

]
0.00 0.00 0.02 0.04 4.64 29.31 82945

S4
[
0.47

] [
0.45

]
0.00 0.00 0.03 0.16 3.07 36.35 2887

RELINET
[
0.42

] [
0.40

]
0.00 0.00 0.15 0.13 7.28 4.04 420736

F16

LSTM
[
0.26 0.35 0.40

] [
0.36 0.50 0.59

]
3.25 11.73 0.02 0.16 5.90 8.32 331651

RNN
[
0.41 0.60 0.65

] [
0.43 0.72 0.79

]
6.09 17.13 0.02 0.04 29.64 1284.44 83203

S4
[
0.57 0.81 0.84

] [
0.54 0.81 0.86

]
11.38 20.95 0.58 0.28 2.73 2.59 2891

RELINET - - - - - - -
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A APPENDIX

A.1 N4SID ALGORITHM

The Numerical Subspace State Space System Identification (N4SID) algorithm is a subspace-based
method for identifying state-space models directly from input–output data. It constructs block Hankel
matrices from measured signals, employs numerical linear algebra techniques such as singular value
decomposition (SVD) to estimate the system order, and computes state sequences in a least-squares
sense. From these estimates, the system matrices of a minimal realization are obtained without
requiring nonlinear optimization. N4SID is valued for its numerical robustness, computational
efficiency, and ability to handle multivariable systems.
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Table 2: Experiment configuration

Dataset Model nh Epochs Batch Size Learning Rate loss nu ny dropout # layers

F16 lstm 128 1000 16 0.001 mse 1 3 0.25 3
F16 rnn 128 1000 16 0.001 mse 1 3 NaN 3
F16 s4 128 1000 16 0.001 mse 1 3 NaN 5
hyst lstm 128 1000 16 0.001 mse 1 1 0.25 3
hyst rnn 128 1000 16 0.001 mse 1 1 NaN 3
hyst s4 128 1000 16 0.001 mse 1 1 NaN 5
msd lstm 128 1000 16 0.001 mse 1 1 0.25 3
msd rnn 128 1000 16 0.001 mse 1 1 NaN 3
msd s4 128 1000 16 0.001 mse 1 1 NaN 5
ship lstm 128 1000 16 0.001 mse 6 4 0.25 3
ship rnn 128 1000 16 0.001 mse 6 4 NaN 3
ship s4 128 1000 16 0.001 mse 6 4 NaN 5

A.2 TRANSIENT TIME

We are interested in the case xk+1
lin = xk

lin and the respective output. Solving the linear equation leads
to the steady-state output

ēlin =
(
Dlin − Clin (Alin − I)

−1
Blin

)
d (12)

A.3 EXAMPLES OF ENERGY RESPONSES

A.4 ENERGY-TO-PEAK GAIN

The energy-to-peak gain of a linear, stable system characterizes the maximum instantaneous output
amplitude in response to a finite-energy input. In the stochastic setting, it describes how large
the system’s response can become when excited by white noise. The energy-to-peak gain focuses
specifically on the largest possible transient. In system identification the energy-to-peak gain is
valuable for assessing physical plausibility. For instance, a real ship, due to its mass and damping,
responds gradually to small random rudder inputs. A learned model with a high energy-to-peak gain
might instead produce sharp, nonphysical yaw deviations—indicating that, despite low average error,
it fails to reproduce key dynamic behaviors.

A.5 EXPERIMENTAL SETUP

The hyperparameters used for our experiments are shown in Table 2

A.6 POWER SPECTRAL DENSITY EXAMPLE

In this section, we compare the predictions of a trained model with those of a noise baseline. In the
time domain, the RMSE shows that predicting noise performs only slightly worse than the trained
model. In the plots of Figure 4 one observes a slight phase shift made by the LSTM which leads to
errors that are comparable to predicting noise, even though the correct frequency is recovered. This
observation motivates a deeper analysis in the frequency domain. Table 3 reports the mean error
across all outputs in both domains. While the errors in the time domain are comparable, the LSTM
clearly outperforms the noise baseline in the frequency domain. This advantage is also evident in
Figure 3, where the LSTM accurately recovers frequencies up to 15 Hz, whereas the noise model
fails to capture the true frequency components.
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Table 3: Comparison between prediction made by an LSTM and a noise model in time and frequency
domain on the F16-GVT example (Noël & Schoukens, 2020a).

Model RMSE PSD-RMSE

Noise 1.22 36.70
LSTM 1.17 24.92

(a) Noise model. (b) LSTM .

Figure 3: Power spectral density over frequencies.

(a) Noise model. (b) LSTM .

Figure 4: Prediction in time domain.
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