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ABSTRACT

With the rapid development of quantum technology, it has been confirmed that it
can surpass the speed of traditional computing in some fields. Quantum advantage
can also be manifested in the field of machine learning. We reviewed many cur-
rent papers related to quantum reinforcement learning. We discuss in depth how
quantum reinforcement learning is implemented and core techniques. quantum
reinforcement learning (QRL) method is proposed by combining quantum theory
and reinforcement learning (RL).The field of quantum reinforcement learning ac-
tually includes two aspects: One is use quantum properties to help reinforcement
learning, the other is using reinforcement learning to help quantum circuit design.
We have completed agent training for several classic games using quantum rein-
forcement learning methods, and the superiority and feasibility of the simulation
experiments were evaluated. The QRL algorithm can be used in many aspects
such as finance, industrial simulation, mechanical control, quantum communica-
tion, and quantum circuit optimization. We take a look at the field of quantum
reinforcement learning and make bold predictions that many applications in the
future will benefit from the development of this technology.

1 INTRODUCTION

Quantum machine learning has emerged as a promising paradigm that could accelerate machine
learning calculations. This quantum technology may enhance quantum computation and communi-
cation, as well as machine learning, via the fruitful marriage between these previously unrelated fi-
fieldsLamata (2021).We re-design multi-agent reinforcement learning (MARL) based on the unique
characteristics of quantum neural networks (QNNs),We theoretically prove the convergence of angle
training under the angle-to-pole regularization, and by simulation corroborate the effectiveness of
QM2ARL in achieving high reward and fast convergence, as well as of the pole memory in fast adap-
tation to a time-varying environmentYun et al. (2022).For a broad family of two-qubit unitary gates
that are important for quantum simulation of many-electron systems, we improve the control robust-
ness by adding control noise into training environmentsfor reinforcement learning agents trained
with trusted-region-policy-optimization.Meanwhile,Our results open a venue for wider applications
in quantum simulation, quantum chemistry and quantum supremacy tests using near-term quantum
devicesNiu et al. (2019).We introduce a technique combining reinforcement learning, optimisation
algorithm and a custom effiffifficient simulation of quantum optics experiments to automate the
design of photonic setups maximizing a given function of the measurement statistics.These confifig-
urations might be helpful to facilitate a fifirst implementation of DIQKD with photonic devices and
for future developments targeting improved performancesValcarce et al. (2022). A novel quantum
reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement
learning (RL).The present work is also an effective exploration on the application of quantum com-
putation to artifificial intelligence.
A quantum reinforcement learning protocol in the presence of thermal dissipation is introduced and
analyzedDong et al. (2008),Olivera-Atencio et al. (2022).Then,this work examines secret key rates
of key distribution based on quantum repeaters in a broad parameter space of the communication
distance and coherence time of the quantum memoriesRei & van Loock (2022).Quantum anneal-
ing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization
problems.we present a way to partially embed both Monte Carlo policy iteration for fifinding an op-
timal policy on random observations, as well as how to embed n sub-optimal state-value functions
for approximating an improved state-value function given a policy for fifinite horizon games with
discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU)Neukart et al. (2018). It
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is known that at low depth, certain locality constraints of QAOA limit its performance. To go be-
yond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was pro-
posed to improve the quality of approximate solutionsPatel et al. (2022). We introduce a model-free
and deep learning-based approach to effificiently implement realistic Bayesian quantum metrology
tasks accomplishing all the relevant challenges, without relying on any a-priori knowledge on the
system.This work represents an important step towards fully artifificial intelligence-based quantum
metrologyCimini et al. (2022). Recent works show that parameterized quantum circuits (PQCs) can
be used to solve challenging reinforcement learning (RL) tasks with provable learning advantages.
In this work, we introduce EQAS-PQC, an evolutionary quantum architecture search framework for
PQC-based models, which uses a population-based genetic algorithm to evolve PQC architectures
by exploring the search space of quantum operationsDing & Spector (2022). Based on the RIMp, an
algorithmic robustness-infifidelity measure (ARIM) is developed to quantify the expected robustness
and fifidelity of controllers found by a control algorithmKhalid et al. (2022). Based on the training
of the network over numerous preparing tasks, we could investigate how to prepare a certain single-
or two-qubit target state from arbitrary initial states in semiconductor double quantum dots with
only a few discrete control pulses by leveraging the deep reinforcement learningHe et al. (2021). An
ideal quantum heat engine operates at high power, high effiffifficiency, and high stability. Here we
propose such a general framework to identify Pareto-optimal cycles for driven quantum heat engines
that trade-offff power, effiffifficiency, and flfluctuationsErdman et al. (2022). With quantum com-
puters still under heavy development, already numerous quantum machine learning algorithms have
been proposed for both gate-based quantum computers and quantum annealers.We can extend this
work based on quantum Boltzmann machines, by allowing for any number of agents. It can improve
the learning compared to classical methodsNeumann et al. (2020).Quantum annealing algorithms
belong to the class of metaheuristic tools, applicable for solving binary optimization problems. we
present a way to partially embed both Monte Carlo policy iteration for fifinding an optimal policy
on random observations, as well as how to embed n sub-optimal state-value functions for approx-
imating an improved state-value function given a policy for fifinite horizon games with discrete
state spaces on a D-Wave 2000Q quantum processing unit (QPU). And it shows that quantum-
enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions
for a given policyNeukart et al. (2018).Deep Learning Goodfellow et al. (2016) A multi-agent rein-
forcement learning (MARL) architecture combining both paradigms has been proposedMller et al.
(2021). This novel algorithm, which utilizes Quantum Boltzmann Machines (QBMs) for Q-value
approximation has out performed regular deep reinforcement learning in terms of time-steps needed
to converge. Similar to classic DQNs, we add an experience replay buffer and use different networks
for approximating the target and policy values. The experimental results show that learning becomes
more stable and enables agents to fifind optimal policies in grid-domains with higher complexity.

2 REVIEW OF QUANTUM COMPUTING AND REINFORCEMENT LEARNING

Quantum algorithms take a new approach to these complex problems by creating multidimensional
spaces in which patterns linking individual data points appear. Classical computers cannot create
these computational spaces, so they cannot find these patterns.

2.1 QUANTUM COMPUTING FUNDAMENTALS

Qubit and Its Properties
Unit of quantum computing:
one qubit |ψ >= α|0 > +β | 1 >, with α2 + β2 = 1

Superposition : qubit |ψ⟩ is in superposition of | 0 > and |1⟩, when measure |ψ⟩, it will Collapse
into | 0 > w. p. α2 and | 1 > w . p. β2

Parallelism: the transformation U : |ψ, 0 >−→ |ψ, F (ψ) >= α|0, F (0) > +β|1, f(1) > (quantum
black box)evaluates F(x) for two values simultaneously.
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Scaling up to n - qubit system:

|ϕ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . |ψn⟩ =
11...1∑

x=00...0

Cx|x⟩

U

11...1∑
x=00...0

Cx|x, 0⟩ =
11...1∑

x=00...0

CxU |x, 0⟩ =
11...1∑

x=00...0

Cx|x, f(x)⟩

Common Quantum Gates Hadamard gate (single-qubit gate) transforms clustering state into to uni-
form superposed state

H ≡ 1√
2

(
1 1
1 −1

)
H|0⟩ ≡ 1√

2

(
1 1
1 −1

)(
1
0

)
=

1√
2
|0⟩+ 1√
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Phase gate (single-qubit gate):

Uphase =

(
1 0
0 eiφ

)
CNOT gate (two-qubit gate):

CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


3 QUANTUM REINFORCEMENT LEARNING

3.1 PRINCIPLE AND MECHANISM

Quantum reinforcement learning The same interaction-based learning process, whose interaction
process can be divided into classical interaction mode and quantum interaction mode. Classical
interaction mainly includes the interaction between classical The classical interaction consists of the
interaction between the classical task environment and the quantumized intelligent body, and the
interaction between the classical intelligent body and the The interaction process between classical
intelligence and quantitative intelligence, and the interaction process between classical intelligence
and quantitative task environment.

3.2 QUANTUM DQN’S EXPERIMENTS AND ANALYSIS

To test the reliability of the quantum reinforcement learning approach, we tested it on several
reinforcement learning base environments and achieved good speedup and model convergence
results.

we define the classical pre-processing (*encoding*) layer, which takes the classical inputs s⃗ =
(s0, s1, s2, s3), multiplies them by a trainable parameters w⃗ = (w0, w1, w2, w3), and then applies
an arctan on it, thus leading to the overall mapping:

s⃗→ s⃗′ = (s′0, s
′
1, s

′
2, s

′
3) with s′i = arctan(wi · si) .

The Q-values Q(s, a) of action a given a state s is given by:

Q(s, a) = wa ·
⟨0|Uθ(s⃗)

†OaUθ(s⃗)|0⟩+ 1

2

where Uθ(s⃗) denotes the quantum neural network (which is a function of the input state s and of the
variational parameters θ), and wa denotes a new trainable weight, one for each of the actions.
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Number of Shots Mean Score Standard deviation Number of Episodes
1024 115 49.82 100
2048 193 28.01 100
4096 195 11.20 100
8192 199.4 0.283 100

In order to go from the vector of probabilities p⃗ to the expectation values ⟨Z0Z1⟩ and ⟨Z2Z3⟩, one
can do the following. Be |ψ⟩ = Uθ(s⃗)|0000⟩ the state created by the Parametrized Quantum Circuit,
on which we want to evaluate the expectation vales. Then

⟨ZjZk⟩ = ⟨ψ|ZjZk⊮|ψ⟩ =
15∑
i=0

⟨ψ| ZjZk|i⟩︸ ︷︷ ︸
=fkj(i)|i⟩

⟨i|ψ⟩ =
15∑
i=0

fkj(i)|⟨i|ψ⟩|2 =

15∑
i=0

fjk(i) · pi

where fjk(i) is given by

ZjZk|i⟩ = ZjZk |i3i2i1i0⟩ = (−)ij (−)ik |i3i2i1i0⟩ = (−)ij+ik |i⟩ (NOTE: Qiskit ordering is being used!)

=⇒ ⟨ZjZk⟩ =
∑
i

(−)ij+ikpi

One can check manually that (using Qiskit little endian ordering of the qubits):

Z0Z1 → f⃗01 = (1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1)

Z2Z3 → f⃗23 = (−1,−1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1, 1, 1, 1, 1)

4 FUTURE PROSPECTS

The application of quantum reinforcement learning to quantum experimental control is expected
to form a precise Molecular behavioral simulations will provide insights into chemical production,
energy, healthcare, and more.
The rapid adaptability of quantum reinforcement learning will have a significant impact on the field
of complex financial analysis and rapid decision-making bring hope.
quantum reinforcement learning combined with cloud computing, it can provide a new vision for
intelligent quantum cloud computing.

We are more interested in finance.Financial services typically employ probabilities of performance
by markets and portfolios Algorithms composed of and hypotheses to make decisions on investment
methods. But due to the ability of statistical algorithms to quickly analyze large-scale data in real
time is limited. There are still many problems in the integration of risk and fraud detection. Quantum
Computing and Machines. The combination of learning methods can effectively eliminate data
blind spots and identify unfounded financial assumptions to avoid losses. Quantum Reinforcement
Learning Will Optimize Complexity Problem solving offers promising prospects for portfolio risk
in the financial system. Risk optimization and fraud detection give fast and effective results. At
the same time, based on the A type of quantum reinforcement learning method that can be used to
simulate financial trading systems, and Understanding the impact of risk and uncertainty on financial
forecasting models, on investment portfolios. Perform parallel simulations to quickly and effectively
optimize trading strategies for fast and stable. The realization of the financial transaction forecasting
system provides the possibility.

5 CONCLUSION

Quantum reinforcement learning is the intersection of reinforcement learning and quantum comput-
ing.
The research progress has been made in several aspects.
(i) the powerful computing power provided by the parallelism of quantum computing can be ex-
ploited to accelerate the reinforcement learning process. (1) the powerful computing power provided
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by the parallelism of quantum computing to accelerate the reinforcement learning process;
(2) based on the properties of quantum mechanisms and the continuous enrichment of quantum (2)
Based on the properties of quantum mechanism and the rich quantum algorithms, many researches
have proposed new reinforcement learning methods.
(3) new quantum mechanics research methods based on the traditional reinforcement learning algo-
rithms. Quantum reinforcement learning Although the research progress of quantum reinforcement
learning is in the initial stage, the existing results have already The research progress of quantum re-
inforcement learning is still in its initial stage, but the existing results have already brought unlimited
vision to many researchers.
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Yash J Patel, Sofiene Jerbi, Thomas Bäck, and Vedran Dunjko. Reinforcement learning assisted
recursive qaoa. arXiv preprint arXiv:2207.06294, 2022.

Simon Daniel Rei and Peter van Loock. Deep reinforcement learning for key distribution based on
quantum repeaters. arXiv preprint arXiv:2207.09930, 2022.

Xavier Valcarce, Pavel Sekastki, Elie Gouzien, Alexey Melnikov, Jean-Daniel Bancal, and Nicolas
Sangouard. Automated design of quantum optical experiments for device-independent quantum
key distribution. arXiv preprint arXiv:2209.06468, 2022.

Won Joon Yun, Jihong Park, and Joongheon Kim. Quantum multi-agent meta reinforcement learn-
ing. arXiv preprint arXiv:2208.11510, 2022.

A APPENDIX

You may include other additional sections here.

6


	Introduction
	Review of Quantum Computing and Reinforcement Learning
	Quantum Computing Fundamentals

	Quantum reinforcement learning
	Principle and Mechanism
	Quantum DQN's Experiments and analysis

	Future Prospects
	Conclusion
	Appendix

