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Abstract

Recent proliferation of data-optimization integration has led to a range of meth-
ods that aim to improve the statistical performance of data-driven optimization
decisions. However, while many of these methods are motivated intuitively from
a robustness or regularization perspective, their resulting statistical benefits are
often less clear and, even if available, are argued in a case-by-case fashion. We
provide a systematic dissection of data-driven optimization formulations using
the view of “directionally perturbed” empirical optimization, which demonstrably
covers most of the existing formulations. On the negative side, we argue that
under mild smoothness conditions, any such formulations can result in at best
second-order improvements. On the positive side, we show that in the presence of
auxiliary information such as the availability of additional unsupervised data, we
can construct a principled methodology, by building connections to the concept of
Monte Carlo control variate, to achieve general first-order improvements in terms
of excess risk.

1 Introduction

We consider data-driven stochastic optimization problem of the form:

min {Z(6) = Bevr- [0 )]} (1)

where /(0; ) is a known cost function, © := {§ € RP?|F;(0) < 0,5 € J} is the set of feasible
decisions, and £ is a random perturbation distributed according to the distribution P*. However, the
decision maker only has access to n iid samples D,, := {;}_;. The goal is to use the data D,, to
identify a decision with the lowest expected cost under the true distribution P*. This problem setup
is widely adopted in practice from empirical risk minimization in machine learning [22]], to general
stochastic optimization problems [32]] with applications such as supply chain management [4] and
portfolio optimization [8§]].

Among all data-driven optimization methods, the most straightforward approach is to replace the

unknown P* with the empirical measure P,, = L5 | O, in (I) and obtain an empirical solution

0,i.e., solve f € argmingcg 1 Y1 | £(6;&;). It is widely acknowledged that the empirical solution

performs poorly under limited samples [[18]. To improve performance, various approaches have been
developed to obtain alternative solution € ,s, which we refer to broadly as robust methods. These
include, in the optimization literature, regularized and distributionally robust optimization (DRO) [26]]
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to tackle data uncertainty and, in the statistics/machine learning literature, over-identified generalized
method of moments (GMM) [21]], shrinkage [[17]] and transfer learning [6] when we have related
data or information. While empirical studies often observe that these methods could outperform the

empirical solution in terms of excess risk, i.e., Z(0rnr) < Z(0), a fundamental gap remains: When
should these methods outperform and by how much, and what determines the order of improvement
over the empirical solution?

Our Contributions. In this paper, we address these questions by systematically characterizing the
statistical performance of solutions generally perturbed from the empirical solution, which we argue
to encompasses essentially all of the robust methods known in the literature and beyond. We analyze
their impact on the excess risks:
R(0) = Z(0) — Z(0"), where " € argmin Z(6). 2
0ce

Throughout the main body of the paper, our comparison centers on the expected excess risk,

contrasting Ep, [R(0rar)] with Ep, [R(0)]. Our key findings are: Robust methods yield first-order
improvements only when the auxiliary information they leverage (e.g., moment conditions) is correct
under P*; otherwise, improvements are at best higher-order and insignificant compared with the
empirical solution. Building on this analysis, we propose a principled framework for utilizing the
auxiliary information and constructing perturbations that achieve the largest possible first-order
improvement, establishing a novel connection between robust methods and Monte Carlo control
variates. To the best of our knowledge, we are the first to provide definitive performance comparisons
between various robust methods and empirical solutions for general cost functions under different
data environments. Related literature is reviewed in Appendix [A] with additional results and proofs
in Appendices [BHE} and experimental results in Appendix [F}

2 Preliminaries
In this section, we formalize the notion of improvement relative to the empirical solution.

Definition 1 (Orders of Improvements) For empirical solution 0, we say the excess risk rate of
R(0) (in @) decays polynomially in n with exponent v and constant C if Ep,_ [R(0)] = C/n” +
o(n=7).

For a robust-method solution Ory; with corresponding exponent ygyr and constant Cryr, we

classify its performance improvement as: (i) First-order improvement: Yry > Y or YRy = 7Y and
Cry < C; (ii) Second-order improvement: all other cases where Ep, [R(0rn)] < Ep, [R(0)].

Under this definition, if only second-order improvement is achievable, then the relative gain satisfies
Ep, [R(O)—R(Orm)]

Eo. [R(0)] — 0 as n — oo; otherwise this ratio converges to a strictly positive limit.
Dn

Assumption 1 (Optimality Condition) 6* sarisfies the KKT conditions for mingcg Ep-£(0; ). The
empirical solution ¢ satisfies Ep [£(0;&)] = mingee Ep [£(6;§)] + 0y (n71).

Assumption 2 (Local Quadratic Growth) Z(6) and each constraint F;(0) in © are twice contin-
uously differentiable in a neighborhood of 0*. The Lagrangian L(0, ) = Z(0) + 3_; ; o F;(0)
satisfies a strong second—order sufficient condition at (6%, o*), where o denotes the associated KKT
multiplier: There exists > 0 such that v V3,L(0*,a*) v > pl|v||3 for all feasible directions v in
the tangent space at 0*.

Assumptions [T} ] are standard for smooth objectives: The first provides local quadratic curvature

for the augmented Lagrangian; the second ensures regularity of the population solution and that 0 is
attained up to negligible error. Under these, the empirical solution admits the asymptotic linearization

6—0 = LS L IF(&) + o, (n71/2) with a mean-zero influence function 1F(€) [20L[L1].
3 Perturbed Solutions: Connections with Robust Methods and Statistical
Analysis

We consider the following perturbed solution to understand whether robust methods achieve the
first-order performance improvement:



Definition 2 (“Directionally Perturbed’” Empirical Solution) The perturbation of the empirical
solution is defined as: N
Ox0r = Tlo é+5ZM(é‘g;) . 3)
) n P y Qe

where Tlg is the projection operator to ©. Here, A € R is an adjustment scale and M (0;§) is a
perturbation function that is differentiable in 6.

The scaling A in (@) is chosen for analysis. More general adjustments beyond the scale A are treated
in Section[d] Many robust methods admit approximations of the form (3).

Theorem 1 (Unification of Robust Methods) For any A > 0, the solutions "N of robust methods
admit the representation 0y = Ilg (é +L5, H(\ &M (6%:6) + o, ()\ v ﬁ)) In many
robust methods, H(\; €) is constant in €.

The representation in Theorem [I| covers multiple streams of robust methods: (i) Optimization:
explicit regularization methods, Wasserstein DRO methods, (generalized) f-divergence (such as x?2-
divergence, Conditional Value-at-Risk (CVaR)); (ii) Econometrics: Generalized method of moment;
(iii) Statistical methods: shrinkage and transfer learning methods. Related small-\ expansions appear
in prior work [28} [15]] for a subset of methods we consider, while Theorem [T]is stated for general A,
including constant order and not necessarily shrinking to zero.

Example 1 (Auxiliary Information for DRO) Consider DRO problems with © = RP?, e,
Ox € argming maxp 5 <) Ep[€(0;€)]. Then the perturbation function is: (i) When d is Y-

divergence [10], M(G;{) x Vgl(6;€)0(0;€); (ii) When d is a CVaR distance [130], M(@;f) x
Vol(0;€)1y(g:6)>n+(n) Wwhen n*(X) is the (1 — X)-quantile of £(0; &) under § ~ P*.

We present the following result with respect to the statistical improvement of robust methods.

Theorem 2 (Orders of Performance Improvement) Suppose Assumptions|l|and|2|hold. Denote
[ = Covp: [IF(&), M(0%;€)],%0 1= Ep<[IF(&)IF(€)"] and w(0) := Ep<[M(0;€)]. Then (i)
If 7(6*) = 0 and the non-orthogonality condition holds: Tr [(Vem(0*)So + I') V2, Z(6*)] # 0,
then there exists a constant \ such that Ep [R(0) — R(0))] = ©(1/n) > 0; (ii) Otherwise,
maxy Ep, [R(6) — R(0,)] = o(1/n).

Since Ep, [R(0)] = ©(1/n) under Assumption [28], Theoremimplies that a constant \ yields
a first-order improvement in expected risk under the case (i), suggesting the need for nonlocal
adjustments to obtain substantial gains. Otherwise, at best a second-order improvement is achievable.
We also extend these comparisons to weighted empirical optimization solutions and comparisons
of distributional aspects beyond the mean in Appendix [D] where first-order rates of the empirical
solution 7 may be slower than n =" yet the conclusions above still apply.

Connecting the perturbation form in Definition 2] with Theorem [T} many existing robust methods can-

not markedly outperform the empirical solution unless Ep« [M (6*; £)] = 0 and the non-orthogonality
condition is met, together with an appropriate choice of \. When M is 6-independent, that is
V() = 0, the non-orthogonality condition reduces to Ep- [M (6;£) T IF ()] # 0 since V2,Z(6*)
is positive semi-definite. That is, whenever the auxiliary moment carries signal different from 1 F'(£),
one expects a nonnegligible improvement.

Corollary 1 (Linear Regression with Laplace Noise) If((6;¢) = (0T X —Y)2 with¢ = (X,Y) T
and Y = 0T X + € with symmetric Laplace noise ¢, a CVaR regularizer with a negative scale
A* € (—1,0) yields a first-order improvement over the empirical solution 6. The negative CVaR
regularizer is computable via 6y =20 — 0_ when X < 0.

4 Achieving First-order Improvement
Given the importance of the correct auxiliary information from robust methods, we now show how to

use some auxiliary information, such as partial moment knowledge or invariant representations, to
construct an optimal first-order perturbation of the empirical solution.



When is first-order improvement possible? In general, if there is no M such that E[M (8*;&)] =
0, then any robust method induced by such moments yields at most a second-order improvement,
cf. Theorem[2] In contrast, if there exists M with E[M (6*;£)] = 0, we can choose an adjustment
matrix H (when H = A, it reduces to (3)) so that the perturbed estimator attains the best first-order

improvement over 6:
O =1le [0+ — M(0;¢;) | . 4
HM @<+n; (,§)> 4)

In many stochastic optimization problems, beyond D,, one may have distributional moment knowl-
edge with respect to &, i.e., M (0;&) = M (), as in moment-based ambiguity sets in DRO [9]. In
general machine learning applications, there may be multiple sources of auxiliary information [3]
with one special example being semi-supervised learning [33]].

Example 2 (Moment Invariance from Related Domains) Given large unlabeled or weakly la-
beled samples from K related domains, {(0;,&: ;) }ic[k);jeiN) with N > n, there exists some
M so that an estimating equation Ep,[M (0;;&)] = 0 holds in domain i.

Our main procedure integrates moment information or related-domain side information to improve
the empirical solution for downstream decision making, as described below.

First-Order-Improving Perturbation. Let M, be a candidate class for M(-) indexed by

¢. Motivated by a second—order expansion of the performance gap Z(0y ) — Z(0*) =~
A T A

3 (9 HM — 9*) V2,2(60%) (9 HM — 9*), we directly minimize the dominant quadratic term to

obtain the optimal 0 v as in (@):

AT 3 - in ). 2 ) H - §. ¢
(A1) argmin ;HIF(&HHM(@,&) Hm] S e+;;M(e,ez)e@, 5)

where I(6) = VooEp [¢(8; €)] that approximates V2,Z (6*) and IF (&) estimates the influence func-
tion I F(£). For example, when © = RP¢ 23], IF (&) = —[V2,Z(0%)] "'Vl (0*;€) and IF () =

—[1(6))7'Vpl(B;€). My() is set to contain at least one M with Ep. [M(*; )] = 0 with proba-
2
N
Zj:l M (03 &i,5) /NH2 <
ex (Mg, 0) } with € (Mg, d) = Comp (M) log(K /) /N, where Comp(M ) captures the com-
plexity of the class and the bound absorbs distributional constants for M [37} 5]

bility at least 1 — §. For example, M(4) = {M € My @ max;c(g

Theorem 3 (Performance Guarantee for the Perturbed Solution) Suppose Assumptions
and [\ hold. and that sup ey, ||H|| < co. Let (H*, M*) be an oracle solution to (H*, M*) €

arg ming, pre m, Eps [||[IF(€) + HM (0% O, Z(e*)]’ Let (H, M\) be any empirical solution to
6
@) with M € M(0) for § = ©(1/n) in Example[2| Then R(0;, ) = R(0g- ar+) + 0p(1/n).

The performance of the data-driven perturbation 6 1 77 Closely matches the oracle performance,
indicating that it achieves the maximum possible first-order improvement. In practice, optimizing (%)

is typically done via alternating minimization over H and M.

Connection to Control Variates. Finally, we connect our principal first-order improvements with
control variates. We recenter the influence-function representation with its mean by viewing the
target as the mean of the influence function, 6* = E[IF(£)], so the empirical estimator can be

regarded as a Monte Carlo average 6 ~ % 21;1 IF(&;), with each &; producing one realization
IF(&;). The perturbed solution that achieves first-order improvement is a calibrated control-variate

correction, i.e., Oy ~ LS J(IF(&) 4+ H M(6%;&;)), where the auxiliary moment M (6*;¢)
has zero expectation and the calibration matrix H is chosen to exploit its covariance with I F(£) to
reduce variance — exactly the classical control-variate principle in Monte Carlo simulation [31} 29].
Thus, with limited samples, the calibrated estimator lowers variance (and hence risk) relative to
the empirical mean while preserving unbiasedness to the first order, yielding the first-order gains

established above.
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A Related Literature

Recent work in diagnosing statistical limits of data-driven optimization have been examined the
performance of existing data-driven solutions, or comparing robust methods with the empirical
solution. Van Parys et al. [36]], Sutter et al. [34] showed that some variants of DRO achieve the
optimal Pareto frontier between the excess risk and disappointment in the cost prediction. However,
if we are only interested in understanding the excess risk, Lam [28]] proves an impossibility result:
if one cares only about prescriptive performance guarantees, the empirical solution stochastically
dominates a broad class of data-driven methods asymptotically. Gotoh et al. [15, [16] analyze the
expected cost improvement of f-divergence DRO and optimistic variants, quantifying their trade-offs
with the empirical solution. Other works design estimators with provable improvements. Feng
and Shanthikumar [13]] propose Operational Data Analytics (ODA), which assumes the underlying
parametric distribution class and integrates into the downstream objective [13]], while Albert et al.
[L] develop a shrinkage estimator that achieves second-order improvement in predict-then-optimize
tasks.

B Formal Details of Robust Methods under Theorem [1]

In the following, we present the detailed moment constructions for each robust method in Ap-
pendix [B.T|and proof sketches establishing their unification in Appendix [B.2]

B.1 Formulations and Equivalence of Robust Methods
B.1.1 Regularization / Distributionally Robust Approaches
Proposition 1 (Explicit Regularizer) The explicit regularized solution ‘N computed by solving:

0 € argmin Es [£(6;8)] + AEg [M(0;€)] for some A >0
6co " "

satisfies the expansion in Theorem for some H and M when \ = o(1) or 65 = 0*.

This formulation covers data-independent regularizers of the form M (6;&) = M(6). Beyond
classical regularization terms studied in statistics, we allow DRO formulations based on Wasserstein
distance and f-divergences motivated by the close connections between explicit regularization and
distributionally robust optimization (DRO) [27, [14].

Definition 3 (Wasserstein Distance) The p-Wasserstein distance (p € N) between two distributions

P,Q € P(E) with respect to the l1-norm (i.e., || - ||1) is defined as:
1
-— : _ P P
WyB.Q = _inf (B ame[I¥i - 2lf])" (©)

where ¢ is a joint distribution of (§,( € Z) from Z(P, Q) and Z(P, Q) denote the set of all joint
distributions with marginal distributions P and Q.

Example 3 (p-Wasserstein-DRO Regularizer) Given p-Wasserstein distance W, (P, Q) defined in
Definition 3] the p-Wasserstein DRO solution computed by solving:

0 € argmin sup Eql4(0;¢)].
00 QW (@Fn)<A

For p > 1, applying Theorem 8.7 in [26], we have:
sup  Eql(60;€)] = Ep [66:6)] +AE; [IVEO;)L]7 +o(A).
Q:Wp(Q,Pr)<A

If we ignore the higher-order term o(\), the p-Wasserstein-DRO regularizer becomes one special
case of the standard implicit regularization problem.

We also allow other ambiguity sets such as f-divergence DROs.



Definition 4 (f-divergence) Let P and Q be two distributions and P is absolutely continuous w.r.t.
Q. For a convex function f : [0,00) — (—o0, 00| such that f(x) is finite Yo > 0, f(1) = 0, the
f-divergence of P from Q is defined as:

ds(P,Q) —/f(jé) 4Q =Eq {f (jg)}

We obtain the x*-divergence by setting f(z) = 1(x —1)2.
Proposition 2 (y2-divergence-DRO Regularizer) Given the x?-divergence in Deﬁnition the x?-
divergence DRO solution 0 computed by solving:

min max Egl4(0;
e N ol€(8;¢)]

satisfies the expansion in Theorem|l|for some H and M when \ = o(1) or 65 = 0*.

Above, as long as ) is not large enough [27, [10], x2-divergence DRO solution allows the exact
equivalence with the variance regularization:

X2(g[?$§)\EQ[£(9;§)] = E]}an [0(60;8)] + 1/)\Var]}an [£(6;8)]. 7)

We also allow some f(-) that is generalized beyond the standard form in Deﬁnition

Proposition 3 (CVaR-DRO Regularizer) Consider the Conditional Value-at-Risk (CVaR) objective
with the parameter A € [0, 1)

CVaR(6;P) = min { T

1
Ep[(£(0;€) — .
i { S ERl(00:6) ~ )]+
the CVaR solution 0 computed by solving N argmingcg CVaR (6; Pn) satisfies the expansion
in Theorem for some H and M when A = o(1) or 65 = 6*.

The two augmented asymptotic normalities follow tools from Theorem 5.31 in [35]].

Beyond distributionally robust formulations, Jiang and Xie [24]] propose a distributionally favorable
framework, which replaces the supremum over P by an infimum, while keeping the ambiguity set
fixed. This can also be incorporated into Theorem For example, in the y2-divergence case,

min  min  Eg[l(6;¢&)],
L L ol€(9;¢)]

which simply changes the right-hand side of (7) from +, /A Varg [€(0; )] to — /A Var [£(0;&))].

Comparison with existing work on local perturbation. Our expansion goes beyond the local
analyses in Anderson and Philpott [2], Gotoh et al. [[16]], where the regularization term or ambiguity
set shrinks to zero as n — co. For instance, in unconstrained optimization, the general f-divergence
penalization studied by Gotoh et al. [15] takes the form

Oy =0+ f”)\(l) -EpI(0)"'Covg (h(0;€), Vh(B;€)) + o(N),

which is a special case of our problem instance in Theorem I}
B.1.2 Econometrics Approach

Method of moments is a classical approach in econometrics for parameter estimation based on
moment equations [21]. We show that the over-identified generalized method of moments (GMM)
can be reformulated within the framework of Theorem



Proposition 4 (GMM) Let C € R2P9*2De pe q fixed weighting matrix and define
1 n
LS Vl(0:;
(0) = l”lz - ( )] € R?Pe,
w2 ie M(0:€)
The GMM estimator éG MM IS obtained by solving

min 3(0)TCy(9).

g

Then ég M M Satisfies the expansion in Theorem 0r suitable choices of H and M.

Expressing the solution in the unified perturbation form of and Theorem |1| offers two main
advantages over the standard GMM formulation. First, it facilitates analysis of constrained or
nonsmooth problems, where V/ may arise from noncontinuous objectives. Second, the unified
view is more flexible: it naturally handles moment conditions that do not depend on 6, provides
robustness to misspecification, and enables fast adaptation in streaming-data settings without repeated

optimization given the empirical solution 6.

B.1.3 Statistical Approaches

Theorem [T] also encompasses several classical statistical estimators used in data integration.

Proposition 5 (Shrinkage Estimator) Given the empirical solution 0 with H (\) being a fixed func-
tion of A\, a shrinkage estimator of the form

0= (1+55)0.

sastifies the expansion of Theorem|l|for some suitable H and M.

This estimator is directly motivated by the James—Stein shrinkage rule and has also been employed in
the general stochastic optimization settings [17]].

Proposition 6 (Transfer Learning Estimator) Ler 0* denote a parameter estimated from a source
distribution. The transfer-learning estimator

N 1 <&
0, € argmin — 00; &) + N6 — 072
s € arguin 3 24(056) + AJ0 ~ 01
satisfies the expansion of Theorem|l|for suitable H and M.

This formulation represents a simple instance of the broader transfer-learning literature [[6]] and can
also be interpreted as an implicit regularization, corresponding to Proposition [I| with M (0;¢) =
16— 6*]13

B.2 Proof of Theorem /[l

Across all robust methods, we focus on the case where © is unconstrained. However, for general
constrained problems, a similar proof technique applies for the expansion via constructing the
Lagrangian multiplier as well. We first denote 1(0) = VggEp- [£(6*;£)] as the Hessian under the
optimal 6*.

B.2.1 Explicit or Variance Regularization.

We consider two regimes: (i) A = o(1); and (ii) 85 = 6* for explicit regularization in Proposition
and variance regularization in Proposition 2}

For the explicit regularizer of Proposition[I] we have:

D07 €) i= Vo M(07:€) € RDe, FI(N) := —AI(67)" € RPo* Do,



If M(6;&) = M(0) is data independent, then M(Q*; &) = Vg M (0*) is constant, so the sum gives
the standard penalty shift —\I(6*)~1Vy M (6*).

Write Z (0) := Eg £(0;€) and consider

0 € arg min {Z(G)—s—)\IE]P,nM(Q;g)}, 9€arggé1é1Z(9).
The first-order condition at 6 \ 1S

VoZ (9}) +A\Ep VoM (9};5) —0.
Let A := 0y — 6. Taylor expand both gradients at 6:
VoZ (0) = Vo2 (8) +V3Z (8) A+ Ry,
=0
Ep, VoM (0::€) = Bp VoM (6:€) +Ez VM (9:) A
P, % )\7§ - P, (4 ag +E]P>nv0M (976) +R27

where 6 lies on the segment between 6 and 0 . and R;, Ry collect higher-order terms. Plugging into
the FOC and regrouping,

[vgz (9) +AE; V3M (6 5)} A=—\E; VoM (é; g) TR,
with R := —(R; + ARy). Solving for A and keeping only the leading term,
A=— (vgz (9) )_1 AE; VoM (é; g) +op ()\ v n—1/2) :
Now replace the sample quantities by their population counterparts at 6*, we have:
V32 (0) = 1(0") +0,(1), Ep VoM (6;¢) = % S VoM (6756) + 0p(1).
i=1
Therefore, B
bh—b6=—-%" ( AT(%)" ) VoM (6%;&) +o, ()\ v n—1/2) .

i 1—,_,\—/—’
= H(\) M(6%3€:)

3\1—‘

For the variance regularizer of Proposition 2} under (7)) holds, following the same result given FOC
above, we show:

M(0%:€) = (6(07;€) — Ep« [£(07;€)]) Vol (67 &) € RP?,

H(\) = —I(e*)—1¢ € RPoxDs
Varp- [£(0*;€)]

B.2.2 CVaR

Let the unregularized empirical minimizer 6 satisfy the usual linearization

-0 = —*ZI ()7 Val(6756) + op(n”"7?).

Consider the CVaR program at level A € (0, 1):

min 7+ %E[( 0:6) —n)*].

Let (0%, n%) be the population solution, where 5 = VaR (¢(6%;€)). Define the estimating map
=5 Lewie)y>ny Vol(6;€)

»(f,m; ) =
1= 125 Liewie)sn)

o B3, m3;:6)] = 0.
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Let Jy := Vg, E[¥(65, n3; §)] and write the influence function for (6, 7) as

9, — * %
IF"(&) = =I5 (05,15 ©)-
Extracting the #-block gives

L1 \
IRE) = —AN™ =5 Lewgosm) Voll85:0)

where )
AN = V@E{ﬁ Leoo,6)>n3y VQZ(G;,E)} ‘0

=0

By standard M-estimation algebra,

L 1< _
by =03 = —— Y IF"(&) + o(n1/?).
=1

Under 05 = 6%, this yields
O — 0" = _A(A)—1L1 ceysmey 10 | Vel(0%56)| + op(n™Y?)
A 1_ )\ {¢(0 7§i)>77>\} [ 3 St Op(T .

=: H()\) =: M(0%;¢;)

B.2.3 GMM

First we denote:
91(0:€) = Vol(0:6) €R™?, ga(0:6) = M(0:6) € R, g(656) := [g;ngﬂ e R,
Let . .
§0) = 13 00:6), 5,00 i= > g(6:6) (= 1.2),
and denote C by its diagonaij)mponent: -

_[Cn Cp2 , DgxD
C = |:021 022:| , Cjk c RPexDo

The empirical solution 0 satisfies §; (é) = 0, and write the Jacobians at 0 as

G = Vo (0) e RV Gy = Vygo(h) e RP*P0 D= [gj € R?Pox Do,

We consider the first-order expansion around 0. That is, V(;Q (éG M M) =0,1ie.,
N o
0=2D (9) Cg (QGMM> )
for some 6 between 6 and éG M- Linearizing g at 6 and using g; (9) =0,

0~2{DTC[30) + Do ~0) } =2{ DTcad) + DTCD (Gann - 0}
depends only on go (é) curvature at 6

Compute the two blocks explicitly:

DTCy(0) =Gy (Cllﬁl(é) + 012§2(9)>+G2T (Cmél(é) + széz(é)) = (G] Cra + G C2) §2(0),

=:B,

DTCD =G C11Gy + G C12Gy + G C21Gy + G CosGy =: H,,.

11



Assuming H,, is nonsingular, we obtain
éG]MM — é = 7H;1Bn§2(é) + 0p (nil/z) .

We use the linear representation in sample averages. Since go(6) = % E:’L:l M (é; fi), we can write

zn: (=H;'Ba) M (0:6) + o, (n772).

i=1

S|

éGM]W - é =

=:H

Finally, under LLN, we have: G; 2 A := E[Vog1(0*;€)], G 2 B = E[Vgga (0*;€)], and
H* 2 H* with

H*=— (ATCA+ ATCiaB+ B CyA+ BT CouB) ' (ATCha + BT Cas) .
Hence the asymptotic linear form is

Ocarns — 0 = ;éH*M (é;&) +op (n—1/2>

The last equality follows from the fact that Ep- [M (6; £)] = 0. Equivalently, we obtain the perturbed
formulation by defining H (\;€) = H* and M (0*;&) = M (6;€).

B.2.4 Shrinkage

Compared with

we have:

)

N—

. 1 — 1
2: * |2 2 *T [ = TF(E;
1613 = l10° 13 + 26 (n > (fz)>+0p(\/ﬁ

L WTGELIRE) (1)
o - o — ] .
1613 =13 16112 "\vn

A HN -
0= |1 _ 0
> ( i |9||%>

Therefore, the shrinkage estimator

admits the expansion

H(A)
1613

i ( 16+(13 16713 ) (n;IF@)) +0p (Av ﬁ>

Equivalently, we obtain the perturbed formulation by defining

é)\:é+ 0*

2
16113

H()
16113

M(0%;&) := 0" + IF(&) — 00 TIF(),  H(\E) =

12



C Proof of Theorem 2]

Before going to the proof of Theorem[2] we first describe the following two lemmas:

_ ~1/2
’2 Op (” )

Lemma 1 (Smoothness) supg_g-| <, || Mn(0)—M,(6*)=VoM,(6*) (6 — 6%)

for some r,, | 0 with P (||é -0 < Tn) =L

Proof of Lemma |l Apply Taylor’s theorem with integral remainder to each summand M (6;&;)
between 6* and 6:

M(0;&)—M (0" &) VoM (0% &)(0—07) = /O (1=t) (0—0") T V5o M (0" +t(6—0%); &) (6—07) dt.

Taking norms, sup over ||§ — 8*|| < r,, averaging over 4, and using the envelope bound yields the
displayed inequality with K,,. By the LLN, K,, > E[K (¢)] < oo, hence the remainder is O, (r2)
uniformly on the ball. Choosing o € (1/4,1/2) ensures r,, | 0,72 = o(n~1/2), and n'/?r,, — oo,
s0 a v/n—consistent 6 lies in the ball with probability tending to one. ]
Lemma 2 (Asymptotic Normality of Perturbed Solution) If \/n(6 — 6*) = X(6*;0). Consider
Oy = 0 + AM,, (). Then:
V(6 — 603) = N(0,5(6%; X)),

where

2(9*; /\) = (Id + )\V@W(G*))Z(Q*; 0)(Id —+ /\VQTF(Q*))T + >\2QM + QASym((Id + )\V@TF(Q*))F),
with Sym(A) = (A + AT), 05 = 0* + XEp[M(6%;€)], Qus := Varp [M(0%;¢)] and T :=
Covp- [IF(&), M(6":€)],

For the value of 3(6*; 0), when O is unconstrained, following the standard condition in the asymptotic
of stochastic optimization (i.e., Chapter 5 of [33]]), we have:

2(6%50) = (1(0") ™I (07)(L(67)) 7,
where J(0*) = Ep« [Vl(0*;€)Vol(6%6)T].
For the general constrained © = {6|F;(#) < 0,5 € J}, from [L1], we have:

2(07:0) = Pp(1(6%)) " PrJ (07) Pr(1(0%)) ™" Pr,
where Pr =1 —CT(CCT)IC,C = (VyF;(0))jes+ and J* = {j € J : F;(0*) = 0}.
Proof of Lemma[2] Define
0y := 0+ \M,(0), 65 :=0"+ Ir(0").
Let G,,(0) := 0 + AM,,(0) and G(0) := 0 + Am (). Then
Vi (0x = 63) = Vi (Gal0) = G(6)) = Vi (Gu(0) = Ga(07)) + V7 (Ga(67) = G(8")) .

(B)

(4)
For the part (A), following the mean-value expansion and Lemma
G(0) = Gu(0) = (Lo + AV M1 (0%)) (6= 07) + 7y with [rallz = 0 (n72).
Multiplying by +/n, we have:
Vi (Gal0) = Gu(6")) = (I + AV b (67)) Vi (0= 07) + 0,(1).
For the part (B), by definition,

Vit (Ga(0%) = G(67)) = Mn (M, (6%) = m(67)).

13



Combining (A)”(B) yields

Vit (0n = 03) = (La+ AV M (07) Vit (0 0°) + A (M (6%) = (67)) + 0, (1).

By Slutsky’s theorem and Lemma VoM, (0%) = 230 VoM(0%;&) = Vor(0*) € R4,

(&) ¥(0%0) T
\/> Z |: 9* 51 (9*) = N Oa FT Q]\/I -
Applying the continuous mapping theorem gives the Gaussian limit

V(0 — 0%) = N(0,2(6%))),

where (0% )) = (I + AVem(6°))S(0%0)(Ia + AVem(6°))T + X2Q + 2XASym((Is +
AV (67))T). O

Then we move to the proof of Theorem 2}
Proof of Theorem[2} Denote 7(6) = Ep-[M (6;¢)] and Z(0) = Ep-[£(6; €)]. Besides,
1(6) = Vi Z(6), J(0) = - [Vol(0;€) Vo (0:€) .

We first want to obtain the exact upper and lower bound relationship between Ep, [Z(6)] and
Ep,[Z(9)].

For general 0, = 0 + 2 > i) M(;&) = 6 + ADM,,(9), from Lemma we have:
Vi(lx = 05) = N(0,5(6%: ),

where $(0%;0) = (Iy + AVem(0%)2(0%;0)(Ia + AVom(0*)T + A\2Qur + 2ASym((Iz +
AVym(6%))T) with Sym(A) = L(A+ AT). Letting A = 0 in Lemma2} we have:

V(0 —6%) = N(0,(6*;0)). (8)

Taken the asymptotic normality of 0 and 6 over D,,, we have:

E[Z(0,)] = Z(63) + Tr[z(ezs)j(a;)] to (711) : )
E[Z(0)] = Z(6*) + %:W +o0 (;) : (10)

Then we compare Z (6% ) and Z(6*).

When the decision space is unconstrained such that © = RP¢, since Z(-) is strongly convex from
Assumption(with 01 = 03,02 = 0%), we have:

CLA?||m(07) )13 < Z(03) — Z(07) — Vo Z(07) " (65 — 07) < CoX?|[m(6) 3. (11
=0

Denote p(A) = Tr[Z(6%; \)I(6%) — 3(0*;0)1(0*)]. Since |A| < oo, then p(A) is finite. Combining
all the equalities and inequalities above, we have:

BL2(0,)] 2 ELZ0)] + o) + Coll@)] +0 (1), (12)
BL2(0,)] < ELZ0)] + 5 + CoXl@)]B +0 (7). (13)
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For problems under a general constrained decision space, Equations (9) and (TI0) still hold. And
we need to show that the Equation (I2)) hold. Taken 6; = 05,6, = 6* and Lagrangian multipliers
{a}}jep from Assumption |2 l for the left side, we have:

CLX?|[m(07) )13 < Z(03) + Y o Fy(03) — Z(0%) = Y o Fj(0%) — (Vo Z(0%) + > a; Ve F;(0%))" (65 — 67)
jedJ jedJ jeJ
=Z(03) + > i F;(03) — Z(67)
jedJ

< Z(03) — Z(07),
where the first equality is due to the KKT condition that Vo Z(0*) + >, ; ajVeF}(6*) = 0 and

> jes @ Fj(07) = 0 from Assumptlon and the second equahty follows from F};(#) < 0 for each
J € J at 05 with the non-negative Lagrangian multiplier o] > 0 for each j € J.

Then giving (12) (and (T3)), we consider the following two cases:
m(0*) # 0. This is equivalent to saying 65 # 0*. We consider the case of A = o(1) and
A=0(1):
First, if A = ©(1), then from (T2), we have: E[Z(0))] > E[Z(0)] + C122||x(0)]3 +
O(1/n) > E[Z(H)]. In this case, 05 does not provide any expected improvement to 6,

Then, if A = o(1), then we expand p(\). Recall the formula of p()\), we immediately
observe that p(0) = 0. Therefore, we have:

p(N) = #/(0)A + o(N)

2
Z(03) = Z(6%) + ’\?w(a*)T I(0%) + Z V2, F;(0%) | m(6%) + o(\?).
jeEB*

where the second equality directly follows from the second-order Taylor expansion. More
specifically, p’(0) is calculated as:

o/ (0) = TH[(6%0) - /(6] + Te[37(6°:0) - 1(6°)
= 7(0*) TVTe[2(0%;0)I(6%)]|g—g- + 2Tr(X(0%;0)Vom(8*)I(67)).
This way, we can change the inequalities of (12) and (T3) as the following exact expansion:
A A 0N A2 1
E[Z(6x)] = E[Z(0)] + % + S m(07) T 1E)m(07) + o(A*) + 0 <n> :

The relative improvement function is:

a0 =T o (Lo (107 + 3 @, V3B 07) | 707 + o)

jeB*

This is is a quadratic function with respect to A. And the optimal

/
Voo p'(0) _0 (1>
20T (100%) + Zyepe V3 Fy(09)) 7 A1
and the corresponding G(\*) = O (). Any other values A € (—o00,00) leads to a
G(\) < G(\*).
2. m(0*) = 0. This implies that §5 = *. Comparing (12) and (3], we have:
p(A) = Tr[(2(07; A) — (6750))1(67)]
=a\+ (b+0(1))\?,
where:
a=Tr[(Ver(6%)X + 2Sym(T")) 1(0)]
b=Tr [(vm(e*)zovm(e*f + 2Sym [Vom(6*)T] + QMD 1(9*)} .
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Therefore b
A A a
Ep, [R(0)) — R(0)] = — A+ —\? -h.
0, [R(02) = RO)] = 5-X+ 3-A + on ™)
Note Q25 = 0 contributes positively. Then the quadratic in A is strictly convex, and the
optimal regularization is the constant choice

2

a - - a
A= —— Ep, [R(Ox«) — R(0)] = ——— 1.
o En,[ROx) ~ R@) =~ +o(n)
This implies that choosing A = — 7 leads to a first-order improvement of order o(n™1h). As
long as a # 0, the perturbed solution can lead to some first-order improvement. ]

We also highlight that compared with the empirical optimization, including a data-driven regular-
ization is necessary. That is, the function M needs to depend on the data first. Suppose we fix the

regularization direction towards the empirical solution, 0 N = 0 + Am, V) > 0, which cannot lead to
first-order improvement.

C.1 Additional Discussion of the Improvement Order

When M depends on 6, replacing M (6; £) by M (0;¢) alters the moment geometry since 6 is a
function of D,,, and therefore, the simple non-orthogonality check E[M (6; &) T I F(€)] # 0 no longer
applies directly. For example, in OLS with Gaussian noise, naively plugging empirical residual
moments such as E[V{ - /] typically fails to deliver first-order gains without additional structure.

D Generalization of First-order Improvements in Section [3|

Our insights of first-order improvements can also be generalized to data-driven optimization prob-
lems with side information or so-called contextual stochastic optimization, optimization under risk
functions. In the following, for simplicity, we only consider the unconstrained case © = R”¢ and the

case that M (0; £) is independent of the data-driven parameter 6. However, our results still apply when
M(6;¢) is a function of 6 and £ and general constrained problems as our main results in Section

D.1 Weighted Empirical Optimizations

In contextual stochastic optimization problems, the distribution of £ is a function of a covariate
u € RP« [7,[12]. The ground-truth distribution IF’Zl ., 1s unknown; instead, the decision maker only

has data Dy, = {(ui, &) }izy consisting of iid samples from the joint distribution IP{,, . = P}, x Py .
The decision maker observes the covariate U = u before making the decision.

In particular, we consider the class of weighted empirical optimization procedures in [7].

Definition 5 (Data-Driven Weighted Empirical Optimization Procedures) The empirical deci-

sion rule .
f(u) € argmin Z wh, i (w)€(6; ), (14)
9eo i€[n]
where {wn, ;(u) }ic[n) are weights determined by Dy, and .

The key observation is to notice that for regularized k-Nearest Neighbor, Nadaraya-Watson kernel
estimator and some regular random forests satisfy the following condition:

Assumption 3 (Influence Function Decomposition) For any u and write

2u(0) = Eer, [(6:0)], 07 (u) € axgmin Z,(6),

€lu
and assume Z,, is twice continuously differentiable with positive definite Hessian
2

Let the estimator 0(u) satisfy the IF decomposition

. 1 <&
6(u) - 9*(“’) = ﬁ Z IFn,u(uiv fz) + bn,u + rn,ua
i=1
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where at each point u, B ¢)p+[I F (0, €)] = 0, Varp- 1 F, ,(@,§)]/n' =27 — S, the decision
bias term by, ,, = O(n™7), and 1y, = 0,(n~7) with~y < 1.

Proposition 7 (First-order improvement for weighted empirical solution) Suppose  Assump-
tions (when we replace Z(0) with Z,,(0)) and Assumption |3 hold. Consider the perturbed
estimator

Ox(u) := O(u) + Ay My .
where

My = 137 Ml ), gias(u) = B (U €)), - Ras () = Vares (M, (U ).

i=1

n

Define the performance gap of a estimator 6(u) at u by R(6(u)) := Z,,(0(u)) — Z,(0*(u)).
(i) If uar(w) = 0 and Tr(I,Ty, ) # 0, where
Lpu i= Cov(IF, (U,&), My (U,£)) = O(n' 7).

. Tr(Ian u)
or each n, there exists \}, ,, = — ——~———~ such that
f ' Tr(I, Qs (w))
. R Tr(I, T, ) 1 _
E[R(0x;,, (w)] ~ E[R(O(w))] = QTF((I m}(l» o)

In particular, a first-order improvement of ©(n~2Y) is achieved.

(ii) If pp(uw) = 0 and Tr(I, Ty, ) = O, then:

E[R(H E[R(§ _Lnao Anu NS
[REGAw)] ~ EROW)] = 31,0 (W) - % 1 0(+) > 0,
so the best constant choice is Ay, ,, = 0.

(iii) If par(u) # 0, we can achieve the second-order improvement of the order o(n=2).

Proof of Proposition B A second-order Taylor expansion of Z,, at 8*(u) gives, for any random 0
close to 6*(u),

R(0) = Zu(0) — Zu(6(w) = %(9 = 0" () T 1u(6 — 0" (w) + 0, (116 — 6" (w)]?).

Taking expectations and applying the bias-variance decomposition,

~ 1 1 ~ * ~ * n *
E[R(0)] = 5 Tr(IuVar(9)) + 5 (E[6] — 0" (w)) T L(E[f] — 0" (u)) + o(E[1§ — 0 (u)[|*).
Apply this to 6 = 6(u) and to 6 = 0 (u).
Step 1: Moments of 6(v). From the IF decomposition with v < i,

Var(@(w) =~ % +o(n ), EIOw)] — 0% (u) = b+ oln ),

1
—p! Lbpa +o(n™2).

2 n,u

E[R(0(u))] = %Tr(IuEu) n

Step 2: Moments of 0 (u) = 0(u) + Au My o0 Write
Lo i= Cov(IFp (U, §), My (U.€)),  Qn(u) := Var(My (U, ¢)).
Since é(u) =60*(u) + % S IF, 4 by + T and M, , = % > M, we have
Var(03 (u)) = Var(f(w)) + 2X,uCov(8(w), My) + A2, Var(Mi,..)
— 1 (nl_QVEu + 2 T + /\i’uQM(u)) + 0(71_27).

n

17



Moreover,

E[x ()] — 6" (w) = (E[0(w)] — 6" (1)) + A uBIMu] = bpu + Anutianr () + o(n™7).

Step 3: Risk difference. Subtract the expansions:
Ap(Anuiw) == E[R(Ox(u))] — E[R(O(u))]
1 1
= %Tr(fu@/\n,urn,u + AZuQM(U))) + g(An,uﬂM(u))TIu(An,u:uM(u))

+ /\muuM(u)TIubmu + o(n™27).

Case (i): pas(uw) = 0and by, := Tr(I,T,, ) # 0. Set A, , = A constant. Then

An(hiu) = 21 (VTH(L, L) + N1, Q0 (u))) + 0(n27).

n

Tr(I,I'
This quadratic in A is minimized at A*(u) = —M, yielding
Tr(L,Thw)? 1 _
Mg = - T 1y
(A% ) 2Tr(L,Qpm (uw)) n toln ’

which proves the first-order improvement.

Case (ii): pp7(u) = 0 and Tr(Z,I',u) = 0. Then Ay, (A u) = 5= A2Tr(1, Qa1 (w)) + o(n™2) >0
for any constant ), so the best constant choice is A = 0.

Case (iii): ppr(u) # 0. The term %/\i,u/ﬁM (u) " L pups (w) is nonnegative and of order 1 when \,, .,
is constant, which prevents ©(n~27) improvement. Choosing some \,, ,, = ©(n~27 suppresses this
bias but then any improvement is at most ©(n~27).

These three cases establish the claim. |

D.2 Risk Functions

In this section, we extend to the problem instance that compares the distributional aspect information
of Z(0y) and Z(0) beyond the expectation, i.e., comparing E[g(Z(0))] and E[g(Z(0))] for general
9()

Assumption 4 (Condition on g(-)) The function g : R — R is monotonically nondecreasing and
twice continuously differentiable.

This includes the expected performance gap comparison with g(z) = x.

Proposition 8 (First-order improvement for general risk functions) Suppose Assumptions 2]
and [ hold. If Bp-[M (6%;€)] = 0 and Ep-[M(0*; &) TIF(£)] # O, there exists some \* = O(1)
such that we have: Ep, [g(Z(0x+))] — Ep, [9(Z(0))] = ©(1/n) < 0. Otherwise the improvement is
of higher order, at most o(1/n).

Proof of Proposition[§] We decompose

Ep, [9(Z(02)] = Ep, [9(Z(9,))] — Ep, [9(Z(65))] + Ep, [9(Z(65))] — Ep, [9(Z(67))].
(4) (B)

Step 1. Term (A). Apply a second-order Taylor expansion:
Ep, [9(Z(62))] = Ep, [9(Z(63))] + ¢/ (Z(63))Ep, [Z(8x) — Z(63)]

+ 5" (2(03))E, [(2(8:) ~ 2(6))°] + o(En, [(2(0) - 2(63))7)).
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Recall the proof in Theorem 2] we have:

Ep, [2(6x) = 2(65)] = 5-Tr(S0": N)I(63) + 0~ ).
Besides, taken the first-order Taylor expansion of Z(6y) — Z (6%), we have:
Z(0x) — Z(0%) = Vo Z(03) " (Ox — 0%) + 0p(n1/?).

Combining it with Lemma[2] this gives rise to:

Ep, [(Z(0) — Z(63)] = ~ Vo Z(65)T 20" N Ve 2(83) + O( 5 ).
Step 2. Term (B). Expand around 6*. First, we consider A = o(1), which gives rise to:
Z(03) = Z(6%) + %/\%Tl(ﬂ*)w +0(\?).
Therefore
Ep,[9(Z(63))] — Ep, [9(Z(07))] = 9'(2(9*))%A%Tf(@*)7T +o(A?).

For general A\ = ©(1), we utilize the fact that g(-) is nondecreasing from Assumption4} In order for
possible performance improvement, we require that #5 = 0* and w(6*) = 0.

Step 3. Combine. When A = o(1), subtracting the expansion for 0 (with A = 0) from that for 0 \ If
we further denote p(\) = Tr[X(6*; \)1(0%) — X(6%;0)1(0*)] = p'(0)X + o(X), then we obtain

£, [o(Z(03)] - En, [0(Z())] = LD (/07 1 0(3)
+ PO (9,205 507090 2063))
+ @A%U(e*)w +o(A?) + O(%2 o
:CQ+D/\2+0(711>,
where
0= (g2 + "2 )sE016)x0), =TT

Above inside the expansion of VyZ(0%) " %(0%;A\)VZ(05), we simplify it following from the
formula of X(6*; \) in Lemmal[2] with Vg (6*) = 0 and the fact that:

VoZ(05) = VoZ(0") + M (0%)m(67) + o(A) = AI(07)7(6%) + o(N).

In this case, the optimal improvement is taken when A\ = — 59> = O(1/n) and the improvement is

2nD
of the second-order.

When A = O(1), the second-order term associated with ¢g” (-) becomes zero and the performance gap
in (T3) becomes the first-order difference:

Ep, [o(Z(00)] - En, [o(2()] = L2 (),

and the minimizer of p(\) with respect to A is taken as the same as in Theorem (|

E Proofs and Additional Results in Section 4|

E.1 Proof of Theorem[3

First, we have the following guarantee for the estimated uncertainty region M (§) for consistency:
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Assumption 5 (Source-domain Uniform Concentration) Assume there exist constants B,o > 0
such that, for every i € [K| and every M € M, each coordinate of M (6;§) is sub-Gaussian with
proxy o and | M (0;§)||2 < B almost surely. Let Comp(M ) denote a capacity measure for M
(e.g., squared Gaussian/Rademacher complexity or a metric-entropy integral). Then there exists a
universal C > 0 such that, for any § € (0, 1), with probability at least 1 — 6,

.z Z( (0:€1.5) — Ep. [M(6; 5)]) <c (\/Comp(M¢)]v+ log(K/4) n log(ﬁ/é)) '

max sup
i€[K] MeM,,

2

Lemma 3 (High-probability inclusion of invariant M) Fix 6 € (0,1). Suppose Assumption
holds and some M € My satisfies the moment equation Ep, [M(0;€)] = 0 for all i € [K] and the
target domain. Define

2 Comp(My) + log(K/9d)
N b

2
ex (Mg, 8) == C i geK(MM)}.

i€[K]

N
1
M(6) := {M € My : max HN ZM(GZ-;&J-)
j=1
Then M € M(0) with probability at least 1 — 4.
Proof of Lemmal Bl First, we know Ep, M (6; &) = 0 for P can be any distribution P; from the source

domain and the target distribution P*. Apply Assumption I 5|and take a union bound over ¢ € [K] to
get, with probability at least 1 — 0,

\/Comp(M¢) + log(K/6) N log(K /)

M(0:; &, <
max Z &) C N N

i1€[K]

2
Squaring both sides and using (a + b)? < 2a? + 2b? yields
2

N
1 Comp(M ) + log(K/d)
— ) M6:&,)| < C? -
112[3‘}?] N ; (9,&,]) <C N GK(M¢55)’
= 2
which is exactly the defining inequality for M € M(9). O

Lemma 4 (Target-side plug-in consistency) Recall IF(§) denote the influence function of 6 and
1(6*) the population curvature matrix entering the decision risk expansion. We have:

ILF — IF||r2(pe) = 0p(1), | 1(8) = 1(8)llop = 0p(1)

Proof of TheoremE] First, we consider the first-order risk expansion. Following the same second-
order Taylor expansion of Z () around 6* and the influence-function representation as in Theorem'
we have that for any bounded H and any M,

R(Bar) = RO) + 5 B [ITF(©) + HME:E) 3] + 0p(-): (16)

Intuitively, the perturbation n~* Y, M (-) shifts the first-order term of 0 from IF(¢) to IF(€) +
HM (&); the curvature I(6*) weights the quadratic risk.

Then we bound the uniform convergence of the empirical objective. Let

FUTM) = B (I HME O ). Fall M) = S TR+ MG ),

=1

By Lemma and standard arguments (triangle inequality, Lipschitzness of v +— ||v]|% in both v and
A on bounded sets), we get

sup | Fou(H, M) — F(H,M)| = 0,(1).
HEM, MeM(3)

Because IV > n and by Lemmawith d = O(1/n), the additional error from using M e M(0)
(estimated from the K source domains) is also o, (1) uniformly over M.
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Then we transfer the optimality gap from the empirical objective to the population one. Let (H, M )

minimize (3) (equivalently, minimize F,, up to an irrelevant scale) over H x M (d). Then, for any
population oracle (H*, M*),

F(H, M) — F(H*, M*)
< [F(H, M) = Fo(H,M)] + [Fu(H, M) — Fo(H*, M")] + [Fo(H*,M*) — F(H*, M")]
<2 sup |Fu(H,M)—F(H,M)| = op(1).
HXM(6)

Finally, for the true performance gap, we plug the expansion for both (H, M )and (H*, M*):

R0y 57) — ROu-aa-) = %[;(gﬂ) R )] +0p(%)

aor+on(5) = an(3),

which proves the claim. ]

E.2 Semi-parametric Efficiency

Our result does not contradict with the local asymptotic minimax normality that the lower bound
of empirical solutions (or M -estimators) cannot be improved (i.e, Chapter 15 in [38])). Instead, we
are restricted to a space where some moment equation holds. If M (6;-) is #-independent, we can

show that the corresponding estimator 0 w0+ defined in (2?) attains semi-parametric efficiency in
the projected space {IP : Ep[M (0*; &)] = 0} [23]] as follows:

Theorem 4 (Semiparametric efficiency of the optimal augmentation) Suppose Assumptions
and|l|hold and © = RP¢ the estimator with
H*=-TQ7!
is regular, asymptotically linear with influence function
Yu-(€) = IF(§) —TQ™'M(6%:€),
and thus ~
Vil —6%) = N(0, 8o —TQ7'TT).
Moreover, i+ equals the efficient influence function (EIF) of the semiparametric model that aug-

ments the baseline with the restriction E[M (0*; £)] = 0. Consequently, O+ attains the semiparamet-
ric efficiency bound
Yeof = X9 — Q7T

Proof of Theorem 4} First, it is easy to see the influence function O is
Y (§) = TF(§) + HM(6%;€).

Let X(H) := Var(yy) = Yo + HQH' + HI'" + TH'. This is a convex quadratic in H.
Differentiating tr>( H ) with respect to H and setting to zero yields the normal equations

2HQ+2'=0 = H*'=-TIQ!,
using €2 > 0. Substituting gives the minimized covariance

Y(H*) =% -TQ ",

In the semiparametric model that incorporates the valid restriction E[M (6*; £)] = 0, the nuisance
tangent space contains the span of M (6*; ). The efficient influence function is the L?(P*) projection

of any regular influence function onto the orthogonal complement of this space. The orthogonal
projection of I F' off the span of M is

IF(-) = Ugpan(an IF () = IF = TQ7'M(07:€) = Y-

Therefore 1)+ is the EIF. By semiparametric efficiency theory, any regular estimator has asymptotic
covariance at least Var(EIF), and equality holds if and only if its influence function equals the EIF.

Since 6~H* has IF 15+, it attains the bound £y — 'Q~'T'T. O
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Remark 1 (On constraints and singular ) If O is constrained but 0* lies in its interior, the pro-
Jjection Ilg is asymptotically inactive and the proof is unchanged. If Q) is singular, the same argument
goes through by restricting H to the column space of ) and replacing Q"' with the Moore—Penrose
pseudoinverse QF; the bound becomes Lo — TQIT'" on that subspace.

F Experiments

We validate how perturbed solutions in the standard linear regression and weighted empirical opti-
mization example dempnstrate the first-order performance improvement over the empirical solution.

F.1 Linear Regression

For ¢ = (X,Y), we consider the OLS loss £(0; &) = (0T X — Y')2, where X denotes the feature and
Y denotes the label. The true data generating process Y = (6*) T X + e with the noise ¢ may follow
different noise specifications (normal, Laplace, recentered exponential distribution).

We apply the moment equation M (0; &) = £(6;&) - Vl(0; &) for different losses £ to understand
whether the moment equation provides the first-order improvement over the empirical solution.

Table 1: Loss comparison in terms of whether the perturbed solution via the perturbation function
M (0; ) can achieve the first-order improvement (under a well-specified linear model).

Loss Types / Noise | Normal Laplace Exponential t-distribution

LAD Yes No Yes Yes
OLS No Yes No Yes

Above in Table 1} for the recentered exponential noise, the condition E[M (6*;¢)] = 0 no longer
holds under OLS loss. For OLS-Normal / LAD-Laplace, the condition E[M (6*; £)] = 0 holds but we

cannot compute M (0; £) by empirical calculation since we can only observe 6 and the non-orthogonal
condition does not hold.

We consider the OLS loss and take the corresponding empirical estimator to be foLs. Beyond the
perturbed estimator induced by M (0; &) = X (0T X — Y')?, we evaluate the following procedures to
assess whether the theory’s predicted improvements materialize in practice:

1. Moment perturbed: Output the best éﬁ M-

2. x*-DRO estimator. We search A € [0,0.2] on a grid with step size 0.002 and solve
x2- DRO problem. For negative values A € (—0.2,0), we use the symmetry identity
0\ = 200Ls — 6_» to obtain the estimate.

3. CVaR-DRO estimator. We search A € (0, 1) with step size 0.05 and solve the CVaR-DRO
problem. For A € (—1,0), we again use 0, = 20ors — 0_.

4. Fusion estimator. To provide an intuitive baseline for effect size, we consider a convex
combination of LAD and OLS with step size of A being 0.01:

0r = (1—A)fpap + Mors, A e0,1].

Table 2: Excess risks of solutions under OLS loss where € follows Laplace distribution

| Original Moment Perturbed | X2 CVaR Fusion
50 0.7151 0.4739 0.5177 (-0.066) 0.4840 (-0.38)  0.3979 (0.0)
100 | 0.2892 0.2211 0.2298 (-0.032) 0.1920 (-0.32) 0.1681 (0.12)
200 | 0.1525 0.1378 0.1388 (-0.018) 0.1110(-0.38) 0.0953 (0.11)
400 | 0.0848 0.0661 0.0676 (-0.034)  0.0572 (-0.3)  0.0434 (0.01)

Across Tables the brackets in the x?, CVaR, and Fusion estimators report the oracle-optimal
A selected from the grid search under expected performance. The empirical findings are consistent
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Table 3: Excess risks of solutions under OLS loss where ¢ follows ¢-distribution

| Original Moment Perturbed | X2 CVaR Fusion
50 0.6925 0.5207 0.5014 (-0.052)  0.6046 (-0.4)  0.5345 (0.33)
100 | 0.3530 0.2433 0.2447 (-0.032)  0.2561 (-0.26) 0.2494 (0.27)
200 | 0.1815 0.1314 0.1333 (-0.02)  0.1414 (-0.26) 0.1353 (0.33)
400 | 0.0851 0.0698 0.0732 (-0.006) 0.0711 (-0.32) 0.0684 (0.35)

Table 4: Excess risks of solutions under OLS loss where ¢ follows normal distribution

| Original Moment Perturbed | X2 CVaR Fusion
50 0.3726 0.4339 0.3720 (-0.002)  0.3576 (0.640) 0.3725 (1.0)
100 | 0.1262 0.1590 0.1262 (0.000)  0.1241 (0.840)  0.126 (1.0)
400 | 0.0492 0.0627 0.0490 (0.002) 0.0491 (0.900) 0.0492 (1.0)

with the conceptual summary in Table[I] and both sets of results highlight that exploiting structural
knowledge of the noise distribution can substantially improve efficiency.

F.2 Weighted (Contextual) Newsvendor

We focus on the following feature-based (univariate) newsvendor problem with

£(6;8) = cf — pmin{0, £}.
Above we set ¢ = 4, p = 10. We generate a 10-dimensional covariate (D,, = 10), which is uniformly
sampled in [0, 1]P+. And &|u £ 5 + Bu + sin |jul|s + € where € ~ N (0,1).

Recall the data-driven weighted empirical optimization solution in Definition [5} For each covariate w,
we obtain the empirical solution by:

0(u) € argmin Z Wy, (w)€(6;6).

0€© i€[n]
We focus on the performance improvement of two weighted empirical optimization procedure [19]:
1. k-NN estimator, wy, ; (1) = 1{y, isakNNofu} With kp = [ 2¢/n ]

2. Nadaraya-Watson kernel estimator, wni(u) = I([(](l;;(?u)_/ﬁj))/)h ;o with K(u) =
JjE n

1 jjufls<1) and hy, = 1.5p” D7z,

In this case, we set the moment equation as the knowledge of the conditional mean E[£|u] for each w.
And the conditional mean “noisy oracle” is extracted from either of the following:

M1: A noisy oracle estimator that outputs E[¢|u] + 1, where ) ~ N(0,25/n);

M2: Suppose we have {(u;,&;)}ic[m) Where the true conditional distribution shares the same
E[¢|u] but has other different quantile informations. m = 2n. We fit the dataset with a
randomforest regressor.

For each new covariate u, we proceed given the additional conditional mean oracle as follows:

1. Obtain the corresponding estimated influence function {I/I\T nu(Us &) Yicm), Where

TF ) — __c=p X _ _c . ()i
IF"7U(UZ7 51) - pf(0(u)) 1{u iskNN,£>0(u)} pf(O(u)) 1{u is KNN,£<60(u)}? where f( ) 18
the estimated density of P¢|,,;

2. Compute M (0;&;) = & — K[¢]2], Vi € [n] and solve the following optimization problem:

min & S TP u(us, ) + G ~ BEEIDIR, st 00+ o 5 wns(w) (&~ Blel=)) € ©

i€[n] i€[n]

23



3. Obtain the perturbed solution A(U) + Z Dien) Wnii(w)(& — E[¢]2]).

We evaluate the performance of each method 9(u)—the baseline estimator and the two perturbed

versions (M1, M2)—using the metric G(f(u)), with results reported in Table|5| Each entry represents
an average over N = 500 problem instances: the linear component B is fixed across all cases, while

the solution é(u) is computed for each model under a distinct v sampled uniformly from [0, 1]P«.

6(0(w) = 7 3 (Br., 1000 €] - in e, [16:6)]).

€[N
We find that incorporating perturbations via the corresponding moment equations (M1 or M2) leads

Table 5: Excess risk comparison of different solutions (averaged over 500 problem instances), where
M1 and M2 denote the perturbed solution where E[¢|z] is based on M1 and M2.

\ kNN \ Kernel
n | Original M1 M2 | Original Ml M2

100 4.48 2.56  4.09 4.45 278 4.33
200 4.32 230 3.94 4.33 270 4.13
400 3.93 207 3.84 4.30 2.68 3.90

to statistically significant performance gains: both the kNN and kernel estimators achieve lower
expected cost compared to the original baseline.
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