
Under review as submission to TMLR

Improving Neural Architecture Search by Minimizing
Worst-Case Validation Loss

Anonymous authors
Paper under double-blind review

Abstract

Neural architecture search (NAS) aims at automatically searching for high-performance architec-
tures and has achieved considerable progress. Existing NAS methods learn architectures by min-
imizing average-case validation losses. As a result, the searched architectures are less capable of
making correct predictions under worst-case scenarios. To address this problem, we propose a
framework which leverages a deep generative model to generate adversarial validation examples
to measure the worst-case validation performance of an architecture and improves the architecture
by minimizing the loss on the generated adversarial validation data. Our framework is based on
multi-level optimization, which performs multiple learning stages end-to-end. Experiments on a
variety of datasets demonstrate the effectiveness of our method.

1 Introduction

Neural architecture search (NAS) (Zoph & Le, 2017; Liu et al., 2019; Real et al., 2019) aims at automatically searching
for high-performance architectures of neural networks to reduce humans’ burden in manually designing them. The
research of NAS has made remarkable progress in the past few years and achieved promising results. In existing NAS
methods, model weights are learned by minimizing a training loss and the architecture is learned by minimizing an
averaged validation loss (AVL). The AVL, calculated by taking the mean of validation losses computed on individual
examples in a fixed validation set, reflects the average-case performance of a neural architecture. An architecture
learned by minimizing the AVL focuses on achieving great average-case performance, but may have poor worst-case
performance (Shu et al., 2020) (empirical justification is in Sec. 4). Consider the evaluation of a deep neural network
based treatment recommendation system. Given a validation set where 99.99% of patients have common diseases and
0.01% of patients have rare diseases, a treatment recommendation system which can accurately recommend treatment
plans for common diseases but performs poorly on rare diseases will have high average evaluation accuracy on this
validation set. However, from the clinical perspective, such a system cannot be safely used in clinical practice since it
cannot properly deal with patients with rare diseases (i.e., having poor worst-case performance).

To address the limitation of average-case evaluation, Shu et al. (2020) proposed adversarial examination, which dy-
namically selects a sequence of validation sets so that the performance of a model (with fixed weight parameters)
evaluated on these validation sets decreases. By doing this, the model’s worst-case performance (or weakness) can
be identified. The notion of “adversarial” comes from the fact that the validation sets are selected to minimize the
model’s performance. While this work can evaluate the worst-case performance of a fixed model, it does not provide
a mechanism to leverage the evaluation results to retrain the model for improving its worst-case performance.

We aim to bridge this gap and propose to generate adversarial validation examples to measure and improve the worst-
case performance of a neural architecture. In our framework, there is a “learner” model and a “tester” model. The
tester generates adversarial validation data using a deep generative model (Goodfellow et al., 2014a) to measure the
worst-case performance of the learner. The learner updates its architecture by minimizing the loss on the generated ad-
versarial validation data to improve its worst-case performance. Our method is based on multi-level optimization (Sato
et al., 2021), which consists of four levels of nested optimization problems. At the first level, we train model weights
of the learner with its architecture tentatively fixed. At the second level, a deep generative model (DGM) is trained. At
the third level, an auxiliary model is trained using data generated by the DGM to verify the fidelity of generated data.
At the fourth level, the DGM generates adversarial validation data; the learner updates its architecture by minimizing

1



Under review as submission to TMLR

the loss on the generated data; and the DGM updates its hyperparameters by minimizing the loss of the auxiliary model
on a human-labeled validation set.

The major contributions of this paper are as follows:

• We propose a general framework to evaluate and improve the worst-case performance of neural architectures
in NAS.

• We demonstrate the effectiveness of our method on various datasets.

2 Related work

Neural architecture search (NAS). Existing NAS methods can be roughly grouped into three categories: 1) re-
inforcement learning (RL) based methods; 2) evolutionary algorithm based methods; and 3) differentiable methods.
In RL-based approaches (Zoph & Le, 2017; Pham et al., 2018; Zoph et al., 2018), a policy is learned to iteratively
generate new architectures by maximizing a reward which is validation accuracy. Evolutionary algorithm based ap-
proaches (Liu et al., 2018b; Real et al., 2019) represent architectures as individuals in a population. Individuals with
high fitness scores (validation accuracy) have the privilege to generate offspring, which replaces individuals with low
fitness scores. Differentiable approaches (Cai et al., 2019; Liu et al., 2019; Xie et al., 2019) adopt a network pruning
strategy. On top of an over-parameterized network, the importance weights of operators are learned using gradient
descent. Operators with close-to-zero weights are pruned. Previous NAS methods cannot improve architectures’
worst-case performance. Our work aims to bridge this gap.

Adversarial learning. Our formulation involves a mini-max optimization problem, which is analogous to that in
adversarial learning (Goodfellow et al., 2014a) for data generation (Goodfellow et al., 2014a; Yu et al., 2017), do-
main adaptation (Ganin & Lempitsky, 2015), adversarial attack and defense (Goodfellow et al., 2014b), active learn-
ing (Mayer & Timofte, 2020), etc. Different from existing works, our work is featured with a tester which generates
adversarial validation data to minimize the validation performance of a learner while the learner retrains itself to im-
prove performance on generated validation data. Shu et al. (2020) proposed to use an adversarial examiner to identify
the weakness of a trained model. Our work differs from (Shu et al., 2020) in that we continuously update a learner
model based on how it performs on the validation examples that are generated dynamically by a tester model, while
the learner model in (Shu et al., 2020) is fixed and not affected by examination results. Such et al. (2019) proposed to
learn a generative adversarial network (Goodfellow et al., 2014a) to create synthetic examples which are used to train
an NAS model. Our work differs from (Goodfellow et al., 2014a) in that we generate adversarial validation data to
evaluate the worst-case performance of a model while Such et al. (2019) do not consider the notion of “adversarial”.

Curriculum learning (CL). CL has been widely studied (Bengio et al., 2009; Kumar et al., 2010; Spitkovsky et al.,
2010; Lee & Grauman, 2011; Jiang et al., 2014; Tsvetkov et al., 2016; Graves et al., 2017; Matiisen et al., 2019;
Platanios et al., 2019), where a sequence of training datasets with increasing levels of difficulty are used for model
training. Some CL works (Bengio et al., 2009; Spitkovsky et al., 2010; Tsvetkov et al., 2016; Platanios et al., 2019;
Zhou et al., 2020d) use task-specific prior knowledge to measure hardness of examples, which are not generalizable
across a variety of tasks. Self-paced CL (Kumar et al., 2010; Jiang et al., 2014; 2015; Zhou et al., 2021) automatically
measures example hardness using training losses and the hardness can be dynamically adjusted. Our work differs from
these previous works in that our work dynamically generates adversarial validation data for model evaluation while
previous works select hard data examples for model training.

3 Method

3.1 Overview

In our framework, there is a learner model and a tester model, where the learner learns to perform a target task
such as classification, regression, etc. The tester model uses a deep generative model (DGM) (Goodfellow et al.,
2014a) to generate adversarial validation examples to evaluate the worst-case performance of the learner. These
validation examples are generated in a way that the learner’s performance on these examples (referred to as generative

2



Under review as submission to TMLR

adversarial validation examples (GAVEs)) decreases. The learner continuously retrains its model by maximizing the
performance on GAVEs, to improve its worst-case performance. Note that GAVEs are different from adversarial
examples (Goodfellow et al., 2014b) in the adversarial robustness literature. GAVEs are brand new examples which
are generated by a DGM and have significant visual and semantic differences with real examples in a given dataset. In
contrast, adversarial examples are created by adding small perturbations to real examples, and are very similar to real
examples both visually and semantically. GAVEs focus on evaluating the worst-case performance of an ML model
over the global landscape of a data distribution (which is the focus of our work) while adversarial examples focus on
evaluating the robustness of an ML model around a local example. In Appendix B.3, we performed an evaluation of
our method on adversarial examples.

Besides decreasing the learner’s validation performance, generated validation examples should be “meaningful”. It is
possible that generated validation examples are of poor quality, which are outliers or have incorrect class labels. Using
low quality validation examples to guide the learning of the learner may render the learner to overfit these examples.
To address this problem, we evaluate the “meaningfulness” of generated examples by checking how useful they are
when used to train an auxiliary model for performing the target task. If the auxiliary model trained on generated data
achieves good validation performance on human-labeled real data examples, the generated examples are considered
as being meaningful.

In our framework, both the learner and the tester perform learning. The learner aims to improve its worst-case perfor-
mance. The tester learns to generate validation examples that can decrease the learner’s validation performance and are
meaningful. The learner has a learnable architecture. Since the learner and tester perform adversarial learning jointly,
it is important to let them have similar model capacities to prevent one of them from being dominated by the other.
Towards this goal, we make hyperparameters of the tester learnable. In Appendix B.2.2, we provided experiments
which show that learning the hyperparameters of the tester yields better performance than not learning them.

3.2 A multi-level optimization based framework

In our framework, the learning of the learner and the tester is organized into four stages.

Stage I. Let A denote the learner’s architecture and Ltgt(·) denote the target task’s training loss. At this stage, the
learner trains its network weights W on a training set D(tr):

W ∗(A) = argminW Ltgt(W, A, D(tr)). (1)

The architecture A is used to define the training loss, but it is not learned at this stage. If A is learned by minimizing
this training loss, a trivial solution will be yielded where the model can perfectly overfit the training data but will
generalize poorly on test data. Let W ∗(A) denote the optimally learned W at this stage. Note that W ∗ depends on A
because W ∗ depends on the training loss and the training loss is a function of A.

Stage II. At the second stage, the tester trains a data generation model which generates both input data and output
labels. Let G and B denote weight parameters and hyperparameters of the data generation model. Let Ldg denote a
data generation loss. At this stage, we solve the following optimization problem:

G∗(B) = argminG Ldg(G, B, D(tr)), (2)

G is trained on D(tr) by switching the input and output in each training example and B is tentatively fixed.

Stage III. At the third stage, we apply the generator G∗(B) trained at the second stage to generate a validation
dataset f(G∗(B)). Then we train an auxiliary model V on f(G∗(B)) to perform the target task. At this stage, we
solve the following optimization problem:

V ∗(G∗(B)) = argminV Ltgt(V, f(G∗(B))). (3)

Stage IV. At the fourth stage, we evaluate the learner’s model W ∗(A) on the validation set f(G∗(B)). For the tester,
it aims to generate an adversarial validation set by maximizing the validation loss w.r.t B. For the learner, it aims to
perform well under worst-case scenarios by minimizing the loss on the generative adversarial validation set w.r.t A.

3



Under review as submission to TMLR

On the other hand, we evaluate the auxiliary model V ∗(G∗(B)) on a human-labeled validation set D(val). The tester
aims to minimize this loss w.r.t B to encourage the generated validation examples to be meaningful. When improving
the worst-case performance of A, we would like A to maintain its average-case performance as well. We evaluate
the average-case loss of A on D(val) and update A by minimizing the average-case loss. At this stage, we solve the
following optimization problem:

min
A

max
B

Ltgt(W ∗(A), A, f(G∗(B)))− λLtgt(V ∗(G∗(B)), D(val)) + γLtgt(W ∗(A), A, D(val)), (4)

where λ and γ are tradeoff parameters. λ strikes the balance between the worst-case-ness and meaningfulness of
generated data. γ strikes the balance between worst-case and average-case performance.

Multi-level optimization. Putting these pieces together, we have the following multi-level optimization framework.

min
A

max
B

Ltgt(W ∗(A), A, f(G∗(B)))− λLtgt(V ∗(G∗(B)), D(val)) + γLtgt(W ∗(A), A, D(val))
s.t. V ∗(G∗(B)) = argminV Ltgt(V, f(G∗(B)))

G∗(B) = argminG Ldg(G, B, D(tr))
W ∗(A) = argminW Ltgt(W, A, D(tr))

(5)

3.3 Reduce search costs

Before running our method on a dataset D, we first pretrain the generative model and auxiliary model on the same
dataset D. The total search cost includes pretraining the generative model and auxiliary model and running our multi-
level optimization based framework to learn all variables in Eq.(5). We utilize the following approaches to reduce
search and memory costs.

• The frequencies of calculating hypergradients of architecture A, generator G, and hyperparameters B and
updating these variables are reduced to every 8 iterations (i.e., mini-batches) instead of every mini-batch. We
empirically found that by doing this, the computational costs were substantially reduced without significantly
compromising image classification performance. For the rest of parameters, they were updated in every
iteration as usual.

• On generated data in stage IV, we added a decorrelation regularizer (Cogswell et al., 2015), which accelerated
convergence greatly and allowed us to reduce epoch number from 50 to 25 without compromising the quality
of convergence.

• We adopted parameter tying to make the representation learning layers of the auxiliary model and those of the
discriminator in FQ-GAN (Zhao et al., 2020) (which is used as the data generation model in our framework)
share the same weight parameters. These parameters account for more than 95% of each model’s total
parameters. Tying these parameters greatly reduces parameter number, thereby decreasing computational
costs of training them.

• We reduced the pretraining time of the FQ-GAN to 4 hours on either CIFAR-10 or CIFAR-100, by 1) using
the methods proposed in (Sinha et al., 2020a;b); 2) reducing the number of iterations by half.

• For pretraining the auxiliary model, the weight parameters of its feature extraction layers are set to those of
the pretrained discriminator in FQ-GAN. We only need to pretrain the light-weight classification head (two
feedforward layers) of the auxiliary model, which was efficiently finished in 20 minutes.

In addition, we provide an alternative way of generating adversarial validation examples, by automatically learning a
data augmentation policy to augment data from original data and using augmented examples as adversarial validation
data. The number of parameters in a data augmentation policy is much smaller than that in a deep generative model, and
therefore is computationally more efficient to train. Following (Li et al., 2020), we learn a differentiable augmentation
policy P containing a set of sub-policies where each sub-policy consists of two operations and each operation has a
probability and magnitude. The goal is to learn how to select sub-policies, which is formulated as a differentiable
optimization problem using the Gumbel-Softmax (Jang et al., 2016) method. Given a training set D(tr), we randomly

4



Under review as submission to TMLR

select a subset of D(tr). Then the learned P is applied to the selected subset to generate a set of augmented examples
f(P, D(tr)).

The formulation in Eq.(5) becomes

minAmaxP Ltgt(W ∗(A), A, f(P, D(tr)))− λLtgt(V ∗(P ), D(val)) + γLtgt(W ∗(A), A, D(val))
s.t. V ∗(P ) = argminV Ltgt(V, f(P, D(tr)))

W ∗(A) = argminW Ltgt(W, A, D(tr))
(6)

4 Experiments

We apply our method for neural architecture search in image classification. We use a conditional generative adversarial
network (GAN) (Goodfellow et al., 2014a; Mirza & Osindero, 2014) – FQ-GAN (Zhao et al., 2020) – to generate
validation examples. We randomly sample a class label y and a random noise vector z, then feed y and z into FQ-
GAN to generate an image x. (x, y) is regarded as a generated image-label pair. We treat the momentum decay λ
and FQ weight α in FQ-GAN as the learnable hyperparameters B in the data generation model. They are continuous
scalars, which can be efficiently optimized using gradient-based methods by maximizing the loss in Eq.(4). We
initialize them to the values reported in (Zhao et al., 2020). Please refer to Appendix B.2.2 for more details regarding
how these hyperparameters influence data generation. Following (Liu et al., 2019), we first perform architecture search
which finds an optimal cell, then perform architecture evaluation which composes multiple copies of the searched cell
into a large network, trains it from scratch, and evaluates it on a test set. Please refer to the appendix for detailed
hyperparameter settings and additional results, such as computational costs, evaluation on adversarial examples, etc.

4.1 Datasets

We used five datasets: CIFAR-100 (Krizhevsky et al., 2009), CIFAR-10 (Krizhevsky & Hinton, 2010), Ima-
geNet (Deng et al., 2009), ImageNet-C (Hendrycks & Dietterich, 2019), and CIFAR-10-C (Hendrycks & Dietterich,
2019). CIFAR-100 and CIFAR-10 contain 50K training images and 10K testing images, from 100 and 10 classes
respectively. For each dataset, we split the original 50K training set into a 25K new training set and a 25K validation
set. ImageNet contains a training set of 1.3M images and a test set of 50K images, from 1000 object classes. Follow-
ing (Xu et al., 2020), 10% of the 1.3M training images are randomly sampled to form a new training set and another
2.5% of the 1.3M training images are randomly sampled to form a new architecture validation set. The ImageNet-C
dataset consists of 15 diverse corruption types applied to validation images of ImageNet. The corruptions are drawn
from four main categories - noise, blur, weather, and digital. CIFAR-10-C is a dataset generated by adding 15 common
corruptions and 4 extra corruptions to CIFAR-10 test images.

Architectures are searched on CIFAR-100, CIFAR-10, and ImageNet, which are the most broadly used benchmark
datasets in the NAS literature. To evaluate the worst-case performance of searched architectures, we manually select
2000 (20 per class) “worst-case” examples (whose class labels are considered by humans as being challenging to
recognize) from the test set of CIFAR-100. In addition, we test these architectures on CIFAR-10-C and ImageNet-C.

4.2 Experimental settings

Our framework is a general one that can be used together with any differentiable search method. Specifically, we
apply our framework to the following NAS methods: DARTS (Liu et al., 2019), P-DARTS (Chen et al., 2019), PC-
DARTS (Xu et al., 2020), and PR-DARTS (Zhou et al., 2020b). The formulation in Eq.(5) is applied to DARTS and
the formulation in Eq.(6) is applied to P-DARTS, PC-DARTS, and PR-DARTS.

During architecture evaluation, the combination of the training data and validation data is used to train a large network
stacking multiple copies of the searched cell. In addition to searching for architectures directly on ImageNet data,
following (Liu et al., 2019), we also evaluate the architectures searched using CIFAR-10 and CIFAR-100 on ImageNet:
given a cell searched using CIFAR-10 and CIFAR-100, multiple copies of it compose a large network, which is then
trained on the 1.3M training data of ImageNet and evaluated on the 50K testing data.

The auxiliary model is set to ResNet-18 (He et al., 2016b). The tradeoff parameters λ and γ are tuned using a 5k
held-out dataset in {0.1, 0.5, 1, 2, 3}. In most experiments, λ is set to 1 except for P-DARTS and PC-DARTS. For

5



Under review as submission to TMLR

Table 1: Classification error on worst-case, average-case, and all examples in CIFAR-100 test set.

Method Worst-case Average-case All

Darts2nd 30.07±0.36 18.82±0.39 20.58±0.44
SPCL-darts2nd 31.82±0.12 17.60±0.24 20.14±0.27
DIHCL-darts2nd 30.88±0.25 17.42±0.33 19.86±0.42
Ours-darts2nd (ours) 27.01±0.17 16.08±0.13 18.55±0.09
Pdarts 27.93±0.36 15.82±0.29 17.96±0.15
SPCL-pdarts 28.08±0.25 15.61±0.11 17.71±0.17
DIHCL-pdarts 28.36±0.28 15.09±0.26 18.05±0.28
Ours-pdarts (ours) 25.51±0.16 14.12±0.15 17.10±0.13
Pcdarts 28.42±0.15 14.95±0.11 17.43±0.13
SPCL-pcdarts 27.06±0.28 14.26±0.17 17.25±0.09
DIHCL-pcdarts 27.94±0.22 15.70±0.19 17.69±0.15
Ours-pcdarts (ours) 24.92±0.09 13.36±0.11 16.17±0.08
Prdarts 25.17±0.14 14.77±0.18 16.48±0.06
SPCL-prdarts 25.33±0.17 14.45±0.14 16.76±0.10
DIHCL-prdarts 25.80±0.31 14.95±0.26 16.83±0.14
Ours-prdarts (ours) 23.02±0.11 14.82±0.10 16.13±0.02

0 27.2
5 34.8
10 38.5
30 40.7
50 42.2

25

30

35

40

45

0 5 10 30 50

Er
ro
r(
%
)

Epoch

BusRoseTiger House Pear Rocket Table

Figure 1: (Left) Errors of a pretrained ResNet-18 on validation sets generated at different epochs. (Right) Randomly-
sampled images from CIFAR-100 test set where Ours-darts2nd makes correct predictions while vanilla Darts-2nd
makes incorrect predictions.

P-DARTS, λ is set to 0.5 for CIFAR-10 and 1 for CIFAR-100. For PC-DARTS, we use λ = 3 and λ = 0.1 for
CIFAR-10 and CIFAR-100, respectively. γ is set to 1. Before running our method on a dataset D, we pretrain the data
generation model (FQ-GAN) and auxiliary model (ResNet-18) on D. Note that our method did not unfairly use more
data than baselines. The experiments were conducted on Nvidia 1080Ti GPUs.

We compare with the following curriculum learning (CL) methods: 1) self-paced CL (SPCL) (Jiang et al., 2015), and
2) dynamic instance hardness guided CL (DIHCL) (Zhou et al., 2020c). These methods were originally designed for
selecting training examples that have large training losses. We adapt them to select validation examples that have large
validation losses, which are used to update architecture parameters.

4.3 Results on “worst-case” test examples

Results on worst-case examples in CIFAR-100 test set. Table 1 shows classification errors on 2000 “worst-case”
examples selected from the CIFAR-100 test set. From this table, we can see that when our method is applied to differ-
ent NAS baselines including DARTS2nd, PC-DARTS, P-DARTS, and PR-DARTS, the classification errors of these
baselines on worst-case test examples are significantly reduced (please refer to Appendix B.7 for statistical signifi-
cance test results). This demonstrates the effectiveness of our framework in improving the worst-case performance of
NAS.

6



Under review as submission to TMLR

Epoch 0 Epoch 5 Epoch 10 Epoch 30 Epoch 50

Mushroom

Lamp

Bridge

Figure 2: Randomly sampled images from validation sets created at different epochs.

Table 2: Average classification er-
ror (%) on CIFAR-10-C. Architec-
tures are searched on CIFAR-10.

Method Error

Darts2nd 23.8±0.7
SPCL-Darts2nd 23.5±0.9
DIHCL-Darts2nd 22.9±1.2
Ours-Darts2nd 20.1±0.4
Pdarts 22.4±1.1
SPCL-Pdarts 22.7±0.7
DIHCL-Pdarts 22.1±1.0
Ours-Pdarts 18.9±0.9
Pcdarts 23.0±0.6
SPCL-Pcdarts 22.8±0.4
DIHCL-Pcdarts 22.5±0.9
Ours-Pcdarts 19.8±0.5
Prdarts 21.5±0.9
SPCL-Prdarts 21.2±0.6
DIHCL-Prdarts 21.8±1.0
Ours-Prdarts 19.1±0.3

Table 3: Mean corruption error
(mCE, %) on ImageNet-C. Archi-
tectures are searched on ImageNet.

Method mCE

Pcdarts 78.8
SPCL-Pcdarts 78.4
DIHCL-Pcdarts 79.1
Ours-Pcdarts 75.4

In our method, the learner improves its architecture’s worst-case performance
by minimizing the loss on the adversarial validation data generated by the tester.
The adversarial validation sets are generated in a way that the learner’s perfor-
mance on these sets decreases. To verify this, we apply an ResNet-18 pretrained
on the training set to make predictions on validation sets generated at different
epochs. Figure 1(left) shows that the errors consistently increase with epoch
number. Figure 2 shows some randomly sampled validation examples generated
at different epochs. As can be seen, as the epoch increases, the images are more
and more difficult to recognize (we evaluated the quality of generated validation
examples in Appendix B.6).

These generative adversarial validation sets can help the learner to identify the
worst-case weakness of its architecture and provide guidance on how to improve
it. Different from baseline NAS methods which optimize architectures by mini-
mizing an average-case validation loss calculated on a single fixed validation set,
our method improves its architecture by minimizing the loss on each generated
adversarial validation set. By doing this, architectures searched by our method
can make more accurate predictions on worst-case examples during test time.

In this table, we also see that our method works better than the two curriculum
learning (CL) methods: SPCL and DIHCL. In our method, adversarial valida-
tion data generation and architecture search are performed jointly in an end-to-
end framework whereas in the two baselines, validation example selection is
performed separately from architecture search. Performing the two tasks end-
to-end enables the generation of adversarial validation examples to be guided
dynamically by the quality of the learner’s architectures.

In Table 1, we also report performance on all test images and the 8000 “average-
case” images. As can be seen, our method’s performance on average-case test
data is on par with that of baselines. This demonstrates that our framework
is able to improve NAS’ worst-case performance without sacrificing average-
case performance. The reason is that in Eq.(4), the architecture is updated by
simultaneously minimizing the worse-case validation loss (the first term) and
the average-case validation loss (the second term). By seeking a proper trade-
off between these two losses, our framework is able to maintain average-case
performance while significantly boosting worst-case performance.

Results on CIFAR-10-C and ImageNet-C. We evaluate different methods on CIFAR-10-C and ImageNet-
C (Hendrycks & Dietterich, 2018). For CIFAR-10-C experiments, the architectures were searched on CIFAR-10.
For ImageNet-C experiments, the architectures were searched on ImageNet and our framework was applied to PC-
DARTS (we did not experiment with other NAS baselines such as DARTS which are computationally too costly to
perform architecture search on ImageNet). Table 2 and 3 shows the average classification error on CIFAR-10-C and

7



Under review as submission to TMLR

Table 4: Test errors on CIFAR-10 and CIFAR-100 in the evaluation of robustness against performance collapse. †
denotes that the initial channel number is 16 and cell number is 8. ‡ denotes that the initial channel number is 36 and
cell number is 20. We compared with DARTS (Liu et al., 2019), RDARTS-L2 (Zela et al., 2019), DARTS-ES (Zela
et al., 2019), DARTS- (Chu et al., 2020a), SDART (Chen & Hsieh, 2020b), and SPCL (Jiang et al., 2015).

Data Space DARTS RDARTS-L2 DARTS-ES DARTS- SDART SPCL Ours

CIFAR-10

S1† 4.69 3.46 3.93 3.34 3.26 4.02 3.08
S1‡ 3.84 2.78 3.01 2.68 2.73 3.29 2.55
S2 5.54 3.31 4.07 4.03 3.11 4.50 2.91
S3 3.92 2.51 3.55 2.95 3.07 4.26 2.46
S4 8.33 3.56 4.69 4.14 3.49 5.72 3.28

CIFAR-100

S1 29.46 24.25 28.37 22.41 22.33 26.72 21.38
S2 26.05 22.24 23.25 21.61 20.56 24.10 19.45
S3 28.90 23.99 23.73 21.13 21.08 20.79 19.92
S4 22.85 21.94 21.26 21.55 21.25 23.38 20.33

the mean Corruption Error on ImageNet-C (Hendrycks & Dietterich, 2018), respectively. Lower is better. Our methods
outperform baselines, which demonstrates that our methods are more robust than baselines against data corruptions in
CIFAR-10-C and ImageNet-C. The reason is: examples in CIFAR-10-C and ImageNet-C can be considered as a type
of worst-case examples; our method measures and robustifies models’ worst-case performance by using deep genera-
tive models to generate worst-case examples, and therefore has better capability to handle examples in CIFAR-10-C
and ImageNet-C.

4.4 Robustness against performance collapse

Next, we present another reason for our method’s effectiveness. Our method optimizes the architecture by minimizing
the loss on each generated adversarial validation set. As a result, the learned architecture is more robust against
performance collapse. Several studies (Zela et al., 2019; Chu et al., 2020a; Chen & Hsieh, 2020b) have shown that
differentiable NAS methods are prone to performance collapse. To empirically show the robustness of our method, we
evaluate it on four search spaces designed for measuring robustness in (Zela et al., 2019). Following RobustDARTS-
L2 (Zela et al., 2019), we set cell number to 8 and initial channel number to 16 for both CIFAR-10 and CIFAR-100.
The same as the protocols in DARTS (Liu et al., 2019) and RobustDARTS (Zela et al., 2019), architecture search runs
for 4 times with random initialization.

A searched architecture is retrained from scratch for a few epochs. The architecture achieving the highest validation
accuracy is selected. Architecture evaluation is performed on selected architectures. Table 4 shows the results. As can
be seen, on the four spaces, our method outperforms baseline methods. This demonstrates that our method is more
robust against performance collapse.

4.5 Overall errors on CIFAR-10 and ImageNet

In this section, we evaluate architectures’ overall performance on entire test sets, which include both difficult examples
and average-case examples.

Results on CIFAR-10. Table 5 shows the classification error (%), number of weight parameters (millions), and
search cost (GPU days) of different NAS methods on the entire test set of CIFAR-10. When our framework is applied
to NAS baselines, the overall performance of these baselines is significantly improved. This is because our framework
can improve worst-case performance without sacrificing average-case performance, as shown in Table 1, which results
in improved overall performance.

Results on ImageNet. Table 23 shows results on ImageNet. Ours-pcdarts-imagenet where the architecture is
searched on ImageNet performs much better than Pcdarts-imagenet and achieves the lowest errors among all meth-
ods in Table 23. Ours-pdarts-cifar100, Ours-pdarts-cifar10, and Ours-darts2nd-cifar10, where the architectures are
searched on CIFAR-10 or CIFAR-100 and evaluated on ImageNet, outperform their corresponding baselines Pdarts-

8



Under review as submission to TMLR

Table 5: Results on CIFAR-10, including classification error (%) on the test set, number of parameters (millions)
in the searched architecture, and search cost (GPU days). Ours-darts2nd denotes that our method is applied to the
search space of DARTS. Similar meanings hold for other notations in such a format. * means the results are taken
from DARTS− (Chu et al., 2020a), β-DARTS (Ye et al., 2022), and AGNAS (Sun et al., 2022). †means we re-ran this
method for 10 times. The search cost is measured by GPU days.

Method Error Param. Cost

*ResNet (He et al., 2016a) 6.43 1.7 -
*DenseNet (Huang et al., 2017) 3.46 25.6 -
*PNAS (Liu et al., 2018a) 3.41±0.09 3.2 150
*ENAS (Pham et al., 2018) 2.89 4.6 0.5
*AmoebaNet (Real et al., 2019) 2.55±0.05 3.1 3150
*GDAS (Dong & Yang, 2019) 2.93 3.4 0.2
*R-DARTS (Zela et al., 2020) 2.95±0.21 - 1.6
*DARTS+PT (Wang et al., 2021) 2.61±0.08 3.0 0.8
*DARTS− (Chu et al., 2020a) 2.59±0.08 3.3 0.4
*DropNAS (Hong et al., 2020) 2.58±0.14 4.4 0.7
*DrNAS (Chen et al., 2020) 2.54±0.03 4.0 0.4
*ISTA-NAS (Yang et al., 2020) 2.54±0.05 3.3 0.1
*MiLeNAS (He et al., 2020) 2.51±0.11 3.9 0.3
*GAEA (Li et al., 2021) 2.50±0.06 - 0.1
*PDARTS-ADV (Chen & Hsieh, 2020a) 2.48±0.02 3.4 1.1
*DOTS (Gu et al., 2021) 2.49±0.06 4.1 0.3
*β-DARTS (Ye et al., 2022) 2.53±0.08 3.8 0.4
*AGNAS (Sun et al., 2022) 2.53±.003 3.6 0.4
*RF-DARTS (Zhang et al., 2023) 2.60 4.6 -
*Darts2nd (Liu et al., 2019) 2.76±0.09 3.1 4.0
SPCL-darts2nd (Jiang et al., 2015) 2.81±0.23 3.2 5.1
DIHCL-darts2nd (Zhou et al., 2020c) 2.86±0.10 3.4 5.4
Ours-darts2nd (ours) 2.68±0.03 3.1 4.0
†Pcdarts (Xu et al., 2020) 2.57±0.07 3.9 0.1
SPCL-pcdarts (Jiang et al., 2015) 2.69±0.14 3.9 0.2
DIHCL-pcdarts (Zhou et al., 2020c) 2.73±0.05 4.0 0.4
Ours-pcdarts (ours) 2.50±0.05 3.7 0.1
*Pdarts (Chen et al., 2019) 2.54±0.04 3.6 0.3
SPCL-pdarts (Jiang et al., 2015) 2.77±0.25 3.8 0.6
DIHCL-pdarts (Zhou et al., 2020c) 2.85±0.12 3.8 0.9
Ours-pdarts (ours) 2.48±0.04 3.6 0.3
†Prdarts (Zhou et al., 2020b) 2.37±0.03 3.4 0.2
SPCL-prdarts (Jiang et al., 2015) 2.44±0.05 3.3 0.3
DIHCL-prdarts (Zhou et al., 2020c) 2.48±0.06 3.5 0.5
Ours-prdarts (ours) 2.31±0.02 3.3 0.2

cifar100, Pdarts-cifar10, and Darts2nd-cifar10. These results further demonstrate the effectiveness of our method in
improving NAS’ overall performance.

4.6 Ablation studies

To investigate the importance of encouraging the generated validation examples to be meaningful, we perform an
ablation study of “adversarial only”: the tester generates validation examples solely by maximizing the learner’s
validation loss, without considering their meaningfulness. Accordingly, the third stage in our framework where the
tester trains an auxiliary model on generated validation examples is removed and λ at the fourth stage is set to 0. For

9



Under review as submission to TMLR

Table 6: Results on ImageNet, including top-1 and top-5 classification errors on the test set. * means the results are
taken from DARTS− (Chu et al., 2020a), DrNAS (Chen et al., 2020), and β-DARTS (Ye et al., 2022). The rest of the
notations are the same as those in Table 5.

Method Top-1 Top-5

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1
*MobileNet (Howard et al., 2017) 29.4 10.5
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6
*NASNet-A (Zoph et al., 2018) 26.0 8.4
*AmoebaNet-C (Real et al., 2019) 24.3 7.6
*SNAS-CIFAR10 (Xie et al., 2019) 27.3 9.2
*DSNAS-ImageNet (Hu et al., 2020) 25.7 8.1
*PCDARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5
*FairDARTS-ImageNet (Chu et al., 2019) 24.4 7.4
*DrNAS-ImageNet (Chen et al., 2020) 24.2 7.3
*PR-DARTS (Zhou et al., 2020b) 24.1 7.3
*DARTS−-ImageNet (Chu et al., 2020a) 23.8 7.0
*DOTS (Gu et al., 2021) 24.3 7.4
∗β-DARTS (Ye et al., 2022) 23.9 7.0
*RF-PCDARTS (Zhang et al., 2023) 23.9 7.1
*Darts2nd-cifar10 (Liu et al., 2019) 26.7 8.7
SPCL-darts2nd-cifar10 (Jiang et al., 2015) 26.4 8.5
DIHCL-darts2nd-cifar10 (Zhou et al., 2020c) 26.8 8.9
Ours-darts2nd-cifar10 (ours) 25.8 8.2
*Pdarts-cifar10 (Chen et al., 2019) 24.4 7.4
SPCL-pdarts-cifar10 (Jiang et al., 2015) 24.4 7.4
DIHCL-pdarts-cifar10 (Zhou et al., 2020c) 24.6 7.5
Ours-pdarts-cifar10 (ours) 24.1 7.1
*Pdarts-cifar100 (Chen et al., 2019) 24.7 7.5
SPCL-pdarts-cifar100 (Jiang et al., 2015) 24.5 7.4
DIHCL-pdarts-cifar100 (Zhou et al., 2020c) 24.7 7.6
Ours-pdarts-cifar100 (ours) 24.0 7.1
*Pcdarts-imagenet (Xu et al., 2020) 24.2 7.3
SPCL-pcdarts-imagenet (Jiang et al., 2015) 24.0 7.2
DIHCL-pcdarts-imagenet (Zhou et al., 2020c) 24.1 7.2
Ours-pcdarts-imagenet (ours) 23.5 6.7

Table 7: Errors for “adversarial only” on test sets of CIFAR-100 (C100) and CIFAR-10 (C10).
Method Error (%)
Adversarial only (Darts2nd, C100) 20.52±0.11
Ours (Darts2nd, C100) 18.55±0.09
Adversarial only (Pdarts, C100) 18.45±0.16
Ours (Pdarts, C100) 16.17±0.08
Adversarial only (Darts2nd, C10) 2.84±0.06
Ours (Darts2nd, C10) 2.68±0.03

CIFAR-100, our method is applied to P-DARTS and DARTS-2nd. For CIFAR-10, our method is applied to DARTS-
2nd. Table 7 shows the results. On both CIFAR-10 and CIFAR-100, it is more advantageous to generate validation
examples that are both meaningful and result in the degradation of the learner’s performance, rather than focusing
solely on impairing the learner’s performance with the generated validation examples. The reason is that without
being constrained to be meaningful, the generated validation examples could be outliers that hurt NAS performance.

10



Under review as submission to TMLR

Adversarial only
Adversarial +
Meaningful

Bed

Bicycle

Tulip

House

Fox

Raccoon

Television

Figure 3: Randomly sampled images that are generated under “adversarial-only” and under “adversar-
ial+meaningful”.

Table 8: Errors on CIFAR-100 test set, under different tester networks.
Method Error(%)

SNGAN-darts2nd 19.82±0.11
BigGAN-darts2nd 19.69±0.18
FQGAN-darts2nd 18.55±0.09
SNGAN-pcdarts 17.84±0.09
BigGAN-pcdarts 17.91±0.07
FQGAN-pcdarts 17.10±0.13
SNGAN-pdarts 17.22±0.09
BigGAN-pdarts 17.03±0.12
FQGAN-pdarts 16.17±0.08

Figure 3 shows some images randomly sampled from validation examples generated under “adversarial only”. As can
be seen, these images are difficult to recognize even for humans or contain labeling errors. Even a highly accurate
model cannot achieve good performance on such erratic examples. In contrast, validation images generated by “adver-
sarial+meaningful” are more semantically meaningful. Our method promotes meaningfulness of generated examples
by encouraging these examples to be useful for training a high-performance auxiliary model. The results demonstrate
that this is an effective way of improving meaningfulness.

We perform another ablation study on how the data generation power of testers affects the learner’s performance. We
experimented with three testers: SN-GAN (Miyato et al., 2018), BigGAN (Brock et al., 2018), and FQ-GAN (Zhao
et al., 2020). As reported in (Zhao et al., 2020), FQ-GAN performs better than BigGAN and SN-GAN in generating
high-fidelity images. Table 8 shows that using FQ-GAN yields better NAS performance than using BigGAN and
SN-GAN. The reason is: with a more powerful data generator, the tester can more effectively generate adversarial and

11



Under review as submission to TMLR

Table 9: Search cost (SC) in GPU hours and memory costs (MC) in MiB of different methods.

Method Error-C100 Error-C10 Param. SC MC

Darts2nd 20.58±0.44 2.76±0.09 3.1 4.0 11053
NCR-darts2nd (ours) 18.42±0.11 2.67±0.03 3.3 6.1 19226
CR-darts2nd (ours) 18.55 ±0.09 2.68 ±0.03 3.1 3.9 10982
Pcdarts 17.96±0.15 2.57±0.07 3.9 0.1 10058
NCR-pcdarts (ours) 17.01±0.18 2.50±0.07 4.0 0.7 18429
CR-pcdarts (ours) 17.10±0.13 2.50±0.05 3.7 0.1 10071
Pdarts 17.43±0.13 2.54±0.04 3.6 0.3 9659
NCR-pdarts (ours) 16.14±0.06 2.48 ±0.05 3.8 1.1 18581
CR-pdarts (ours) 16.17±0.08 2.48±0.04 3.6 0.3 9597
Prdarts 16.48±0.06 2.37±0.03 3.4 0.2 10159
NCR-prdarts (ours) 16.14±0.02 2.31±0.01 3.4 0.8 20188
CR-prdarts (ours) 16.13±0.02 2.31±0.02 3.3 0.2 10195

meaningful validation examples. Validation examples with better quality can evaluate the learner more effectively and
help to improve the learner’s architecture.

In the appendix, we experimented additional ablation studies: 1) sensitivity analysis of λ and γ; 2) do not learn
the tester’s hyperparameters, only learn its weight parameters; and 3) use a pretrained deep generative model as the
tester, without learning the weight parameters or meta parameters of the tester in our framework. Our full method
outperforms these ablation settings, which further demonstrates the effectiveness of the individual components in our
method.

4.7 Search cost and memory cost

Table 9 shows search costs (GPU hours) and memory costs (MiB) of different methods. CR and NCR denote our
method after and before applying the search cost reduction methods described in Section 3.3, respectively. As can be
seen, the search costs of CR are no more than those of baselines, while the classification errors of CR are significantly
lower than those of baselines. CR has lower costs than NCR while achieving classification performance similar to that
of NCR. These observations demonstrate the effectiveness of these cost reduction methods. We applied some of these
cost-saving strategies on baselines like DARTS, including decreasing the frequency of architecture updates from every
iteration to every eighth iteration, and reducing the number of epochs from 50 to 25. However, these modifications
resulted in a significant decline in performance. In light of that, we retained the default hyperparameters for the NAS
baselines. Other cost-reduction methods, such as parameter tying and minimizing the pretraining time of the data
generation model, cannot be applied to the NAS baselines.

5 Conclusions

We propose a multi-level optimization based framework where a tester model generates adversarial validation exam-
ples to measure the worst-case performance of a learner model. A learner model improves the worst-case performance
of its architecture by minimizing the loss on the generated adversarial validation data. Experiments on various datasets
demonstrate the effectiveness of our method.

Broader Impact Statement

One potential negative societal impact of our work is: if the generated validation examples have low-fidelity, architec-
tures searched based on these examples may make unexpected errors, which makes decision-making in mission-critical
areas such as healthcare and finance unreliable. One major limitation of this work is that it is difficult to be applied to
non-differentiable NAS methods, including those based on reinforcement learning and evolutionary algorithms.

12



Under review as submission to TMLR

References

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of bilevel programming
in hyperparameter optimization. Advances in Neural Information Processing Systems, 34:4529–4541, 2021.

Atilim Gunes Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt, and Frank D. Wood. Online learning
rate adaptation with hypergradient descent. CoRR, abs/1703.04782, 2017. URL http://arxiv.org/abs/
1703.04782.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the
26th annual international conference on machine learning, pp. 41–48, 2009.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and hardware. In
ICLR, 2019.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee symposium
on security and privacy (sp), pp. 39–57. IEEE, 2017.

Francesco Paolo Casale, Jonathan Gordon, and Nicoló Fusi. Probabilistic neural architecture search. CoRR,
abs/1902.05116, 2019.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-based regulariza-
tion. CoRR, abs/2002.05283, 2020a.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-based regulariza-
tion. In International Conference on Machine Learning, pp. 1554–1565. PMLR, 2020b.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural
architecture search. CoRR, abs/2006.10355, 2020.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the depth gap
between search and evaluation. In ICCV, 2019.

Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: eliminating unfair advantages in differen-
tiable architecture search. CoRR, abs/1911.12126, 2019.

Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. DARTS-: robustly stepping out
of performance collapse without indicators. CoRR, abs/2009.01027, 2020a.

Xiangxiang Chu, Bo Zhang, and Xudong Li. Noisy differentiable architecture search. CoRR, abs/2005.03566, 2020b.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp. 215–223. JMLR
Workshop and Conference Proceedings, 2011.

Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. Reducing overfitting in deep
networks by decorrelating representations. arXiv preprint arXiv:1511.06068, 2015.

Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

Stephan Dempe, Boris S Mordukhovich, and Alain B Zemkoho. Necessary optimality conditions in pessimistic bilevel
programming. Optimization, 63(4):505–533, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In CVPR, 2019.

13

http://arxiv.org/abs/1703.04782
http://arxiv.org/abs/1703.04782


Under review as submission to TMLR

Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter optimization via meta-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1126–1135. JMLR. org,
2017.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In International Con-
ference on Machine Learning, pp. 1180–1189, 2015.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.0f2246, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pp. 2672–2680,
2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014b.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated curriculum
learning for neural networks. In international conference on machine learning, pp. 1311–1320. PMLR, 2017.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complexity of hypergra-
dient computation. In International Conference on Machine Learning, pp. 3748–3758. PMLR, 2020.

Yu-Chao Gu, Li-Juan Wang, Yun Liu, Yi Yang, Yu-Huan Wu, Shao-Ping Lu, and Ming-Ming Cheng. Dots: Decou-
pling operation and topology in differentiable architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12311–12320, 2021.

Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua Lin. When nas meets robustness: In search of robust
architectures against adversarial attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 631–640, 2020.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search via mixed-level
reformulation, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR,
2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR,
2016b.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and pertur-
bations. In International Conference on Learning Representations, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and pertur-
bations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler
Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution
generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8340–8349,
2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15262–15271, 2021b.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems,
2017.

14



Under review as submission to TMLR

Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang, Yunhe Wang, Zhenguo Li, and Yong Yu. Dropnas: Grouped
operation dropout for differentiable architecture search. In IJCAI, 2020.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua Lin. DSNAS: direct
neural architecture search without parameter retraining. In CVPR, 2020.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional
networks. In CVPR, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design. In
International Conference on Machine Learning, pp. 4882–4892. PMLR, 2021.

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander Hauptmann. Self-paced learning
with diversity. Advances in Neural Information Processing Systems, 27:2078–2086, 2014.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann. Self-paced curriculum learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7):
1–9, 2010.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. In Advances
in neural information processing systems, pp. 1189–1197, 2010.

Yong Jae Lee and Kristen Grauman. Learning the easy things first: Self-paced visual category discovery. In CVPR
2011, pp. 1721–1728. IEEE, 2011.

Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware gradient algorithms for
neural architecture search, 2021.

Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M Robertson, and Yongxin Yang. Dada:
Differentiable automatic data augmentation. arXiv preprint arXiv:2003.03780, 2020.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, and Zhenguo Li.
DARTS+: improved differentiable architecture search with early stopping. CoRR, abs/1909.06035, 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L. Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical represen-
tations for efficient architecture search. In ICLR, 2018b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In ICLR, 2019.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization with non-
convex followers and beyond. Advances in Neural Information Processing Systems, 34, 2021.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical guidelines for efficient CNN
architecture design. In ECCV, 2018.

15



Under review as submission to TMLR

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learning. IEEE trans-
actions on neural networks and learning systems, 2019.

Christoph Mayer and Radu Timofte. Adversarial sampling for active learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3071–3079, 2020.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.

David Pfau and Oriol Vinyals. Connecting generative adversarial networks and actor-critic methods. arXiv preprint
arXiv:1610.01945, 2016.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search via
parameter sharing. In ICML, 2018.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M Mitchell. Competence-
based curriculum learning for neural machine translation. arXiv preprint arXiv:1903.09848, 2019.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial intelligence, volume 33, pp. 4780–4789, 2019.

Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled data are equal: Learning
to weight data in semi-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21786–21797.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
f7ac67a9aa8d255282de7d11391e1b69-Paper.pdf.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in Neural Information Processing Systems, 2016.

Ryo Sato, Mirai Tanaka, and Akiko Takeda. A gradient method for multilevel optimization. Advances in Neural
Information Processing Systems, 34:7522–7533, 2021.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-net: Learning
an explicit mapping for sample weighting. In Advances in Neural Information Processing Systems, pp. 1919–1930,
2019.

Michelle Shu, Chenxi Liu, Weichao Qiu, and Alan Yuille. Identifying model weakness with adversarial examiner. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 11998–12006, 2020.

Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, and Augustus Odena. Small-gan:
Speeding up gan training using core-sets. In International Conference on Machine Learning, pp. 9005–9015.
PMLR, 2020a.

Samarth Sinha, Zhengli Zhao, Anirudh Goyal ALIAS PARTH GOYAL, Colin A Raffel, and Augustus Odena. Top-k
training of gans: Improving gan performance by throwing away bad samples. Advances in Neural Information
Processing Systems, 33:14638–14649, 2020b.

Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. From baby steps to leapfrog: How “less is more” in unsuper-
vised dependency parsing. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 751–759, 2010.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Generative teaching networks:
Accelerating neural architecture search by learning to generate synthetic training data. CoRR, abs/1912.07768,
2019.

16

https://proceedings.neurips.cc/paper/2020/file/f7ac67a9aa8d255282de7d11391e1b69-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7ac67a9aa8d255282de7d11391e1b69-Paper.pdf


Under review as submission to TMLR

Zihao Sun, Yu Hu, Shun Lu, Longxing Yang, Jilin Mei, Yinhe Han, and Xiaowei Li. Agnas: Attention-guided micro
and macro-architecture search. In International Conference on Machine Learning, pp. 20777–20789. PMLR, 2022.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. In CVPR, 2019.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Brian MacWhinney, and Chris Dyer. Learning the curriculum with
bayesian optimization for task-specific word representation learning. arXiv preprint arXiv:1605.03852, 2016.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable nas. arXiv preprint arXiv:2108.04392, 2021.

Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning correspondence from the cycle-consistency of time. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2566–2576, 2019.

Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-semi: A meta-learning approach for semi-supervised
learning. CoRR, abs/2007.02394, 2020. URL https://arxiv.org/abs/2007.02394.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search. In ICLR, 2019.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: partial
channel connections for memory-efficient architecture search. In ICLR, 2020.

Chao Xue, Xiaoxing Wang, Junchi Yan, Yonggang Hu, Xiaokang Yang, and Kewei Sun. Rethinking bi-level opti-
mization in neural architecture search: A gibbs sampling perspective. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 10551–10559, 2021.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. Advances in Neural
Information Processing Systems, 34, 2021.

Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin. Ista-nas: Efficient and consistent
neural architecture search by sparse coding, 2020.

Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and Wanli Ouyang. b-darts: Beta-decay regularization for
differentiable architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10874–10883, 2022.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI, 2017.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. arXiv preprint arXiv:1909.09656, 2019.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. In ICLR, 2020.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional neural
network for mobile devices. In CVPR, 2018.

Xuanyang Zhang, Yonggang Li, Xiangyu Zhang, Yongtao Wang, and Jian Sun. Differentiable architecture search with
random features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16060–16069, 2023.

Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and Changyou Chen. Feature quantization improves gan training.
arXiv preprint arXiv:2004.02088, 2020.

Guoqing Zheng, Ahmed Hassan Awadallah, and Susan T. Dumais. Meta label correction for learning with weak
supervision. CoRR, abs/1911.03809, 2019. URL http://arxiv.org/abs/1911.03809.

17

https://arxiv.org/abs/2007.02394
http://arxiv.org/abs/1911.03809


Under review as submission to TMLR

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for neural architecture
search. In ICML, 2019.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Hoi. Theory-inspired path-regularized differential network
architecture search. In Neural Information Processing Systems, 2020a.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Theory-inspired path-regularized differential
network architecture search. CoRR, abs/2006.16537, 2020b. URL https://arxiv.org/abs/2006.16537.

Tianyi Zhou, Shengjie Wang, and Jeffrey Bilmes. Curriculum learning by dynamic instance hardness. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 8602–8613. Curran Associates, Inc., 2020c. URL https://proceedings.neurips.cc/
paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum learning by optimizing learning dynamics. In Arindam
Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine Learning Research, pp. 433–441. PMLR, 13–15 Apr 2021.
URL http://proceedings.mlr.press/v130/zhou21a.html.

Yikai Zhou, Baosong Yang, Derek F. Wong, Yu Wan, and Lidia S. Chao. Uncertainty-aware curriculum learning
for neural machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 6934–6944, Online, July 2020d. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.620. URL https://www.aclweb.org/anthology/2020.acl-main.620.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable
image recognition. In CVPR, 2018.

A Full description of optimization algorithm

We use a well-established algorithm developed in (Liu et al., 2019) to solve the proposed four-level optimization
problem. Theoretic convergence of this algorithm has been broadly analyzed in (Ghadimi & Wang, 2018; Grazzi
et al., 2020; Ji et al., 2021; Liu et al., 2021; Yang et al., 2021). At each level of optimization problem, the optimal
solution (on the left-hand side of the equal sign, marked with ∗), its exact value is computationally expensive to
compute. To address this problem, following (Liu et al., 2019), we approximate the optimal solution using a one-step
gradient descent update and plug the approximation into the next level of optimization problem. In the sequel, we use
∇2

Y,Xf(X, Y ) to denote ∂f(X,Y )
∂X∂Y . ∂·

∂· denotes partial derivative. d·
d· denotes an ordinary derivative.

Following (Liu et al., 2019), we approximate W ∗(A) using one-step gradient descent update of W w.r.t
Ltgt(W, A, D(tr)):

W ∗(A) ≈W ′ = W − ηw∇W Ltgt(W, A, D(tr)). (7)

Similarly, we approximate G∗(B) using one-step gradient descent update of G w.r.t Ldg(G, B, D(tr)):

G∗(B) ≈ G′ = G− ηg∇GLdg(G, B, D(tr)). (8)

Plugging G∗(B) ≈ G′ into Ltgt(V, f(G∗(B))), we get an approximated objective. Then we approximate V ∗(G∗(B))
using one-step gradient descent update of V w.r.t the approximated objective:

V ∗(G∗(B)) ≈ V ′ = V − ηv∇V Ltgt(V, f(G′)). (9)

Finally, we plug W ∗(A) ≈ W ′ and V ∗(G∗(B)) ≈ V ′ into Ltgt(W ∗(A), A, f(G∗(B))) −
λLtgt(V ∗(G∗(B)), D(val)) + γLtgt(W ∗(A), A, D(val)) and get an approximate objective. We update A using
gradient descent w.r.t the approximated objective:

A← A− ηa∇ALtgt(W ′, A, f(G′)) + γLtgt(W ′, A, D(val)), (10)

18

https://arxiv.org/abs/2006.16537
https://proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf
http://proceedings.mlr.press/v130/zhou21a.html
https://www.aclweb.org/anthology/2020.acl-main.620


Under review as submission to TMLR

and update B using gradient ascent:

B ← B + ηb∇B(Ltgt(W ′, A, f(G′))− λLtgt(V ′, D(val))). (11)

∇ALtgt(W ′, A, f(G′)) can be computed as:

∇ALtgt(W ′, A, f(G′)) = dW ′

dA ∇W ′Ltgt(W ′, A, f(G′)) +∇ALtgt(W ′, A, f(G′)) (12)

where dW ′

dA can be calculated as
−ηw∇2

A,W Ltgt(W, A, D(tr)) (13)

Matrix-vector multiplication is approximated using finite-difference approximation similar to (Liu et al., 2019).

For∇ALtgt(W ′, A, D(val)), it can be calculated as:

∇ALtgt(W ′, A, D(val)) = dW ′

dA

∂Ltgt(W ′, A, D(val))
∂W ′ + ∂Ltgt(W ′, A, D(val))

∂A
(14)

where dW ′

dA is given in Eq.(13).

∇B(Ltgt(W ′, A, f(G′)) can be computed as

∇BLtgt(W ′, A, f(G′)) = dG′

dB ∇G′Ltgt(W ′, A, f(G′))
= −ηg∇2

B,GLdg(G, B, D(tr))∇G′Ltgt(W ′, A, f(G′)) (15)

∇BLtgt(V ′, D(val)) can be computed as

∇BLtgt(V ′, D(val)) = dG′

dB
dV ′

dG′∇V ′Ltgt(V ′, D(val))
= ηgηv∇2

B,GLdg(G, B, D(tr))∇2
G′,V Ltgt(V, f(G′))∇V ′Ltgt(V ′, D(val)) (16)

The gradient descent updates of A and B in Eq.(10) and Eq.(11) can run one or more steps. After A and B are updated,
the one-step gradient-descent approximations (in Eq.(7), Eq.(8), Eq.(9)), which are functions of A and B, change with
A, B and need to be re-updated. Then, the gradients of A and B, which are functions of one-step gradient-descent
approximations, need to be re-calculated and are used to refresh A, B. In sum, the updates of A, B and the updates
of one-step gradient-descent approximations mutually depend on each other. These updates are performed iteratively
until convergence. Algorithm 1 shows the algorithm. Similar to (Liu et al., 2019), for matrix-vector multiplication
operations in Eq.(12), Eq.(15), and Eq.(16), we approximate them using finite differences to reduce computational
costs.

Algorithm 1 Optimization algorithm
While not converged
1. Update the approximation W ′ of W ∗(A) using Eq.(7)
2. Update the approximation G′ of G∗(B) using Eq.(8)
3. Update the approximation V ′ of V ∗(G∗(B)) using Eq.(9)
4. Update A using Eq.(10)
5. Update B using Eq.(11)

A.1 Discussion on optimization algorithm

The data generator G is initialized using a pretrained FQ-GAN generator, which is therefore able to generate realistic
images at the early stage in our algorithm. The auxiliary model V is initialized using a pretrained ResNet-18 model,
which has good classification performance on a validation set. If V ’s validation performance is improved after V is
finetuned on generated examples, it implies that the generated examples are “meaningful” since they can help to train
a better-performing classifier.

19



Under review as submission to TMLR

Figure 4: Loss curves of different variables in our method which is applied to Darts and searches for architectures on
Cifar-10. Batch size is 64 and initial learning rate is 0.025.

The generator has weights parameters denoted by G and hyperparameters denoted by B. For each training step, the
updates of W and weights G can be conducted in parallel since they are not directly dependent on each other, as can
be seen from Eq.(7) and Eq.(8). The generation of worst-case images is controlled by hyperparameters B. At each
training step, to generate worst-case images for the current learner W , we first update B by maximizing the validation
loss of W on generated data, using Eq.(11). Note that the update of B depends on W . Afterwards, the generator
with updated hyperparameters B can generate worst-case images for W since B was updated to explicitly increase the
validation loss of W on generated data.

A.2 Further discussion on computational efficiency

Optimizing the hyperparameters of the generative model is efficient. These hyperparameters are two continuous
scalars, which can be efficiently optimized using gradient-based methods. Before optimizing them in our method, we
initialized these hyperparameters using values reported in FQ-GAN, which further reduced convergence time.

A.3 Stability of our method

In this section, we demonstrate the stability of methods from three perspectives.

First, the objective function values in our optimization algorithm converge stably, as shown in Figure 4, 5,
and 6, where the loss curves are for optimization variables in our method which is applied to Darts and searches
for architectures on CIFAR-10. The corresponding optimization problem is:

minAmaxB Ltgt(W ∗(A), f(G∗(B), z2))− λLtgt(V ∗(G∗(B)), D(val))
s.t. V ∗(G∗(B)) = argminV Ltgt(V, f(G∗(B), z1))

G∗(B) = argmaxG minS Lgan(G, B, S, D(tr))
W ∗(A) = argminW Ltgt(A, W, D(tr))

(17)

At stage II, Lgan(G, B, S, D(tr)) is a GAN loss, S is the discriminator, G is the generator, and B are the hyperpa-
rameters of G. In this formulation, G and B are to be maximized and the rest of variables are to be minimized. From
Figure 4, 5, and 6, we can see that the loss values of these variables converge stably.

Second, the architectures searched by our method at increasing epochs achieve increasingly better accuracy on
test data and the test accuracy of these architectures convergences stably, as shown in Figure 7, where our method
(Ours-Darts) was applied to Darts and the search was performed on CIFAR-10. This measure of stability is proposed
in (Chen & Hsieh, 2020b; Bao et al., 2021; Xue et al., 2021).

20



Under review as submission to TMLR

Figure 5: For batch size of 128 and initial learning rate of 0.025. Loss curves of different variables in our method
which is applied to Darts and searches for architectures on Cifar-10.

Figure 6: For batch size of 64 and initial learning rate of 0.05. loss curves of different variables in our method which
is applied to Darts and searches for architectures on Cifar-10.

Third, the optimization in our method converges stably under different hyperparameter settings and does not
have high sensitivity to hyperparameters, as shown in Figure 4, 5, and 6. In Figure 4, batch size is 64 and initial
learning rate is 0.025. In Figure 5, batch size is 128 and initial learning rate is 0.025. In Figure 6, batch size is 64 and
initial learning rate is 0.05. Our method was applied to Darts and the search was performed on CIFAR-10. As can be
seen, under different hyperparameter values of batch size and initial learning rate, the losses in our optimization algo-
rithm converge stably. In our experiments reported in the main paper, the values of hyperparameters (including batch
size, learning rate, learning rate scheduler, etc.) mostly followed those used in baselines. Our algorithm converges
stably under these default hyperparameter values without tuning.

B Additional experimental results

B.1 Results on ImageNet-A, ImageNet-R, and ImageNet-Sketch

We also evaluated our method on ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), and
ImageNet-Sketch (Wang et al., 2019). The experimental settings are the same as those described in Section 4.2 in the

21



Under review as submission to TMLR

Figure 7: Test accuracy of architectures searched at different epochs. The experiments were performed on the search
space of DARTS and on CIFAR-10.

main paper. Our framework was applied to PCDARTS. Table 10, 11, and 12 show the results. As can be seen, our
method outperforms baselines, which further demonstrates the effectiveness of our method in searching for worst-case
robust neural architectures.

Table 10: Accuracy on ImageNet-A. Architectures are searched on ImageNet.

Method Accuracy

Pcdarts 6.2
SPCL-Pcdarts 6.6
DIHCL-Pcdarts 6.3
Ours-Pcdarts 10.1

Table 11: Top-1 error on ImageNet-R. Architectures are searched on ImageNet.

Method Accuracy

Pcdarts 62.3
SPCL-Pcdarts 62.7
DIHCL-Pcdarts 61.9
Ours-Pcdarts 59.5

Table 12: Top-1 accuracy on ImageNet-Sketch. Architectures are searched on ImageNet.

Method Accuracy

Pcdarts 12.8
SPCL-Pcdarts 12.9
DIHCL-Pcdarts 12.5
Ours-Pcdarts 16.1

B.2 Additional ablation studies

B.2.1 Perform ablation study by removing stages

One way of checking the effectiveness of each stage is to remove this stage from the framework and check how
performance is affected. In our framework, there are four stages. The first stage and four stage are needed to perform
architecture search. Therefore, they cannot be removed. Similar to other NAS methods, in the first stage, we train

22



Under review as submission to TMLR

weight parameters; in the fourth stage, we update architecture variables. Removing either of them will render the
architectures unable to be searched.

To remove the second stage, we can use a pretrained GAN to generate data instead of training a GAN end-to-end in
our framework. Please see the Pretain ablation study in Section B.2.2 for details.

To remove the third stage, we can simply set the tradeoff parameter λ in our framework to zero, which yields the
"adversarial only" ablation setting as studied in Section 4.6 in the main paper (please see that section for details).

B.2.2 Ablation on the generative model of the tester

For the generative model of the tester, we perform the following ablation studies. The studies are performed on
Ours-darts. The datasets are Cifar-100 and Cifar-10. The generative model is FQ-GAN (Zhao et al., 2020).

• Weights-only. We fix the meta parameters of FQ-GAN and only learn its weight parameters. The meta
parameters of FQ-GAN are set to the default values in (Zhao et al., 2020). For the generator G in FQ-GAN,
we learn it at the second stage. For the discriminator S, we learn it at the fourth stage. Let Lfqgan denote the
FQ-GAN loss. The corresponding formulation is:

minAmaxS Ltgt(W ∗(A), f(G∗(S), z2))− λLtgt(V ∗(G∗(S)), D(val))
s.t. V ∗(G∗(S)) = argminV Ltgt(V, f(G∗(S), z1))

G∗(S) = argminG Lfqgan(G, S, D(tr))
W ∗(A) = argminW Ltgt(A, W, D(tr))

(18)

• Pretrain. We use a fixed-weights FQ-GAN pretrained by (Zhao et al., 2020) instead of learning it in our
framework. We use the pretrained FQ-GAN to generate M = 100K image-label pairs {(pi, qi)}M

i=1 where qi

is a label and pi is the corresponding image, then select an adversarial validation set from the 100K pairs. For
each generated pair, we associate it with a selection variable s ∈ [0, 1]. The larger s is, the more likely that
the pair is selected. Let ℓtgt(W ∗(A), pi, qi) denote the loss defined on the pair (pi, qi). The corresponding
formulation is:

minAmax{si}M
i=1

1∑M

i=1
si

∑M
i=1 siℓtgt(W ∗(A), pi, qi) + λLtgt(W ∗(A), D(val))

s.t. W ∗(A) = argminW Ltgt(A, W, D(tr))
(19)

At the second stage, we learn the selection variables {si}M
i=1 by maximizing the learner’s validation loss∑M

i=1 siℓtgt(W ∗(A), pi, qi). We learn the architecture A by minimizing the loss
∑M

i=1 siℓtgt(W ∗(A), pi, qi)
on selected validation examples and minimizing the loss Ltgt(W ∗(A), D(val)) on the human-provided vali-
dation set D(val). λ is a tradeoff parameter. 1∑M

i=1
si

is a normalization term.

In our full method, both the meta parameters and weight parameters of FQ-GAN are learned. Table 13 shows the
results. We make two observations. First, our full method works better than Weights-only. The reason is: in Weights-
only, the values of meta parameters are fixed and these values may not be optimal for generating adversarial validation
sets. In contrast, our full method learns these meta parameters by maximizing the validation loss and the meta parame-
ters are optimized specifically for achieving the goal of generating high-fidelity adversarial validation sets. Second, our
full method and Weights-only work better than Pretrain. The reason is: in Pretrain, weights parameters are fixed and
they may not be optimal for generating adversarial validation sets. In our full method and Weights-only, the weights
parameters are learned specifically for achieving the goal of generating high-fidelity adversarial validation sets.

How meta parameters affect data generation. In our method, the meta parameters of the generative model FQ-
GAN include two hyperparameters: momentum decay λ and FQ weight α.

λ controls how much history is leveraged for dictionary construction. The larger λ is, the more history is leveraged.
The influence of λ on data generation performance is shown in Figure 4(c) in (Zhao et al., 2020). A value of λ in
the middle ground, which properly balances history and current statistics, yields the lowest FID score. The IS score
remains roughly the same when λ increases.

23



Under review as submission to TMLR

Table 13: Test errors on CIFAR-100 and CIFAR-10.
Method Cifar-100 Cifar-10

Weights-only 19.42±0.21 2.71±0.02
Pretrain 19.77±0.15 2.74±0.03
Our full method 18.55±0.09 2.68±0.03

α is the tradeoff weight associated with the quantization loss in (Zhao et al., 2020). The larger α is, the more emphasis
on quantization. The influence of α on data generation performance is shown in Figure 4(d) in (Zhao et al., 2020). As
α increases, FID decreases and IS remains roughly the same.

B.2.3 Training the generator from scratch

We trained the generator from scratch (within our multi-level optimization based method). Table 14 compares 1)
Scratch: train the generator from scratch, and 2) Pretrain: first pretrain the generator, then finetune it within our
method. The experiments were performed by applying these methods to Darts2nd and Pdarts. As can be seen, Scratch
and Pretrain achieve similar performance, which demonstrates that the generator is not dominated by pretraining and
finetuning plays a significant role.

Table 14: Experimental results for training the generator from scratch.

Method Error on Cifar100 Error on Cifar10

Scratch + Darts2nd 18.59±0.11 2.70±0.04
Pretrain + Darts2nd 18.55±0.09 2.68±0.03

Scratch +Pdarts 16.18±0.06 2.48±0.05
Pretrain + Pdarts 16.17±0.08 2.48±0.04

B.2.4 Sensitivity analysis of hyperparameters

Figure 8 and Figure 9 show how average classification error (%) on CIFAR-10-C (left) and mean corruption error
(mCE, %) on ImageNet-C change with λ and γ. For experiments on CIFAR-10-C, our framework was applied to
DARTS2nd. For experiments on Image-C, our framework was applied to PCDARTS. As can be seen, values of
λ and γ in the middle ground achieve the best performance. From the tester’s perspective, λ explores a tradeoff
between maximizing the learner’s validation loss and making generated validation examples meaningful. Increasing
λ encourages the tester to generate validation examples that are more meaningful. Validation examples with more
meaningfulness can more reliably evaluate the learner. However, if λ is too large, the validation examples are biased
to be more meaningful but are less effective in increasing the learner’s validation loss. Consequently, the generated
validation examples may not be able to effectively measure the learner’s worst-case performance and cannot drive the
learner to improve its worst-case performance.

B.3 Experiments on adversarial attack

We perform an evaluation of our method against adversarial attacks. Two datasets were utilized: CIFAR-10 and
ImageNet. Our approach is compared with several baseline methods: RobNet (Guo et al., 2020), SDARTS-ADV (Chen
& Hsieh, 2020b), AND PC-DARTS-ADV (Chen & Hsieh, 2020b). The robustness of our method is tested against
three well-known untargeted white-box adversarial attacks: the fast gradient sign method (FGSM) (Goodfellow et al.,
2014b), projected gradient descent (PGD) (Madry et al., 2017), and Carlini & Wagner (C&W) attack (Carlini &
Wagner, 2017).

Our method was applied to PC-DARTS. The number of training epochs was set to 50. We used SGD to optimize
the network weights, with a learning rate of 0.1, batch size of 256, momentum of 0.9, and weight decay of 3e-4.
Architecture variables were optimized using the Adam optimizer with a static learning rate of 6e-4, β1 of 0.5, β2 of
0.999, and a weight decay of 3e-4. The final architecture was obtained by stacking 20 copies of the searched cell,

24



Under review as submission to TMLR

Figure 8: How average classification error (%) on CIFAR-10-C (left) and mean corruption error (mCE, %) on
ImageNet-C change with λ.

Figure 9: How average classification error (%) on CIFAR-10-C (left) and mean corruption error (mCE, %) on
ImageNet-C change with γ.

which was then trained from scratch for 600 epochs, with a batch size of 128, an initial learning rate of 0.025, norm
gradient clipping of 5, drop-path rate of 0.3, and 36 channels.

Table 15 and 16 show the results. As can be seen, our method is more robust to adversarial attacks, due to its
mechanism of optimizing architecture variables by minimizing the loss on generated adversarial validation sets.

Table 15: Mean accuracy and standard deviation of five runs under various attacks on CIFAR-10. In PGD (n), n
denotes the number of iterations.

Method PGD (10) PGD (20) PGD (100) FGSM C&W
RobNet-large (Guo et al., 2020) 49.49 49.44 49.24 54.98 47.19
RobNet-free (Guo et al., 2020) 52.80 52.74 52.57 58.38 46.95
SDARTS-ADV (Chen & Hsieh, 2020b) 56.94 ± 0.02 56.90 ± 0.04 56.77 ± 0.17 63.84 ± 0.02 42.67 ± 0.09
PC-DARTS-ADV (Chen & Hsieh, 2020b) 57.15 ± 0.02 57.11 ± 0.05 56.83 ± 0.21 65.29 ± 0.03 42.58 ± 0.04
Ours-pcdarts 59.07 ± 0.04 59.14 ± 0.08 59.72 ± 0.11 68.30 ± 0.07 51.27 ± 0.09

B.4 Evaluate the transferability of searched architectures to STL-10

In this section, we evaluate the transferability of searched architectures to the STL-10 (Coates et al., 2011) dataset.
Darts2nd-Cifar10 denotes an architecture searched by Darts2nd on Cifar-10. Similar meanings hold for other nota-
tions in such a format. Given a searched architecture A, its transferability to STL-10 is investigated by performing
architecture evaluation of A on STL-10. Table 17 shows the accuracy on the test set of STL-10. Our methods achieve

25



Under review as submission to TMLR

Table 16: Mean accuracy and standard deviation of five runs under various attacks on ImageNet. In PGD (n), n
denotes the number of iterations.

Method PGD (100) FGSM C&W
RobNet-large (Guo et al., 2020) 37.14 39.74 25.73
SDARTS-ADV (Chen & Hsieh, 2020b) 46.54 ± 0.13 48.09 ± 0.07 36.86 ± 0.10
PC-DARTS-ADV (Chen & Hsieh, 2020b) 46.59 ± 0.15 48.25 ± 0.08 36.69 ± 0.09
Ours-pcdarts 47.82 ± 0.11 50.66 ± 0.10 40.37 ± 0.14

better accuracy than baselines, which demonstrates that training on synthetic worst-case examples does not sacrifice
transferability. These results are consistent with the transferability results on ImageNet which are reported in Table 23,
where the architectures searched by our method on Cifar10/100 have better transferability to ImageNet than baselines.
A possible reason is: our method searches for architectures that are robust against various challenging worst-case ex-
amples, which helps to preserve the transferability of these architectures to other datasets if we consider examples in
other datasets as a special type of challenging examples (they are challenging because they are out of the data domain
where architectures are searched).

Table 17: Test accuracy on STL-10.

Architecture Accuracy (%)

Darts2nd-Cifar10 86.5
Ours-Darts2nd-Cifar10 88.9
Darts2nd-Cifar100 86.1
Ours-Darts2nd-Cifar100 88.6
Pcdarts-Cifar10 87.2
Ours-Pcdarts-Cifar10 90.4

B.5 Additional experimental results for Table 1 and 5 in the main paper

Table 18 and 19 shows additional experimental results for Table 1 and 5 in the main paper.

Table 18: Results on CIFAR-100, including classification error (%) on the entire test set, number of parameters
(millions) in the searched architecture, and search cost (GPU days). Ours-DARTS+ denotes that our method is applied
to the search space of DARTS+. Similar meanings hold for other notations in such a format. DARTS-1st and DARTS-
2nd denotes that first order and second order approximation is used in DARTS. * means the results are taken from
DARTS− (Chu et al., 2020a). † means we re-ran this method for 10 times. ∆ means the algorithm ran for 600 epochs
instead of 2000 epochs in the architecture evaluation stage, to ensure a fair comparison with other methods (where the
epoch number is 600). The search cost is measured by GPU days on a Tesla v100.

Method Error(%) Param(M) Cost

*DARTS− (Chu et al., 2020a) 17.51±0.25 3.3 0.4
†DARTS− (Chu et al., 2020a) 18.97±0.16 3.1 0.4

Ours-DARTS− 18.29±0.10 3.3 0.7
∆DARTS+ (Liang et al., 2019) 17.11±0.43 3.8 0.2

Ours-DARTS+ 16.57±0.11 3.7 0.2

B.6 Evaluation of generated images

We perform an automatic evaluation of images generated by our method Ours-darts2nd trained on CIFAR-100, using
metrics including inception score (Salimans et al., 2016) and Frechet inception distance (FID) (Heusel et al., 2017).
Table 20 shows the results. Our method outperforms vanilla FQ-GAN and BigGAN. The reason is: the images

26



Under review as submission to TMLR

Table 19: Results on CIFAR-10. * means the results are taken from DARTS− (Chu et al., 2020a), NoisyDARTS (Chu
et al., 2020b), and DrNAS (Chen et al., 2020). The rest notations are the same as those in Table 5 in the main paper.

Method Error(%) Param(M) Cost

*DARTS-1st (Liu et al., 2019) 3.00±0.14 3.3 0.4
Ours-DARTS1st 2.83±0.08 2.6 0.7

*DARTS− (Chu et al., 2020a) 2.59±0.08 3.5 0.4
†DARTS− (Chu et al., 2020a) 2.97±0.04 3.3 0.4

Ours-DARTS− 2.77±0.05 3.2 0.4
∆DARTS+ (Liang et al., 2019) 2.83±0.05 3.7 0.4

Ours-DARTS+ 2.68±0.08 3.7 0.4

generated by our method are explicitly encouraged to be “meaningful”. They are used to train an auxiliary model,
which is then evaluated on a human-labeled validation set. If generated images have poor quality, the auxiliary model
trained by them will perform poorly on the human-labeled validation set. Our framework prevents this from happening
by explicitly minimizing the loss on the human-labeled validation set. Such a mechanism is lacking in vanilla FQ-
GAN and BigGAN. Figure 2 in the main paper shows some randomly sampled images generated by our method. As
can be seen, these images are realistic.

Table 20: Automatic evaluation of generated CIFAR-100 images.

Method Inception↑ FID↓
BigGAN 9.36±0.10 9.01±0.44
FQ-GAN 9.59±0.04 7.42±0.07
Ours 9.75±0.03 6.01±0.09

B.7 Significance test results

To check whether the performance of our method is significantly better than that of baselines, we perform statistical
significance tests between the result of our method and the result of the corresponding baseline, using double-sided
T-test. We use the function in the python package “scipy.stats.ttest_1samp” and report the average results over 10
different runs. Table 21 and 22 show the results.

Table 21: Significance test results on CIFAR-100
Our method Baseline p-value
Ours-darts2nd DIHCL-darts2nd 5.61e-3
Ours-darts2nd SPCL-darts2nd 6.63e-5
Ours-darts2nd Darts2nd 6.15e-7
Ours-pcdarts DIHCL-pcdarts 2.42e-5
Ours-pcdarts SPCL-pcdarts 9.09e-5
Ours-pcdarts Pcdarts 5.33e-5
Ours-pdarts DIHCL-pdarts 8.85e-7
Ours-pdarts SPCL-pdarts 2.36e-6
Ours-pdarts Pdarts 1.46e-6
Ours-prdarts DIHCL-prdarts 1.20e-4
Ours-prdarts SPCL-prdarts 2.31e-3
Ours-prdarts Prdarts 6.58e-3

From these two tables, we can see that the p-values are small between baselines methods and our methods, which
demonstrate that the errors of our methods are significantly lower than those of baselines.

27



Under review as submission to TMLR

Table 22: Significance test results on CIFAR-10
Our method Baseline p-value
Ours-darts2nd DIHCL-darts2nd 5.37e-8
Ours-darts2nd SPCL-darts2nd 6.61e-7
Ours-darts2nd Darts2nd 1.85e-6
Ours-pcdarts DIHCL-pcdarts 8.05e-6
Ours-pcdarts SPCL-pcdarts 5.59e-4
Ours-pcdarts Pcdarts 9.72e-4
Ours-pdarts DIHCL-pdarts 7.04e-9
Ours-pdarts SPCL-pdarts 3.55e-7
Ours-pdarts Pdarts 1.69e-6
Ours-prdarts DIHCL-prdarts 6.29e-5
Ours-prdarts SPCL-prdarts 2.50e-4
Ours-prdarts Prdarts 7.81e-3

B.8 Model parameters, search costs, and FLOPs on ImageNet

Table 23 shows the number of model parameters, search costs, and FLOPs on ImageNet. The parameter numbers,
search costs, and FLOPs of our methods are close to those in differentiable baselines.

C Additional discussions

C.1 Difference between the discriminator and the auxiliary model

The discriminator D in the generative model distinguishes whether an example is real or fake. The auxiliary model V
is utilized to evaluate whether generated data can train a well-performing classifier. D is trained on generated data and
real data by solving a binary classification problem (classifying whether an example is generated or real). V is trained
on generated data by solving a multi-class classification problem (e.g., classifying a generated example into one of the
10 classes in CIFAR-10 or one of the 100 classes in CIFAR-100).

C.2 Discussion on bi-level optimization and GAN

GAN has been formulated as a bi-level optimization (BLO) problem in (Pfau & Vinyals, 2016). In the lower-level
optimization problem, the optimization variable is the generator and the objective function is the probability that a
generated example is classified by the discriminator as being a real example. The objective function is to be maximized
w.r.t the generator. The discriminator is tentatively fixed at the lower-level. In the upper-level optimization problem, the
optimization variable is the discriminator and the objective function is the regular GAN loss, which is a cross-entropy
loss for distinguishing real examples from generated examples. The optimally trained generator at the lower-level,
which is a function of the discriminator, is plugged into the cross-entropy loss at the upper-level. Please refer to
Section 2.1 in (Pfau & Vinyals, 2016) for mathematical details.

To apply our method to GAN, we can set the learner to be a GAN model, where W is the generator and A is the
discriminator. The optimization problem at stage I is the same as the lower-level optimization problem in the BLO
formulation of GAN. The first loss term at stage IV is the same as the upper-level loss in the BLO formulation of
GAN.

D Additional experimental details

D.1 Hyperparameter tuning

Setting hyperparameters for our algorithm is easy and light-weight. Our algorithm does not need extensive hyperpa-
rameter tuning. In our training algorithm, for hyperparameters such as learning rate, we simply followed their default

28



Under review as submission to TMLR

Table 23: Results on ImageNet, including top-1 and top-5 classification errors on the test set, number of weight
parameters (millions), search cost (GPU days), and FLOPs (M). * means the results are taken from DARTS− (Chu
et al., 2020a) and DrNAS (Chen et al., 2020). The rest notations are the same as those in Table 5 in the main paper.
The first row block shows networks designed by humans manually. The second row block shows non-gradient based
search methods. The third block shows gradient-based methods. ‡ means the results following the hyperparameters
selected for CIFAR10/100. The hyperparameter for CIFAR100 is used when directly searching on ImageNet.

Method Top-1 Top-5 Param Cost FLOPs
Error (%) Error (%) (M) (GPU days) (M)

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 - 1448
*MobileNet (Howard et al., 2017) 29.4 10.5 4.2 - 569
*ShuffleNet 2× (v1) (Zhang et al., 2018) 26.4 10.2 5.4 - 524
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6 7.4 - 299
*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800 564
*PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225 588
*MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 1667 388
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150 570
*SNAS-CIFAR10 (Xie et al., 2019) 27.3 9.2 4.3 1.5 522
*BayesNAS-CIFAR10 (Zhou et al., 2019) 26.5 8.9 3.9 0.2 -
*PARSEC-CIFAR10 (Casale et al., 2019) 26.0 8.4 5.6 1.0 -
*GDAS-CIFAR10 (Dong & Yang, 2019) 26.0 8.5 5.3 0.2 581
*DSNAS-ImageNet (Hu et al., 2020) 25.7 8.1 - - 324
*SDARTS-ADV-CIFAR10 (Chen & Hsieh, 2020a) 25.2 7.8 5.4 1.3 -
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1 586
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3 465
*FairDARTS-CIFAR10 (Chu et al., 2019) 24.9 7.5 4.8 0.4 386
*FairDARTS-ImageNet (Chu et al., 2019) 24.4 7.4 4.3 3.0 440
*DrNAS-ImageNet (Chen et al., 2020) 24.2 7.3 5.2 3.9 -
*DARTS+-ImageNet (Liang et al., 2019) 23.9 7.4 5.1 6.8 582
*DARTS−-ImageNet (Chu et al., 2020a) 23.8 7.0 4.9 4.5 467
*DARTS+-CIFAR100 (Liang et al., 2019) 23.7 7.2 5.1 0.2 591
*DARTS2nd-CIFAR10 (Liu et al., 2019) 26.7 8.7 4.7 4.0 574

Ours-DARTS2nd-CIFAR10 25.8 8.2 4.7 3.9 554
*P-DARTS (CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9 0.3 557
‡Ours-PDARTS-CIFAR10 24.1 7.1 4.9 0.3 541
*P-DARTS (CIFAR100) (Chen et al., 2019) 24.7 7.5 5.1 0.3 577
‡Ours-PDARTS-CIFAR100 24.0 7.1 5.1 0.3 595
*PC-DARTS-ImageNet (Xu et al., 2020) 24.2 7.3 5.3 3.8 597
‡Ours-PCDARTS-ImageNet 23.5 6.7 5.2 3.7 569

values given in the DARTS baseline without tuning them. For example, the learning rate of weight parameters (includ-
ing W , G, V ) was simply set to the learning rate of weight parameters in DARTS; the learning rate of meta parameters
(including A and B) was simply set to the learning rate of architecture variables in DARTS. As shown in Figure 4, our
algorithm converged very well under these default hyperparameter values. Besides, our algorithm is not sensitive to
these hyperparameters and converges stably under different hyperparameter values, as shown in Figures 4, 5, and 6.

To tune the hyperparameter λ, we randomly sample 2.5K data from the 25K training set and sample 2.5K data from the
25K validation set. Then we use the 5K sampled data as a hyperparameter tuning set. λ is tuned in {0.1, 0.5, 1, 2, 3}.
For each configuration of λ, we use the remaining 22.5K training data and 22.5K validation data to perform archi-
tecture search and use their combination to perform architecture evaluation (retraining a larger stacked network from
scratch). Then we measure the performance of the stacked network on the 5K sampled data. λ value yielding the best
performance on the 5K sampled data is selected. For other hyperparameters, they mostly follow those in DARTS (Liu

29



Under review as submission to TMLR

et al., 2019), P-DARTS (Chen et al., 2019), PC-DARTS (Xu et al., 2020), and PR-DARTS (Zhou et al., 2020a). The
final selected hyperparameters are in Section E.

To obtain the best architecture during architecture evaluation, we split the 50k training set of CIFAR-10/100 to a 5k
validation set for performance evaluation and a 45k set for training. The test set is never used for architecture selection
or training.

D.2 Experimental details of neural architecture search

D.2.1 DARTS2nd based experiments

For methods based on DARTS2nd, including Ours-darts2nd, DIHCL-darts2nd, SPCL-darts2nd, the experimental set-
tings are similar. In search spaces of DARTS, the candidate operations include: 3×3 and 5×5 separable convolutions,
3×3 and 5×5 dilated separable convolutions, 3×3 max pooling, 3×3 average pooling, identity, and zero. The stride
of all operations is set to 1. The convolved feature maps are padded to preserve their spatial resolution. The order for
convolutional operations is ReLU-Conv-BN. Each separable convolution is applied twice. The convolutional cell has
7 nodes. The output node is the depthwise concatenation of all intermediate nodes, excluding the input nodes. The
first and second nodes of cell k are equal to the outputs of cell k− 2 and cell k− 1, respectively. 1×1 convolutions are
inserted when necessary. Reduction cells are located at the 1/3 and 2/3 of the total depth of the network. In reduction
cells, operations adjacent to the input nodes have a stride of 2.

For CIFAR-10 and CIFAR-100, during architecture search, the learner’s network is a stack of 8 cells, with the initial
channel number set to 16. Each cell contains 7 nodes. The search is performed for 50 epochs, with a batch size of
64. The learner’s network weights W were optimized using SGD with a learning rate of 0.025, a momentum of 0.9,
and a weight decay of 0.0003. The architecture variables A were optimized using Adam (Kingma & Ba, 2014) with
a learning rate of 0.001, a momentum of (0.5, 0.999), and a weight decay of 0.001. The learning rate was scheduled
with cosine scheduling. The architecture variables were initialized with zero initialization.

During architecture evaluation on CIFAR-10 and CIFRA-100, 20 copies of the searched cell are stacked to form the
learner’s network, with the initial channel number set to 36. The network is trained for 600 epochs with a batch size of
96 (for both CIFAR-10 and CIFAR-100). The SGD optimizer is used with an initial learning rate of 0.025 (annealed
down to zero following a cosine schedule without restart), a momentum of 0.9, a weight decay of 3e− 4, and a norm
gradient clipping at 5. Drop-path with a rate of 0.3 as well as cutout is also used for regularization. Cutout, path
dropout of probability 0.2 and auxiliary towers with weight 0.4 were applied.

For architecture evaluation on ImageNet, following (Liu et al., 2019), we take the architecture searched on CIFAR-10
and evaluate it on ImageNet. 14 cells (searched on CIFAR-10) are stacked to form a large network and the initial
channel number was set as 48. The network is trained for 250 epochs with a batch size of 1024. Each experiment is
repeated for ten times with the random seed to be from 1 to 10. We report the mean and standard deviation of results
obtained from the 10 runs. For ImageNet experiments, we apply the mobile setting where the input image size is fixed
to be 224 × 224 and the number of multi-add operations does not exceed 600M in the testing stage.

D.2.2 PC-DARTS based experiments

For methods based on PC-DARTS, including Ours-pcdarts, DIHCL-pcdarts, SPCL-pcdarts, the experimental settings
are similar. The search space of PC-DARTS follows that of DARTS. For architecture search on CIFAR-100 and
CIFAR-10, the hyperparameter K was set to 4. The network is a stack of 8 cells. Each cell contains 6 nodes. Initial
channel number is set to 16. The architecture variables are trained using the Adam optimizer for 50 epochs. The
learning rate is set to 6e− 4, without decay. The weight decay is set to 1e− 3. The momentum is set to (0.5, 0.999).
The network weight parameters are trained using SGD for 50 epochs. The initial learning rate is set to 0.1. Cosine
scheduling is used to decay the learning rate, down to 0 without restart. The momentum is set to 0.9. The weight
decay is set to 3e − 4. The batch size is set to 256. Warm-up is utilized: in the first 15 epochs, architecture variables
are frozen and only network weights are optimized.

The settings for architecture evaluation on CIFAR-100 and CIFAR-10 follow those of DARTS. 18 normal cells and
2 reduction cells are stacked into a large network. The initial channel number is set to 36. The stacked network is
trained from scratch using SGD for 600 epochs, with batch size 128, initial learning rate 0.025, momentum 0.9, weight

30



Under review as submission to TMLR

decay 3e− 4, norm gradient clipping 5, drop-path rate 0.3, and cutout. The learning rate is decayed to 0 using cosine
scheduling without restart.

We combine our method and PC-DARTS to directly search for architectures on ImageNet. The stacked network starts
with three convolution layers which reduce the input image resolution from 224×224 to 28×28, using stride 2. After
the three convolution layers, 6 normal cells and 2 reduction cells are stacked. Each cell consists of N = 6 nodes.
The sub-sampling rate was set to 0.5. The network was trained for 50 epochs. Architecture variables are trained using
Adam. The learning rate is fixed to 6e − 3. The weight decay is set to 1e − 3. The momentum is set to (0.5, 0.999).
In the first 35 epochs, architecture variables are frozen. Network weight parameters are trained using SGD. The initial
learning rate is set to 0.5. It is decayed to 0 using cosine scheduling without restart. Momentum is set to 0.9. Weight
decay is set to 3e− 5. The batch-size is set to 1024. Epoch number is set to 250. Eight Tesla V100 GPUs were used.

For architecture evaluation on ImageNet, the stacked network starts with three convolution layers which reduce the
input image resolution from 224×224 to 28×28, using stride 2. After the three convolution layers, 12 normal cells
and 2 reduction cells are stacked. Initial channel number is set to 48. The network is trained from scratch using SGD
for 250 epochs, with batch size 1024, initial learning rate 0.5, weight decay 3e− 5, and momentum 0.9. For the first 5
epochs, learning rate warm-up is used. The learning rate is linearly decayed to 0. Label smoothing and auxiliary loss
tower is used.

D.2.3 P-DARTS based experiments

The search process has three stages. At the first stage, the search space and stacked network in P-DARTS are mostly
the same as DARTS. The only difference is the number of cells in the stacked network in P-DARTS is set to 5. At the
second stage, the number of cells in the stacked network is 11. At the third stage, the cell number is 17. At stage 1, 2,
3, the initial Dropout probability on skip-connect is 0, 0.4, and 0.7 for CIFAR-10, is 0.1, 0.2, and 0.3 for CIFAR-100;
the size of operation space is 8, 5, 3, respectively. The final searched cell is limited to have 2 skip-connect operations
at maximum. At each stage, the network is trained using the Adam optimizer for 25 epochs. The batch size is set
to 96. The learning rate is set to 6e-4. Weight decay is set to 1e-3. Momentum is set to (0.5, 0.999). In the first 10
epochs, architecture variables are frozen and only network weights are optimized.

For architecture evaluation on CIFAR-100 and CIFAR-10, the stacked network consists of 20 cells. The initial channel
number is set to 36. The network is trained from scratch using SGD. The epoch number is set to 600. The batch size is
set to 128. The initial learning rate is set to 0.025. The learning rate is decayed to 0 using cosine scheduling. Weight
decay is set to 3e-4 for CIFAR-10 and 5e-4 for CIFAR-100. Momentum is set to 0.9. Drop-path probability is set to
0.3. Cutout regularization length is set to 16. Auxiliary towers of weight 0.4 are used.

For architecture evaluation on ImageNet, the settings are similar to those of DARTS. The network consists of 14 cells.
The initial channel number is set to 48. The network is trained from scratch using SGD for 250 epochs. Batch size
is set to 1024. Initial learning rate is set to 0.5. The learning rate is linearly decayed after each epoch. In the first 5
epochs, learning rate warmup is used. The momentum is set to 0.9. The weight decay is set to 3e−5. Label smoothing
and auxiliary loss tower are used during training. The network was trained on 8 Nvidia Tesla V100 GPUs.

D.2.4 PR-DARTS based experiments

The operations include: 3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions, 3×3
average pooling and 3×3 max pooling, zero, and skip connection. The stacked network consists of k cells. The k/3-
and 2k/3-th cells are reduction cells. In reduction cells, all operations have a stride of two. The rest cells are normal
cells. Operations in normal cells have a stride of one. Cells of the same type (either reduction or normal) have the
same architecture. The inputs of each cell are the outputs of two previous cells. Each cell contains four intermediate
nodes and one output node. The output node is a concatenation of all intermediate nodes.

For architecture search on CIFAR-100 and CIFAR-10, the stacked network consists of 8 cells. The initial channel
number is set to 16. In PR-DARTS, λ1, λ2, and λ3 are set to 0.01, 0.005, and 0.005 respectively. The network was
trained for 200 epochs. The mini-batch size is set to 128. Architecture variables are trained using Adam. The learning
rate is set to 3e − 4. The weight decay is set to 1e − 3. Network weights are trained using SGD. The initial learning
rate is set to 0.025. The momentum is set to 0.9. The weight decay is set to 3e − 4. The learning rate is decayed to
0 using cosine scheduling. For acceleration, per iteration, only two operations on each edge are randomly selected to

31



Under review as submission to TMLR

update. The temperature τ is set to 10 and is linearly reduced to 0.1; a = −0.1 and b = 1.1. Pruning on each node is
conducted by comparing the gate activation probabilities of all non-zero operations collected from all previous nodes
and retaining top two operations.

For architecture evaluation on CIFAR10 and CIFAR100, the stacked network consists of 18 normal cells and 2 reduc-
tion cells. The initial channel number is set to 36. The network is trained from scratch using SGD. The mini-batch
size is set to 128. The epoch number is set to 600. The initial learning rate is set to 0.025. The momentum is set to
0.9. The weight decay is set to 3e− 4. The gradient norm clipping is set to 5. The drop-path probability is set to 0.2.
The cutout length is set to 16. The learning rate is decayed to 0 using cosine scheduling.

For architecture evaluation on ImageNet, the input images are resized to 224×224. The stacked network consists of 3
convolutional layers, 12 normal cells, and 2 reduction cells. The channel number is set to 48. The network is trained
using SGD for 250 epochs. The batch size is set to 128. The learning rate is set to 0.025. The momentum is set to 0.9.
The weight decay is set to 3e− 4. The gradient norm clipping is set to 5. The learning rate is decayed to 0 via cosine
scheduling.

D.2.5 Implementation details

We use PyTorch to implement all models. The version of Torch is 1.4.0 (or above). We build our method upon official
python packages for different differentiable search approaches, such as “DARTS1”, “P-DARTS2” and “PC-DARTS3”.

D.3 Experimental details of Figure 1(left) in the main paper

On the 25K training dataset of CIFAR-100, we train an ResNet-18 model. Hyperparameters are the same as those
in (He et al., 2016a). Given the validation examples generated at epoch 10, 20, 30, 40, 50, we apply the trained
ResNet-18 to these examples and measure the averaged errors (normalized by the number of examples), which are
shown in Figure 1(left) in the main paper.

D.4 Experimental details of Table 1 in the main paper

We asked three undergraduate students to select 2000 corner-case examples from the 10K test set of CIFAR-100 (20
examples per class). Given a randomly sampled image, the undergraduates were asked to label whether the class label
of this image is difficult to recognize. If at least two undergraduates think this image is difficult to recognize, the
image is labeled as a corner-case one. This procedure was repeated until 20 corner-case examples were selected for
each class. Then we measure prediction errors of different methods on the 2000 corner-case examples. The results are
given in Table 1 in the main paper.

D.5 Experimental details on ablation studies

The formulation of “adversarial only” is:

minAmaxB Ltgt(W ∗(A), f(G∗(B), z2))

s.t. G∗(B) = argminG Ldg(G, B, D(tr))

W ∗(A) = argminW Ltgt(A, W, D(tr))

(20)

D.6 Experimental details of evaluating robustness against overfitting

The four search spaces S1− S4 are designed by (Zela et al., 2020).

• S1: In this search space, each edge has only two candidate operations. To identify these operations, operations
that have the least importance in the original search space of DARTS are iteratively removed.

1https://github.com/quark0/darts
2https://github.com/chenxin061/pdarts
3https://github.com/yuhuixu1993/PC-DARTS/

32



Under review as submission to TMLR

• S2: For each edge, the candidate operations are 3×3 SepConv and SkipConnect.

• S3: For each edge, the candidate operations are: 3×3 SepConv, SkipConnect, and Zero.

• S4: For each edge, the candidate operations are: 3×3 SepConv and Noise. In the Noise operation, every value
from the input feature map is replaced with random variables sampled from univariate Gaussian distribution.

D.7 Instructions given to participants in human studies

Figure 10 shows the screenshot of instructions given to participants in human studies. We asked three undergraduates
to label whether an image is difficult to recognize. Majority vote is taken to determine the final label (regarding
whether an image is difficult to recognize).

Figure 10: Screenshot of instructions given to participants in human studies.

E Full lists of hyperparameter settings

Table 25 to Table 32 show the hyperparameter settings used in different experiments in the search phase. Table 33 to
Table 36 show the hyperparameter settings used in different experiments in the evaluation phase. Notations used in
these tables are given in Table 24.

Table 24: Notations in our method
Notation Meaning
A Meta parameter of the learner
W Network weights of the learner
B Meta parameter of the data generation model
G Network weights of the data generation model
V Network weights of the auxiliary model
D(tr) Training data
D(val) Validation data

33



Under review as submission to TMLR

Table 25: Hyperparameter settings in Ours-DARTS and Ours-DARTS+ on CIFAR-10/100 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.025

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.001

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A,B 0.0003
Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W 5

Batch size 64
Epochs 50

λ 1

Table 26: Hyperparameter settings in Ours-DARTS− on CIFAR-10/100 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.025

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.001

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A,B 0.0003
Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W 5

Batch size 64
Epochs 50

λ 1
β for auxiliary skip connection 1

34



Under review as submission to TMLR

Table 27: Hyperparameter settings in Ours-P-DARTS on CIFAR-10 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.025

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.0

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A 0.0006
Learning rate for B 0.0003

Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W,G,V,A 5

Batch size 96
Epochs 25

Add layers [6,12]
Dropout rate [0.1,0.4,0.7]

λ 0.5

Table 28: Hyperparameter settings in Ours-PDARTS on CIFAR-100 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.025

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.0

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A 0.0006
Learning rate for B 0.0003

Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W,G,V,A 5

Batch size 96
Epochs 25

Add layers [6,12]
Dropout rate [0.1,0.4,0.7]

λ 1

35



Under review as submission to TMLR

Table 29: Hyperparameter settings in Ours-PCDARTS on CIFAR-10 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.1

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.0

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A 0.0006
Learning rate for B 0.0003

Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W 5

Batch size 256
Epochs 50

λ 3

Table 30: Hyperparameter settings in Ours-PCDARTS on CIFAR-100 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.1

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.0

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A 0.0006
Learning rate for B 0.0003

Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W 5

Batch size 256
Epochs 50

λ 0.1

36



Under review as submission to TMLR

Table 31: Hyperparameter settings in Ours-PCDARTS on ImageNet during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.5

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.0

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A,B 0.006
Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W,G,V 5

Batch size 768
Epochs 50

λ 1

Table 32: Hyperparameter settings in Ours-PRDARTS on CIFAR-10/100 during architecture search
Name Value

Optimizer for W,G,V SGD
Initial learning rate for W,G,V 0.025

Learning rate scheduler for W,G,V Cosine decay
Minimum learning rate for W,G,V 0.001

Momentum for W,G,V 0.9
Weight decay for W,G,V 0.0003

Optimizer for A,B Adam
Learning rate for A,B 0.0003
Weight decay for A,B 0.001
Initial channels for W 16

Layers for W 8
Gradient Clip for W 5

Batch size 64
Epochs 50

λ 1

37



Under review as submission to TMLR

Table 33: Hyperparameter settings in Ours-DARTS, Ours-DARTS+ and Ours-DARTS− on CIFAR-10/100 during
architecture evaluation

Name Value
Optimizer SGD

Initial learning rate 0.025
Learning rate scheduler Cosine decay

Momentum 0.9
Weight decay 0.0003

Initial channels 36
Layers 20

Auxiliary weight 0.4
Cutout length 16

Drop path prob 0.2
Gradient Clip 5

Batch size 96
Epochs 600

Table 34: Hyperparameter settings in Ours-PDARTS and Ours-PCDARTS on CIFAR-10/100 during architecture eval-
uation

Name Value
Optimizer SGD

Initial learning rate 0.025
Learning rate scheduler Cosine decay

Momentum 0.9
Weight decay 0.0003

Initial channels 36
Layers 20

Auxiliary weight 0.4
Cutout length 16

Drop path prob 0.2
Gradient Clip 5

Batch size 128
Epochs 600

Table 35: Hyperparameter settings in Ours-PRDARTS on CIFAR-10/100 during architecture evaluation
Name Value

Optimizer SGD
Initial learning rate 0.025

Learning rate scheduler Cosine decay
Momentum 0.9

Weight decay 0.0003
Initial channels 36

Layers 20
Auxiliary weight 0.4

Cutout length 16
Drop path prob 0.2
Gradient Clip 5

Batch size 96
Epochs 600

38



Under review as submission to TMLR

Table 36: Hyperparameter settings on ImageNet during architecture evaluation
Name Value

Optimizer SGD
Initial learning rate 0.5

Learning rate scheduler Cosine decay
Momentum 0.9

Weight decay 0.00003
Initial channels 48

Layers 14
Auxiliary weight 0.4

Label smooth 0.1
Drop path prob 0.0
Gradient Clip 5

Batch size 1024
Epochs 250

39



Under review as submission to TMLR

F Visualization of searched architectures

We visualize the architectures searched by our methods in Figure 11 to Figure 19.

Figure 11: Architectures searched by Ours-DARTS2nd on CIFAR-10.

Figure 12: Architectures searched by OUrs-DARTS2nd on CIFAR-100.

c_{k-2}

0

sep_conv_3x3

1

skip_connect
2

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3
3sep_conv_3x3

skip_connect

c_{k}

sep_conv_5x5
c_{k-2}

0

avg_pool_3x3 1
avg_pool_3x3

2
avg_pool_3x3 3

avg_pool_3x3

c_{k-1}

skip_connect

dil_conv_3x3

sep_conv_5x5

c_{k}

sep_conv_3x3

Figure 13: Architectures searched by Ours-PDARTS on CIFAR-10.

40



Under review as submission to TMLR

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

max_pool_3x3 3

skip_connect

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5
c_{k}

c_{k-2}
0avg_pool_3x3

1avg_pool_3x3

c_{k-1}

sep_conv_3x3

2max_pool_3x3

3
sep_conv_5x5

dil_conv_3x3

c_{k}sep_conv_3x3

dil_conv_5x5

Figure 14: Architectures searched by Ours-PDARTS on CIFAR-100.

c_{k-2}

0

sep_conv_3x3

1
skip_connect

2

sep_conv_3x3 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

sep_conv_5x5 c_{k} c_{k-2} 0avg_pool_3x3

1avg_pool_3x3

3avg_pool_3x3

c_{k-1}

avg_pool_3x3

skip_connect

2skip_connect

skip_connect

c_{k}

skip_connect

Figure 15: Architectures searched by Ours-PCDARTS on CIFAR-10.

41



Under review as submission to TMLR

c_{k-2}

0

sep_conv_3x3

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

skip_connect

skip_connect

skip_connect c_{k} c_{k-2} 0max_pool_3x3

c_{k-1}

max_pool_3x3
1

max_pool_3x3

skip_connect 2

skip_connect

3skip_connect
c_{k}

skip_connect

skip_connect

Figure 16: Architectures searched by Ours-PCDARTS on CIFAR-100.

Figure 17: Architectures searched by Ours-PRDARTS on CIFAR-10.

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

2

sep_conv_3x3

3
sep_conv_5x5

c_{k-1}
skip_connect

skip_connect

sep_conv_3x3

c_{k}

sep_conv_5x5

c_{k-2}

0

avg_pool_3x3 1
avg_pool_3x3

2
avg_pool_3x3 3

avg_pool_3x3

c_{k-1}

skip_connect

dil_conv_3x3

sep_conv_5x5

c_{k}

sep_conv_3x3

Figure 18: Architectures searched by Ours-PRDARTS on CIFAR-100.

42



Under review as submission to TMLR

c_{k-2}

0

sep_conv_3x3

1
skip_connect

2

sep_conv_3x3 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

dil_conv_5x5 c_{k}
c_{k-2}

0

avg_pool_3x3

1

avg_pool_3x3

2

avg_pool_3x3

3
avg_pool_3x3

c_{k-1}

avg_pool_3x3

skip_connect

skip_connect

skip_connect

c_{k}

Figure 19: Architectures searched by Ours-PCDARTS on ImageNet (directly searched).

43



Under review as submission to TMLR

G Additional related works

Adversarial learning. Adversarial learning (Goodfellow et al., 2014a) has been widely applied to 1) data genera-
tion (Goodfellow et al., 2014a; Yu et al., 2017) where a discriminator tries to distinguish between generated images and
real images and a generator is trained to generate realistic data by making such a discrimination difficult to achieve;
2) domain adaptation (Ganin & Lempitsky, 2015) where a discriminator tries to differentiate between source images
and target images while the feature learner learns representations which make such a discrimination unachievable; 3)
adversarial attack and defence (Goodfellow et al., 2014b) where an attacker adds small perturbations to the input data
to alter the prediction outcome and the defender trains the model in a way that the prediction outcome remains the
same given perturbed inputs.

Bi-level optimization (BLO). BLO (Dempe, 2002) has been broadly applied for hyperparameter tuning (Feurer
et al., 2015), neural architecture search (Liu et al., 2019), meta learning (Finn et al., 2017), data reweighting (Shu
et al., 2019; Ren et al., 2020; Wang et al., 2020), learning rate adjustment (Baydin et al., 2017), label denoising (Zheng
et al., 2019), data generation (Such et al., 2019). In these methods, meta parameters (e.g, hyperparameters, neural
architectures, data weights, etc.) are optimized by minimizing validation losses in an upper-level optimization prob-
lem and model weights are learned by minimizing training losses in a lower-level optimization problem. Pessimistic
bi-level optimization (Dempe, 2002; Dempe et al., 2014; Liu et al., 2021) solves a min-max problem where maximiza-
tion is conducted on lower-level optimization variables and minimization is conducted on upper-level optimization
variables. Our work is different from pessimistic bi-level optimization. In our work, lower-level optimization vari-
ables (i.e., model weights) are minimized instead of being maximized; for upper-level optimization variables (i.e.,
architectures, hyperparameters), some of them are maximized while others are minimized.

44


	Introduction
	Related work
	Method
	Overview
	A multi-level optimization based framework
	Reduce search costs

	Experiments
	Datasets
	Experimental settings
	Results on ``worst-case'' test examples
	Robustness against performance collapse
	Overall errors on CIFAR-10 and ImageNet
	Ablation studies
	Search cost and memory cost

	Conclusions
	Full description of optimization algorithm
	Discussion on optimization algorithm
	Further discussion on computational efficiency
	Stability of our method

	Additional experimental results
	Results on ImageNet-A, ImageNet-R, and ImageNet-Sketch
	Additional ablation studies
	Perform ablation study by removing stages
	Ablation on the generative model of the tester
	Training the generator from scratch
	Sensitivity analysis of hyperparameters

	Experiments on adversarial attack
	Evaluate the transferability of searched architectures to STL-10
	Additional experimental results for Table 1 and 5 in the main paper
	Evaluation of generated images
	Significance test results
	Model parameters, search costs, and FLOPs on ImageNet

	Additional discussions
	Difference between the discriminator and the auxiliary model
	Discussion on bi-level optimization and GAN

	Additional experimental details
	Hyperparameter tuning
	Experimental details of neural architecture search
	DARTS2nd based experiments
	PC-DARTS based experiments
	P-DARTS based experiments
	PR-DARTS based experiments
	Implementation details

	Experimental details of Figure 1(left) in the main paper
	Experimental details of Table 1 in the main paper
	Experimental details on ablation studies
	Experimental details of evaluating robustness against overfitting
	Instructions given to participants in human studies

	Full lists of hyperparameter settings
	Visualization of searched architectures
	Additional related works

