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Abstract

Recent proliferation of data-optimization integration has led to a range of meth-
ods that aim to improve the statistical performance of data-driven optimization
decisions. However, while many of these methods are motivated intuitively from
a robustness or regularization perspective, their resulting statistical benefits are
often less clear and, even if available, are argued in a case-by-case fashion. We
provide a systematic dissection of data-driven optimization formulations using
the view of “directionally perturbed” empirical optimization, which demonstrably
covers most of the existing formulations. On the negative side, we argue that
under mild smoothness conditions, any such formulations can result in at best
second-order improvements. On the positive side, we show that in the presence of
auxiliary information such as the availability of additional unsupervised data, we
can construct a principled methodology, by building connections to the concept of
Monte Carlo control variate, to achieve general first-order improvements in terms
of excess risk.

1 Introduction

We consider data-driven stochastic optimization problem of the form:

min
θ∈Θ

{Z(θ) := Eξ∼P∗ [ℓ(θ; ξ)]} , (1)

where ℓ(θ; ·) is a known cost function, Θ := {θ ∈ RDθ |Fj(θ) ≤ 0, j ∈ J} is the set of feasible
decisions, and ξ is a random perturbation distributed according to the distribution P∗. However, the
decision maker only has access to n iid samples Dn := {ξi}ni=1. The goal is to use the data Dn to
identify a decision with the lowest expected cost under the true distribution P∗. This problem setup
is widely adopted in practice from empirical risk minimization in machine learning [22], to general
stochastic optimization problems [32] with applications such as supply chain management [4] and
portfolio optimization [8].

Among all data-driven optimization methods, the most straightforward approach is to replace the
unknown P∗ with the empirical measure P̂n = 1

n

∑n
i=1 δξi in (1) and obtain an empirical solution

θ̂, i.e., solve θ̂ ∈ argminθ∈Θ
1
n

∑n
i=1 ℓ(θ; ξi). It is widely acknowledged that the empirical solution

performs poorly under limited samples [18]. To improve performance, various approaches have been
developed to obtain alternative solution θRM , which we refer to broadly as robust methods. These
include, in the optimization literature, regularized and distributionally robust optimization (DRO) [26]
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to tackle data uncertainty and, in the statistics/machine learning literature, over-identified generalized
method of moments (GMM) [21], shrinkage [17] and transfer learning [6] when we have related
data or information. While empirical studies often observe that these methods could outperform the
empirical solution in terms of excess risk, i.e., Z(θRM ) < Z(θ̂), a fundamental gap remains: When
should these methods outperform and by how much, and what determines the order of improvement
over the empirical solution?

Our Contributions. In this paper, we address these questions by systematically characterizing the
statistical performance of solutions generally perturbed from the empirical solution, which we argue
to encompasses essentially all of the robust methods known in the literature and beyond. We analyze
their impact on the excess risks:

R(θ) = Z(θ)− Z(θ∗), where θ∗ ∈ argmin
θ∈Θ

Z(θ). (2)

Throughout the main body of the paper, our comparison centers on the expected excess risk,
contrasting EDn

[R(θRM )] with EDn
[R(θ̂)]. Our key findings are: Robust methods yield first-order

improvements only when the auxiliary information they leverage (e.g., moment conditions) is correct
under P∗; otherwise, improvements are at best higher-order and insignificant compared with the
empirical solution. Building on this analysis, we propose a principled framework for utilizing the
auxiliary information and constructing perturbations that achieve the largest possible first-order
improvement, establishing a novel connection between robust methods and Monte Carlo control
variates. To the best of our knowledge, we are the first to provide definitive performance comparisons
between various robust methods and empirical solutions for general cost functions under different
data environments. Related literature is reviewed in Appendix A, with additional results and proofs
in Appendices B–E, and experimental results in Appendix F.

2 Preliminaries

In this section, we formalize the notion of improvement relative to the empirical solution.

Definition 1 (Orders of Improvements) For empirical solution θ̂, we say the excess risk rate of
R(θ̂) (in (2)) decays polynomially in n with exponent γ and constant C if EDn

[R(θ̂)] = C/nγ +
o(n−γ).

For a robust-method solution θRM with corresponding exponent γRM and constant CRM , we
classify its performance improvement as: (i) First-order improvement: γRM > γ or γRM = γ and
CRM < C; (ii) Second-order improvement: all other cases where EDn

[R(θRM )] < EDn
[R(θ)].

Under this definition, if only second-order improvement is achievable, then the relative gain satisfies
EDn [R(θ̂)−R(θRM )]

EDn [R(θ̂)]
→ 0 as n→ ∞; otherwise this ratio converges to a strictly positive limit.

Assumption 1 (Optimality Condition) θ∗ satisfies the KKT conditions for minθ∈Θ EP∗ℓ(θ; ξ). The
empirical solution θ̂ satisfies EP̂n

[ℓ(θ̂; ξ)] = minθ∈Θ EP̂n
[ℓ(θ; ξ)] + op

(
n−1

)
.

Assumption 2 (Local Quadratic Growth) Z(θ) and each constraint Fj(θ) in Θ are twice contin-
uously differentiable in a neighborhood of θ∗. The Lagrangian L(θ, α) = Z(θ) +

∑
j∈J αjFj(θ)

satisfies a strong second–order sufficient condition at (θ∗, α∗), where α∗ denotes the associated KKT
multiplier: There exists µ > 0 such that v⊤∇2

θθL(θ
∗, α∗) v ≥ µ∥v∥22 for all feasible directions v in

the tangent space at θ∗.

Assumptions 1- 2 are standard for smooth objectives: The first provides local quadratic curvature
for the augmented Lagrangian; the second ensures regularity of the population solution and that θ̂ is
attained up to negligible error. Under these, the empirical solution admits the asymptotic linearization
θ̂ − θ∗ = 1

n

∑n
i=1 IF (ξi) + op

(
n−1/2

)
with a mean-zero influence function IF (ξ) [20, 11].

3 Perturbed Solutions: Connections with Robust Methods and Statistical
Analysis

We consider the following perturbed solution to understand whether robust methods achieve the
first-order performance improvement:
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Definition 2 (“Directionally Perturbed” Empirical Solution) The perturbation of the empirical
solution is defined as:

θ̂λ,M = ΠΘ

(
θ̂ +

λ

n

n∑
i=1

M(θ̂; ξi)

)
. (3)

where ΠΘ is the projection operator to Θ. Here, λ ∈ R is an adjustment scale and M(θ; ξ) is a
perturbation function that is differentiable in θ.

The scaling λ in (3) is chosen for analysis. More general adjustments beyond the scale λ are treated
in Section 4. Many robust methods admit approximations of the form (3).

Theorem 1 (Unification of Robust Methods) For any λ > 0, the solutions θ̂λ of robust methods
admit the representation θ̂λ,M = ΠΘ

(
θ̂ + 1

n

∑n
i=1 H̃(λ; ξi)M̃(θ∗; ξi) + op

(
λ ∨ 1√

n

))
. In many

robust methods, H̃(λ; ξ) is constant in ξ.

The representation in Theorem 1 covers multiple streams of robust methods: (i) Optimization:
explicit regularization methods, Wasserstein DRO methods, (generalized) f -divergence (such as χ2-
divergence, Conditional Value-at-Risk (CVaR)); (ii) Econometrics: Generalized method of moment;
(iii) Statistical methods: shrinkage and transfer learning methods. Related small-λ expansions appear
in prior work [28, 15] for a subset of methods we consider, while Theorem 1 is stated for general λ,
including constant order and not necessarily shrinking to zero.

Example 1 (Auxiliary Information for DRO) Consider DRO problems with Θ = RDθ , i.e.,
θ̂λ ∈ argminθ maxP:d(P,P̂n)≤λ EP[ℓ(θ; ξ)]. Then the perturbation function is: (i) When d is χ2-

divergence [10], M̃(θ; ξ) ∝ ∇θℓ(θ; ξ)ℓ(θ; ξ); (ii) When d is a CVaR distance [30], M̃(θ; ξ) ∝
∇θℓ(θ; ξ)1ℓ(θ;ξ)>η∗(λ) when η∗(λ) is the (1− λ)-quantile of ℓ(θ; ξ) under ξ ∼ P∗.

We present the following result with respect to the statistical improvement of robust methods.

Theorem 2 (Orders of Performance Improvement) Suppose Assumptions 1 and 2 hold. Denote
Γ := CovP∗ [IF (ξ),M(θ∗; ξ)] ,Σ0 := EP∗ [IF (ξ)IF (ξ)⊤] and π(θ) := EP∗ [M(θ; ξ)]. Then (i)
If π(θ∗) = 0 and the non-orthogonality condition holds: Tr

[
(∇θπ(θ

∗)Σ0 + Γ)∇2
θθZ(θ

∗)
]
̸= 0,

then there exists a constant λ such that EDn
[R(θ̂) − R(θ̂λ)] = Θ(1/n) > 0; (ii) Otherwise,

maxλ EDn [R(θ̂)−R(θ̂λ)] = o(1/n).

Since EDn
[R(θ̂)] = Θ(1/n) under Assumption 2 [28], Theorem 2 implies that a constant λ yields

a first-order improvement in expected risk under the case (i), suggesting the need for nonlocal
adjustments to obtain substantial gains. Otherwise, at best a second-order improvement is achievable.
We also extend these comparisons to weighted empirical optimization solutions and comparisons
of distributional aspects beyond the mean in Appendix D, where first-order rates of the empirical
solution n−γ may be slower than n−1 yet the conclusions above still apply.

Connecting the perturbation form in Definition 2 with Theorem 1, many existing robust methods can-
not markedly outperform the empirical solution unless EP∗ [M̃(θ∗; ξ)] = 0 and the non-orthogonality
condition is met, together with an appropriate choice of λ. When M is θ-independent, that is
∇π(θ) = 0, the non-orthogonality condition reduces to EP∗ [M̃(θ; ξ)⊤IF (ξ)] ̸= 0 since ∇2

θθZ(θ
∗)

is positive semi-definite. That is, whenever the auxiliary moment carries signal different from IF (ξ),
one expects a nonnegligible improvement.

Corollary 1 (Linear Regression with Laplace Noise) If ℓ(θ; ξ) = (θ⊤X−Y )2 with ξ = (X,Y )⊤

and Y = θ⊤X + ϵ with symmetric Laplace noise ϵ, a CVaR regularizer with a negative scale
λ∗ ∈ (−1, 0) yields a first-order improvement over the empirical solution θ̂. The negative CVaR
regularizer is computable via θ̂λ = 2θ̂ − θ̂−λ when λ < 0.

4 Achieving First-order Improvement

Given the importance of the correct auxiliary information from robust methods, we now show how to
use some auxiliary information, such as partial moment knowledge or invariant representations, to
construct an optimal first-order perturbation of the empirical solution.
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When is first-order improvement possible? In general, if there is no M such that E[M(θ∗; ξ)] =
0, then any robust method induced by such moments yields at most a second-order improvement,
cf. Theorem 2. In contrast, if there exists M with E[M(θ∗; ξ)] = 0, we can choose an adjustment
matrix H (when H = λI , it reduces to (3)) so that the perturbed estimator attains the best first-order
improvement over θ̂:

θ̂H,M = ΠΘ

(
θ̂ +

H

n

n∑
i=1

M(θ̂; ξi)

)
. (4)

In many stochastic optimization problems, beyond Dn one may have distributional moment knowl-
edge with respect to ξ, i.e., M(θ; ξ) ≡ M(ξ), as in moment–based ambiguity sets in DRO [9]. In
general machine learning applications, there may be multiple sources of auxiliary information [3]
with one special example being semi-supervised learning [33].

Example 2 (Moment Invariance from Related Domains) Given large unlabeled or weakly la-
beled samples from K related domains, {(θi, ξi,j)}i∈[K];j∈[N ] with N ≫ n, there exists some
M so that an estimating equation EPi

[M(θi; ξ)] = 0 holds in domain i.

Our main procedure integrates moment information or related-domain side information to improve
the empirical solution for downstream decision making, as described below.

First-Order-Improving Perturbation. Let Mϕ be a candidate class for M(·) indexed by
ϕ. Motivated by a second–order expansion of the performance gap Z(θ̂H,M ) − Z(θ∗) ≈
1
2

(
θ̂H,M − θ∗

)⊤
∇2

θθZ(θ
∗)
(
θ̂H,M − θ∗

)
, we directly minimize the dominant quadratic term to

obtain the optimal θ̂H,M as in (4):

(Ĥ, M̂) ∈ argmin
H,M∈Mϕ(δ)

[
n∑

i=1

∥∥ÎF (ξi) +H M
(
θ̂; ξi

)∥∥2
Î(θ̂)

]
s.t. θ̂ +

H

n

n∑
i=1

M
(
θ̂; ξi

)
∈ Θ, (5)

where Î(θ̂) = ∇θθEP̂n
[ℓ(θ̂; ξ)] that approximates ∇2

θθZ(θ
∗) and ÎF (ξ) estimates the influence func-

tion IF (ξ). For example, when Θ = RDθ [25], IF (ξ) = −[∇2
θθZ(θ

∗)]−1∇θℓ(θ
∗; ξ) and ÎF (ξ) =

−[Î(θ̂)]−1∇θℓ(θ̂; ξ). Mϕ(δ) is set to contain at least one M with EP∗ [M(θ∗; ξ)] = 0 with proba-

bility at least 1 − δ. For example, M(δ) =
{
M ∈ Mϕ : maxi∈[K]

∥∥∥∑N
j=1M (θi; ξi,j) /N

∥∥∥2
2
≤

ϵK (Mϕ, δ)
}

with ϵK (Mϕ, δ) = Comp (Mϕ) log(K/δ)/N , where Comp(Mϕ) captures the com-
plexity of the class and the bound absorbs distributional constants for M [37, 5].

Theorem 3 (Performance Guarantee for the Perturbed Solution) Suppose Assumptions 1, 2
and 5 hold. and that supH∈H ∥H∥ < ∞. Let (H∗,M∗) be an oracle solution to (H∗,M∗) ∈
argminH,M∈Mϕ

EP∗
[
∥IF (ξ) +HM(θ∗; ξ)∥2∇2

θθZ(θ∗)

]
, Let (Ĥ, M̂) be any empirical solution to

(5) with M̂ ∈ M(δ) for δ = Θ(1/n) in Example 2. Then R(θ̂
Ĥ,M̂

) = R(θ̂H∗,M∗) + op(1/n).

The performance of the data-driven perturbation θ̂
Ĥ,M̂

closely matches the oracle performance,
indicating that it achieves the maximum possible first-order improvement. In practice, optimizing (5)
is typically done via alternating minimization over H and M .

Connection to Control Variates. Finally, we connect our principal first-order improvements with
control variates. We recenter the influence-function representation with its mean by viewing the
target as the mean of the influence function, θ∗ = E[IF (ξ)], so the empirical estimator can be
regarded as a Monte Carlo average θ̂ ≈ 1

n

∑n
i=1 IF (ξi), with each ξi producing one realization

IF (ξi). The perturbed solution that achieves first-order improvement is a calibrated control-variate
correction, i.e., θ̂H,M ≈ 1

n

∑n
i=1(IF (ξi) + HM(θ∗; ξi)), where the auxiliary moment M(θ∗; ξ)

has zero expectation and the calibration matrix H is chosen to exploit its covariance with IF (ξ) to
reduce variance – exactly the classical control-variate principle in Monte Carlo simulation [31, 29].
Thus, with limited samples, the calibrated estimator lowers variance (and hence risk) relative to
the empirical mean while preserving unbiasedness to the first order, yielding the first-order gains
established above.
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A Related Literature

Recent work in diagnosing statistical limits of data-driven optimization have been examined the
performance of existing data-driven solutions, or comparing robust methods with the empirical
solution. Van Parys et al. [36], Sutter et al. [34] showed that some variants of DRO achieve the
optimal Pareto frontier between the excess risk and disappointment in the cost prediction. However,
if we are only interested in understanding the excess risk, Lam [28] proves an impossibility result:
if one cares only about prescriptive performance guarantees, the empirical solution stochastically
dominates a broad class of data-driven methods asymptotically. Gotoh et al. [15, 16] analyze the
expected cost improvement of f-divergence DRO and optimistic variants, quantifying their trade-offs
with the empirical solution. Other works design estimators with provable improvements. Feng
and Shanthikumar [13] propose Operational Data Analytics (ODA), which assumes the underlying
parametric distribution class and integrates into the downstream objective [13], while Albert et al.
[1] develop a shrinkage estimator that achieves second-order improvement in predict-then-optimize
tasks.

B Formal Details of Robust Methods under Theorem 1

In the following, we present the detailed moment constructions for each robust method in Ap-
pendix B.1 and proof sketches establishing their unification in Appendix B.2.

B.1 Formulations and Equivalence of Robust Methods

B.1.1 Regularization / Distributionally Robust Approaches

Proposition 1 (Explicit Regularizer) The explicit regularized solution θ̂λ computed by solving:

θ̂λ ∈ argmin
θ∈Θ

EP̂n
[ℓ(θ; ξ)] + λEP̂n

[M(θ; ξ)] for some λ > 0

satisfies the expansion in Theorem 1 for some H̃ and M̃ when λ = o(1) or θ∗λ = θ∗.

This formulation covers data-independent regularizers of the form M(θ; ξ) = M(θ). Beyond
classical regularization terms studied in statistics, we allow DRO formulations based on Wasserstein
distance and f -divergences motivated by the close connections between explicit regularization and
distributionally robust optimization (DRO) [27, 14].

Definition 3 (Wasserstein Distance) The p-Wasserstein distance (p ∈ N) between two distributions
P,Q ∈ P(Ξ) with respect to the l1-norm (i.e., ∥ · ∥1) is defined as:

Wp(P,Q) := inf
ξ∈Ξ(P,Q)

(
E(Y1,Y2)∼ξ

[
∥Y1 − Y2∥p1

]) 1
p

, (6)

where ξ is a joint distribution of (ξ, ζ ∈ Ξ) from Ξ(P,Q) and Ξ(P,Q) denote the set of all joint
distributions with marginal distributions P and Q.

Example 3 (p-Wasserstein-DRO Regularizer) Given p-Wasserstein distance Wp(P,Q) defined in
Definition 3, the p-Wasserstein DRO solution computed by solving:

θ̂λ ∈ argmin
θ∈Θ

sup
Q:Wp(Q,P̂n)≤λ

EQ[ℓ(θ; ξ)].

For p ≥ 1, applying Theorem 8.7 in [26], we have:

sup
Q:Wp(Q,P̂n)≤λ

EQ[ℓ(θ; ξ)] = EP̂n
[ℓ(θ; ξ)] + λEP̂n

[∥∇ℓ(θ; ξ)∥q∞]
1
q + o(λ).

If we ignore the higher-order term o(λ), the p-Wasserstein-DRO regularizer becomes one special
case of the standard implicit regularization problem.

We also allow other ambiguity sets such as f -divergence DROs.
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Definition 4 (f -divergence) Let P and Q be two distributions and P is absolutely continuous w.r.t.
Q. For a convex function f : [0,∞) → (−∞,∞] such that f(x) is finite ∀x > 0, f(1) = 0, the
f -divergence of P from Q is defined as:

df (P,Q) =

∫
f

(
dP
dQ

)
dQ = EQ

[
f

(
dP
dQ

)]
.

We obtain the χ2-divergence by setting f(x) = 1
2 (x− 1)2.

Proposition 2 (χ2-divergence-DRO Regularizer) Given the χ2-divergence in Definition 4, the χ2-
divergence DRO solution θ̂λ computed by solving:

min
θ∈Θ

max
Q:χ2(Q,P̂n)≤λ

EQ[ℓ(θ; ξ)]

satisfies the expansion in Theorem 1 for some H̃ and M̃ when λ = o(1) or θ∗λ = θ∗.

Above, as long as λ is not large enough [27, 10], χ2-divergence DRO solution allows the exact
equivalence with the variance regularization:

max
χ2(Q,P̂n)≤λ

EQ[ℓ(θ; ξ)] = EP̂n
[ℓ(θ; ξ)] +

√
λVarP̂n

[ℓ(θ; ξ)]. (7)

We also allow some f(·) that is generalized beyond the standard form in Definition 4.

Proposition 3 (CVaR-DRO Regularizer) Consider the Conditional Value-at-Risk (CVaR) objective
with the parameter λ ∈ [0, 1)

CV aRλ(θ;P) = min
η∈R

{
1

1− λ
EP[(ℓ(θ; ξ)− η)+] + η

}
.

the CVaR solution θ̂λ computed by solving θ̂λ ∈ argminθ∈Θ CV aRλ(θ; P̂n) satisfies the expansion
in Theorem 1 for some H̃ and M̃ when λ = o(1) or θ∗λ = θ∗.

The two augmented asymptotic normalities follow tools from Theorem 5.31 in [35].

Beyond distributionally robust formulations, Jiang and Xie [24] propose a distributionally favorable
framework, which replaces the supremum over P by an infimum, while keeping the ambiguity set
fixed. This can also be incorporated into Theorem 1. For example, in the χ2-divergence case,

min
θ∈Θ

min
χ2(Q,P̂n)≤λ

EQ[ℓ(θ; ξ)],

which simply changes the right-hand side of (7) from +
√
λVarP̂n

[ℓ(θ; ξ)] to −
√
λVarP̂n

[ℓ(θ; ξ)].

Comparison with existing work on local perturbation. Our expansion goes beyond the local
analyses in Anderson and Philpott [2], Gotoh et al. [16], where the regularization term or ambiguity
set shrinks to zero as n→ ∞. For instance, in unconstrained optimization, the general f -divergence
penalization studied by Gotoh et al. [15] takes the form

θ̂λ = θ̂ +
λ

f ′′(1)
· EPI(θ̂)

−1CovP̂n

(
h(θ̂; ξ),∇h(θ̂; ξ)

)
+ o(λ),

which is a special case of our problem instance in Theorem 1.

B.1.2 Econometrics Approach

Method of moments is a classical approach in econometrics for parameter estimation based on
moment equations [21]. We show that the over-identified generalized method of moments (GMM)
can be reformulated within the framework of Theorem 1.
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Proposition 4 (GMM) Let C ∈ R2Dθ×2Dθ be a fixed weighting matrix and define

ĝ(θ) =

[
1
n

∑n
i=1 ∇θℓ(θ; ξi)

1
n

∑n
i=1M(θ; ξi)

]
∈ R2Dθ .

The GMM estimator θ̂GMM is obtained by solving

min
θ

ĝ(θ)⊤Cĝ(θ).

Then θ̂GMM satisfies the expansion in Theorem 1 for suitable choices of H̃ and M̃ .

Expressing the solution in the unified perturbation form of (3) and Theorem 1 offers two main
advantages over the standard GMM formulation. First, it facilitates analysis of constrained or
nonsmooth problems, where ∇ℓ may arise from noncontinuous objectives. Second, the unified
view is more flexible: it naturally handles moment conditions that do not depend on θ, provides
robustness to misspecification, and enables fast adaptation in streaming-data settings without repeated
optimization given the empirical solution θ̂.

B.1.3 Statistical Approaches

Theorem 1 also encompasses several classical statistical estimators used in data integration.

Proposition 5 (Shrinkage Estimator) Given the empirical solution θ̂ with H(λ) being a fixed func-
tion of λ, a shrinkage estimator of the form

θ̂λ =
(
I + H(λ)

∥θ̂∥2
2

)
θ̂,

sastifies the expansion of Theorem 1 for some suitable H̃ and M̃ .

This estimator is directly motivated by the James–Stein shrinkage rule and has also been employed in
the general stochastic optimization settings [17].

Proposition 6 (Transfer Learning Estimator) Let θ∗ denote a parameter estimated from a source
distribution. The transfer-learning estimator

θ̂λ ∈ argmin
θ∈Θ

1

n

n∑
i=1

ℓ(θ; ξi) + λ∥θ − θ∗∥22

satisfies the expansion of Theorem 1 for suitable H̃ and M̃ .

This formulation represents a simple instance of the broader transfer-learning literature [6] and can
also be interpreted as an implicit regularization, corresponding to Proposition 1 with M(θ; ξ) =
∥θ − θ∗∥22.

B.2 Proof of Theorem 1

Across all robust methods, we focus on the case where Θ is unconstrained. However, for general
constrained problems, a similar proof technique applies for the expansion via constructing the
Lagrangian multiplier as well. We first denote I(θ) = ∇θθEP∗ [ℓ(θ∗; ξ)] as the Hessian under the
optimal θ∗.

B.2.1 Explicit or Variance Regularization.

We consider two regimes: (i) λ = o(1); and (ii) θ∗λ = θ∗ for explicit regularization in Proposition 1
and variance regularization in Proposition 2.

For the explicit regularizer of Proposition 1, we have:

M̃(θ∗; ξ) := ∇θM(θ∗; ξ) ∈ RDθ , H̃(λ) := −λI(θ∗)−1 ∈ RDθ×Dθ .
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If M(θ; ξ) ≡ M(θ) is data independent, then M̃(θ∗; ξ) ≡ ∇θM(θ∗) is constant, so the sum gives
the standard penalty shift −λI(θ∗)−1∇θM(θ∗).

Write Ẑ (θ) := EP̂n
ℓ (θ; ξ) and consider

θ̂λ ∈ argmin
θ∈Θ

{
Ẑ (θ) + λEP̂n

M (θ; ξ)
}
, θ̂ ∈ argmin

θ∈Θ
Ẑ (θ) .

The first-order condition at θ̂λ is

∇θẐ
(
θ̂λ

)
+ λ,EP̂n

∇θM
(
θ̂λ; ξ

)
= 0.

Let ∆ := θ̂λ − θ̂. Taylor expand both gradients at θ̂:

∇θẐ
(
θ̂λ

)
= ∇θẐ

(
θ̂
)

︸ ︷︷ ︸
=0

+∇2
θẐ
(
θ̂
)
∆+R1,

EP̂n
∇θM

(
θ̂λ; ξ

)
= EP̂n

∇θM
(
θ̂; ξ
)
+ EP̂n

∇2
θM

(
θ̄; ξ
)
∆+R2,

where θ̄ lies on the segment between θ̂ and θ̂λ, and R1, R2 collect higher-order terms. Plugging into
the FOC and regrouping,[

∇2
θẐ
(
θ̂
)
+ λEP̂n

∇2
θM

(
θ̄; ξ
)]
∆ = −λEP̂n

∇θM
(
θ̂; ξ
)
+ R̃,

with R̃ := −(R1 + λR2). Solving for ∆ and keeping only the leading term,

∆ = −
(
∇2

θẐ
(
θ̂
))−1

λEP̂n
∇θM

(
θ̂; ξ
)
+ op

(
λ ∨ n−1/2

)
.

Now replace the sample quantities by their population counterparts at θ∗, we have:

∇2
θẐ
(
θ̂
)
= I (θ∗) + op(1), EP̂n

∇θM
(
θ̂; ξ
)
=

1

n

n∑
i=1

∇θM (θ∗; ξi) + op(1).

Therefore,

θ̂λ − θ̂ =
1

n

n∑
i=1

(
− λ I (θ∗)

−1
)

︸ ︷︷ ︸
=: H̃(λ)

∇θM (θ∗; ξi)︸ ︷︷ ︸
=: M̃(θ∗;ξi)

+op

(
λ ∨ n−1/2

)
.

For the variance regularizer of Proposition 2, under (7) holds, following the same result given FOC
above, we show:

M(θ∗; ξ) =
(
ℓ(θ∗; ξ)− EP∗ [ℓ(θ∗; ξ)]

)
∇θℓ(θ

∗; ξ) ∈ RDθ ,

H̃(λ) = −I(θ∗)−1

√
λ√

VarP∗ [ℓ(θ∗; ξ)]
∈ RDθ×Dθ .

B.2.2 CVaR

Let the unregularized empirical minimizer θ̂ satisfy the usual linearization

θ̂ − θ∗ = − 1

n

n∑
i=1

I(θ∗)−1 ∇θℓ(θ
∗; ξi) + op(n

−1/2).

Consider the CVaR program at level λ ∈ (0, 1):

min
θ,η

η +
1

1− λ
E
[
(ℓ(θ; ξ)− η)+

]
.

Let (θ∗λ, η
∗
λ) be the population solution, where η∗λ = VaRλ(ℓ(θ

∗
λ; ξ)). Define the estimating map

ψ(θ, η; ξ) :=

[
1

1−λ 1{ℓ(θ;ξ)>η} ∇θℓ(θ; ξ)

1− 1
1−λ 1{ℓ(θ;ξ)>η}

]
, E[ψ(θ∗λ, η∗λ; ξ)] = 0.
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Let Jλ := ∇(θ,η)E[ψ(θ∗λ, η∗λ; ξ)] and write the influence function for (θ, η) as

IF
(θ,η)
λ (ξ) = −J−1

λ ψ(θ∗λ, η
∗
λ; ξ).

Extracting the θ-block gives

IF
(θ)
λ (ξ) = −A(λ)−1 1

1− λ
1{ℓ(θ∗

λ;ξ)>η∗
λ} ∇θℓ(θ

∗
λ; ξ),

where
A(λ) := ∇θ E

[ 1

1− λ
1{ℓ(θ;ξ)>η∗

λ} ∇θℓ(θ; ξ)
]∣∣∣

θ=θ∗
λ

.

By standard M-estimation algebra,

θ̂λ − θ∗λ = − 1

n

n∑
i=1

IF
(θ)
λ (ξi) + op(n

−1/2).

Under θ∗λ = θ∗, this yields

θ̂λ − θ∗ =
1

n

n∑
i=1

[
−A(λ)−1 1

1− λ
1{ℓ(θ∗;ξi)>η∗

λ} + I(θ∗)−1
]

︸ ︷︷ ︸
=: H̃(λ)

[
∇θℓ(θ

∗; ξi)
]

︸ ︷︷ ︸
=: M̃(θ∗;ξi)

+ op(n
−1/2).

B.2.3 GMM

First we denote:

g1(θ; ξ) := ∇θℓ(θ; ξ) ∈ RDθ , g2(θ; ξ) :=M(θ; ξ) ∈ RDθ , g(θ; ξ) :=

[
g1(θ; ξ)
g2(θ; ξ)

]
∈ R2Dθ .

Let

ĝ(θ) :=
1

n

n∑
i=1

g(θ; ξi), ĝj(θ) :=
1

n

n∑
i=1

gj(θ; ξi) (j = 1, 2) ,

and denote C by its diagonal component:

C =

[
C11 C12

C21 C22

]
, Cjk ∈ RDθ×Dθ .

The empirical solution θ̂ satisfies ĝ1(θ̂) = 0, and write the Jacobians at θ̂ as

G1 := ∇θĝ1(θ̂) ∈ RDθ×Dθ , G2 := ∇θĝ2(θ̂) ∈ RDθ×Dθ , D̂ :=

[
G1

G2

]
∈ R2Dθ×Dθ .

We consider the first-order expansion around θ̂. That is, ∇θQ̂
(
θ̂GMM

)
= 0, i.e.,

0 = 2D̂
(
θ̃
)⊤

Cĝ
(
θ̂GMM

)
,

for some θ̃ between θ̂ and θ̂GMM . Linearizing ĝ at θ̂ and using ĝ1(θ̂) = 0,

0 ≈ 2
{
D̂⊤C

[
ĝ(θ̂) + D̂(θ̂GMM − θ̂)

]}
= 2
{

D̂⊤Cĝ(θ̂)︸ ︷︷ ︸
depends only on ĝ2(θ̂)

+ D̂⊤CD̂︸ ︷︷ ︸
curvature at θ̂

(θ̂GMM − θ̂)
}
.

Compute the two blocks explicitly:

D̂⊤Cĝ(θ̂) = G⊤
1

(
C11ĝ1(θ̂) + C12ĝ2(θ̂)

)
+G⊤

2

(
C21ĝ1(θ̂) + C22ĝ2(θ̂)

)
=
(
G⊤

1 C12 +G⊤
2 C22

)︸ ︷︷ ︸
=:Bn

ĝ2(θ̂),

D̂⊤CD̂ = G⊤
1 C11G1 +G⊤

1 C12G2 +G⊤
2 C21G1 +G⊤

2 C22G2 =: Hn.

11



Assuming Hn is nonsingular, we obtain

θ̂GMM − θ̂ = −H−1
n Bnĝ2(θ̂) + op

(
n−1/2

)
.

We use the linear representation in sample averages. Since ĝ2(θ̂) = 1
n

∑n
i=1M

(
θ̂; ξi

)
, we can write

θ̂GMM − θ̂ =
1

n

n∑
i=1

(
−H−1

n Bn

)︸ ︷︷ ︸
=:H⋆

n

M
(
θ̂; ξi

)
+ op

(
n−1/2

)
.

Finally, under LLN, we have: G1
p−→ A := E [∇θg1(θ

∗; ξ)], G2
p−→ B := E[∇θg2 (θ

∗; ξ)], and
H⋆

n
p−→ H⋆ with

H⋆ = −
(
A⊤C11A+A⊤C12B +B⊤C21A+B⊤C22B

)−1 (
A⊤C12 +B⊤C22

)
.

Hence the asymptotic linear form is

θ̂GMM − θ̂ =
1

n

n∑
i=1

H⋆M
(
θ̂; ξi

)
+ op

(
n−1/2

)
The last equality follows from the fact that EP∗ [M(θ; ξ)] = 0. Equivalently, we obtain the perturbed
formulation by defining H̃(λ; ξ) = H∗ and M̃(θ∗; ξ) =M(θ; ξ).

B.2.4 Shrinkage

Compared with

θ̂ = θ∗ +
1

n

n∑
i=1

IF (ξi) + op

(
1√
n

)
,

we have:

∥θ̂∥22 = ∥θ∗∥22 + 2θ∗⊤

(
1

n

n∑
i=1

IF (ξi)

)
+ op

(
1√
n

)
,

1

∥θ̂∥22
=

1

∥θ∗∥22
−

2θ∗⊤
(
1
n

∑n
i=1 IF (ξi)

)
∥θ∗∥42

+ op

(
1√
n

)
.

Therefore, the shrinkage estimator

θ̂λ =

(
I +

H(λ)

∥θ̂∥22

)
θ̂

admits the expansion

θ̂λ = θ̂ +
H(λ)

∥θ∗∥22
θ∗

+

(
H(λ)

∥θ∗∥22
− 2H(λ)θ∗θ∗⊤

∥θ∗∥42

)(
1

n

n∑
i=1

IF (ξi)

)
+ op

(
λ ∨ 1√

n

)
.

Equivalently, we obtain the perturbed formulation by defining

M̃(θ∗; ξi) := θ∗ + IF (ξi)−
2

∥θ∗∥22
θ∗θ∗⊤IF (ξi), H̃(λ; ξ) :=

H(λ)

∥θ∗∥22
.
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C Proof of Theorem 2

Before going to the proof of Theorem 2, we first describe the following two lemmas:

Lemma 1 (Smoothness) sup∥θ−θ∗∥≤rn

∥∥∥M̄n(θ)−M̄n(θ
∗)−∇θM̄n(θ

∗) (θ − θ∗)
∥∥∥
2
= op

(
n−1/2

)
for some rn ↓ 0 with P

(
∥θ̂ − θ∗∥ ≤ rn

)
→ 1.

Proof of Lemma 1. Apply Taylor’s theorem with integral remainder to each summand M(θ; ξi)
between θ∗ and θ:

M(θ; ξi)−M(θ∗; ξi)−∇θM(θ∗; ξi)(θ−θ∗) =
∫ 1

0

(1−t) (θ−θ∗)⊤∇2
θθM

(
θ∗+t(θ−θ∗); ξi

)
(θ−θ∗) dt.

Taking norms, sup over ∥θ − θ∗∥ ≤ rn, averaging over i, and using the envelope bound yields the
displayed inequality with K̄n. By the LLN, K̄n

p→ E[K(ξ)] < ∞, hence the remainder is Op(r
2
n)

uniformly on the ball. Choosing α ∈ (1/4, 1/2) ensures rn ↓ 0, r2n = o(n−1/2), and n1/2rn → ∞,
so a

√
n–consistent θ̂ lies in the ball with probability tending to one. □

Lemma 2 (Asymptotic Normality of Perturbed Solution) If
√
n(θ̂ − θ∗) ⇒ Σ(θ∗; 0). Consider

θ̂λ = θ̂ + λM̄n(θ̂). Then: √
n(θ̂λ − θ∗λ) ⇒ N

(
0,Σ(θ∗;λ)

)
,

where

Σ(θ∗;λ) = (Id + λ∇θπ(θ
∗))Σ(θ∗; 0)(Id + λ∇θπ(θ

∗))⊤ + λ2ΩM +2λSym
(
(Id + λ∇θπ(θ

∗))Γ
)
,

with Sym(A) = 1
2 (A + A⊤), θ∗λ = θ∗ + λEP∗ [M(θ∗; ξ)], ΩM := VarP∗ [M(θ∗; ξ)] and Γ :=

CovP∗ [IF (ξ),M(θ∗; ξ)],

For the value of Σ(θ∗; 0), when Θ is unconstrained, following the standard condition in the asymptotic
of stochastic optimization (i.e., Chapter 5 of [35]), we have:

Σ(θ∗; 0) = (I(θ∗))−1J(θ∗)(I(θ∗))−1,

where J(θ∗) = EP∗ [∇θℓ(θ
∗; ξ)∇θℓ(θ

∗; ξ)⊤].

For the general constrained Θ = {θ|Fj(θ) ≤ 0, j ∈ J}, from [11], we have:

Σ(θ∗; 0) = PF (I(θ
∗))−1PFJ(θ

∗)PF (I(θ
∗))−1PF ,

where PF = I − C⊤(CC⊤)†C, C = (∇θFj(θ))j∈J∗ , and J∗ = {j ∈ J : Fj(θ
∗) = 0}.

Proof of Lemma 2. Define

θ̂λ := θ̂ + λM̄n(θ̂), θ∗λ := θ∗ + λπ(θ∗).

Let Gn(θ) := θ + λM̄n(θ) and G(θ) := θ + λπ(θ). Then
√
n
(
θ̂λ − θ∗λ

)
=

√
n
(
Gn(θ̂)−G(θ∗)

)
=

√
n
(
Gn(θ̂)−Gn(θ

∗)
)

︸ ︷︷ ︸
(A)

+
√
n (Gn(θ

∗)−G(θ∗))︸ ︷︷ ︸
(B)

.

For the part (A), following the mean-value expansion and Lemma 1,

Gn(θ̂)−Gn(θ
∗) =

(
Id + λ∇θM̄n(θ

∗)
) (
θ̂ − θ∗

)
+ rn, with ∥rn∥2 = op

(
n−1/2

)
.

Multiplying by
√
n, we have:

√
n
(
Gn(θ̂)−Gn(θ

∗)
)
=
(
Id + λ∇θM̄n(θ

∗)
)√

n
(
θ̂ − θ∗

)
+ op(1).

For the part (B), by definition,
√
n (Gn(θ

∗)−G(θ∗)) = λ
√
n
(
M̄n(θ

∗)− π(θ∗)
)
.
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Combining (A)˘(B) yields
√
n
(
θ̂λ − θ∗λ

)
=
(
Id + λ∇θM̄n(θ

∗)
)√

n
(
θ̂ − θ∗

)
+ λ

√
n
(
M̄n(θ

∗)− π(θ∗)
)
+ op(1).

By Slutsky’s theorem and Lemma 1, ∇θM̄n(θ
∗) = 1

n

∑n
i=1 ∇θM(θ∗; ξi)

p−→ ∇θπ(θ
∗) ∈ Rd×d.

1√
n

n∑
i=1

[
IF (ξi)

M(θ∗; ξi)− π(θ∗)

]
⇒ N

(
0,

[
Σ(θ∗; 0) Γ

Γ⊤ ΩM

])
.

Applying the continuous mapping theorem gives the Gaussian limit
√
n(θ̂λ − θ∗λ) ⇒ N

(
0,Σ(θ∗;λ)

)
,

where Σ(θ∗;λ) = (Id + λ∇θπ(θ
∗))Σ(θ∗; 0)(Id + λ∇θπ(θ

∗))⊤ + λ2ΩM + 2λSym
(
(Id +

λ∇θπ(θ
∗))Γ

)
. □

Then we move to the proof of Theorem 2.

Proof of Theorem 2. Denote π(θ) = EP∗ [M(θ; ξ)] and Z(θ) = EP∗ [ℓ(θ; ξ)]. Besides,

I(θ) = ∇2
θθZ(θ), J(θ) = EP∗ [∇θℓ(θ; ξ)∇θℓ(θ; ξ)

⊤].

We first want to obtain the exact upper and lower bound relationship between EDn
[Z(θ̂λ)] and

EDn [Z(θ̂)].

For general θ̂λ = θ̂ + λ
n

∑
i∈[n]M(θ̂; ξi) = θ̂ + λM̄n(θ̂), from Lemma 2, we have:

√
n(θ̂λ − θ∗λ) ⇒ N

(
0,Σ(θ∗;λ)

)
,

where Σ(θ∗;λ) = (Id + λ∇θπ(θ
∗))Σ(θ∗; 0)(Id + λ∇θπ(θ

∗))⊤ + λ2ΩM + 2λSym
(
(Id +

λ∇θπ(θ
∗))Γ

)
with Sym(A) = 1

2 (A+A⊤). Letting λ = 0 in Lemma 2, we have:
√
n(θ̂ − θ∗) ⇒ N(0,Σ(θ∗; 0)). (8)

Taken the asymptotic normality of θ̂λ and θ̂ over Dn, we have:

E[Z(θ̂λ)] = Z(θ∗λ) +
Tr[Σ(θ∗;λ)I(θ∗λ)]

2n
+ o

(
1

n

)
, (9)

E[Z(θ̂)] = Z(θ∗) +
Tr[Σ(θ∗; 0)I(θ∗)]

2n
+ o

(
1

n

)
. (10)

Then we compare Z(θ∗λ) and Z(θ∗).

When the decision space is unconstrained such that Θ = RDθ , since Z(·) is strongly convex from
Assumption 2 (with θ1 = θ∗λ, θ2 = θ∗), we have:

C1λ
2∥π(θ∗)∥22 ≤ Z(θ∗λ)− Z(θ∗)−∇θZ(θ

∗)⊤︸ ︷︷ ︸
=0

(θ∗λ − θ∗) ≤ C2λ
2∥π(θ∗)∥22. (11)

Denote ρ(λ) = Tr[Σ(θ∗;λ)I(θ∗λ)− Σ(θ∗; 0)I(θ∗)]. Since |λ| <∞, then ρ(λ) is finite. Combining
all the equalities and inequalities above, we have:

E[Z(θ̂λ)] ≥ E[Z(θ̂)] +
ρ(λ)

2n
+ C1λ

2∥π(θ∗)∥22 + o

(
1

n

)
. (12)

E[Z(θ̂λ)] ≤ E[Z(θ̂)] +
ρ(λ)

2n
+ C2λ

2∥π(θ∗)∥22 + o

(
1

n

)
. (13)
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For problems under a general constrained decision space, Equations (9) and (10) still hold. And
we need to show that the Equation (12) hold. Taken θ1 = θ∗λ, θ2 = θ∗ and Lagrangian multipliers
{α∗

j}j∈B from Assumption 2, for the left side, we have:

C1λ
2∥π(θ∗)∥22 ≤ Z(θ∗λ) +

∑
j∈J

α∗
jFj(θ

∗
λ)− Z(θ∗)−

∑
j∈J

αjFj(θ
∗)− (∇θZ(θ

∗) +
∑
j∈J

αj∇θFj(θ
∗))⊤(θ∗λ − θ∗)

= Z(θ∗λ) +
∑
j∈J

α∗
jFj(θ

∗
λ)− Z(θ∗)

≤ Z(θ∗λ)− Z(θ∗),

where the first equality is due to the KKT condition that ∇θZ(θ
∗) +

∑
j∈J α

∗
j∇θFj(θ

∗) = 0 and∑
j∈J α

∗
jFj(θ

∗) = 0 from Assumption 1; and the second equality follows from Fj(θ) ≤ 0 for each
j ∈ J at θ∗λ with the non-negative Lagrangian multiplier α∗

j ≥ 0 for each j ∈ J .

Then giving (12) (and (13)), we consider the following two cases:

1. π(θ∗) ̸= 0. This is equivalent to saying θ∗λ ̸= θ∗. We consider the case of λ = o(1) and
λ = Θ(1):
First, if λ = Θ(1), then from (12), we have: E[Z(θ̂λ)] ≥ E[Z(θ̂)] + C1λ

2∥π(θ∗)∥22 +

Θ(1/n) > E[Z(θ̂)]. In this case, θ̂λ does not provide any expected improvement to θ̂,
Then, if λ = o(1), then we expand ρ(λ). Recall the formula of ρ(λ), we immediately
observe that ρ(0) = 0. Therefore, we have:

ρ(λ) = ρ′(0)λ+ o(λ)

Z(θ∗λ) = Z(θ∗) +
λ2

2
π(θ∗)⊤

I(θ∗) + ∑
j∈B∗

αj∇2
θθFj(θ

∗)

π(θ∗) + o(λ2).

where the second equality directly follows from the second-order Taylor expansion. More
specifically, ρ′(0) is calculated as:

ρ′(0) = Tr[Σ(θ∗; 0) · I ′(θ∗)] + Tr[Σ′(θ∗; 0) · I(θ∗)]
= π(θ∗)⊤∇θTr[Σ(θ∗; 0)I(θ∗)]|θ=θ∗ + 2Tr(Σ(θ∗; 0)∇θπ(θ

∗)I(θ∗)).

This way, we can change the inequalities of (12) and (13) as the following exact expansion:

E[Z(θ̂λ)] = E[Z(θ̂)] +
ρ′(0)λ

n
+
λ2

2
π(θ∗)⊤I(θ∗)π(θ∗) + o(λ2) + o

(
1

n

)
.

The relative improvement function is:

G(λ) =
ρ′(0)λ

n
+ λ2

1

2
π(θ∗)⊤

I(θ∗) + ∑
j∈B∗

αj∇2
θθFj(θ

∗)

π(θ∗) + o(1)

 .

This is is a quadratic function with respect to λ. And the optimal

λ∗ = − ρ′(0)

2nπ⊤
(
I(θ∗) +

∑
j∈B∗ αj∇2

θθFj(θ∗)
)
π

= O

(
1

n

)
and the corresponding G(λ∗) = O

(
1
n2

)
. Any other values λ ∈ (−∞,∞) leads to a

G(λ) < G(λ∗).
2. π(θ∗) = 0. This implies that θ∗λ = θ∗. Comparing (12) and (13), we have:

ρ(λ) = Tr[(Σ(θ∗;λ)− Σ(θ∗; 0))I(θ∗)]

= aλ+ (b+ o(1))λ2,

where:

a = Tr [(∇θπ(θ
∗)Σ0 + 2Sym(Γ)) I(θ∗)]

b = Tr
[(

∇θπ(θ
∗)Σ0∇θπ(θ

∗)⊤ + 2Sym [∇θπ(θ
∗)Γ] + ΩM

])
I(θ∗)

]
.

15



Therefore
EDn [R(θ̂λ)−R(θ̂)] =

a

2n
λ+

b

2n
λ2 + o(n−1).

Note ΩM ⪰ 0 contributes positively. Then the quadratic in λ is strictly convex, and the
optimal regularization is the constant choice

λ∗ = − a

2b
, EDn

[R(θ̂λ∗)−R(θ̂)] = − a2

8bn
+ o

(
n−1

)
.

This implies that choosing λ = − a
2b leads to a first-order improvement of order o(n−1). As

long as a ̸= 0, the perturbed solution can lead to some first-order improvement. □

We also highlight that compared with the empirical optimization, including a data-driven regular-
ization is necessary. That is, the function M needs to depend on the data first. Suppose we fix the
regularization direction towards the empirical solution, θ̂λ = θ̂ + λπ,∀λ ≥ 0, which cannot lead to
first-order improvement.

C.1 Additional Discussion of the Improvement Order

When M depends on θ, replacing M(θ; ξ) by M(θ̂; ξ) alters the moment geometry since θ̂ is a
function of Dn, and therefore, the simple non-orthogonality check E[M(θ; ξ)⊤IF (ξ)] ̸= 0 no longer
applies directly. For example, in OLS with Gaussian noise, naively plugging empirical residual
moments such as E[∇ℓ · ℓ] typically fails to deliver first-order gains without additional structure.

D Generalization of First-order Improvements in Section 3

Our insights of first-order improvements can also be generalized to data-driven optimization prob-
lems with side information or so-called contextual stochastic optimization, optimization under risk
functions. In the following, for simplicity, we only consider the unconstrained case Θ = RDθ and the
case thatM(θ; ξ) is independent of the data-driven parameter θ̂. However, our results still apply when
M(θ; ξ) is a function of θ and ξ and general constrained problems as our main results in Section 3.

D.1 Weighted Empirical Optimizations

In contextual stochastic optimization problems, the distribution of ξ is a function of a covariate
u ∈ RDu [7, 12]. The ground-truth distribution P∗

ξ|u is unknown; instead, the decision maker only
has data Dn = {(ui, ξi)}ni=1 consisting of iid samples from the joint distribution P∗

(u,ξ) = P∗
u × P∗

ξ|u.
The decision maker observes the covariate U = u before making the decision.

In particular, we consider the class of weighted empirical optimization procedures in [7].

Definition 5 (Data-Driven Weighted Empirical Optimization Procedures) The empirical deci-
sion rule

θ̂(u) ∈ argmin
θ∈Θ

∑
i∈[n]

wn,i(u)ℓ(θ; ξi), (14)

where {wn,i(u)}i∈[n] are weights determined by Dn and u.

The key observation is to notice that for regularized k-Nearest Neighbor, Nadaraya-Watson kernel
estimator and some regular random forests satisfy the following condition:

Assumption 3 (Influence Function Decomposition) For any u and write

Zu(θ) := Eξ∼P∗
ξ|u

[ℓ(θ; ξ)], θ∗(u) ∈ argmin
θ
Zu(θ),

and assume Zu is twice continuously differentiable with positive definite Hessian

Iu := ∇2
θθZu(θ

∗(u)).

Let the estimator θ̂(u) satisfy the IF decomposition

θ̂(u)− θ∗(u) =
1

n

n∑
i=1

IFn,u(ui, ξi) + bn,u + rn,u,
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where at each point u, E(ũ,ξ)∼P∗ [IFn,u(ũ, ξ)] = 0, VarP∗ [IFn,u(ũ, ξ)]/n
1−2γ → Σu, the decision

bias term bn,u = O(n−γ), and rn,u = op(n
−γ) with γ ≤ 1

2 .

Proposition 7 (First-order improvement for weighted empirical solution) Suppose Assump-
tions 2, 1 (when we replace Z(θ) with Zu(θ)) and Assumption 3 hold. Consider the perturbed
estimator

θ̂λ(u) := θ̂(u) + λn,uM̄n,u.

where

M̄n,u :=
1

n

n∑
i=1

Mu(ui, ξi), µM (u) := EP∗ [Mu(U, ξ)], ΩM (u) := VarP∗(Mu(U, ξ)).

Define the performance gap of a estimator θ(u) at u by R(θ(u)) := Zu(θ(u))− Zu(θ
∗(u)).

(i) If µM (u) = 0 and Tr(IuΓn,u) ̸= 0, where

Γn,u := Cov(IFn,u(U, ξ),Mu(U, ξ)) = O(n1−2γ).

for each n, there exists λ∗n,u = − Tr(IuΓn,u)

Tr(IuΩM (u))
such that

E[R(θ̂λ∗
n,u

(u))]− E[R(θ̂(u))] = − Tr(IuΓn,u)
2

2Tr(IuΩM (u))
· 1
n
+ o
(
n−2γ

)
.

In particular, a first-order improvement of Θ(n−2γ) is achieved.

(ii) If µM (u) = 0 and Tr(IuΓn,u) = 0, then:

E[R(θ̂λ(u))]− E[R(θ̂(u))] =
1

2
Tr(IuΩM (u)) ·

λ2n,u
n

+ o
( 1
n

)
≥ 0,

so the best constant choice is λn,u = 0.

(iii) If µM (u) ̸= 0, we can achieve the second-order improvement of the order o(n−2γ).

Proof of Proposition 7. A second-order Taylor expansion of Zu at θ∗(u) gives, for any random θ̃
close to θ∗(u),

R(θ̃) = Zu(θ̃)− Zu(θ
∗(u)) =

1

2
(θ̃ − θ∗(u))⊤Iu(θ̃ − θ∗(u)) + op

(
∥θ̃ − θ∗(u)∥2

)
.

Taking expectations and applying the bias-variance decomposition,

E[R(θ̃)] =
1

2
Tr(IuVar(θ̃)) +

1

2
(E[θ̃]− θ∗(u))⊤Iu(E[θ̃]− θ∗(u)) + o(E∥θ̃ − θ∗(u)∥2).

Apply this to θ̃ = θ̂(u) and to θ̃ = θ̂λ(u).

Step 1: Moments of θ̂(u). From the IF decomposition with γ ≤ 1
2 ,

Var(θ̂(u)) =
1

n2γ
Σu + o

(
n−2γ

)
, E[θ̂(u)]− θ∗(u) = bn,u + o(n−γ),

so
E[R(θ̂(u))] =

1

2n
Tr(IuΣu) +

1

2
b⊤n,uIubn,u + o(n−2γ).

Step 2: Moments of θ̂λ(u) = θ̂(u) + λn,uM̄n,u. Write

Γn,u := Cov(IFn,u(U, ξ),Mu(U, ξ)), ΩM (u) := Var(Mu(U, ξ)).

Since θ̂(u) = θ∗(u) + 1
n

∑
IFn,u + bn,u + rn,u and M̄n,u = 1

n

∑
Mu, we have

Var(θ̂λ(u)) = Var(θ̂(u)) + 2λn,uCov(θ̂(u), M̄n,u) + λ2n,uVar(M̄n,u)

=
1

n

(
n1−2γΣu + 2λn,uΓn,u + λ2n,uΩM (u)

)
+ o
(
n−2γ

)
.
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Moreover,

E[θ̂λ(u)]− θ∗(u) = (E[θ̂(u)]− θ∗(u)) + λn,uE[M̄n,u] = bn,u + λn,uµM (u) + o(n−γ).

Step 3: Risk difference. Subtract the expansions:

∆n(λn,u;u) := E[R(θ̂λ(u))]− E[R(θ̂(u))]

=
1

2n
Tr(Iu(2λn,uΓn,u + λ2n,uΩM (u))) +

1

2
(λn,uµM (u))⊤Iu(λn,uµM (u))

+ λn,uµM (u)⊤Iubn,u + o(n−2γ).

Case (i): µM (u) = 0 and bu := Tr(IuΓn,u) ̸= 0. Set λn,u ≡ λ constant. Then

∆n(λ;u) =
1

2n
(2λTr(IuΓn,u) + λ2Tr(IuΩM (u))) + o

(
n−2γ

)
.

This quadratic in λ is minimized at λ∗(u) = − Tr(IuΓn,u)

Tr(IuΩM (u))
, yielding

∆n(λ
∗;u) = − Tr(IuΓn,u)

2

2Tr(IuΩM (u))
· 1
n
+ o
(
n−2γ

)
,

which proves the first-order improvement.

Case (ii): µM (u) = 0 and Tr(IuΓn,u) = 0. Then ∆n(λ;u) =
1
2nλ

2Tr(IuΩM (u)) + o(n−2γ) ≥ 0
for any constant λ, so the best constant choice is λ = 0.

Case (iii): µM (u) ̸= 0. The term 1
2λ

2
n,uµM (u)⊤IuµM (u) is nonnegative and of order 1 when λn,u

is constant, which prevents Θ(n−2γ) improvement. Choosing some λn,u = Θ(n−2γ suppresses this
bias but then any improvement is at most Θ(n−2γ).

These three cases establish the claim. □

D.2 Risk Functions

In this section, we extend to the problem instance that compares the distributional aspect information
of Z(θ̂λ) and Z(θ̂) beyond the expectation, i.e., comparing E[g(Z(θ̂λ))] and E[g(Z(θ̂))] for general
g(·).

Assumption 4 (Condition on g(·)) The function g : R → R is monotonically nondecreasing and
twice continuously differentiable.

This includes the expected performance gap comparison with g(x) = x.

Proposition 8 (First-order improvement for general risk functions) Suppose Assumptions 2, 1
and 4 hold. If EP∗ [M(θ∗; ξ)] = 0 and EP∗ [M(θ∗; ξ)⊤IF (ξ)] ̸= 0, there exists some λ∗ = Θ(1)

such that we have: EDn [g(Z(θ̂λ∗))]− EDn [g(Z(θ̂))] = Θ(1/n) < 0. Otherwise the improvement is
of higher order, at most o(1/n).

Proof of Proposition 8. We decompose

EDn
[g(Z(θ̂λ))] = EDn

[g(Z(θ̂λ))]− EDn
[g(Z(θ∗λ))]︸ ︷︷ ︸

(A)

+EDn
[g(Z(θ∗λ))]− EDn

[g(Z(θ∗))]︸ ︷︷ ︸
(B)

.

Step 1. Term (A). Apply a second-order Taylor expansion:

EDn
[g(Z(θ̂λ))] = EDn

[g(Z(θ∗λ))] + g′(Z(θ∗λ))EDn
[Z(θ̂λ)− Z(θ∗λ)]

+
1

2
g′′(Z(θ∗λ))EDn

[(Z(θ̂λ)− Z(θ∗λ))
2] + o

(
EDn

[(Z(θ̂λ)− Z(θ∗λ))
2]
)
.
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Recall the proof in Theorem 2, we have:

EDn
[Z(θ̂λ)− Z(θ∗λ)] =

1

2n
Tr(Σ(θ∗;λ)I(θ∗λ)) + o

( 1
n

)
,

Besides, taken the first-order Taylor expansion of Z(θ̂λ)− Z(θ∗λ), we have:

Z(θ̂λ)− Z(θ∗λ) = ∇θZ(θ
∗
λ)

⊤(θ̂λ − θ∗λ) + op(n
−1/2).

Combining it with Lemma 2, this gives rise to:

EDn [(Z(θ̂λ)− Z(θ∗λ))
2] =

1

n
∇θZ(θ

∗
λ)

⊤Σ(θ∗;λ)∇θZ(θ
∗
λ) +O

( 1

n2

)
.

Step 2. Term (B). Expand around θ∗. First, we consider λ = o(1), which gives rise to:

Z(θ∗λ) = Z(θ∗) +
1

2
λ2π⊤I(θ∗)π + o(λ2).

Therefore

EDn
[g(Z(θ∗λ))]− EDn

[g(Z(θ∗))] = g′(Z(θ∗))
1

2
λ2π⊤I(θ∗)π + o(λ2).

For general λ = Θ(1), we utilize the fact that g(·) is nondecreasing from Assumption 4. In order for
possible performance improvement, we require that θ∗λ = θ∗ and π(θ∗) = 0.

Step 3. Combine. When λ = o(1), subtracting the expansion for θ̂ (with λ = 0) from that for θ̂λ. If
we further denote ρ(λ) = Tr[Σ(θ∗;λ)I(θ∗λ)− Σ(θ∗; 0)I(θ∗)] = ρ′(0)λ+ o(λ), then we obtain

EDn
[g(Z(θ̂λ))]− EDn

[g(Z(θ̂))] =
g′(Z(θ∗))

2n
(ρ′(0)λ+ o(λ))

+
g′′(Z(θ∗))

2n

(
∇θZ(θ

∗
λ)

⊤Σ(θ∗;λ)∇θZ(θ
∗
λ)
)

+
g′(Z(θ∗))

2
λ2π⊤I(θ∗)π + o(λ2) +O

(λ2
n

)
.

= C
λ

n
+Dλ2 + o

(
1

n

)
,

(15)

where

C =
1

2

(
g′(Z(θ∗))ρ′(0) + g′′(Z(θ∗))Σ(θ∗; 0)I(θ∗)π(θ∗)

)
, D =

g′(Z(θ∗))

2
π⊤I(θ∗)π,

Above inside the expansion of ∇θZ(θ
∗
λ)

⊤Σ(θ∗;λ)∇θZ(θ
∗
λ), we simplify it following from the

formula of Σ(θ∗;λ) in Lemma 2 with ∇θπ(θ
∗) = 0 and the fact that:

∇θZ(θ
∗
λ) = ∇θZ(θ

∗) + λI(θ∗)π(θ∗) + o(λ) = λI(θ∗)π(θ∗) + o(λ).

In this case, the optimal improvement is taken when λ = − C
2nD = O(1/n) and the improvement is

of the second-order.

When λ = Θ(1), the second-order term associated with g′′(·) becomes zero and the performance gap
in (15) becomes the first-order difference:

EDn [g(Z(θ̂λ))]− EDn [g(Z(θ̂))] =
g′(Z(θ∗))

2n
ρ(λ),

and the minimizer of ρ(λ) with respect to λ is taken as the same as in Theorem 2. □

E Proofs and Additional Results in Section 4

E.1 Proof of Theorem 3

First, we have the following guarantee for the estimated uncertainty region M(δ) for consistency:
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Assumption 5 (Source-domain Uniform Concentration) Assume there exist constants B, σ > 0
such that, for every i ∈ [K] and every M ∈ Mϕ, each coordinate of M(θ; ξ) is sub-Gaussian with
proxy σ and ∥M(θ; ξ)∥2 ≤ B almost surely. Let Comp(Mϕ) denote a capacity measure for Mϕ
(e.g., squared Gaussian/Rademacher complexity or a metric-entropy integral). Then there exists a
universal C > 0 such that, for any δ ∈ (0, 1), with probability at least 1− δ,

max
i∈[K]

sup
M∈Mϕ

∥∥∥∥∥ 1

N

N∑
j=1

(
M(θ; ξi,j)− EPi [M(θ; ξ)]

)∥∥∥∥∥
2

≤ C

(√
Comp(Mϕ) + log(K/δ)

N
+

log(K/δ)

N

)
.

Lemma 3 (High-probability inclusion of invariant M ) Fix δ ∈ (0, 1). Suppose Assumption 5
holds and some M ∈ Mϕ satisfies the moment equation EPi

[
M(θ; ξ)

]
= 0 for all i ∈ [K] and the

target domain. Define

ϵK(Mϕ, δ) := C2 Comp(Mϕ) + log(K/δ)

N
, M(δ) :=

{
M ∈ Mϕ : max

i∈[K]

∥∥∥ 1

N

N∑
j=1

M(θi; ξi,j)
∥∥∥2
2
≤ ϵK(Mϕ, δ)

}
.

Then M ∈ M(δ) with probability at least 1− δ.

Proof of Lemma 3. First, we know EPiM(θ; ξ) = 0 for P can be any distribution Pi from the source
domain and the target distribution P∗. Apply Assumption 5 and take a union bound over i ∈ [K] to
get, with probability at least 1− δ,

max
i∈[K]

∥∥∥∥∥∥ 1

N

N∑
j=1

M(θi; ξi,j)

∥∥∥∥∥∥
2

≤ C

[√
Comp(Mϕ) + log(K/δ)

N
+

log(K/δ)

N

]
.

Squaring both sides and using (a+ b)2 ≤ 2a2 + 2b2 yields

max
i∈[K]

∥∥∥∥∥∥ 1

N

N∑
j=1

M(θ; ξi,j)

∥∥∥∥∥∥
2

2

≤ C2 Comp(Mϕ) + log(K/δ)

N
= ϵK(Mϕ, δ),

which is exactly the defining inequality for M ∈ M(δ). □

Lemma 4 (Target-side plug-in consistency) Recall IF (ξ) denote the influence function of θ̂ and
I(θ∗) the population curvature matrix entering the decision risk expansion. We have:

∥ÎF − IF∥L2(P∗) = op(1), ∥Î(θ̂)− I(θ∗)∥op = op(1)

Proof of Theorem 3. First, we consider the first-order risk expansion. Following the same second-
order Taylor expansion of Z(θ) around θ∗ and the influence-function representation as in Theorem 2,
we have that for any bounded H and any M ,

R
(
θ̂H,M

)
= R(θ̂) +

1

2n
EP∗
[
∥IF (ξ) +HM(θ; ξ)∥2I(θ∗)

]
+ op

( 1
n

)
. (16)

Intuitively, the perturbation n−1
∑

iM(·) shifts the first-order term of θ̂ from IF (ξ) to IF (ξ) +
HM(ξ); the curvature I(θ∗) weights the quadratic risk.

Then we bound the uniform convergence of the empirical objective. Let

F(H,M) := EP∗
[
∥IF (ξ)+HM(θ∗; ξ)∥2I(θ∗)

]
, F̂n(H,M) :=

1

n

n∑
i=1

∥ÎF (ξi)+HM(θ̂; ξi)∥2Î(θ̂).

By Lemma 4 and standard arguments (triangle inequality, Lipschitzness of v 7→ ∥v∥2A in both v and
A on bounded sets), we get

sup
H∈H, M∈M(δ)

∣∣F̂n(H,M)−F(H,M)
∣∣ = op(1).

Because N ≫ n and by Lemma 3 with δ = Θ(1/n), the additional error from using M̂ ∈ M(δ)
(estimated from the K source domains) is also op(1) uniformly over M .
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Then we transfer the optimality gap from the empirical objective to the population one. Let (Ĥ, M̂)

minimize (5) (equivalently, minimize F̂n up to an irrelevant scale) over H×M(δ). Then, for any
population oracle (H∗,M∗),

F(Ĥ, M̂)−F(H∗,M∗)

≤
[
F(Ĥ, M̂)− F̂n(Ĥ, M̂)

]
+
[
F̂n(Ĥ, M̂)− F̂n(H

∗,M∗)
]
+
[
F̂n(H

∗,M∗)−F(H∗,M∗)
]

≤ 2 sup
H×M(δ)

|F̂n(Ĥ, M̂)−F(H,M)| = op(1).

Finally, for the true performance gap, we plug the expansion (16) for both (Ĥ, M̂) and (H∗,M∗):

R(θ̂
Ĥ,M̂

)−R(θ̂H∗,M∗) =
1

n

[
F(Ĥ, M̂)−F(H∗,M∗)

]
+ op

( 1
n

)
=

1

n
op(1) + op

( 1
n

)
= op

( 1
n

)
,

which proves the claim. □

E.2 Semi-parametric Efficiency

Our result does not contradict with the local asymptotic minimax normality that the lower bound
of empirical solutions (or M -estimators) cannot be improved (i.e, Chapter 15 in [38]). Instead, we
are restricted to a space where some moment equation holds. If M(θ; ·) is θ-independent, we can
show that the corresponding estimator θ̃H,M∗ defined in (??) attains semi-parametric efficiency in
the projected space {P : EP[M(θ∗; ξ)] = 0} [23] as follows:

Theorem 4 (Semiparametric efficiency of the optimal augmentation) Suppose Assumptions 2
and 1 hold and Θ = RDθ , the estimator with

H∗ = −ΓΩ−1

is regular, asymptotically linear with influence function

ψH∗(ξ) = IF (ξ)− ΓΩ−1M(θ∗; ξ),

and thus √
n(θ̃H∗ − θ∗) ⇒ N

(
0, Σ0 − ΓΩ−1Γ⊤).

Moreover, ψH∗ equals the efficient influence function (EIF) of the semiparametric model that aug-
ments the baseline with the restriction E[M(θ∗; ξ)] = 0. Consequently, θ̃H∗ attains the semiparamet-
ric efficiency bound

Σeff = Σ0 − ΓΩ−1Γ⊤.

Proof of Theorem 4. First, it is easy to see the influence function θ̃H is

ψH(ξ) = IF (ξ) +HM(θ∗; ξ).

Let Σ(H) := Var(ψH) = Σ0 + HΩH⊤ + HΓ⊤ + ΓH⊤. This is a convex quadratic in H .
Differentiating trΣ(H) with respect to H and setting to zero yields the normal equations

2HΩ+ 2Γ = 0 ⇒ H∗ = −ΓΩ−1,

using Ω ≻ 0. Substituting gives the minimized covariance

Σ(H∗) = Σ0 − ΓΩ−1Γ⊤.

In the semiparametric model that incorporates the valid restriction E[M(θ∗; ξ)] = 0, the nuisance
tangent space contains the span of M(θ∗; ξ). The efficient influence function is the L2(P∗) projection
of any regular influence function onto the orthogonal complement of this space. The orthogonal
projection of IF off the span of M is

IF (·)−Πspan(M)IF (·) = IF − ΓΩ−1M(θ∗; ξ) = ψH∗ .

Therefore ψH∗ is the EIF. By semiparametric efficiency theory, any regular estimator has asymptotic
covariance at least Var(EIF), and equality holds if and only if its influence function equals the EIF.
Since θ̃H∗ has IF ψH∗ , it attains the bound Σ0 − ΓΩ−1Γ⊤. □
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Remark 1 (On constraints and singular Ω) If Θ is constrained but θ∗ lies in its interior, the pro-
jection ΠΘ is asymptotically inactive and the proof is unchanged. If Ω is singular, the same argument
goes through by restricting H to the column space of Ω and replacing Ω−1 with the Moore–Penrose
pseudoinverse Ω†; the bound becomes Σ0 − ΓΩ†Γ⊤ on that subspace.

F Experiments

We validate how perturbed solutions in the standard linear regression and weighted empirical opti-
mization example dempnstrate the first-order performance improvement over the empirical solution.

F.1 Linear Regression

For ξ = (X,Y ), we consider the OLS loss ℓ(θ; ξ) = (θ⊤X − Y )2, where X denotes the feature and
Y denotes the label. The true data generating process Y = (θ∗)⊤X + ϵ with the noise ϵ may follow
different noise specifications (normal, Laplace, recentered exponential distribution).

We apply the moment equation M(θ; ξ) = ℓ(θ; ξ) · ∇θℓ(θ; ξ) for different losses ℓ to understand
whether the moment equation provides the first-order improvement over the empirical solution.

Table 1: Loss comparison in terms of whether the perturbed solution via the perturbation function
M(θ; ξ) can achieve the first-order improvement (under a well-specified linear model).

Loss Types / Noise Normal Laplace Exponential t-distribution

LAD Yes No Yes Yes
OLS No Yes No Yes

Above in Table 1, for the recentered exponential noise, the condition E[M(θ∗; ξ)] = 0 no longer
holds under OLS loss. For OLS-Normal / LAD-Laplace, the condition E[M(θ∗; ξ)] = 0 holds but we
cannot computeM(θ; ξ) by empirical calculation since we can only observe θ̂ and the non-orthogonal
condition does not hold.

We consider the OLS loss and take the corresponding empirical estimator to be θ̂OLS. Beyond the
perturbed estimator induced by M(θ; ξ) = X(θ⊤X − Y )3, we evaluate the following procedures to
assess whether the theory’s predicted improvements materialize in practice:

1. Moment perturbed: Output the best θ̂Ĥ,M .

2. χ2-DRO estimator. We search λ ∈ [0, 0.2] on a grid with step size 0.002 and solve
χ2- DRO problem. For negative values λ ∈ (−0.2, 0), we use the symmetry identity
θ̂λ = 2θ̂OLS − θ̂−λ to obtain the estimate.

3. CVaR-DRO estimator. We search λ ∈ (0, 1) with step size 0.05 and solve the CVaR-DRO
problem. For λ ∈ (−1, 0), we again use θ̂λ = 2θ̂OLS − θ̂−λ.

4. Fusion estimator. To provide an intuitive baseline for effect size, we consider a convex
combination of LAD and OLS with step size of λ being 0.01:

θλ = (1− λ) θ̂LAD + λθ̂OLS, λ ∈ [0, 1].

Table 2: Excess risks of solutions under OLS loss where ϵ follows Laplace distribution
Original Moment Perturbed χ2 CVaR Fusion

50 0.7151 0.4739 0.5177 (-0.066) 0.4840 (-0.38) 0.3979 (0.0)
100 0.2892 0.2211 0.2298 (-0.032) 0.1920 (-0.32) 0.1681 (0.12)
200 0.1525 0.1378 0.1388 (-0.018) 0.1110 (-0.38) 0.0953 (0.11)
400 0.0848 0.0661 0.0676 (-0.034) 0.0572 (-0.3) 0.0434 (0.01)

Across Tables 2–4, the brackets in the χ2, CVaR, and Fusion estimators report the oracle-optimal
λ selected from the grid search under expected performance. The empirical findings are consistent
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Table 3: Excess risks of solutions under OLS loss where ϵ follows t-distribution
Original Moment Perturbed χ2 CVaR Fusion

50 0.6925 0.5207 0.5014 (-0.052) 0.6046 (-0.4) 0.5345 (0.33)
100 0.3530 0.2433 0.2447 (-0.032) 0.2561 (-0.26) 0.2494 (0.27)
200 0.1815 0.1314 0.1333 (-0.02) 0.1414 (-0.26) 0.1353 (0.33)
400 0.0851 0.0698 0.0732 (-0.006) 0.0711 (-0.32) 0.0684 (0.35)

Table 4: Excess risks of solutions under OLS loss where ϵ follows normal distribution
Original Moment Perturbed χ2 CVaR Fusion

50 0.3726 0.4339 0.3720 (-0.002) 0.3576 (0.640) 0.3725 (1.0)
100 0.1262 0.1590 0.1262 (0.000) 0.1241 (0.840) 0.126 (1.0)
400 0.0492 0.0627 0.0490 (0.002) 0.0491 (0.900) 0.0492 (1.0)

with the conceptual summary in Table 1, and both sets of results highlight that exploiting structural
knowledge of the noise distribution can substantially improve efficiency.

F.2 Weighted (Contextual) Newsvendor

We focus on the following feature-based (univariate) newsvendor problem with

ℓ(θ; ξ) = cθ − pmin{θ, ξ}.
Above we set c = 4, p = 10. We generate a 10-dimensional covariate (Du = 10), which is uniformly
sampled in [0, 1]Du . And ξ|u d

= 5 +Bu+ sin ∥u∥2 + ϵ where ϵ ∼ N(0, 1).

Recall the data-driven weighted empirical optimization solution in Definition 5. For each covariate u,
we obtain the empirical solution by:

θ̂(u) ∈ argmin
θ∈Θ

∑
i∈[n]

wn,i(u)ℓ(θ; ξ).

We focus on the performance improvement of two weighted empirical optimization procedure [19]:

1. k-NN estimator, wn,i(u) = 1{ui is a kNN of u} with kn = ⌈ 2
√
n ⌉;

2. Nadaraya-Watson kernel estimator, wn,i(u) = K((u−ui)/hn))∑
j∈[n] K((u−uj)/hn)

with K(u) =

1{∥u∥2≤1} and hn = 1.5n−
1

Du+2 .

In this case, we set the moment equation as the knowledge of the conditional mean E[ξ|u] for each u.
And the conditional mean “noisy oracle” is extracted from either of the following:

M1: A noisy oracle estimator that outputs E[ξ|u] + η, where η ∼ N(0, 25/n);
M2: Suppose we have {(ui, ξi)}i∈[m] where the true conditional distribution shares the same

E[ξ|u] but has other different quantile informations. m = 2n. We fit the dataset with a
randomforest regressor.

For each new covariate u, we proceed given the additional conditional mean oracle as follows:

1. Obtain the corresponding estimated influence function {ÎFn,u(U, ξ)}i∈[n], where
ÎFn,u(Ui, ξi) = − c−p

pf̂(θ̂(u))
1{u is kNN,ξ>θ̂(u)} − c

pf̂(θ̂(u))
1{u is kNN,ξ≤θ̂(u)}, where f̂(·) is

the estimated density of Pξ|u;

2. Compute M(θ; ξi) = ξi − Ê[ξ|z], ∀i ∈ [n] and solve the following optimization problem:

min
H

∑
i∈[n]

∥ÎFn,u((ui, ξi)) +H(ξi − Ê[ξ|z])∥22, s.t., θ̂(z) +
H

n

∑
i∈[n]

wn,i(u)(ξi − Ê[ξ|z]) ∈ Θ


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3. Obtain the perturbed solution θ̂(U) + H
n

∑
i∈[n] wn,i(u)(ξi − Ê[ξ|z]).

We evaluate the performance of each method θ̂(u)—the baseline estimator and the two perturbed
versions (M1, M2)—using the metric G(θ̂(u)), with results reported in Table 5. Each entry represents
an average over N = 500 problem instances: the linear component B is fixed across all cases, while
the solution θ̂(u) is computed for each model under a distinct u sampled uniformly from [0, 1]Du .

G(θ̂(u)) = 1

N

∑
i∈[N ]

(
EPξ|ui

[ℓ(θ̂(ui); ξ)]−min
θ∈Θ

EPξ|ui
[ℓ(θ; ξ)]

)
.

We find that incorporating perturbations via the corresponding moment equations (M1 or M2) leads

Table 5: Excess risk comparison of different solutions (averaged over 500 problem instances), where
M1 and M2 denote the perturbed solution where Ê[ξ|z] is based on M1 and M2.

kNN Kernel

n Original M1 M2 Original M1 M2

100 4.48 2.56 4.09 4.45 2.78 4.33
200 4.32 2.30 3.94 4.33 2.70 4.13
400 3.93 2.07 3.84 4.30 2.68 3.90

to statistically significant performance gains: both the kNN and kernel estimators achieve lower
expected cost compared to the original baseline.
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