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Abstract

Knowledge graphs (KGs) generated by large001
language models (LLMs) are becoming increas-002
ingly valuable for Retrieval-Augmented Gen-003
eration (RAG). However, existing KG extrac-004
tion methods predominantly rely on prompt-005
based approaches, which are inefficient for pro-006
cessing large-scale corpora and suffer from in-007
formation loss as document length increases.008
Additionally, methods and datasets for evalu-009
ating ontology-free KG construction are lack-010
ing. To address these shortcomings, we pro-011
pose SynthKG, a multi-step, document-level012
ontology-free KG synthesis workflow. By013
further fine-tuning a smaller LLM on syn-014
thesized document-KG pairs, we streamline015
the multi-step process into a single-step KG016
generation approach called Distill-SynthKG.017
Furthermore, we re-purpose existing question-018
answering datasets to establish KG evaluation019
datasets and introduce new evaluation metrics.020
Using KGs produced by Distill-SynthKG, we021
also design a novel graph-based retrieval frame-022
work for RAG. Experimental results demon-023
strate that Distill-SynthKG not only surpasses024
all baseline models in KG quality (includ-025
ing models up to eight times larger) but also026
consistently excels in retrieval and question-027
answering tasks. Additionally, our proposed028
graph retrieval framework outperforms all KG-029
retrieval methods across multiple benchmark030
datasets. We make SynthKG and Distill-031
SynthKG publicly available.032

1 Introduction033

Retrieval Augmented Generation (RAG) has034

gained widespread application for effectively con-035

necting large language models (LLMs) with ex-036

ternal knowledge sources. Recently, Knowledge037

Graph (KG) augmented RAG methods have demon-038

strated strong potential, offering several advantages039

such as effective corpus-level information summa-040

rization (Edge et al., 2024), improved reasoning041

capabilities (Gutiérrez et al., 2024; Li et al., 2024),042

and accurate modeling of historical customer issue 043

resolutions for QA (Xu et al., 2024). 044

Recent works (Edge et al., 2024; Gutiérrez et al., 045

2024) have begun exploring the use of LLMs to au- 046

tomate the construction of KGs, which then serve 047

as knowledge sources for specific tasks such as 048

question answering or building intelligent agentic 049

frameworks. However, these existing approaches 050

have several limitations. First, they rely on sim- 051

ple zero-shot or few-shot in-context learning meth- 052

ods to construct knowledge graphs in a single step 053

using LLMs like GPT-4o (OpenAI, 2024). Con- 054

sequently, such approaches can incur significant 055

inference costs when applied across large corpora 056

due to the need for many commercial API calls. 057

These methods also lack a rigorous and reliable de- 058

sign specifically tailored for KG construction. Hav- 059

ing LLMs process entire documents, particularly 060

long texts, has been shown to potentially lead to 061

issues such as information loss (Edge et al., 2024). 062

Second, there is a lack of existing datasets or eval- 063

uation methods to effectively evaluate document- 064

level ontology-free KGs. This absence makes it 065

difficult to identify whether errors in RAG systems 066

stem from issues in specific reasoning components 067

or from poor-quality KGs that propagate errors 068

throughout the system. 069

To address these limitations, we introduce Syn- 070

thKG, a novel LLM-based KG construction work- 071

flow. We further distill this workflow into a 072

smaller LLM named Distill-SynthKG, which en- 073

ables efficient, one-step generation of high-quality 074

document-level KGs. In SynthKG, we begin by 075

splitting the input document into manageable, se- 076

mantically complete text chunks. Each chunk is 077

then processed through a decontextualization step 078

where entity disambiguation occurs based on the 079

previous context, making each chunk an indepen- 080

dent, self-contained unit. We then prompt the LLM 081

to extract entities, relations, and relevant proposi- 082

tions from each text chunk, which are combined to 083
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form the final KG. Finally, we fine-tune our smaller084

Distill-SynthKG LLM on the KGs produced by085

SynthKG, enabling it to generate the KG for a given086

document in a single inference step.087

Additionally, we propose a method for con-088

structing an evaluation dataset for document-level089

ontology-free KGs, along with a corresponding KG090

evaluation framework. Specifically, we re-purpose091

existing multihop QA datasets by converting ques-092

tions and answers into ground truth relation triplets,093

where the answer appears as either the head, tail,094

or predicate in a triplet. Using these ground truth095

triplets for each document, we introduce semantic096

similarity and keyword-based metrics to assess the097

coverage of triplets from a KG.098

Finally, we present a new graph-based retrieval099

framework based on the KGs generated by Distill-100

SynthKG. We design a progressive retrieval method101

that begins with proposition retrieval, leveraging102

the graph structure to retrieve related triplets, propo-103

sitions, and text chunks relevant to the input query.104

Our proposed retriever outperforms state-of-the-105

art retrieval methods in both retrieval accuracy106

and question-answering accuracy, showing im-107

provements across three multihop QA datasets:108

MuSiQue (Trivedi et al., 2022), 2WikiMultiHopQA109

(Ho et al., 2020), and HotpotQA (Yang et al., 2018).110

Furthermore, our KG coverage evaluation frame-111

work correlates strongly with both QA and retrieval112

performance, demonstrating its effectiveness in113

evaluating document-level KG coverage.114

In summary, our contributions are as follows: (1)115

We introduce SynthKG, a novel LLM-based work-116

flow that generates high-quality, high-coverage117

document-level ontology-free KGs. (2) We train118

Distill-SynthKG, which leverage SynthKG to syn-119

thesize training data and fine-tune a much smaller120

LLM. This simplifies the multi-step process into a121

single inference step, significantly improving effi-122

ciency. (3) We propose new KG evaluation datasets123

by re-purposing existing multi-hop QA datasets124

and introducing new evaluation metrics. (4) We in-125

troduce a novel graph-based retrieval method that126

leverages KGs generated by Distill-SynthKG. (5)127

Our experiments across multiple datasets demon-128

strate that Distill-SynthKG not only produces KGs129

of higher quality than all baselines—including130

models up to eight times larger—but also consis-131

tently outperforms them in retrieval and question-132

answering tasks. Furthermore, the proposed graph-133

based retrieval framework surpasses all baseline134

KG-based retrieval methods.135

2 Related Work 136

Recently, there has been a growing interest in using 137

Knowledge Graphs (KG) for different Retrieval- 138

Augmented Generation (RAG) applications. For 139

instance, GraphRAG (Edge et al., 2024) shows the 140

advantages of using KGs over a text corpus for an- 141

swering global queries that require summarizing 142

information from multiple documents. HippoRAG 143

(Gutiérrez et al., 2024) demonstrates that apply- 144

ing personalized PageRank algorithms on LLM- 145

derived KG can enhance retrieval accuracy for com- 146

plex multi-hop reasoning questions. GraphReader 147

(Li et al., 2024) shows how KGs can enable LLM 148

agents to plan and reason in a long context to an- 149

swer complex questions. These approaches focus 150

on maximizing KG utility. 151

All the above work, along with many others such 152

as Chia et al. (2022); Trajanoska et al. (2023); Chen 153

and Bertozzi (2023); Kai Zhang (2023); Nayak and 154

Timmapathini (2023); Mihindukulasooriya et al. 155

(2023); Zhu et al. (2024); Jiao et al. (2023); Kho- 156

rashadizadeh et al. (2023); Han et al. (2024); Yao 157

et al. (2024); Bi et al. (2024); Ding et al. (2024); 158

Sanmartin (2024); Sun et al. (2024); Yao et al. 159

(2023); Chase (2022) have used LLM prompting to 160

build KGs or extract semantic relation triplets from 161

text. However, all prior works have overlooked 162

improving the efficiency of ontology-free KG con- 163

struction. We are the first to develop a specialized 164

LLM for KG construction, enhancing efficiency by 165

shifting from large models to smaller, more effi- 166

cient models without sacrificing performance. 167

3 Distill-SynthKG 168

We present Distill-SynthKG, a framework for fine- 169

tuning LLMs by distilling the multi-step KG syn- 170

thesis process (SynthKG) into a streamlined, single- 171

step approach. This allows for the direct generation 172

of KGs from documents using smaller-scale LLMs. 173

Specifically, we first apply SynthKG to generate 174

KGs from documents using a larger LLM. We then 175

distill this process by training a smaller LLM on 176

the resulting document-KG pairs, producing the 177

distilled model, Distill-SynthKG. 178

3.1 SynthKG 179

SynthKG consists of two main steps: (1) document 180

chunking and decontextualization, followed by (2) 181

entity, relation and proposition extraction. These 182

steps ensure high coverage of extracted entities and 183

relations while minimizing information loss. We 184
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Entity Extraction

Step 3

LLM

…

Entity Name: OWC 

Pharmaceutical Research Corp

Entity Type: ORG

…

Proposition: OWC Pharmaceutical Research Corp preferred stock 

is convertible to common stock at $0.20 per share.

Triplets: [('OWC Pharmaceutical Research Corp preferred stock', 

'convertible to', 'OWC Pharmaceutical Research Corp common 

stock'),

(OWC Pharmaceutical Research Corp common stock, has price, 

$0.20 per share)]

Proposition-Entity KG
Proposition and Relation 
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Step 4

LLM

…

Distillation Smaller

LLM

SynthKG: Multi-step Framework 
Distill-SynthKG: 

Single-step Framework 

Long

Document
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Figure 1: Our SynthKG data synthesis method (left) generates high-coverage, ontology-free, document-level KGs.
We distill this synthetic data into Distill-SynthKG (right), which is applied to multiple downstream applications.
Long document refers to multi-paragraph documents in our pipeline.

present an overview of SynthKG in Figure 1. Ad-185

ditionally, we provide details of all LLM prompts186

utilized in this process in Appendix B.187

3.1.1 Document Chunking and188

Decontextualization189

Directly inputting long texts into an LLM has been190

shown to result in information loss (Edge et al.,191

2024). To mitigate this risks, we first split each192

input document into smaller, more manageable193

chunks before processing them with the LLM in194

subsequent steps. This chunking is done along195

sentence boundaries, without overlap, to preserve196

semantic coherence and avoid redundancy.197

However, processing each chunk in isolation can198

lead to a loss of prior context. For example, if “John199

Doe” appears in one chunk and “John” in another,200

we might lose track of who “John” refers to. To201

prevent this, we apply a “decontextualization” step,202

where we prompt the LLM to rewrite each chunk,203

replacing all entity mentions with their most infor-204

mative form based on the context of the preceding205

chunk. For example, if “John Doe” is introduced in206

a previous chunk, subsequent mentions of “John D.”207

“John,” or related pronouns are replaced with “John208

Doe.” This not only preserves context but also pre-209

vents the same entity from being represented in210

different forms, which could lead to redundancy,211

discontinuous KG paths, and reduced accuracy at212

inference time. The first chunk of a document is213

not decontextualized, as chunking does not lead to214

context loss in this case. We provide an example215

of a decontextualized chunk in Figure 9.216

To verify that the preceding chunk is sufficient217

for decontextualization, we calculate the average218

chunk distance for the same entity within each doc- 219

ument in our generated dataset of 100K samples 220

(details of this dataset are described in Section 6.1). 221

Specifically, we measure the distance between the 222

first occurrence of each entity and its subsequent 223

mentions. The overall average chunk distance per 224

entity is 0.9, indicating that, on average, entities are 225

mentioned again within less than one chunk after 226

their first mention. This suggests that using only 227

the preceding chunk is sufficient and that no signif- 228

icant number of entities remain unresolved due to 229

the chunk-based decontextualization process. 230

One potential downside of prompting the LLM 231

to rewrite chunks is that the rewritten version may 232

deviate from the original, potentially introducing 233

information loss or hallucination. To mitigate this, 234

we use ROUGE scores to compare the original 235

and decontextualized chunks, filtering out those 236

that exhibit significant deviations. Detailed exper- 237

imental settings are provided in Section 6.1. To 238

further assess the accuracy of our decontextualiza- 239

tion process, we manually annotate 75 randomly 240

selected decontextualized chunks. Three authors 241

each annotate 25 chunks, with access to both the 242

original chunk and the full document. They evalu- 243

ate whether modifications are made, whether those 244

modifications are correct, and whether any infor- 245

mation is lost. 246

Among the 75 annotated chunks, we identify a 247

total of 593 edits, with only six containing incor- 248

rect modifications and four showing information 249

loss. These results indicate that the decontextualiza- 250

tion process generally produces high-quality, self- 251

contained text. Moreover, our annotations reveal 252

that most modifications enhance specificity—for 253
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example, replacing a general term like “scientists”254

with “Darwinian scientists.” This suggests that the255

rewritten chunks are typically self-contained and256

comprehensible on their own.257

3.1.2 Entity and Relation Extraction258

Similar to Edge et al. (2024) and Gutiérrez et al.259

(2024), we first prompt the LLM to extract all enti-260

ties and their corresponding types from each text261

chunk, as shown in Step 3 of Figure 1. Then, we262

prompt the LLM again to generate all propositions263

and corresponding relation triplets based on the264

text chunk and previously extracted entities. Each265

relation is represented by quadruplets consisting266

of a source entity, predicate, target entity, and267

a proposition (see Figure 1 for examples). The268

proposition is a sentence that describes the seman-269

tic relation between the source and target entities,270

encapsulating all key details of that relation.271

We extend traditional KG triples by adding a272

proposition component, which functions as an in-273

termediate chain of thought (Wei et al., 2022) en-274

abling the LLM to first articulate the relevant con-275

text coherently before extracting the corresponding276

triplets. This approach therefore better leverages277

contextual information. Additionally, the proposi-278

tion acts as a fine-grained, self-contained retrieval279

unit, which facilitates the construction of KG-based280

retrieval indices. Beyond triplets and text chunks,281

our final KG incorporates these clear, independent282

propositions. For example, the proposition “OWC283

Pharmaceutical Research Corp preferred stock is284

convertible to common stock at $0.20 per share.”285

provides important contextual details, such as the286

“conversion price $0.20 per share,” and also serves287

as a precise, indexable unit.288

3.2 Distilling SynthKG289

While the detailed, chunk-by-chunk approach in290

SynthKG enables the generation of high-quality291

KGs using LLMs, it introduces efficiency chal-292

lenges. Each time we construct a KG from a docu-293

ment, multiple LLM calls are required, leading to294

high computational or API costs and limiting the295

scalability of KG construction. For example, pro-296

cessing a 1000-word document requires 12 LLM297

inference calls: the document is split into 4 chunks,298

and each chunk involves 3 calls for decontextual-299

ization, entity extraction, and relation extraction.300

To mitigate this, we distill the entire multi-step301

SynthKG framework into a single-step framework302

for a smaller LLM, as shown in Figure 1, by lever-303

aging the document–KG pairs generated during the 304

original SynthKG process. Specifically, we fine- 305

tune a smaller LLM so that it directly accepts the 306

entire document as input, uses its smaller parameter 307

size advantage, and produces the same knowledge 308

graph (i.e., a set of quadruples) as SynthKG in 309

one inference step. We hypothesize that the high- 310

quality document-KG pairs generated by SynthKG 311

can be effectively used to train smaller LLMs, help- 312

ing to mitigate the information loss that commonly 313

occurs when processing entire documents without 314

such training. However, there is currently no large- 315

scale dataset available for this type of training, mak- 316

ing SynthKG essential for creating the data neces- 317

sary to enable such model distillation. 318

4 KG Coverage Evaluation 319

Evaluating the quality of the extracted KG is essen- 320

tial, as it directly impacts its downstream applica- 321

tions. However, there is a lack of document-level 322

data for KG evaluation. Although DocRED (Yao 323

et al., 2019) is one existing dataset, it is limited to 324

just 96 relations, making it less suitable for KGs 325

used in retrieval tasks, which often rely on an open 326

ontology and include diverse relations. To address 327

this gap, we propose generating proxy ground truth 328

relation triplets from multihop QA datasets and in- 329

troduce metrics for evaluating the coverage of these 330

proxy triplets in the extracted KG. 331

Proxy Triplets Generation We use GPT-4o 332

to generate triplets from QA pairs. Given that 333

multihop QA requires reasoning over multiple 334

facts, we generate one triplet for each individual 335

fact. In datasets where these facts are present as 336

subquestion-answer pairs, we create triplets us- 337

ing these pairs while ensuring that the answer is 338

used as the head, relation, or tail in the triplet. In 339

cases where facts or subquestions are unavailable, 340

we use GPT-4o to first generate the required sub- 341

questions before subsequently generating the corre- 342

sponding triplets. The prompts used for generating 343

the triplets and decomposed questions, along with 344

relevant examples, are provided in Appendix C.1. 345

In human evaluations, we found a high degree of 346

validity in triplets extracted by GPT-4o with this 347

approach; see Appendix C.2 for details. 348

KG Coverage Evaluation Metrics Existing KG 349

evaluation metrics typically depend on exact match 350

or F1 score at the text level, given that relations are 351

derived from a predefined set. However, this ap- 352
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proach is inefficient for ontology-free KGs, where353

entities and relations are not constrained. To ad-354

dress this, we use semantic matching to align the355

extracted triplets with the ground truth triplets, and356

propose three complementary metrics: semantic357

scores, triplet coverage, and F1 scores. Note that358

the quality of an extracted KG is evaluated based on359

its coverage of a given set of ground truth triplets.360

Therefore, these three metrics are not aimed at mea-361

suring the graph’s comprehensiveness but rather at362

verifying whether the important triplets—those crit-363

ical for answering questions—are included in the364

graph. As a proxy for comprehensiveness, we addi-365

tionally compare the number of extracted triplets.366

Our three proposed metrics are defined as follows:367

• Semantic score: We calculate the cosine simi-368

larity between the vector representation of each369

ground truth triplet and the triplets in the knowl-370

edge graph, taking the highest similarity score as371

the semantic score for that ground truth triplet.372

A higher semantic score indicates a closer match373

between the ground truth and the extracted graph.374

• Triplet Coverage: If the semantic score for a375

ground truth triplet exceeds a cutoff threshold, it376

is marked as covered (coverage = 1); otherwise,377

the triplet is not covered (coverage = 0).378

• F1 score: We use the semantic score to identify379

the triplet from the knowledge graph that most380

closely matches the ground truth triplet. Then,381

we compute the F1 score by comparing the text382

of the extracted and ground truth triplets.383

5 Proposition-Entity Graph Retriever384

We introduce a novel retriever based on385

Proposition-Entity Graph (Figure 2), designed for386

queries requiring multi-hop reasoning. Given a387

question, we first retrieve the top-M most relevant388

propositions from the knowledge graph using389

embedding similarity, narrowing the search space390

to a smaller subset of relevant information. In step391

2, we construct a sub-graph consisting of these392

propositions and their linked entities, capturing393

the relations among the retrieved propositions. In394

step 3, we traverse the sub-graph starting from the395

entities mentioned in the question, selecting only396

propositions within their N-hop neighborhood.397

This filters out semantically similar but irrelevant398

propositions, ensuring that only those logically399

connected to the question entities are retained.400

We then include text chunks corresponding to401

the selected propositions within N-hop distance402

Figure 2: Our Proposition-Entity Graph Retriever
for multi-hop reasoning retrieves semantically similar
propositions, uses graph traversal to select those con-
nected though query entities, and then re-rank selected
propositions using LLMs.

to question entities, ranked by their embedding 403

similarity to the query, until the top-K chunks are 404

selected. We call this approach Graph Retriever. 405

Additionally, as shown in step 4 of Figure 2, we 406

prompt an LLM to identify the necessary proposi- 407

tions to answer the question from those retrieved in 408

the Graph Retriever process, effectively using LLM 409

reasoning capabilities to re-rank the selected propo- 410

sitions. Following this LLM-based re-ranking, we 411

include the chunks corresponding to the LLM- 412

identified propositions first, and then fall back to 413

the Graph Retriever to select additional chunks un- 414

til the top-K chunks are selected. We refer to this 415

combined approach as Graph+LLM in Section 6. 416

6 Experiments 417

6.1 KG Synthesis and Distillation Settings 418

SynthKG Dataset and Model: We use Llama- 419

3.1-70b-Instruct (AI@Meta, 2024) on 100K doc- 420

uments from IndustryCorpus (by BAAI) for syn- 421

thesizing KGs. We sample an equal number of 422

documents from the following categories: poli- 423

tics, news, medicine, literature, finance, film & 424

TV, computer science, automotive, technology, and 425

education. We use the SentenceSplitter from the 426

Llama-Index (Liu, 2022) framework to split doc- 427

uments into chunks, setting the chunk size to 256 428

tokens and chunk overlap to 0 tokens. We apply a 429
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KG Source MuSiQue 2wiki HotpotQA

Triplets Semantic Coverage F1 Triplets Semantic Coverage F1 Triplets Semantic Coverage F1

Llama-3-8b 93855 0.8111 32.09 0.51 41384 0.8281 43.39 0.56 76906 0.8343 41.79 0.58
SynthKG-8b 125197 0.8341 38.84 0.55 56178 0.8275 44.56 0.54 108031 0.8448 47.72 0.60

Llama-3-70b 102119 0.8346 40.34 0.56 46100 0.8475 54.10 0.58 82948 0.8440 47.20 0.61
SynthKG-70b 140527 0.8559 47.18 0.59 71305 0.8778 63.30 0.61 124460 0.8633 54.54 0.63

D-SynthKG-8b 139376 0.8546 46.90 0.59 68800 0.8693 58.27 0.59 123458 0.8693 55.26 0.64

Table 1: KG coverage performance. The best scores are bolded, and the second-best scores are underlined.

filtering criterion based on the ROUGE-1 F1 score430

(Lin, 2004), setting a threshold of 0.70 to minimize431

the risk of hallucinations from decontextualization.432

We perform the KG synthesis using VLLM (Kwon433

et al., 2023) on 160 Intel® Gaudi 2 AI accelerators434

in the Intel® Tiber™ AI Cloud. Our 100K gener-435

ated document-KG pairs will be publicly released.436

SynthKG Distillation: We train Meta-Llama-3-437

8b-Instruct (AI@Meta, 2024) on 30K synthesized438

documents to directly generate corresponding KGs439

for entire input document using 8 Intel® Gaudi440

2 AI accelerators in the Intel® Tiber™ AI Cloud.441

We employ a learning rate of 5e-5, a batch size of442

32, and train for one epoch. We name our model443

Distill-SynthKG and refer to it subsequently as D-444

SynthKG-8b .445

6.2 Evaluation Settings446

Datasets We evaluate KGs extracted by D-447

SynthKG-8b on KG coverage, text chunk retrieval448

and QA tasks using 3 multi-hop reasoning datasets:449

MuSiQue, 2WikiMultiHopQA (2wiki) and Hot-450

potQA. We follow the settings of HippoRAG451

(Gutiérrez et al., 2024) and use the same 1000 ques-452

tions and candidate passages, including both sup-453

porting and distractor passages. For KG coverage454

evaluation, we generate proxy ground-truth triplets455

using GPT-4o.456

Baselines Across all tasks, we compare KGs457

extracted by our D-SynthKG-8b against those458

extracted by two baseline models: Llama-3-8b459

and Llama-3-70b1. Additionally, we run the full460

multi-step SynthKG pipeline with both Llama-3-8b461

(SynthKG-8b) and Llama-3-70b (SynthKG-70b).462

For the retrieval and multihop QA tasks, we include463

the performance of the most widely used dense464

vector retrieval method, a dense retriever combined465

with an LLM-based re-ranking approach, as well466

as retrieval using GPT-4o-based KGs. Lastly, for467

the multihop QA task, we also include results from468

1We use the Instruct variants of both models throughout

GraphRAG and HippoRAG, both using KGs ex- 469

tracted by GPT-4o, as well as a non-RAG system 470

where the LLM relies solely on its internal paramet- 471

ric knowledge to answer questions2. We provide 472

full experimental details in Appendix E. 473

Multihop QA Frameworks We evaluate our 474

D-SynthKG-8b model using three distinct index- 475

ing/ retrieval frameworks. All use LlamaIndex’s 476

TreeSummarize response builder with GPT-4o to 477

generate answers from retrieved context. We only 478

modify the query engine’s prompt by adding spe- 479

cific instructions to produce concise answers tai- 480

lored to the requirements of the test datasets. 481

• LlamaIndex: Uses LlamaIndex’s Knowledge- 482

GraphIndex to build a hybrid KG index com- 483

bining keyword-based entity search and semantic 484

similarity based triplet search. It retrieves the top- 485

K relevant text chunks and associated subgraph 486

for answer generation. 487

• Chain-of-Triplet: Decomposes a multi-hop ques- 488

tion into sub-queries and retrieves the top 20 489

matching triplets per sub-query. Answers are gen- 490

erated using these triplets and associated propo- 491

sitions, allowing direct assessment of KG effec- 492

tiveness (details in Appendix E.3.2). 493

• Graph+LLM: Retrieves the top 10 relevant 494

chunks and 2-hop paths involving the question 495

entity using our proposition-entity graph retriever 496

to generate the final answer. 497

7 Results 498

7.1 KG Coverage Results 499

The multi-step SynthKG pipeline consistently gen- 500

erates more triplets and achieves higher coverage 501

2To improve GraphRAG performance, we append the
instruction: “Only provide the answer without any context.
For yes/no questions, just mention yes or no. Do not cite data
sources.” at the end of each query. For GraphRAG, we report
results using the local and drift modes, which yield the best
performance; the global mode is excluded. For HippoRAG,
we use GPT-4o for knowledge graph construction and apply
our query synthesizer to the retrieved text chunks to generate
the final answer, ensuring a fair comparison.
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KG Source Retriever MuSiQue 2wiki HotpotQA

Hits@2 Hits@10 MRR MAP Hits@2 Hits@10 MRR MAP Hits@2 Hits@10 MRR MAP

None Dense 41.32 64.19 79.89 40.17 62.22 74.72 97.86 55.73 66.55 89.45 91.98 60.68
None Dense+LLM 47.60 67.02 84.44 44.26 72.63 76.70 97.77 58.65 83.10 92.10 96.79 67.58

Llama-3-8b Graph + LLM 31.33 42.68 60.67 29.49 41.55 45.60 66.53 36.70 50.65 57.45 73.72 45.06
SynthKG-8b Graph + LLM 50.62 65.17 86.65 45.43 65.25 69.65 95.54 54.79 76.55 86.35 92.69 63.44

Llama-3-70b Graph + LLM 48.64 68.93 85.24 45.20 68.73 74.47 97.32 57.42 79.10 93.75 93.27 65.78
SynthKG-70b Graph + LLM 53.70 72.23 88.81 48.32 73.23 78.80 98.80 60.09 81.90 94.40 94.62 66.93

D-SynthKG-8b Graph + LLM 53.35 72.78 87.41 48.04 73.15 78.57 98.74 59.91 81.85 94.70 94.53 67.22
GPT-4o Graph + LLM 53.90 70.38 90.46 48.66 74.35 79.25 99.02 60.52 82.90 94.95 93.98 67.15

Table 2: Retrieval performance. The best scores are bolded, and the second-best scores are underlined.

MuSiQue 2wiki HotpotQA Average

KG Source Retrieval EM F1 EM F1 EM F1 EM F1

None None 0.100 0.220 0.190 0.340 0.290 0.440 0.193 0.333
None Dense Retriever 0.237 0.376 0.380 0.497 0.471 0.641 0.363 0.505
None Dense + LLM 0.260 0.398 0.414 0.531 0.509 0.678 0.394 0.536

GPT-4o GraphRAG (local) 0.291 0.412 0.432 0.491 0.448 0.569 0.390 0.491
GPT-4o GraphRAG (drift) 0.222 0.350 0.497 0.629 0.434 0.561 0.384 0.513
GPT-4o HippoRAG 0.224 0.368 0.493 0.627 0.492 0.644 0.403 0.546

Ours

Llama-3-8b LlamaIndex 0.155 0.259 0.366 0.461 0.405 0.555 0.308 0.425
Llama-3-70b LlamaIndex 0.202 0.309 0.417 0.507 0.424 0.563 0.347 0.459
D-SynthKG-8b LlamaIndex 0.217 0.320 0.435 0.528 0.451 0.608 0.367 0.485

Llama-3-8b Chain-of-Triplet 0.131 0.244 0.305 0.381 0.278 0.469 0.238 0.365
Llama-3-70b Chain-of-Triplet 0.188 0.299 0.351 0.428 0.370 0.517 0.303 0.415
D-SynthKG-8b Chain-of-Triplet 0.243 0.383 0.410 0.507 0.400 0.579 0.354 0.490

Llama-3-8b Graph + LLM 0.181 0.299 0.291 0.394 0.373 0.515 0.281 0.402
Llama-3-70b Graph + LLM 0.297 0.437 0.400 0.501 0.544 0.705 0.413 0.548
D-SynthKG-8b Graph + LLM 0.320 0.459 0.440 0.544 0.539 0.706 0.433 0.569

Table 3: Multi-hop QA evaluation (Exact Match and F1 score). The best scores for each framework are underlined.

than the commonly used single-step LLM prompt-502

ing approach across all three datasets, for both503

LLaMA-3-8b and 70b models, highlighting the ef-504

fectiveness of our SynthKG workflow (Table 1).505

Furthermore, our D-SynthKG-8b model outper-506

forms the untrained Llama-3-8b, Llama-3-70b, and507

SynthKG-8b baselines, demonstrating the benefit508

of distilling the SynthKG pipeline using Llama-3-509

70b as the teacher. Remarkably, D-SynthKG-8b510

is also highly competitive with SynthKG-70b, de-511

spite being approximately ∼8× smaller and relying512

on a single-step inference process. These results513

underscore the success of distilling SynthKG’s ca-514

pabilities into a smaller and efficient 8b model.515

As previously discussed, our KG coverage met-516

ric emphasizes precision over recall, since man-517

ually annotating every generated triplet is highly518

challenging. To check for irrelevant triplets, we519

randomly sample 50 triplets (150 total) from D-520

SynthKG-8b’s predictions on the three experi-521

mented datasets and manually verify each against522

the original text. Among these 150 triplets, only 4523

are labeled incorrect and 5 meaningless, indicating524

that the generated triplets largely align with the525

source content. 526

7.2 Retrieval Results 527

Our D-SynthKG-8b model yields an average ab- 528

solute improvement of 28.27 in Hits@2 over the 529

pre-trained Llama-3-8b, 5.31 over SynthKG-8b, 530

and 3.96 over the larger Llama-3-70b (Table 2). 531

Notably, D-SynthKG-8b is highly competitive 532

with the full SynthKG-70b pipeline—despite be- 533

ing significantly smaller and using single-step in- 534

ference—further highlighting the effectiveness of 535

distilling the multi-step SynthKG workflow into 536

the smaller 8b model. It also performs comparably 537

to GPT-4o (details in Appendix A.2). Additionally, 538

our graph+LLM retriever achieves an average im- 539

provement of 12.75 in hits@2 over standard dense 540

retrieval and 1.67 in hits@2 over the dense retriever 541

with an LLM-based reranker. 542

7.3 Multi-hop QA Results 543

D-SynthKG-8b achieves the best over- 544

all performance across all three frame- 545

works—LlamaIndex, Chain-of-Triplet, and 546

Graph+LLM—outperforming both the Llama- 547
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3-8b and the larger Llama-3-70b models. This548

demonstrates the general applicability and ro-549

bustness of the KGs generated by our model. In550

the Graph + LLM framework, D-SynthKG-8b551

achieves the highest gain, with a +15.2% absolute552

improvement in EM accuracy over Llama-3-8b553

and a +2.0% gain over Llama-3-70b, leading554

to the best overall results. It also outperforms555

standard dense retrieval and dense+LLM reranking556

baselines. Notably, it surpasses GraphRAG and557

HippoRAG—two strong KG-based RAG systems558

built using KGs generated by the state-of-the-art559

GPT-4o model—highlighting the effectiveness and560

scalability of our approach despite relying on a561

significantly smaller LLM for KG construction.562

7.4 Analysis563

How effective is multi-step SynthKG in process-564

ing documents of increasing length? We com-565

pare our multi-step SynthKG framework with a566

single-step LLM prompting approach by examin-567

ing the number of triples generated per 100 words568

for documents of varying lengths. We present the569

results in Figure 5 (Appendix A). For this analysis,570

we use a subset of the 1,000 documents employed571

to train the D-SynthKG-8b model. We observe572

that, for the single-step method, the proportion of573

extracted relations decreases as document length574

increases, with triple density dropping by about575

60% when moving from 100-word documents to576

1,200-word documents. In contrast, SynthKG’s577

triple density remains nearly constant across all578

lengths, demonstrating its effectiveness in main-579

taining robust triple generation for both shorter and580

longer documents.581

What is the optimal retrieval source? Our582

method constructs KGs which support multiple583

retrieval strategies. Given a question, we can re-584

trieve text chunks using triples, propositions, or585

leverage the entire graph by integrating entities and586

propositions to rank text chunks. Optionally, all587

three approaches can be combined with an LLM588

for re-ranking. In Figure 3, we compare these three589

KG-based retrieval methods, along with their LLM-590

enhanced counterparts. We observe that proposi-591

tion retrieval outperforms triples (+0.89 Hits@10)592

due to richer context, while graph-based retrieval593

achieves the best performance (+2.50 over proposi-594

tions). LLM re-ranking further boosts all strategies,595

with graph-based retrieval seeing the largest gain596

of +3.59 in Hits@10.597

Figure 3: Performance comparison of different KG-
based retrieval methods on multi-hop QA.

Figure 4: Ablation study results on different combina-
tions of input context for multi-hop QA.

How can our KG improve RAG beyond re- 598

trieval? Our KG can enhance RAG beyond re- 599

trieval by enriching the retrieved context with struc- 600

tured signals—namely triplets, multi-hop relation 601

paths, and propositions. In our ablation study (Fig- 602

ure 4), we combine retrieved text chunks with each 603

of these signals to evaluate their impact on multi- 604

hop QA performance. We find that adding related 605

propositions (+2 EM) or 2-hop paths (+2.7 EM) im- 606

proves accuracy, with 2-hop paths offering slightly 607

better gains—likely due to their ability to capture 608

more complex relationships across entities. Inter- 609

estingly, combining both triplets and propositions 610

does not yield additional improvements, suggesting 611

overlapping information between the two. 612

8 Conclusion 613

In this work, we introduced SynthKG, a novel ap- 614

proach for synthesizing high-coverage KG training 615

data using LLMs. Leveraging this synthesized data, 616

we proposed Distill-SynthKG, an efficient model 617

that distills the multi-step KG construction pro- 618

cess into a single inference step. Our experiments 619

demonstrated that Distill-SynthKG significantly 620

improves KG coverage, retrieval accuracy, and QA 621

performance across multiple datasets, outperform- 622

ing a model nearly eight times its size. These re- 623

sults validate the effectiveness of Distill-SynthKG, 624

highlighting its potential for scalable, ontology-free 625

KG construction and its application in RAG tasks. 626

8



9 Limitations627

The documents used for synthesizing KGs in this628

study were limited to the English language, which629

has been widely studied in existing NLP research.630

Additional work is needed to investigate the con-631

struction of KGs from documents in other lan-632

guages. While we investigated synthetic data gener-633

ation using two strong foundational LLMs (Llama-634

3-70b and GPT-4o), the use of other LLMs with635

SynthKG may yield different results than those636

reported in our study. Similarly, our distillation637

experiments were limited to two popular LLMs638

(Llama-3-8b and Mistral-7b) which we believe are639

representative of the capabilities of LLMs of simi-640

lar size. Finally, our proposed benchmarks for eval-641

uating KG coverage rely on automated question642

decomposition and triplet extraction using GPT-643

4o, which introduces the possibility of errors or644

omissions (see Appendix C.2 for human evaluation645

results).646
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Figure 5: SynthKG maintains the triplet density consis-
tently across documents of different lengths.

A Additional Analyses803

A.1 Efficiency and Generalizability of804

Distill-SynthKG805

In Table 4, we study three key important questions806

for developing Distill-SynthKG: 1. the efficiency807

of training Distill-SynthKG, 2. the effectiveness of808

various powerful LLMs for synthesizing training809

data, and 3. the generalizability of fine-tuning other810

smaller LLMs on synthesized data. To address811

these questions, we employ QLoRA (Dettmers812

et al., 2023) fine-tuning on approximately 1,000813

synthetic Document-KG pairs, generated using814

GPT-4o and Llama-3.1-70b-Instruct. We provide815

fine-tuning configurations in Appendix D.1. Ad-816

ditionally, to answer the third question, we fine-817

tune another well-known base LLM, Mistral-7b-818

Instruct-v0.3 (Jiang et al., 2023).819

We observe that both QLoRA fine-tuned models820

perform slightly below the fully fine-tuned model821

on retrieval and multi-hop QA tasks. However,822

the performance gap is minimal, demonstrating823

that QLoRA fine-tuning, even on a small dataset,824

remains competitive while requiring significantly825

fewer compute resources. The model fine-tuned on826

GPT-4o synthesized KGs shows slightly lower per-827

formance, which we attribute to more abstractive828

and atomic propositions in the synthesized data.829

A.2 Comparison of Retrieval Performance830

with Proprietary Foundation Models831

We include additional comparisons between our832

distilled model D-SynthKG-8b and a state-of-the-833

art proprietary foundation model, GPT-4o from834

OpenAI. We evaluate retrieval performance on835

three multihop QA benchmarks: 2Wiki, HotpotQA,836

and MuSiQue. We present the results in Table 5.837

The results show that D-SynthKG-8b achieves re-838

trieval performance that is highly competitive with 839

GPT-4o across all datasets. Notably, D-SynthKG- 840

8b yields a slightly higher average Hits@10 (82.02 841

vs. 81.52), despite being significantly more cost- 842

efficient. GPT-4o incurs $2.50 per million input 843

tokens and $10 per million output tokens, while 844

D-SynthKG-8b operates at only $0.20 per million 845

tokens (input or output), representing roughly 3% 846

of the inference cost. These findings highlight 847

the practical advantages of our approach in cost- 848

sensitive deployment scenarios. 849

A.3 Entity Distribution Analysis 850

When analyzing entity references across document 851

chunks, we find that the overall average chunk dis- 852

tance per entity is 0.9. This metric represents the 853

average number of chunks between an entity men- 854

tion and its most recent previous mention. Further 855

analysis reveals that 80.03% of entities have their 856

most recent mention within a single paragraph, in- 857

dicating that the majority of entity references are 858

relatively localized within the document. 859

These findings support our design decision to 860

only reference the immediately preceding chunk 861

during decontextualization, as this approach effec- 862

tively balances computational efficiency with ade- 863

quate contextual information. 864

B LLM Prompts for SynthKG 865

We use prompts Figure 6, Figure 7 and Figure 8 for 866

decontextualization, entity extraction and relation 867

extraction respectively within SynthKG. We also 868

provide an example of decontextualized chunk in 869

Figure 9. 870

C KG Coverage Evaluation 871

C.1 Prompts and examples 872

Figure 10 shows the prompt that we used to gener- 873

ate the triplets, and Figure 11 the prompts that we 874

used to instruct the model to generate the decom- 875

posed questions. Table 6 shows a question from 876

HotpotQA dataset, and the generated decomposed 877

questions and the triplet for the question answer 878

pair. 879

C.2 Human evaluation of extracted triplets 880

To evaluate the quality of the GPT-4-generated KG 881

coverage evaluation data, three authors of this work 882

reviewed and validated both the decomposed ques- 883

tions and the proxy triplets. A random sample of 50 884

instances from each dataset was selected for human 885
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Retrieval Evaluation QA Evaluation

KG Source Hits@2 Hits@5 Hits@10 MRR MAP EM F1

D-SynthKG-7b GPT
Mistral 0.680 0.776 0.809 0.932 0.575 0.417 0.556

D-SynthKG-7b Llama-3
Mistral 0.685 0.780 0.811 0.931 0.578 0.433 0.565

D-SynthKG-8b 0.695 0.792 0.820 0.936 0.584 0.433 0.569

Table 4: Efficiency and Generalizability results for Distill-SynthKG. The results show average performance across
MuSiQue, 2wiki, and HotpotQA datasets. D-SynthKG-7b GPT

Mistral and D-SynthKG-7b Llama-3
Mistral are Mistral-7b-Instruct-

v0.3 models fine-tuned using QLoRA on 1000 document-KG pairs annotated by GPT-4o and Llama-3.1-70b-Instruct
(respectively).

Previous paragraph from Document:
Gualala, the isolated Mendocino Coast town with a name that leaves most visitors tongue-tied, is on a new list of the 50 best places to live in the United States. Men’s Journal magazine
describes Gualala as an öutpost of adventure lifestyleïn its latest edition, which goes on sale today. The magazine describes Gualala (pronounced wa-LA-la by locals) as one of the
b̈elow-the-radar places to a make a move on before the word gets out.T̈here were five such cities. The others were Homer, Alaska; Newport, Vt.; Logan, Utah; and Walla Walla, Wash.
Rolling Stone magazine’s Jann Wenner publishes Men’s Journal, which has a paid circulation of about 620,000. Gualala joined three other California communities on the magazine’s
list: Santa Cruz, Mammoth Lakes and Bishop. Ẅe were looking for places that combined affordability, proximity to outdoor adventure and a generally undiscovered quality of life,s̈aid
Erica Kestenbaum, a spokeswoman for Men’s Journal.
Instruction:
Rewrite the below paragraph by resolving all entity coreferences with the preceding paragraph from document.
- Resolve all inter-sentence pronoun references.
- Make sure that all pronouns in a sentence refers to some named entity with in the same sentence.
- Explicitly mention entity names wherever necessary to remove ambiguity from a sentence. Remember to make each sentence clear and unambiguous.
- For each entity, use only the one most informative name.
- Do not generate anything except the rewritten paragraph.
Paragraph:
She said isolation played a factor. Ïn Northern California, it’s particularly difficult to find a beautiful coastal setting that isn’t entirely overrun,s̈he said. Gualala residents Monday were
largely unaware of the magazine listing or the attention it could bring to the old logging town turned tourist center. A few coastal residents chuckled about any notion of affordability,
given an influx of newcomers who’ve driven the median housing price to $580,000 compared to the median family income of $47,778. Others recalled an era when the Gualala region
was better known for the logging of ancient redwoods, marijuana growing and boisterous beer drinking at the historic Gualala Hotel. Still there was a certain pride to the magazine’s
designation. Yvette White, a 25-year resident who works at the Gualala Sport; Tackle shop, said she’s proud her town made it on the list.
Output:
Erica Kestenbaum said isolation played a factor. Ïn Northern California, it’s particularly difficult to find a beautiful coastal setting that isn’t entirely overrun,Ërica Kestenbaum said.
Gualala residents Monday were largely unaware of the Men’s Journal magazine listing or the attention it could bring to the old logging town turned tourist center. A few coastal
residents of Gualala chuckled about any notion of affordability, given an influx of newcomers who’ve driven the Gualala’s median housing price to $580,000 compared to the median
family income of $47,778. Other Gualala residents recalled an era when the Gualala region was better known for the logging of ancient redwoods, marijuana growing and boisterous
beer drinking at the historic Gualala Hotel. Still there was a certain pride to the Men’s Journal magazine’s designation. Yvette White, a 25-year Gualala resident who works at the
Gualala Sport; Tackle shop, said she’s proud her town made it on the list.
Previous paragraph from Document: [previous paragraph]
Instruction:
Rewrite the below paragraph by resolving all entity coreferences with the preceding paragraph from document.
- Resolve all inter-sentence pronoun references.
- Make sure that all pronouns in a sentence refers to some named entity with in the same sentence.
- Explicitly mention entity names wherever necessary to remove ambiguity from a sentence. Remember to make each sentence clear and unambiguous.
- For each entity, use only the one most informative name.
- Do not generate anything except the rewritten paragraph.
Paragraph: [paragraph ]
Output:

Figure 6: The prompt for chunk decontextualization.

Extract all named entities from the document. Also generate the type for each entity.
Instructions
- Generate only the most informative name for each named entity. Example: if John P., Parker, John Parker are coreferential, only generate John Parker.
- Use your best understanding best on the domain of paragraph to decide appropriate entity types.
- Respond using json format provided below.

{
"n1":{"name": "entity_name", "type": "entity_type_label"},
"n2":{},

}

Below is an example for reference.
Paragraph: Tucked into Eli Lilly’s year-end earnings report, the company revealed positive results from Synergy-NASH—its phase 2 study of tirzepatide in adults in nonalcoholic
steatohepatitis (NASH), also known as metabolic dysfunction-associated steatohepatitis (MASH).
Output:

{
"n1": {"name": "Eli Lilly", "type": "Organization"},
"n2": {"name": "Synergy-NASH", "type": "Clinical Trial"},
"n4": {"name": "tirzepatide", "type": "Drug"},
"n5": {"name": "nonalcoholic steatohepatitis", "type": "Disease"},
"n6": {"name": "metabolic dysfunction-associated steatohepatitis", "type": "Disease"},
"n7": {"name": "year-end earnings report", "type": "Document"}

}

Figure 7: The prompt for graph node extraction

assessment, where evaluators rated the validity of886

the generated outputs. For decomposed questions887

from the HotpotQA dataset, the validity rate was 888

found to be 85%, while the generated triplets for 889
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Extract all facts from the document. For each fact, also generate all semantic triplets.
Instructions
- Consistently use the most informative name for each named entity in all facts and triplets.
- Avoid pronouns or ambiguous references in facts and triplets. Instead, directly include all relevant named entities in facts.
- Ensure that each semantic triplet contains head entity, predicate, and tail entity.
- Ensure that at least one (preferably both) entity in each semantic triplet is present in the given entities list.
- Respond using json format provided below:

{
"f1":{

"fact": "A factual statement describing important information (preferably about some entities) from the paragraph",
"triplets: [["entity 1", "predicate", "entity 2"], ["entity 1", "predicate", "entity 3"]]

},
"f2":{},

}

Below is an example for reference.
Paragraph: Locked in a heated battle with Novo Nordisk’s semaglutide franchise, Eli Lilly’s tirzepatide is beginning to come into its own—both with regards to sales and amid
attempts to show the dual GIP/GLP-1 agonist can strike out beyond diabetes and obesity. As Mounjaro, tirzepatide won its first FDA nod in Type 2 diabetes back in May 2022. An
obesity approval followed last November, with that formulation of tirzepatide adopting the commercial moniker Zepbound. In 2023’s fourth quarter, Mounjaro generated a whopping
$2.2 billion in sales, a nearly eight-fold increase over the $279 million it pulled down during the same stretch in 2022. Year-to-date, the drug brought home around $5.2 billion in
revenues, Lilly said in an earnings release Tuesday. Zepbound, for its part, generated $175.8 million during its first quarter on the market. Overall, Lilly reeled in around $9.4 billion in
fourth-quarter sales, growing 28% over the $7.3 billion it made for the quarter in 2022.
Entities: Eli Lilly, Novo Nordisk, Tirzepatide, Semaglutide, GLP-1, GIP, FDA, Mounjaro, Zepbound
Output:

{
"f1": {

"fact": "Eli Lilly's tirzepatide is competing with Novo Nordisk's semaglutide franchise.",
"triplets": [["Eli Lilly", "competing with", "Novo Nordisk"], ["Tirzepatide", "is competing with", "Semaglutide"]]

},
"f2": {

"fact": "Eli Lilly is trying to show tirzepatide, the dual GIP/GLP-1 agonist, can strike out beyond diabetes and obesity.",
"triplets": [["Eli Lilly", "is trying to show", "Tirzepatide"], ["Tirzepatide", "is a", "dual GIP/GLP-1 agonist"],

["Tirzepatide", "can treat beyond", "Diabetes"], ["Tirzepatide", "can treat beyond", "Obesity"]]
},
"f3": {

"fact": "Tirzepatide, under the brand name Mounjaro, received its first FDA approval for Type 2 diabetes in May 2022.",
"triplets": [["Tirzepatide", "branded as", "Mounjaro"], ["Mounjaro", "won", "FDA approval"],

["FDA approval", "for", "Type 2 diabetes"], ["FDA approval", "was in", "May 2022"]]
},
"f4": {

"fact": "Tirzepatide, under the brand name Zepbound, received an obesity approval in November 2022.",
"triplets": [["Tirzepatide", "was branded as", "Zepbound"], ["Zepbound", "received", "Obesity approval"],

["Obesity approval", "was in", "November 2022"]]
},
"f5": {
"fact": "Mounjaro generated $2.2 billion in sales in the fourth quarter of 2023, an eight-fold increase from the $279 million during the same period

in 2022.",
"triplets": [["Mounjaro", "2023's fourth quarter sales", "$2.2 billion sales"], ["Mounjaro", "2022's fourth quarter sales", "$279 million"]]

},
"f6": {

"fact": "Mounjaro brought in around $5.2 billion in revenues year-to-date in 2023, Lilly said in an earnings release Tuesday",
"triplets": [["Mounjaro", "2023 sales year-to-date", "$5.2 billion revenues"]]

},
"f7": {

"fact": "Zepbound generated $175.8 million in sales in its first quarter on the market.",
"triplets": [["Zepbound", "first quarter sales", "$175.8 million"]]

},
"f8": {

"fact": "Eli Lilly's fourth-quarter sales were around $9.4 billion, a 28% increase over the $7.3 billion during the same period in 2022.",
"triplets": [["Eli Lilly", "2023 fourth-quarter sales", "$9.4 billion,"], ["Eli Lilly", "2022 fourth-quarter sales", "$7.3 billion,"]]

}
}

Figure 8: The prompt for relation extraction

Figure 9: An example of decontextualization chunk.
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You are given a question answer pair, please generate a relation triplet to represent the relationship.
Generate output in the format described below. “‘ head || relation || tail “‘ Note: - Must include relation, head entity and tail entity. Ensure that head entity is a subject of relation, and tail
entity is a direct object of relation. - You must use the given answer as the head or tail entity. - Specific entity is more preferable than generic entity. - Do NOT generate pronouns or
references in head and tail entities. —- Example 1:
Question: To whom was Messi’s goal in the first leg of the Copa del Rey compared? Answer: Diego Maradona
Output: Messi’s goal || was compared to || Diego Maradona
Example 2:
Question: The father of Chiang Hsiao-wen is whom? Answer: Chiang Ching-kuo
Output: Chiang Ching-kuo || the father of || Chiang Hsiao-wen
Question: {question}
Answer: {answer}
Output:

Figure 10: The prompt for generating triplet given a question and the answer.

You are given a multihop question, some facts that are used to reach the correct answer, and the correct answer. Your goal is to decompose the question into sub-question, and the
corresponding answer to each sub question.
Example 1
Question: What relationship does Fred Gehrke have to the 23rd overall pick in the 2010 Major League Baseball Draft?
Facts: He is the great-grandfather of Miami Marlin Christian Yelich Yelich was drafted out of high school by the Marlins in the 1st round (23rd overall) of the 2010 Major League
Baseball Draft.
Answer: great-grandfather
Decompose question answer pairs:
Who was the 23rd overall pick in the 2010 Major League Baseball Draft? Christian Yelich
What relationship does Fred Gehrke have to Christian Yelich? Great-grandfather
Question: {question}
Facts: {facts}
Answer: {answer}
Decompose question answer pairs:

Figure 11: The prompt for decomposing question into sub-questions and answers.

Dataset Model Hits@2 Hits@10 MAP MRR

2Wiki GPT-4o (OpenAI) 74.35 79.25 60.52 99.02
D-SynthKG-8b 73.15 78.57 59.91 98.74

HotpotQA GPT-4o (OpenAI) 82.90 94.95 67.15 93.98
D-SynthKG-8b 81.85 94.70 67.22 94.53

MuSiQue GPT-4o (OpenAI) 53.90 70.38 48.66 90.46
D-SynthKG-8b 53.35 72.78 48.04 87.41

Table 5: Retrieval performance comparison between
D-SynthKG-8b and GPT-4o across three multihop QA
datasets.

both the Musique and HotpotQA datasets showed a890

validity rate of 86%. Annotators also provided rea-891

sons for any invalid ratings. Common issues with892

decomposed questions included the presence of893

previously unseen entities in the first sub-question894

or a poorly structured second sub-question. For895

triplets, the most frequent problem was the omis-896

sion of minor details, such as dates, which did not897

necessarily make the triplet incorrect but affected898

its completeness. Only 4% of the cases involved899

an incorrect relation being extracted.900

D Experimental Settings901

D.1 QLoRa fine-tuning setup902

In our experiments detailed in Appendix A.1, we903

employ the QLoRA fine-tuning. The training con-904

figuration used is as follows: we train models for905

3 epochs, with an alpha value of 256 and a rank906

of 128. The learning rate, warmup steps and batch907

size are set to 0.00003, 50 and 8 respectively.908

E Task-Specific Evaluation Settings 909

E.1 KG Coverage Task 910

We use the ‘all-MiniLM-L6-v2’ checkpoint to em- 911

bed the triplets for semantic matching. For the 912

coverage, we use threshold 0.88 as we manually 913

check that this threshold representing a desirable 914

semantic match. 915

E.2 Retrieval Task 916

We use ‘text-embedding-3-small’ for both dense 917

retrieval and embedding propositions in KG-based 918

retrievers. For both the graph and graph + LLM 919

retrievers, we first construct the sub-graph by select- 920

ing the 200 propositions (M = 200) most similar to 921

the question based on embedding similarity. Within 922

the sub-graph, we traverse the KG, starting from 923

the question entity, and select propositions within 924

a 5-hop neighborhood (N = 5). For re-ranking the 925

propositions in the LLM-based retriever and also 926

for re-ranking chunks in Dense+LLM retriever, we 927

use the GPT-4o model. The Dense+LLM retriever 928

uses LlamaIndex’s implementation of the LLMR- 929

erank post-processor. 930

We evaluate retrieval performance at the passage 931

level, following the setup used in HippoRAG . For 932

each query, we evaluate whether the retrieved pas- 933

sages contain all ground-truth information required 934

to answer the question. Retrieval metrics include 935

Hits@2 and Mean Reciprocal Rank (MRR), com- 936

puted based on the rank positions of the passages 937
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associated with ground-truth triplets. Specifically,938

a passage is considered relevant if it contains all939

the facts (triplets or propositions) needed for cor-940

rect multi-hop reasoning. The evaluation code is941

directly adopted from HippoRAG.942

To ensure comparability, we use the same bench-943

mark datasets and experimental setup as Hip-944

poRAG, including 1,000 questions and a fixed set945

of candidate passages. The number of ground-truth946

passages per question is consistent with the orig-947

inal annotations. Our experiments are conducted948

on three multi-hop QA datasets: MuSiQue (11,656949

passages), 2WikiMultiHopQA (6,119 passages),950

and HotpotQA (9,221 passages).951

E.3 Multi-hop Question Answering Task952

E.3.1 LlamaIndex Configuration953

Table 7 presents the complete configuration of our954

LlamaIndex query engine setup.955

E.3.2 Chain-of-Triplet956

We design a triplet retrieval method that first breaks957

down the question into sub-queries in a triplet for-958

mat. These triplet queries are then used to retrieve959

the most semantically matching triplet facts from960

the extracted knowledge graph. Specifically, it in-961

cludes three steps to generate the final answer.962

Step 1: Generate the Chain of Triplet Queries:963

given a question, we convert it into a series of triplet964

queries. Specifically, since our downstream task965

involves multi-hop QA, instead of generating a966

single triplet, we prompt the model to generate a967

chain of triplets. The generated triplets may contain968

placeholders that represent unknown entities. The969

prompt is shown in Figure 12.970

Step 2: Triplet Retrieval: once the chain of971

triplet queries is generated, we retrieve the top 20972

triplets for each query. During retrieval, if any of973

the triplets contain placeholders for uncertain enti-974

ties, we attempt to resolve those entities by filling975

them with entities or relations from the previously976

retrieved triplets. For subsequent triplet queries977

in the chain, placeholders are updated with these978

resolved entities, thus refining the triplet queries979

progressively.980

Step 3: Question Answering: with the question,981

the chain of triplet queries, and the retrieved triplets,982

we prompt the model to generate the answer. If the983

graph extraction method also retrieves associated984

propositions alongside the triplets, these proposi- 985

tions are provided to the model to further enhance 986

the answer generation. The prompt is shown in 987

Figure 13. 988

Graph + LLM : We use the same graph + LLM 989

retriever hyper-parameters as in appendix E.2. 990

F Data Release and Training/ Inference 991

Cost Considerations 992

We will make our annotated 100K data samples 993

publicly available to support future research. With 994

the rapid advancements in LLMs, researchers may 995

choose to resynthesize data to better align with 996

their specific applications. In such cases, we rec- 997

ommend using our cost-efficient approach, detailed 998

in Appendix A.1, which provides a practical bal- 999

ance between performance and computational cost. 1000

Below, we present the detailed training and in- 1001

ference costs, highlighting the efficiency of our 1002

SynthKG and DistilSynthKG methods. 1003

Cost of Data Synthesis: With the Llama-3.1- 1004

70b-Instruct model, running the entire SynthKG 1005

pipeline on a single document requires processing 1006

an average of 11,849 input tokens. This results in 1007

a total of 2,675 average output tokens, distributed 1008

across intermediate steps such as decontextualiza- 1009

tion and the final entities, relations, and proposi- 1010

tion generation. At a cost of $0.90 per million 1011

tokens3, the total annotation cost per document is 1012

$0.0131. This translates to $13.08 for synthesizing 1013

training data for the D-SynthKG-7b Llama-3
Mistral model 1014

and $392.28 for the D-SynthKG-8b model. 1015

Cost of Model Training: After consolidating the 1016

data synthesized by SynthKG, each document con- 1017

tains an average of 1,723 input tokens (including 1018

prompts) and 1,248 output tokens, totaling 2,971 1019

tokens per document. For a dataset of 30,000 docu- 1020

ments, the total training token count is 89.13 mil- 1021

lion tokens. Fine-tuning Llama-3.1-8b-Instruct for 1022

one epoch on this dataset to obtain D-SynthKG- 1023

8b would cost $36.65. Additionally, fine-tuning 1024

Mistral-7b-Instruct-v0.2 for 3 epochs to obtain the 1025

D-SynthKG-7b Llama-3
Mistral model would cost $3.67. 1026

Combining data synthesis and fine-tuning costs, 1027

training D-SynthKG-8b would cost $428.93, while 1028

training D-SynthKG-7b Llama-3
Mistral would cost $16.75. 1029

3https://www.together.ai/pricing
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There is a knowledge graph (entities and relations). Now, you are given a question, your task is to decompose this question into a chain of triplets used for searching fact from the graph.
The triplet should be in this format: head || relation || tail
Note: - Ensure that head entity is a subject of relation, and tail entity is a direct object of relation. - Do NOT generate pronouns or references in head and tail entities. - Do NOT
generate entities that are not appeared in the question. - If an triplet includes an intermediate answer or the final answer, you can use # followed by an digit for reference. - The triplets
order should be the same order for retrieving the facts from a knowledge graph.
Example 1:
Question: Who is older, Hampton Del Ruth or Ted Kotcheff?
Decompose Triplets:
Hampton Del Ruth || was born on || #1 Ted Kotcheff || was born on || #2
Example 2:
Question: In what town is Suffolk county hamlet that was served by the Suffolk Traction Company?
Decompose Triplets:
Suffolk Traction Company || served || #1 #1 || is located in || #2
Now please generate the decompose Triplets for the question: {question}
Decompose Triplets:

Figure 12: The prompt for generating chain of triplet query given a question, which are then used for triplet retrieval.

You are given a natural language question, triplets chain for this question, a set of retrieved tripletes, and a set of facts, please answer the question.
Question: {question}
Question Triplets Chain: {question triplets}
Retrieved Triplets: {retrieved triplets}
Retrieved Facts: {retrieved facts}
Short Answer no more than 3 words:

Figure 13: The prompt for generating the final answer given the original question, chain of triplet query, retrieved
triplets and the facts.

Inference Cost: As mentioned in the cost of1030

data synthesis, processing a single document us-1031

ing the SynthKG pipeline requires an average of1032

11,849 input tokens and 2,675 output tokens, to-1033

taling 14,524 tokens per document. At a cost of1034

$0.90 per million tokens, this amounts to $0.0311035

per document. In contrast, with D-SynthKG-1036

8b and D-SynthKG-7b Llama-3
Mistral , each document re-1037

quires 1,723 input tokens and 1,248 output tokens,1038

totaling 2,971 tokens, with a cost of $0.002671039

per document. This is only 8.6% of the cost of1040

SynthKG, demonstrating the significant efficiency1041

gains from fine-tuning a distilled model.1042

G License information1043

We respect the license and intended use of all mod-1044

els and datasets employed in this study. Detailed1045

license information is provided below.1046

Models. The Llama-3 models utilized in our1047

study are licensed under the Meta Llama 3 Com-1048

munity License Agreement. The Llama-3.1 models1049

utilized in our study are licensed under the Llama1050

3.1 Community License Agreement. The Mistral-1051

7b-v0.3 model is licensed under the Apache 2.01052

license.1053

Datasets. The BAAI/IndustryCorpus dataset1054

used for extracting our synthetic training data1055

is available under the Apache 2.0 license. The1056

2WikiMultihopQA dataset used in our evaluations1057

is available under the Apache 2.0 license. The1058

Musique dataset used in our evaluations is avail-1059

able under the Creative Commons Attribution 4.0 1060

International license. The HotpotQA dataset used 1061

in our evaluations is available under the Apache 1062

2.0 license. We will make our synthetic dataset 1063

publicly available under the MIT license, subject to 1064

terms and conditions of the Llama 3.1 Community 1065

License Agreement related to the use of Llama-3.1 1066

outputs. 1067

H Discussion on the Segmentation 1068

Strategy and Document Structure 1069

Preservation 1070

While our segmentation and de-semanticization ap- 1071

proach may appear simple, our design choice is 1072

guided by both empirical findings and practical con- 1073

siderations. First, our analysis (see Figure 5) shows 1074

that model performance consistently degrades as 1075

document length increases. Preserving structural 1076

associations in segmentation might result in longer 1077

input spans, which, based on our experiments, 1078

would still harm performance. Second, while we 1079

agree that capturing structural dependencies across 1080

multiple pages is a meaningful goal, it remains 1081

an open research challenge—particularly in open- 1082

ontology settings. Even state-of-the-art models like 1083

GPT-4o lack robust, generalizable pipelines for re- 1084

liably preserving cross-page structure in a way that 1085

could be distilled into a smaller model. Given these 1086

limitations, we prioritize practicality and scalability 1087

by adopting a fixed-size ( 1K token) chunking ap- 1088

proach. This method aligns with the constraints of 1089

retrieval-augmented generation (RAG) and enables 1090
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https://github.com/hotpotqa/hotpot/blob/master/LICENSE.txt
https://github.com/hotpotqa/hotpot/blob/master/LICENSE.txt
https://www.llama.com/llama3_1/license/
https://www.llama.com/llama3_1/license/
https://www.llama.com/llama3_1/license/


Question Decomposed Question and Answer Triplet (head || relation || tail)

The birthplace of
George McCall Theal
is a port city of what
bay?

Where was George McCall Theal born? Saint
John, New Brunswick

George McCall Theal || was born in || Saint John,
New Brunswick

Saint John is a port city of what bay? Bay of
Fundy

Saint John || is a port city of || Bay of Fundy

Table 6: Example from HotpotQA dataset: the generated decomposed question answer pair and the triplet.

Parameter Value

QA Prompt

You are an expert Q&A system that is trusted around the world. Always answer
the query using the provided context information, and not prior knowledge.
Some rules to follow:
1. Never directly reference the given context in your answer.
2. Avoid statements like ’Based on the context, ...’ or ’The context information
...’ or anything along those lines.
3. Provide only the essential information. Answer as briefly as possible, using
keywords, phrases, or dates. Avoid full sentences or unnecessary details.

include_text True
response_mode tree_summarize
retriever_model hybrid
num_chunks_per_query 10
similarity_top_k 2
graph_store_query_depth 2

Table 7: LlamaIndex query engine parameter settings.

effective, document-level KG construction at scale.1091

We believe our approach provides a strong balance1092

between empirical performance and real-world ap-1093

plicability under current technological constraints.1094

I Discussion on Manual Hyperparameter1095

Selection1096

We manually tune two key hyperparameters in our1097

framework: the semantic match score threshold for1098

triplet coverage evaluation and the ROUGE score1099

threshold for decontextualization. For the seman-1100

tic match score, we intentionally select a higher1101

threshold to ensure accuracy when determining1102

whether two triplets are semantically equivalent.1103

It is important to note that this threshold is only1104

used for evaluation purposes and does not affect1105

model training, inference, or RAG evaluation, thus1106

having no impact on the model’s learning or pre-1107

dictions. While the threshold is manually adjusted,1108

downstream task performance reflects the reliabil-1109

ity of our model.1110

For the ROUGE score threshold used in decon-1111

textualization, we conduct careful manual analy-1112

sis to ensure its effectiveness. For both Llama-1113

3.1-70b and GPT-4o, we examine a small subset1114

of chunks with low ROUGE scores and find that1115

most rewritings are accurate. We identify 593 edits1116

in this subset, with only six containing incorrect1117

modifications and four showing some loss of in- 1118

formation. These results suggest that the decon- 1119

textualization process generally yields high-quality, 1120

self-contained text. 1121

The low ROUGE scores typically result from 1122

document footers or metadata, which are removed 1123

during the LLM’s decontextualization process, and 1124

not from factual errors or information loss. Our 1125

analysis shows that approximately 72% of the 1126

chunks achieve a ROUGE score of 90 or higher, re- 1127

flecting strong alignment with the original content. 1128

Chunks with scores below 0.70 make up less than 1129

3%, and these are filtered out during the process to 1130

avoid any omission or extreme paraphrasing. 1131
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