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Abstract

We present differentially private algorithms for high-dimensional mean estima-
tion. Previous private estimators on distributions over Rd suffer from a curse of
dimensionality, as they require Ω(d1/2) samples to achieve non-trivial error, even
in cases where O(1) samples suffice without privacy. This rate is unavoidable
when the distribution is isotropic, namely, when the covariance is a multiple of the
identity matrix. Yet, real-world data is often highly anisotropic, with signals con-
centrated on a small number of principal components. We develop estimators that
are appropriate for such signals—our estimators are (ε, δ)-differentially private and
have sample complexity that is dimension-independent for anisotropic subgaussian
distributions. Given n samples from a distribution with known covariance-proxy Σ
and unknown mean µ, we present an estimator µ̂ that achieves error , ∥µ̂−µ∥2 ≤ α,
as long as n ≳ tr(Σ)/α2 + tr(Σ1/2)/(αε). We show that this is the optimal sam-
ple complexity for this task up to logarithmic factors. Moreover, for the case
of unknown covariance, we present an algorithm whose sample complexity has
improved dependence on the dimension, from d1/2 to d1/4.

1 Introduction

Machine learning is increasingly deployed in real-world settings to learn about properties of pop-
ulations, both large and small. When the data comes from human populations, it is essential that
algorithm design allows inferring properties of populations without revealing potentially sensitive
information about specific individuals in the population. That sensitive information can be revealed,
inadvertently or adversarially, has been demonstrated in numerous ways, including via reconstruction
attacks [21, 24], as well as membership-inference attacks [56], often targeting sensitive genomic
data [34, 55, 64]. To mitigate the risk of privacy violations in general database theory, Dwork, McSh-
erry, Nissim, and Smith [25] proposed the rigorous guarantee of differential privacy (DP), which has
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been widely adopted in industry [29, 11, 33, 62, 53, 4] and government [30, 1, 2]. Algorithms that
are differentially private are guaranteed to not leak too much information about the individuals in a
database.

In the machine learning setting, there is a tension between differential privacy and inferential and
predictive accuracy. It is an ongoing challenge to capture that tension mathematically, in a way
that is applicable to a wide variety of problems and is sufficiently quantitative so as to provide a
guide for real users and real systems designers. A particularly salient theoretical challenge is to
obtain results that capture dimension-dependence—given that machine learning data are often of
high dimensionality and involve significant correlation among dimensions, and given that privacy
is difficult to guarantee in high dimensions, particularly so when there are correlations. Indeed,
differentially private inference suffers from a curse of dimensionality—the sample size n that is
required to obtain a non-trivial DP learner is often polynomial in the dimension d of the data.

Significant progress has been made in addressing this challenge in recent years by focusing on a
relatively simple inferential task, that of high-dimensional mean estimation. Formally, given a data
set of n points, X = (X(1), . . . , X(n)) ∈ Rd×n drawn i.i.d. from a multivariate distribution P with
unknown mean µ ∈ Rd, the goal is to learn µ.

Obtaining low-error private mean estimators in the high-dimensional regime is not always possible.
For example, consider a Gaussian distribution P = N (µ, σ2Id), where Id is the d × d identity
matrix. Here, the sample complexity of any private estimator µ̂ achieving error ∥µ̂ − µ∥2 ≤ α is
n = Ω(dσ2/α2 + dσ/(αε)) [39], where ε is the privacy parameter.1 The first term corresponds to
the non-private sample complexity and the second term to the additional samples required due to
privacy. Although both depend on d, note that for non-trivial error α = 0.01σ

√
d and ε = 0.1, the

non-private term is O(1), whereas the dimension-dependence persists in the cost of privacy which is
O(
√
d).

In spite of this lower bound, there is still hope for obtaining better dependence on the dimension in
certain cases. This is due to the fact that the lower bound instance assumes that the covariance is
isotropic: a multiple of the identity matrix. However, real-world data are far from being isotropic.
Often, the signal is concentrated in a few directions, while it is significantly weaker in others, as can
be revealed via Singular Value Decomposition (SVD). In these cases, there are several examples of
non-private estimators for a variety of tasks which exploit the structure of the data to achieve lower
sample complexity. Specifically for mean estimation of Gaussian distributions, as in our example
above, only n = O(tr(Σ)/α2) samples are required [48] (this number of samples is sufficient even
for robust estimators under the strong contamination model [50]). This bound is instance-adaptive, as
the trace of the covariance matrix tr(Σ) equals its upper bound, d∥Σ∥2, in the isotropic case, but can
be much smaller for anisotropic data. Exploiting the non-isotropic structure of the covariance matrix
is also central to the covariance estimation problem with respect to the operator norm (namely, when
the error between the true covariance matrix Σ and its estimate Σ̂ is measured in terms of ∥Σ̂− Σ∥2)
[43, 65]. A more recent focus is on overparametrized linear regression [9], where again the highly
non-isotropic structure of the covariance matrix allows for inference under certain assumptions on the
decay of eigenvalues of the covariance matrix. In all the mentioned results, non-private estimation is
possible when n≪ d, including even infinite-dimensional Hilbert spaces.

Returning to private estimation, prior work has obtained optimal bounds for learning the mean of
high-dimensional (sub)Gaussian distributions in the affine-invariant Mahalanobis distance [18, 39, 3,
46, 13, 47]. These imply an upper bound for learning the mean in Euclidean distance in the order
of n = O(d∥Σ∥2/α2 + d

√
∥Σ∥2/(αε)), which is optimal for isotropic, but loose for anisotropic

cases. A folklore estimator, based on [41] achieves n = Ω(
√

d tr(Σ)/(αε)), while [8] are the first to
focus on the anisotropic case and obtain improved bounds for diagonal covariance, achieving error
n = Ω(tr(Σ1/2)/(αε) +

√
d/ε). Thus, all previous work requires that the sample complexity is at

least Ω(
√
d), which excludes the high-dimensional scenario we are interested in. We are led to pose

the following question.:

1We focus on approximate (ε, δ)-DP, as opposed to pure (ε, 0)-DP. However, we omit any dependence on δ
in the introduction.
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Question 1. Is it possible to obtain good private mean estimators with a sample size that grows
slower with the dimension, or is even dimension-independent, when the covariance of the data is far
from isotropic? What is the optimal sample complexity in the case of known and unknown covariance?

1.1 Our contributions

First, note that no improved bounds are possible for pure DP, as follows directly from the so-called
packing technique [32, 18] and specifically applying [18, Lemma 5.1]: any ε-DP algorithm which
estimates the mean of a Gaussian distribution up to constant accuracy requires n = Ω(d/ε) samples.
This negative result motivates us to focus on (ε, δ)-differential privacy.

In order to make progress, one would like to utilize the fact that when the covariance is far from
being isotropic, the data is closer to being low-dimensional. Concretely, let Σ be the covariance
matrix of P and σ2

1 ≥ . . . ≥ σ2
d its singular values. If the covariance is far from isotropic, there

are only few directions with non-trivial variance. For illustration, if σ1 = · · · = σk = 1, whereas
σk+1 = · · · = σd = 1/d, then the distribution is, in some sense, close to being k-dimensional. Here,
we would like our sample complexity to be of order k rather than

√
d.

We start by presenting a result in the case where the covariance matrix is known. Here, the bound
depends only on

∑d
i=1 σi = tr(Σ1/2), a quantity allowing less contribution from small singular

values:
Theorem 1.1 (Upper bound, known covariance, informal). Set ε, δ ∈ (0, 1), α > 0. Let X ∼
N (µ,Σ)n with known covariance. There exists an (ε, δ)-differentially private algorithm which, with
probability 0.99, returns an estimate µ̂ such that ∥µ̂− µ∥2 ≤ α, and has sample complexity

n = Õ

(
tr(Σ)

α2
+

tr(Σ1/2)
√
log(1/δ)

αε
+

log(1/δ)

ε

)
. (1)

The first term corresponds to the non-private sample complexity, whereas the remaining two terms
are due to privacy. The result extends to subgaussian distributions. In the example illustrated above,
this bound indeed yields a dimension-independent complexity of n = Õδ(k/α

2 + k/(αε)).

We show that the sample complexity of Theorem 1.1 is nearly optimal. Indeed, the first summand is
optimal due to [19, Theorem 4], while the last summand is optimal by a lower bound in the univariate
case [41]. We show the optimality of the intermediate summand in (1) up to polylogarithmic terms.
Theorem 1.2 (Lower bound, informal). Any (ε, δ)-DP algorithm which estimates the mean µ ∈
[−1, 1]d of a Gaussian up to α with probability 0.99 has sample complexity n = Ω

(
tr(Σ1/2)
αε log2(d)

)
.

We now move to the case of unknown covariance. A first approach would be to learn the covariance
approximately, namely, find a matrix A such that A ⪯ Σ ⪯ CA, for some C > 1, and then use
A instead of Σ in our known-covariance estimator. However, learning such a matrix A privately
requires sample size n = Θ(d3/2) [39, 40]. Another approach would be to learn only the diagonal
elements of the covariance [41] this would require n = O(

√
d/ε) samples. Below, we obtain a

sample complexity whose dependence in the dimension is d1/4, together with a dependendence on
the diagonal elements of the covariance matrix:
Theorem 1.3 (Upper bound, unknown covariance, informal). Let parameters ε, δ ∈ (0, 1). Let
X ∼ N (µ,Σ)n with unknown covariance Σ. There exists an (ε, δ)-DP algorithm which, with
probability 0.99, returns an estimate µ̂ such that ∥µ̂− µ∥2 ≤ α, and has sample complexity

n = Õ

 tr(Σ)

α2
+

∑d
i=1 Σ

1/2
ii

√
log(1/δ)

αε
+

d1/4
√∑d

i=1 Σ
1/2
ii log(1/δ)

√
αε

 . (2)

In general, tr(Σ1/2) ≤
∑d

i=1 Σ
1/2
ii , and if Σ is diagonal, the two quantities coincide. Our theorem

is in fact more adaptable to easier cases of covariance structure. As a special case, when the
covariance is diagonal and the singular values exhibit an exponential decay, that is, σi = σ1e

−(i−1),

then n = Õ

(
tr(Σ)
α2 +

tr(Σ1/2)
√

log(1/δ)

αε + log5/3(d) log3/2(1/δ)
ε

)
samples suffice even under unknown

covariance.
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1.2 Techniques

Known covariance. A folklore (ε, δ)-DP algorithm, based on techniques for the univariate case
developed by [41], is to filter outliers by privately estimating each individual coordinate of the mean,
µi, up to an additive error of Õ(Σ

1/2
ii ) for all i, clipping any sample point to within that range, and out-

putting the mean of the modified data set with added spherical Gaussian noiseN (0, tr(Σ)Id/(ε
2n2)).

A standard analysis of this procedure yields a sample complexity of n ≳ tr(Σ)
α2 +

√
d
ε +

√
d tr(Σ)

αε ,
where the dependence on δ is omitted for clarity. For constant ε, the folklore estimator achieves
privacy for free, that is, the error due to privacy is lower than the error of statistical estimation, when
n ≳ d.

An improvement to this simple analysis, proposed recently by Aumüller et al. [8] for matrices of
diagonal covariance, suggests adding noise N

(
0, tr(Σ1/2)Σ1/2/(ε2n2)

)
instead, which introduces

more noise in the directions of larger variance. Slightly simplifying their result and additionally
ignoring logarithmic factors in d, and the range of µ, their sample complexity is n ≳ tr(Σ)

α2 +
√
d
ε +

tr(Σ1/2)
αε . This estimator achieves privacy for free as long as n ≳ max{∥σ∥21/∥σ∥22,

√
d}, where σ2

denotes the vector of singular values of Σ. While this removes the dimension dependence in the third
term compared to the naïve sample complexity, the second term still requires Ω(

√
d) samples. This is

due to the first step of the algorithm (inherited from [37]), which performs d independent estimation
tasks. In both approaches, the pre-processing step is a form of coarse mean estimation which ensures
that the data will not include outliers, and it is the source of sample-inefficiency.

Thus, in our work, we remove outliers, namely vectors too far away from the true mean in one
of the coordinates, using only n = Õ(1/ε) samples, thus completely removing the dependence
on d in the final sample complexity bounds. (Indeed, our estimator achieves privacy for free for
n ≳ max{∥σ∥21/∥σ∥22}.) Next, we generalize the approach of [8] to general covariance, rather than
diagonal. Finally, we show that the sample complexity is nearly optimal. Specifically:

Our pre-processing is realized by using a polynomial-time filtering algorithm of Tsfadia et al. [63].
Given a predicate computed for two data points, so-called FriendlyCore returns a subset X ′ of the
input, such that all pairs of the remaining, unfiltered data points satisfy the predicate. Its sample
complexity is Õ(1/ε) for any predicate, hence it has the potential to yield a dimension-independent
bound. For our purposes, X ′ needs to satisfy some sensitivity properties. It follows from our analysis
that the filtering should be such that for any two points X(j), X(ℓ) ∈ X ′, ∥Σ−1/4(X(j) −X(ℓ))∥22 ≤
Õ
(
tr(Σ1/2)

)
.

The lower bound for (ε, δ)-DP is an application of the standard fingerprinting [15, 28, 39, 40]
technique for isotropic Gaussians. A straightforward modification of the technique to anisotropic
covariance Σ gives a weaker bound than Theorem 1.2. Instead one needs to choose an appropriate set
of almost-isotropic coordinates whose size scales with tr(Σ1/2), and apply the technique to that set.

Unknown covariance. Moving to the case of unknown covariance, for illustration, we focus on the
simpler, yet fundamental, case where the covariance matrix is diagonal, so that Σ = diag(σ2

1 , . . . , σ
2
d).

First, the folklore algorithm described in the known-covariance setting, which adds spherical Gaussian
noise, does not require knowledge of the covariance but only of its trace. The trace can be privately
learned with n = Õ(1/ε) samples. Second, we note that with n = Õ(

√
d/ε) samples, it is possible

to learn each σi up to a multiplicative constant [41]. This allows us to apply the algorithm with known
covariance from Theorem 1.1. However, the first step in this approach still requires Ω(

√
d) samples.

Our approach is to combine these two methods. We privately learn the largest k ≈ ε2n2 variances, and
their indices. This is done using the sparse vector technique [23] and can be achieved with n samples.
We use the known-covariance algorithm to estimate the mean in these top k coordinates, with the
same error bound as in the known-covariance setting. For the mean at the remaining coordinates,
we use the algorithm that only requires knowledge of the trace of the covariance. The error of the
latter estimate is αbot ≈

√
d∥σbot∥2/(nε), where σbot is the vector containing the lowest d − k

variances. The first observation is that σ contains at least k entries as large as ∥σbot∥∞, hence,
∥σ∥1 ≥ k∥σbot∥∞. Then, by Hölder’s inequality, ∥σbot∥2 ≤

√
∥σbot∥1∥σbot∥∞. Substituting k

yields αbot ≈
√
d∥σ∥1/(ε2n2), which implies the desired sample complexity bound in Theorem 1.3.
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1.3 Related work

Differentially private Gaussian mean estimation. Smith [58] proposed estimators for asymp-
totically normal statistics with optimal convergence rates under a certain range of parameters. The
optimal sample complexity for learning the mean of a Gaussian with known covariance in Maha-
lanobis norm under (ε, δ)-DP is n ≳ d/α2 + d/(αε) + log(1/δ)/ε and has been established in a
series of works [18, 39, 3, 46], starting from [41] in the univariate setting. Given the covariance
matrix Σ, the Mahalanobis distance between the estimate µ̃ and the true mean µ is defined as:
∥µ̃− µ∥Σ = ∥Σ−1/2(µ̃− µ)∥2. When Σ = Id, the Mahalanobis and Euclidean norms coincide. The
Mahalanobis distance yields an affine-invariant accuracy guarantee, and ∥µ̃− µ∥Σ ≤ α immediately
implies ∥µ̃− µ∥2 ≤ α

√
∥Σ∥2. However, the power of the Mahalanobis guarantee is overshadowed

by the fact that even for α =
√
d, a large sample size, namely n = Ω(

√
d), is required, which

excludes the high-dimensional scenario we are interested in.2 Furthermore, confidence sets induced
by guarantees in the Euclidean distance have the pleasant property of being more easily constructible.

Beyond global sensitivity. There are several lines of work within differential privacy which aim to
satisfy some form of instance-adaptive accuracy guarantee, as we do. General purpose frameworks
which aim to privately estimate a statistic of the data, with error which adapts to “good” data
sets, include propose-test-release [22], smooth-sensitivity [52], and Lipschitz extensions [12, 42].
Our method follows the same high-level structure as propose-test-release. The latter has been
combined with robust estimators to yield optimal private learners for several tasks [13, 47]. Even
more generally, [6, 35] give a black-box method which transforms robust estimators to private ones
via the inverse-sensitivity mechanism [5] (see [59] for a discussion on inverse-sensitivity). As there
exist optimal robust estimators for the mean of anisotropic Gaussians [50], this would be a viable
approach, but the volumetric analysis of the transformation involves terms which depend on the
dimension. Tsfadia et al. [63] propose a filtering method which yields private aggregators whose error
adapts to the diameter of the input data set. It is their method that we utilize for our upper bounds.
A series of works formalize instance-optimality for private estimation of empirical [5, 37, 20] or
population [49, 7] quantities. These are all generally well-suited to our setting but either do not adapt
to high dimensions, or a direct application would require n ≳

√
d tr(Σ)/(αε).

Nikolov and Tang [51] study instance-optimality specifically for Gaussian noise mechanisms, albeit
for data that belong in a bounded convex set. Although this is not the case for Gaussian data, it is
worth noting that our error rates match those of [51], which hold for arbitrary distributions over K,
when the bounded set is K = µ + Σ1/2Bd(1). Privately learning K however would require more
samples.

Privately learning nuisance parameters. Karwa and Vadhan [41] learn (a constant multiple of) the
variance of a univariate Gaussian using n = Õ (log(1/δ)/ε) samples. In high dimensions, privately
learning the covariance matrix of a Gaussian in spectral norm requires n ≳ d3/2 samples [39, 40],
which is more than one needs to learn the mean under known covariance. Brown et al. [13] avoid the
bottleneck of private covariance estimation, showing that the sample complexity of Gaussian mean
estimation under known covariance with respect to Mahalanobis distance can in fact be matched,
even when the covariance is unknown. Their tools also follow the propose-test-release approach
and could be modified to fit our setting, but the privacy analysis would still require n ≳ d. Singhal
and Steinke [57] learn a subspace in which the majority of the data lie, which could be used as a
pre-processing step, followed by projection. However, to recover the set of top k eigenvectors, they
require that there exists a large gap between the two consecutive variances, that is, σk ≥ poly(d)σk+1.

Comparison with [8]. The paper by Aumüller et al. [8] is the closest work to ours, aiming to
find sample-efficient mean estimators with respect to the Euclidean norm in the anisotropic case.
Their work focuses on the less general case of diagonal, (almost) known covariance. The sample
complexity of their estimator requires n ≳

√
d, whereas our estimator for the known covariance case

is dimension-independent, and, as we prove, optimal. However, the focus in [8] is on estimators
that satisfy the stricter privacy guarantee of ρ-zCDP, which forces the need for dimension-dependent
sample size. This is the key contrast with our dimension-free philosophy. As an interesting distinction,

2This limitation is due to the fact that the Mahalanobis distance equalizes the variance across all directions
and forces us to make inferences even in directions where the distribution has particularly small variance.
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Aumüller et al. [8] provide accuracy guarantees with respect to the ℓp norm (the upper bounds) for
slightly more general classes of so-called well-concentrated distributions, which include subgaussians.
It would be interesting to establish optimal private mean estimation bounds with respect to general
ℓp norms. In fact, the optimal non-private sample complexity of Gaussian mean estimation, with
matching upper and lower bounds, with respect to general norms has been established only recently,
and it depends on the Gaussian mean width of the set induced by the unit dual ball of the norm [19].

2 Preliminaries

We write [n] = {1, . . . , n}, log denotes the natural logarithm, and Bd(c, r) denotes the d-dimensional
Euclidean ball with radius r and center c. We omit c if c = 0.

We introduce differential privacy here. We say that X,X ′ are neighboring data sets if either
∃j ∈ [|X|] such that X ′ = X \X(j) or ∃j ∈ [|X ′|] such that X = X ′ \X ′(j).3 Differentially private
algorithms have indistinguishable output distributions on neighboring data sets.
Definition 2.1 ((ε, δ)-indistinguishability). Two distributions P,Q over domain W are (ε, δ)-
indistinguishable, denoted by P ≈ε,δ Q, if for any measurable subset W ⊆ W ,

Pr
w∼P

[w ∈W ] ≤ eε Pr
w∼Q

[w ∈W ] + δ and Pr
w∼Q

[w ∈W ] ≤ eε Pr
w∼P

[w ∈W ] + δ.

Definition 2.2 (Differential Privacy [25]). A randomized algorithm A : X ∗ → W is (ε, δ)-
differentially private if for all neighboring data sets X,X ′ we have A(X) ≈ε,δ A(X ′). We say that
algorithm A satisfies pure differential privacy if it satisfies the definition for δ = 0.

Differential privacy satisfies several useful properties, such as post-processing and composition [25,
27]. For further details and guarantees of standard DP mechanisms, see Section A.

Our estimators will use the BasicFilter procedure of Tsfadia et al. [63], whose detailed definition is
presented in Section 3 . They provide a framework which allows us to extend an algorithm which
is private only for “easy” pairs of data sets, to an algorithm that is private for any worst-case pair.
“Easy” pairs of data sets are modelled with respect to a predicate f between two data points:
Definition 2.3 (f -friendly, Def. 1.1 [63]). Let X be a data set over X and let f : X 2 → {0, 1}
be a predicate. We say X is f -friendly if for all x, y ∈ X there exists z ∈ X such that f(x, z) =
f(z, y) = 1.
Definition 2.4 (f -friendly DP, Def. 1.3 [63]). An algorithm A is called f -friendly (ε, δ)-DP if for
any neighboring data sets X,X ′, such that X ∪X ′ is f -friendly, A(X) ≈ε,δ A(X ′).
Theorem 2.5 (Theorem 4.11 [63]). Let A be an f -friendly (ε, δ)-DP algorithm. Given data set
X , let v = BasicFilter(X, f, α = 0) and C(X) = {X(j)}{j: vj=1}. Then B(X) := A(C(X)) is
(2(eε − 1)ε, 2eε+2(eε−1)δ)-DP.

We assume data are drawn from subgaussian distributions, which include Gaussians.
Definition 2.6 (Subgaussian distributions). The random vector X with mean µ is subgaussian with a
p.s.d. covariance matrix proxy Σ if for any λ and any v ∈ Rd, E eλ⟨X−µ,v⟩ ≤ eλ

2v⊤Σv/2.

Lemma 2.7 (Norm of the subgaussian vector [36, 65]). Let X = (X(1), . . . , X(n)) be drawn i.i.d.
from the subgaussian distribution with mean µ and covariance-proxy Σ. With probability at least
1− β, ∥ 1n

∑n
j=1 X

(j) − µ∥2 ≤
√
tr(Σ)/n+

√
2∥Σ∥2 log(1/β)/n.

3 Nearly-matching upper and lower bounds under known covariance

Algorithm 1 proceeds in two simple steps. The first step filters out outliers so that all remaining
pairs of data points satisfy the re-scaled distance predicate distM,λ and, assuming enough data points
remain, the second step releases their empirical mean along with appropriate Gaussian noise.

We retrieve the folklore result, by taking M = Id, λ ≈
√
tr(Σ), which is known (otherwise, can

be easily privately estimated as in Section 4). The filtering then guarantees that all pairs of points
3This is the so-called add/remove model of DP, which will be convenient for our use of prior work. The same

privacy guarantees will also hold for the swap model, where dHam(X,X ′) ≤ 1, up to constant factors.
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are within distance
√
tr(Σ), and adds spherical Gaussian noise with covariance tr(Σ)Id/(ε

2n2). To
retrieve the optimal bound, take M = Σ, which splits the privacy budget unevenly among coordinates.
Then, λ ≈

√
tr(Σ1/2) and the Gaussian noise has covariance tr(Σ1/2)Σ1/2/(ε2n2), as in [8].

Algorithm 1 Private Re-scaled Averaging: AvgM,λ,ε,δ(X)

Require: Data set X = (X(1), . . . , X(n))T ∈ Rn×d. Privacy parameters: ε, δ > 0. Failure
probability β > 0. Symmetric invertible matrix M . Parameter λ.

1: Let distM,λ(x, y) = 1{∥M−1/4(x− y)∥2 ≤ λ}.
2: v = BasicFilter(X,distM,λ, α = 0).
3: Let C = {X(j)}{j: vj=1}.
4: Compute n̂C = |C| − log(1/δ)

ε + z where z ∼ Lap( 1ε ).
5: if |C| = 0 or n̂C ≤ 0 then
6: return ⊥.
7: return µ̂ = 1

|C|
∑

x∈C x+ η where η ∼ N
(
0, 8 log(1.25/δ)λ2

ε2n̂2
C

M1/2
)

.

8: procedure BasicFilter(X, f, α) ▷ Algorithm 4.3 from [63].
9: for j = 1, . . . , n do

10: Let zj =
∑n

k=1 f(X
(j), X(k))− n/2.

11: Sample vj = Bern(pj), where pj =


0, if zj ≤ 0,

1, if zj ≥ (1/2− α)n,
zj

(1/2−α)n , otherwise.

12: return v = (v1, . . . , vn)

Theorem 3.1. Let ε ∈ (0, 10), δ ∈ (0, 1), α > 0, β ∈ (0, 1). Algorithm 1 is (ε, δ)-differentially
private. Let X be a data set of size n, drawn from a subgaussian distribution with covariance-proxy
Σ and mean µ. Given M = Σ, λ ≥

√
2 tr(M−1/4ΣM−1/4) + 2

√
2∥M−1/4ΣM−1/4∥2 log(nβ ),

with probability at least 1− β, Algorithm 1 returns µ̂ such that ∥µ̂− µ∥2 ≤ α, as long as

n = Ω̃

(
tr(Σ) + ∥Σ∥2 log 1

β

α2
+

tr(Σ1/2)
√
log 1

δ

αε
+

√
∥Σ∥2 log 1

δ log
1
β

αε
+

log 1
δβ

ε

)
, (3)

where Ω̃ hides constants and a log factor of the third term multiplied with itself.

The theorem holds more generally for any symmetric invertible M , and λ satisfying the assumptions.
We sketch the proof of Theorem 3.1 next. All remaining details are in Appendix B.

Proof sketch. We start with the accuracy analysis. First we show that the original dataset X passes
through BasicFilter (i.e., C = X) with high probability. It suffices to show that each pair j ̸=
k ∈ [n], satisfies distM,λ(X

(j), X(k)) = 1 with probability 1 − β/n2. Observe that for j ̸= k,
M−1/4(X(j) − X(k)) is subgaussian with mean 0 and covariance proxy 2M−1/4ΣM−1/4. By
Lemma 2.7 and our setting of λ, indeed ∥M−1/4(X(j) −X(k))∥2 ≤ λ for each pair with probability
1− β/n2. We condition on C = X . With high probability by the CDF of the Laplace distribution
and since |C| = n = Ω(log(1/δβ)/ε), n̂C = Ω(n). Thus, the algorithm does not abort, and
returns estimate µ̂. It remains to upper bound the total error of µ̂. This is at most the error of the
empirical mean plus the error due to noise ∥η∥2. By Lemma 2.7, with high probability, the former is
Õ(
√
tr(Σ)/n) and the latter Õ(λ

√
tr(M1/2)/(εn)). Substituting M = Σ, and the value for λ, the

total error becomes Õ(
√
tr(Σ)/n+ tr(Σ1/2)/(εn)), which yields the stated sample complexity.

The privacy analysis follows the steps of [63, Claim 3.4]. By Theorem 2.5, it suffices to show that lines
4-7 of Algorithm 1, namely,A, are distΣ,β-friendly DP. Consider neighboring inputs X,X ′, differing
in the n-th data point w.l.o.g., that is X ′ = X \X(n). Since ||X| − |X ′|| = 1, by the guarantees of
the Laplace mechanism, the r.v.s n̂X , n̂X′ in Line 4 are (ε, 0)-indistinguishable. Moreover, they both
satisfy n̂X , n̂′

X < |X|with probability 1−δ/2 > 1/2. Conditioning on this event for the remainder of
the sketch, we can fix n̂X = n̂′

X = n̂ < |X|, for some value n̂. If n̂ ≤ 0, both runs abort. Otherwise,
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it suffices to show that Line 7 adds sufficient noise to maintain privacy. By post-processing, since
M is not data-dependent, this is equivalent to ensuring that N (M−1/4 1

|X|
∑|X|

i=1 X
(i), v2Id) ≈ε,δ

N (M−1/4 1
|X|−1

∑|X|−1
i=1 X(i), v2Id) where v = (2λ/n̂)(

√
2 log(1.25/δ)/ε). This is true by the

guarantees of the Gaussian mechanism applied to f(X) = M−1/4
∑|X|

i=1 X
(i)/|X|, whose ℓ2-

sensitivity for distΣ,λ-friendly X,X ′ can be upper bounded by 2λ/|X| ≤ 2λ/n̂ (since 0 < n̂ < |X|,
by assumption). By composition, A indeed satisfies distM,λ-friendly (O(ε), O(δ))-DP.

We show that the sample complexity of Theorem 3.1 is optimal. We briefly explain our lower bound
construction here. All remaining details are in Appendix C.

Proof Sketch of Theorem 1.2. Let Σ = diag(σ2). Assume w.l.o.g. that σ2
1 ≥ . . . ≥ σ2

d. Partition
the set of coordinates into buckets Sk = {i ∈ [d] : σi ∈ σ1 · (2−k, 2−k+1]}, ∀k ∈ [log(d)]
and Slog(d)+1 = [d] \

⋃
k∈[log(d)] Sk. We have that

∑
k∈[log(d)+1]

∑
i∈Sk

σi = ∥σ∥1. Consider
the bucket S which contributes the most to this sum and let σS be the maximum variance in this
bucket. It must be that |S| ≥ ∥σ∥1

(log(d)+1)σS
. The lower bound of [39, Theorem 6.5] for isotropic

Gaussians, implies that any (ε, δ)-private mean estimator which returns, with constant probability,
an estimate µ̂S with error α for the coordinates in S (note that they are all within a factor of 2),
requires n = Ω(|S|σS/(αε log(d))) = Ω(∥σ∥1/(αε log2(d))) samples. As an estimator for the
d-dimensional Gaussian mean restricted to S, would give us such a µ̂S , the statement follows.

4 Handling unknown covariance

In this section we consider the case of unknown covariance. First, recall that Ω(d3/2) samples are
required to privately learn the covariance matrix in spectral norm [40], which is prohibitive. The
lower bound instance is an almost-isotropic Gaussian, which means that anisotropic distributions may
circumvent it. Still, the superlinear dependence on d implies that this approach will yield suboptimal
sample complexity for mean estimation. Avoiding private covariance estimation, Brown et al. [13]
propose a “covariance-aware” private mean estimator which returns the mean with Gaussian noise
which scales with the empirical covariance matrix of the data set ΣX , as N (0, λ2

MΣX/(ε2n2)) for
appropriate factor λ2

M . Since adding data-dependent noise can break privacy, a pre-processing step is
required to ensure that no outliers exist in the data set with respect to the empirical covariance, roughly
ensuring that ∥Σ−1/2

X (X(k) − X(j))∥2 ≤ λM , for all j ̸= k ∈ [n]. In our case, to maintain the
accuracy guarantee of the known-covariance case, the Gaussian noise should beN (0, λ2Σ

1/2
X /(ε2n2))

and all data points should satisfy ∥Σ−1/4
X (X(k) −X(j))∥2 ≤ λ. Note that n ≥ tr(Σ)/∥Σ∥2 samples

suffice for the empirical covariance to be close to the true covariance Σ in spectral norm [43], so
applying the algorithm from [13] could maintain accuracy while still allowing a dimension-free
sample complexity. Unfortunately, we still cannot use this approach because n ≥ d samples are
required for the privacy analysis to go though, namely, for neighboring data sets X,X ′ it holds that
N (0,Σ

1/2
X ) ≈ε,δ N (0,Σ

1/2
X′ ) for ε ≈ d/n, which forces us to take n ≥ d/ε samples. The same is

true for the follow-up works of [14, 44] which give polynomial-time versions of this algorithm with
slightly better statistical guarantees.

Luckily, our accuracy guarantee does not require the variance estimate in all directions to be accurate.
For example, consider all directions with variance at most ∥Σ∥2/d. Adding spherical Gaussian noise
to these directions maintains a dimension-free error, without requiring tighter estimates for their
variance. Thus, on a high level, our approach for mean estimation in the unknown covariance case is
to identify and estimate as many of the top variances as our sample size allows, which turns out to be
k ≈ ε2n2, while adding spherical Gaussian noise to the remaining ones.

We sketch the proof of the following theorem. All remaining details are in Appendix D.

Theorem 4.1. Let parameters ε, δ ∈ (0, 1). Let X ∼ N (µ,Σ)n with unknown covariance Σ.
Algorithm 2 is (ε, δ)-differentially private and, with probability 1− β, returns an estimate µ̂ such
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Algorithm 2 Private Re-scaled Averaging with Unknown Covariance

Require: Data set X = (X(1), . . . , X(2n))T ∈ R2n×d. Privacy parameters: ε, δ > 0. Failure
probability β > 0.

1: Require n = Ω
(
log2(d) + log( 1

δβ )
√
log( 1δ ) log(d)/ε

)
.

2: Let k ← ε2n2/
(
log2(d) log(1/δ) log2(1/δβ) + log(εn)

)
and ℓ← Θ(log(d)).

3: Split the dataset into two equal halves: Xvar and Xmean.
4: Split Xvar into m = ⌊ n2ℓ⌋ groups of size 2ℓ. Define X(j,r) as the r-th sample in the j-th group.
5: for each group j = 1 to m and each dimension i = 1 to d do
6: Define V

(j)
i = 1

2ℓ

∑ℓ
r=1(X

(j,2r−1)
i −X

(j,2r)
i )2.

7: R̂← FindKthLargestVarianceε,δ(V, k).

8: Itop ← TopVarε,δ(V, R̂/8, k) and Ibot ← [d] \ Itop.
9: for each i ∈ Itop do

10: Estimate Σ̂ii ← VarianceSumε′,δ′,β′(V, {i}) for ε′ ← ε√
k log(1/δ)

, δ′ ← δ
k , β′ ← β

k .

11: Compute Ŝbot ← VarianceSumε,δ,β(V, Ibot).

12: µ̂top ← AvgM,λ,ε,δ(X
mean[Itop]), where M = diag({Σ̂ii}Itop), λ = Θ̃

(√∑
i∈Itop

Σ̂
1/2
ii

)
.

13: µ̂bot ← AvgM,λ,ε,δ(X
mean[Ibot]), where M = Id, λ = Θ̃(

√
Ŝbot).

14: return (µ̂top, µ̂bot)

that ∥µ̂− µ∥2 ≤ α, as long as

n = Ω̃

log2(d) +
tr(Σ)

α2
+

∑d
i=1 Σ

1/2
ii

√
log 1

δ

αε
+

d1/4
√∑d

i=1 Σ
1/2
ii log5/4( 1δ ) log(d)√
αε

 , (4)

where the symbol Ω̃ hides multiplicative logarithmic factors in 1/β.

Next, we describe Algorithm 2 and introduce some of its subroutines along with their guarantees.
All omitted proofs are in Appendix D. Our algorithm receives a data set X(1), . . . , X(n), where each
X(i) is a d-dimensional vector distributed as N (µ,Σ). The algorithm starts by splitting the dataset
into m = ⌊n/(2ℓ)⌋ groups each of size 2ℓ, where ℓ = Θ(log d). Denote the elements of each group
j by X(j,1), . . . , X(j,2ℓ). Within each group j, for each coordinate i, we compute an estimate V

(j)
i

for Σii: V
(j)
i = 1

2ℓ

∑ℓ
r=1(X

(j,2r−1)
i −X

(j,2r)
i )2 . For convenience, we define what it means for the

V
(j)
i variables to provide a good estimate of the set of {Σii}i∈[d].

Definition 4.2. Given variances Σ11, . . . ,Σdd and given a set of estimates, V = {V (j)
i }j∈[m],i∈[d],

we say that V is valid if |{j : ∀i ∈ [d], Σii/2 ≤ V
(j)
i ≤ 2Σii}| ≥ 4m/5.

Proof sketch of Theorem 4.1. For ease of notation, we assume that Σ = diag(σ2). We start from
the accuracy analysis. Assume n satisfies the sample complexity bound of Eq. (4). By Chernoff
bound, since ℓ = Θ(log(d)) and m = Ω(log(1/β)), with probability 1− β, V is valid. We use the
estimates V (j)

i as inputs to private procedures: FindKthLargestVariance(V, k) (compute the k-th
largest variance up to a multiplicative constant), VarianceSum(V, I) (compute the sum

∑
i∈I σ

2
i

up to a multiplicative constant), and TopVar(V,R, k) (identify the indices of the at-most-k largest
variances σ2

i ≥ R). The first two tasks can be implemented by the Stable Histogram algorithm [16]
if m = Ω(log(1/δ)/ε). TopVar can be implemented via the Sparse Vector technique [26, 54, 31],
if m = Ω(

√
k log(1/δ) log(d/β)/

√
εn). Both are satisfied for the given m = n/2ℓ. With these

procedures, the algorithm privately learns the k-th largest variance R, identifies the top k coordinates,
Itop, and learns estimates {σ̂i}Itop that are accurate up to a multiplicative constant.

Next, we estimate the mean µ in the coordinates Itop separately from Ibot := [d] \ Itop, denoted
by µtop and µbot, respectively. Denote vector σtop = ({σi}i∈Itop) and σbot = ({σi}i∈Ibot

).
To estimate µtop, Algorithm 1, given input vectors X(1), . . . , X(n), restricted to coordinates Itop,
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diagonal matrix M , with Mii = σ̂2
i (assume that the rows and columns of M are indexed by Itop),

and λ ≈
√
∥σtop∥1, returns an estimate µ̂top with error α (since the sample complexity of Eq. (4) is

larger than the one required by Theorem 3.1).

To estimate µbot, we do not know the variances, so we use the naïve approach. We first call
VarianceSum once again, to provide an estimate t̂ of ∥σbot∥2 up to a multiplicative constant.
Given t̂, we again call Algorithm 1, now for a (d − k)-dimensional estimation problem. Given
input vectors X(1), . . . , X(n), restricted to coordinates Ibot, matrix M = Id−k, and λ ≈ t̂, Algo-
rithm 1 returns an estimate µ̂bot with error α as long as n = Ω̃(

√
d∥σbot∥2/(αε)). By Hölder’s

inequality, ∥σbot∥2 ≤
√
∥σbot∥1∥σbot∥∞ ≤

√
∥σ∥1∥σbot∥∞. By the guarantees of TopVar and

FindKthLargestVariance, ∥σbot∥∞ is smaller than the k-th largest variance of Σ up to a multi-
plicative constant, which, in turn, must be smaller than ∥σ∥1/k. Substituting this above, we obtain
that it suffices for the stated sample complexity to additionally satisfy n = Ω̃(

√
d∥σ∥1/(

√
kαε)),

which can be confirmed by substituting the definition for k.

The privacy guarantee follows directly by composition of O(1) (ε, δ)-DP mechanisms.

Remark 1. We note that the sample complexity of Algorithm 2 in fact depends on the decay of the
diagonal elements of Σ, and can yield improved bounds for easier instances. In particular, the error
of the algorithm due to privacy is in the order of ∥σItop∥1/(εn) +

√
|Ibot|∥σIbot

∥2/(εn). Thus, if
σ follows an exponential decay, i.e., the i-th largest variance is proportional to e−(i−1), or all σbot

variances are smaller than ∥σ∥1/d, then it suffices to learn only the top k = log(d) variances and the
error almost matches that of the known-covariance case, up to additional logarithmic factors in d,
1/δ. Moreover, identifying easier instances is possible by computing a private histogram over log(d)
buckets of the form (2−j , 2−j+1]∥σ∥∞, given n = Õ(log(d)/ε) samples [16, 41].

Thus, we can determine special cases where the decay of Σ allows us to achieve the optimal rate of
Theorem 1.1 even with unknown diagonal covariance. But without further assumptions, our algorithm
has sample complexity that depends on d1/4. The question of the optimal sample complexity for
mean estimation in the case of unknown covariance, which captures anisotropic distributions, remains
open.

5 Conclusion and future work

We present (ε, δ)-differentially private mean estimators for subgaussian distributions with error
α as measured in Euclidean distance, with high probability, as long as the sample size is n =
Θ̃
(
tr(Σ)/α2 + tr(Σ1/2)/(αε)

)
. The sample complexity is thus dimension-independent when the

covariance is highly anisotropic. We show that this is the optimal sample complexity for this task
up to logarithmic factors. We also present an algorithm in the more challenging case of unknown
covariance, whose sample complexity has improved dependence on the dimension, that is, d1/4.

In the known covariance case, the dependence on log(1/δ) could possibly be decoupled from the
tr(Σ1/2)/(αε) term. This is an artifact of the Gaussian noise added for privacy and can possibly be
avoided using mean estimators based on the exponential mechanism, as in the spherical Gaussian
case [13, 3, 35], but the volumetric arguments involved in their analysis incur factors dependent on d,
which seem hard to overcome.

A more interesting direction for future work is the case of unknown covariance. We can determine
special cases where the decay of Σ allows us to achieve the optimal rate of Theorem 1.1 with unknown
diagonal covariance. What is the appropriate norm in which one needs to learn Σ for the current
known-covariance approach to be accurate, and how many samples are needed for this task privately?
More generally, the optimal sample complexity of mean estimation in the unknown (even diagonal)
covariance case for anisotropic distributions (possibly achieved by an algorithm which doesn’t follow
the same structure) is an open question.
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A Standard DP mechanisms and properties

Definition A.1 (Laplace distribution). For v ≥ 0, let Lap(v) denote the Laplace distribution over R,
which has probability density function p(z) = 1

2σ e
−|z|/v . From the CDF of the Laplace distribution,

we get that Prz∼Lap(v)[z ≥ v log(1/2β)] = β.

Definition A.2 (Laplace Mechanism, [25]). Let f : X ∗ → R, data set X over X , and privacy
parameter ε. The Laplace Mechanism returns

f̃(X) = f(X) + Lap(v), where v = ∆f/ε

and ∆f = max
X∼X′

|f(X)− f(X ′)|.

Lemma A.3 ([25]). The Laplace Mechanism is ε-differentially private.

Definition A.4 (Gaussian Mechanism, [25]). Let f : X ∗ → Rd, data set X over X , and privacy
parameters ε, δ. The Gaussian Mechanism returns

f̃(X) = f(X) +N (0, v2Id), where v = ∆f

√
2 log(1.25/δ)/ε

and ∆f = max
X∼X′

∥f(X)− f(X ′)∥2 is the global ℓ2-sensitivity of f .

Lemma A.5 ([25]). The Gaussian Mechanism is (ε, δ)-differentially private.

Differential privacy is maintained under post-processing and degrades mildly under composition.

Lemma A.6 (Composition, [25, 27, 38]). Let M be an adaptive composition of M1, . . . ,MT , that is,
on input X , M(X) := MT (X,MT−1(X, . . . ,M2(X,M1(X)))). Then

1. (Basic composition) If M1, . . . ,MT are (ε1, δ1), . . . , (εT , δT )-differentially private respec-
tively, then M is (ε, δ)-differentially private for ε =

∑T
t=1 εt and δ =

∑T
t=1 δt.

2. (Advanced composition) Let εt > 0, δt ∈ [0, 1] for t ∈ {1, . . . , T}, and δ̃ ∈ [0, 1]. If
M1, . . . ,MT are (ε1, δ1), . . . , (εT , δT )-differentially private respectively, then M is (ε̃δ̃, δ̃+∑T

t=1 δt)-differentially private where ε̃δ̃ is given by:

ε̃δ̃ =

k∑
ℓ=1

(eεℓ − 1)εℓ
eεℓ + 1

+

√√√√ k∑
ℓ=1

ε2ℓ log

(
1

δ̃

)
.

Fact A.7 (Fact 2.17 [63] reduced to pure DP). Let Y ≈ε Y ′ random variables over Y and let the
event E ⊆ Y be such that Pr[Y ∈ E],Pr[Y ′ ∈ E] ≥ q. Then Y|E ≈ε/q Y ′

|E .

B Omitted details of Section 3

We state here again the general theorem which holds for any M .

Theorem B.1. Let ε ∈ (0, 10), δ ∈ (0, 1), α > 0, β ∈ (0, 1).4 Algorithm 1 is (ε, δ)-differentially
private. Let X be a data set of size n, drawn from a subgaussian distribution with covariance-proxy
Σ and mean µ. Given M = Σ, λ ≥

√
2 tr(M−1/4ΣM−1/4) + 2

√
2∥M−1/4ΣM−1/4∥2 log(nβ ),

with probability at least 1− β, Algorithm 1 returns µ̂ such that ∥µ̂− µ∥2 ≤ α, as long as

n ≥C

 tr(Σ) + ∥Σ∥2 log 1
β

α2
+ λ

(√
tr(M1/2) +

√
∥M1/2∥2 log

1

β

) √log 1
δ

αε
+

log 1
δβ

ε

 ,

(5)

4We require ε to be smaller than some constant, due to approximations we take in the privacy analysis. The
theorem may hold for ε > 10 but we did not optimize the choice of constant, as this range is already wide.
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for some universal constant C. If Σ is known, choosing M = Σ and substituting λ, the sample
complexity becomes

n ≥ C

(
tr(Σ) + ∥Σ∥2 log 1

β

α2
+

tr(Σ1/2)
√
log 1

δ

αε

+

√
∥Σ∥2 log 1

δ log
1
β

αε
log

(
∥Σ∥2 log 1

δ log
1
β

αε

)
+

log 1
δβ

ε

)
. (6)

Although the theorem holds for any M,λ, choosing M = Σ gives us the optimal bound.5

Remark 2. If M is such that Σ ⪯M , we may assume without loss of generality that M is invertible.
Indeed, if this is not the case, then we know that the distribution of the data is supported on a
lower-dimensional subspace along with its mean µ. Using M , we can project onto this subspace. In
this context, we can refocus our analysis on the scenario where M is an invertible matrix.

Computational complexity We note that Algorithm 1 has time complexity O(n2), which can be
further improved to O(n log n) as in [63].

The guarantees of Theorem B.1 follow by combining Theorem B.3 and Theorem B.5 below and
re-scaling parameters ε, δ, β with appropriate constants.

B.1 Accuracy analysis

We start with the accuracy analysis. We first prove that for subgaussian data sets, all data points pass
the filter with high probability.

Lemma B.2. Let X = (X(1), . . . , X(n)) be a data set drawn from a subgaussian distribution with
covariance proxy Σ. Let β ∈ (0, 1), M invertible matrix and some λ ≥

√
2 tr(M−1/4ΣM−1/4) +

2
√
2∥M−1/4ΣM−1/4∥2 log(n/β) given as inputs to Algorithm 1. Then the BasicFilter procedure

outputs C = X , with probability 1− β.

Proof. It suffices to show that in BasicFilter we have pj = 1 for j ∈ [n] (so that vj = 1 and thus
C = X). For each j, k ∈ [n], we want to show distM,λ(X

(j), X(k)) = 1 with probability at least
1− β/n2. For j = k, it is trivial. What is left is to show for j ̸= k,

∥M−1/4(X(j) −X(k))∥2 ≤
√
2 tr(M−1/4ΣM−1/4) + 2

√
2∥M−1/4ΣM−1/4∥2 log(n/β) , (7)

with probability at least 1 − β/n2. First observe that −X(k) is a subgaussian vector independent
of X(j) with mean −µ and covariance proxy Σ. Hence, X(j) −X(k) is a subgaussian vector with
mean 0 and covariance proxy 2Σ, and so M−1/4(X(j) −X(k)) is subgaussian with mean zero and
covariance proxy 2M−1/4ΣM−1/4. By Lemma 2.7, with probability 1− β/n2,

∥M−1/4(X(j) −X(k))∥2 ≤
√
2 tr(M−1/4ΣM−1/4) + 2

√
2∥M−1/4ΣM−1/4∥2 log(n/β) .

Then we union bound all n(n− 1) pairs of j, k ∈ [n], j ̸= k such that Eq. (7) holds with probability
of at least 1− β.

5For intuition, consider adding noise N (0, c2i ) to each coordinate i. (It is clear that the privacy budget should
be distributed unevenly among coordinates.) We would like to minimize the ℓ2 norm of this noise, which is
approximately

∑d
i=1 c

2
i . The average sensitivity of each coordinate of a Gaussian is σi, so to achieve total privacy

loss ε, by advanced composition, we require the ci’s to satisfy
∑d

i=1 σ
2
i /c

2
i ≤ ε2. Solving this optimization

problem, we find that ci ∝
√

∥σ∥1σi, which corresponds to noise N (0,∆2Σ1/2), for ∆2 ≈ ∥σ∥1
ε2n2 . The same

reasoning can be applied to the case of the Mahalanobis error metric [13] where adding noise N (0,∆2
MΣ) for

∆2
M ≈ d

ε2n2 gives us the optimal bound. Here the minimization objective is roughly Σd
i=1c

2
i /σ

2
i so the optimal

solution requires ci ∝ σi.
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Theorem B.3. Let ε > 0, δ ∈ (0, 1), α > 0, β ∈ (0, 1). Suppose n ≥ 2 log(1/δβ)/ε. Let
X = (X(1), . . . , X(n)) be a data set drawn from a subgaussian distribution with mean µ and
covariance proxy Σ. Then, given invertible matrix M and λ ≥

√
2 tr(M−1/4ΣM−1/4) +

2
√
2∥M−1/4ΣM−1/4∥2 log(n/β), Algorithm 1, with probability 1− 7

2β, returns µ̂ such that

∥µ̂− µ∥2 ≤
√
tr(Σ)√
n

+

√
2∥Σ∥2 log(1/β)√

n

+
4
√
2 log(1.25/δ)λ

εn

(√
tr(M1/2) +

√
2∥M1/2∥2 log(1/β)

)
.

Proof. Let µC , µX be the sample mean of C and X , respectively. By the triangle inequality, we
decompose it into

∥µ̂− µ∥2 ≤ ∥µ̂− µC∥2 + ∥µC − µX∥2 + ∥µX − µ∥2 . (8)

By Lemma B.2, C = X with probability 1 − β. Condition on this event for the rest of the proof.
Then, n̂C = n− log(1/δ)

ε + z satisfies n̂C ≥ 0.5n > 0 with probability 1− β/2 because

Pr

[
z <

log(1/δ)

ε
− 0.5n

]
≤ Pr

[
z <

log(1/δ)

ε
− log(1/δβ)

ε

]
= Pr

[
z < − log(1/β)

ε

]
=

1

2
β

by Definition A.1 and our assumption that n ≥ 2 log(1/δβ)/ε. Conditioning on this assumption, we
do not abort and with probability 1− β, by Lemma 2.7,

∥µ̂− µC∥2 = ∥η∥2 ≤
4
√
2 log(1.25/δ)λ

εn

(√
tr(M1/2) +

√
2∥M1/2∥2 log(1/β)

)
.

Again, by Lemma 2.7, with probability 1− β,

∥µX − µ∥2 =

∥∥∥∥∥∥ 1n
n∑

j=1

X(j) − µ

∥∥∥∥∥∥
2

≤
√
tr(Σ)√
n

+

√
2∥Σ∥2 log(1/β)√

n
.

Moreover, since C = X , it holds that µX = µC . Combining these results into Eq. (8), the algorithm
does not abort and we retrieve the stated error bound, with probability 1− 7

2β.

B.2 Privacy analysis

We now move to the privacy analysis.
Lemma B.4. In Algorithm 1, n̂C < |C|, with probability 1− δ/2.

Proof. It follows that by Definition A.1,

Pr [n̂C ≥ |C|] = Pr [|C| − log(1/δ)/ε+ z ≥ |C|] = Pr [z ≥ log(1/δ)/ε] =
1

2
δ.

Note that this holds regardless of whether C is distΣ,β-friendly or whether X is subgaussian.

The privacy analysis follows the steps of [63, Claim 3.4].
Theorem B.5. Let ε ∈ (0, 1/2), δ ∈ (0, 1/2). For any input parameters M,λ, Algorithm 1 satisfies
(21ε, e10δ)-DP.

Proof. It suffices show that lines 4-7 of Algorithm 1 are distΣ,β-friendly (ε′, δ′)-DP, such that by

Theorem 2.5, Algorithm 1 is (2(eε
′ − 1)ε′, 2eε

′+2(eε
′
−1)δ′)-DP.

Denote lines 4-7 of Algorithm 1 as algorithmA. Consider neighboring inputs X,X ′ such that X∪X ′

is distΣ,β-friendly. Assume without loss of generality X ′ = X \X(j) so that |X ′| = |X| − 1. Let
A(X),A(X ′) represent the outputs of two independent executions of A and let N̂X , N̂X′ be the
random variable in line 4 of the algorithm. We want to show A(X) ≈ε′,δ′ A(X ′).
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Note that |X| > 0. If |X ′| = 0, then |X| = 1 and Pr [A(X ′) = ⊥] = 1. We then show that
Pr [A(X) = ⊥] ≥ 1− eεδ/2. This holds since by Definition A.1,

Pr[N̂X ≤ 0] = Pr [z ≤ log(1/δ)/ε− 1] = Pr [z ≤ log(1/(eεδ))/ε] = 1− eεδ

2
.

Therefore, in this case, A(X) ≈0,eεδ/2 A(X ′). That is, if ε ≤ 1/2, A is (0, δ)-DP.

Now consider |X ′| > 0. By Lemma B.4, We know Pr[N̂X < |X|] = Pr[N̂X′ < |X ′|] = 1− δ/2.
Hence, Pr[N̂X′ < |X|] = Pr[N̂X′ < |X ′| + 1] ≥ 1 − δ/2. Then what is left is to compare
A(X)|N̂X<|X|,A(X ′)|N̂X′<|X|.

By Lemma A.3, N̂X ≈ε,0 N̂X′ as |X| − |X ′| = 1. By Fact A.7, N̂X |N̂X<|X| ≈ε/(1−δ/2),0

N̂X′ |N̂X′<|X|. In order to perform composition by Lemma A.6, we now show that for each fixed
n̂ < |X|, A(X)|N̂X=n̂ ≈ε,δ A(X ′)|N̂X′=n̂ as follows:

Choose n̂ < |X|. If n̂ ≤ 0, then A(X)|N̂X=n̂ = A(X ′)|N̂X=n̂ = ⊥ and we are done. If 0 <

n̂ < |X|, it suffices to show N ( 1
|X|
∑|X|

i=1 X
(i), v2M1/2) ≈ε,δ N ( 1

|X|−1

∑|X|
i=1,i̸=j X

(i), v2M1/2),

where v2 = 8 log(1.25/δ)λ2

ε2n̂2 , which, by post-processing, is equivalent to

N

M−1/4 1

|X|

|X|∑
i=1

X(i), v2Id

 ≈ε,δ N

M−1/4 1

|X| − 1

|X|∑
i=1,i̸=j

X(i), v2Id

 . (9)

Define vector D = 1
|X|
∑|X|

i=1 X
(i)− 1

|X|−1

∑|X|
i=1,i̸=j X

(i). As X ∪X ′ is distΣ,β-friendly, for every

i ∈ [|X|] \ {j}, there exists some Y (i) ∈ Rd such that distΣ,β(X
(i), Y (i)) = distΣ,β(X

(j), Y (i)) =
1. We have

∥M−1/4D∥2 =
1

|X|(|X| − 1)

∥∥∥∥∥∥M−1/4

 |X|∑
i=1,i̸=j

X(i)

−X(j)(|X| − 1)

∥∥∥∥∥∥
2

≤ 1

|X|(|X| − 1)

|X|∑
i=1,i̸=j

(∥∥∥M−1/4
(
X(i) − Y (i)

)∥∥∥
2
+
∥∥∥M−1/4

(
Y (i) −X(j)

)∥∥∥
2

)
(by triangle inequality)

≤ 1

|X|(|X| − 1)

|X|∑
i=1,i̸=j

2λ =
2λ

|X|
≤ 2λ

n̂
.

(by distΣ,β-friendly assumption and since 0 < n̂ < |X|)

We know Equation (9) holds by applying the guarantees of the Gaussian mechanism (Lemma A.5)
where we set f(X) = M−1/4 1

|X|
∑|X|

i=1 X
(i) and ∆f = 2λ/n̂.

Combining these results, we have A is (ε + ε
1−δ/2 , δe

ε/(1−δ/2) + δ
2 )-DP in this case. For ε ≤

1/2, δ ≤ 1/2, this becomes at most (3ε, 2δ)-DP.

Therefore, overall, by Theorem 2.5, Algorithm 1 is (2(eε
′ − 1)ε′, 2eε

′+2(eε
′
−1)δ′)-DP with ε′ =

3ε, δ′ = 2δ. So for ε ≤ 1/2, the algorithm is (21ε, e10δ)-DP overall.

C Lower bounds

C.1 Dimension-dependent lower bound under pure DP

The so-called packing lower bound technique [32, 10] implies a lower bound on the order of d for the
number of samples required by any pure DP algorithm learning the mean of a Gaussian distribution,
even in the anisotropic case we consider in this paper.
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There exist several statements in prior works which establish the lower bound for learning a Gaussian
distribution with known covariance in TV distance, which is equivalent to learning the mean in
Mahalanobis distance, or to learning the mean in ℓ2 norm in the isotropic case [18, Lemma 5.1]. It
is trivial to observe that the dependence on the dimension d persists in the anisotropic case, yet we
include the proof here for completeness.
Theorem C.1. For any α < R/2, any ε-DP algorithm which estimates the mean µ ∈ Bd(R) of a
Gaussian distribution with known covariance Σ, up to accuracy α in ℓ2 norm with probability 9/10,
requires n ≥ d log(R/2α)

ε samples.

Proof. Consider a 2α-packing of the d-dimensional R-radius ball, denoted by P2α ⊂ Bd(R).
That is, ∀u, v ∈ P , ∥u − v∥2 > 2α, so that the balls with centers u, v and radius α are disjoint:
Bd(u, α) ∩ Bd(v, α) = ∅. We consider the family of Gaussian distributions {N (u,Σ)}u∈P2α .
Suppose A is an ε-DP algorithm with the stated accuracy requirement. This implies that ∀u ∈ P2α:

Pr
A,X∼N (u,Σ)n

[A(X) ∈ Bd(u, α)] ≥ 9/10. (10)

At the same time, for any pair of samples X,X0 of size n, and any measurable set B ⊂ range(A),
by the privacy guarantee, PrA[A(X) ∈ B] ≤ eεn PrA[A(X0) ∈ B]. This implies specifically that
for u0, u ∈ P2α,

Pr
A,X∼N (u,Σ)n

[A(X) ∈ B] ≤ eεn Pr
A,X0∼N (u0,Σ)n

[A(X0) ∈ B]. (11)

We have
1 ≥ Pr

A,X0∼N (u0,Σ)n
[A(X0) ∈

⋃
u∈P2α

Bd(u, α)]

=
∑

u∈P2α

Pr
A,X0∼N (u0,Σ)n

[A(X0) ∈ Bd(u, α)] ({Bd(u, α)}u∈P2α
disjoint)

≥
∑

u∈P2α

e−εn Pr
A,X∼N (u,Σ)n

[A(X) ∈ Bd(u, α)] (by Eq. (11))

≥ |P2α|e−εn · 9
10

. (by Eq. (10))

We conclude that n ≥ log |P2α|
ε . Since |P2α| ≥

(
R
α

)d
, it follows that n ≥ d log(R/2α)

ε .

This lower bound makes ε-DP prohibitive for the regime we consider in our setting. To compare with
our upper bounds for (ε, δ)-DP, suppose that we want to learn µ with accuracy cσ1 < R, where c > 0

is a small constant. Then our main result implies that this is achievable with n ≤ C ∥σ∥1

εσ1
samples for

some constant C > 0, whereas under ε-DP, we would need at least n ≥ d
ε ≫

∥σ∥1

εσ1
for the regime we

consider in this paper.

C.2 Lower bound for approximate DP

The so-called tracing or fingerprinting lower-bound technique [15, 60, 17, 61, 28] is the main
technique used to yield lower bounds for mean estimation under (ε, δ)-DP. Kamath et al. [39, 40]
apply it to give lower bounds for the problem of learning a Gaussian in TV distance (which is
equivalent to learning the Gaussian in Mahalanobis distance for the known covariance case, or to the
isotropic case).

Theorem C.2 (Theorem 6.5 [39]). If A : Rd×n → [−Rσ,Rσ]d is (ε, δ)-DP for δ = Õ(
√
d

Rn ), and
for every Gaussian distribution with mean µ ∈ [−Rσ,Rσ]d and known covariance matrix σ2Id, with
probability 2/3, ∥A(X)− µ∥ ≤ α ≤

√
dσR/3, then n ≥ dσ

24αε log(dR) .

Following exactly the same steps as the proof of the theorem under the slightly more general case
of known covariance Σ = diag(σ2) gives us a weak lower bound for our setting, on the order of
n ≥ ∥σ∥2

2

24εασ2
1 log(dR)

.

However, a more careful application of the same theorem directly gives us the following stronger
lower bound, which implies that our algorithm for the known covariance case is near-optimal.
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Theorem C.3. If A : Rd×n → Rd is (ε, δ)-DP for δ = O((n
√
log(n))−1), and for every Gaussian

distribution with mean µ ∈ [−1, 1]d and known covariance proxy Σ = diag(σ2), with probability

2/3, ∥A(X)− µ∥ ≤ α = O(∥σ∥1/ log(d)), then n = Ω
(

∥σ∥1

αε log2(d)

)
.

Proof. Assume w.l.o.g. that σ2
1 ≥ . . . ≥ σ2

d. Consider a partition of the set of coordinates [d] into
buckets Sk = {i ∈ [d] : σi ∈ (σ1

2k
, σ1

2k−1 ]}, ∀k ∈ [log(d)] and Slog(d)+1 = [d] \
⋃

k∈[log(d)] Sk. We

have that
∑log(d)+1

k=1

∑
i∈Sk

σi = ∥σ∥1. Consider the bucket Sm which contributes the most to this
sum, that is m = argmax

∑
i∈Sm

σi. Let σSm
= max{σi : i ∈ Sm}. It must be that

|Sm| ≥
∥σ∥1

(log(d) + 1)σSm

.

Otherwise, ∥σ∥1 =
∑log(d)+1

k=1

∑
i∈Sk

σi ≤ (log(d)+ 1)|Sm|σSm
< ∥σ∥1, which is a contradiction.

All the variances of the coordinates in Sm are within a factor of two from σSm
. We apply Theorem C.2

to the |Sm|-dimensional Gaussian with R = 1. Consider the Gaussian distribution with mean
µSm

∈ [−1, 1]|Sm| and known covariance matrix σ2
Sm

Id. We have that any (ε, δ)-DP algorithm

for δ = O

(
1

n
√

log(n)

)
which returns, with probability 2/3, an estimate µ̂Sm with error ∥µ̂Sm −

µSm∥2 ≤ α ≤
√
|Sm|σSm/3, requires

n ≥ |Sm|σSm

24αε log(d)
≥ ∥σ∥1

48αε log2(d)
(12)

samples.

Now assume that there exists (ε, δ)-DP algorithmA : Rd×n → Rd for δ = O

(
1

n
√

log(n)

)
, such that,

for every Gaussian distribution with mean µ ∈ [−1, 1]d and known covariance proxy Σ = diag(σ2),
with probability 2/3, ∥A(X)−µ∥ ≤ α ≤ ∥σ∥1

3(log(d)+1) . Restricting the outputA(X) to the coordinates
in Sm, would give us a mean estimate for Sm with error at most α. Combined with Eq. (12), this
completes the proof of the theorem.

D Omitted details of Section 4

We state the main theorem in more detail.
Theorem D.1. Let parameters ε, δ ∈ (0, 1). Let X ∼ N (µ,Σ)n with unknown covariance Σ. There
exists an (ε, δ)-differentially private algorithm which, with probability 1− β, returns an estimate µ̂
such that ∥µ̂− µ∥2 ≤ α, as long as

n = Ω

log2(d) +
log(d) log( 1

δβ )
√

log 1
δ

ε

 ,

n = Ω

(
tr(Σ) + ∥Σ∥2 log 1

β

α2

)
, (13)

n = Ω̃

∑d
i=1 Σ

1/2
ii

√
log 1

δ

αε

 , (14)

and

n = Ω̃

d1/4
√∑d

i=1 Σ
1/2
ii log5/4( 1δ ) log(d)√
αε

 , (15)

where the symbol Ω̃ hides multiplicative logarithmic factors in 1/β and the term in parentheses.

20



Recall the definition of set V . Within each group j, for each coordinate i, we compute an estimate
V

(j)
i for Σii as follows:

V
(j)
i =

1

2ℓ

ℓ∑
r=1

(
X

(j,2r−1)
i −X

(j,2r)
i

)2
. (16)

We show that the variance estimates are valid in the subsequent sections.

Lemma D.2. Let X(1), . . . , X(n) be d-dimensional i.i.d. samples from N (µ,Σ). Let
{V (j)

i }j∈[m],i∈[d] be the estimates defined in Eq. (16). Then, there exist universal constants C,C ′ > 1
such that if ℓ ≥ C log d and m ≥ C ′ log(1/β), with probability at least 1− β, the set V of estimates
is valid.

Next, we use the estimates V
(j)
i as inputs to multiple procedures. We introduce the following

estimation tasks.
Definition D.3. For a covariance matrix Σ ∈ Rd×d consider the following:

1. k-th largest variance: Approximate the k-th largest value among the diagonal of Σ, namely,
the k-th largest value among (Σ11, . . . ,Σdd).

2. Sum of variances: given a subset I ⊆ [d], approximate the sum
∑

i∈I Σii.

We have the following algorithms for these tasks. The proofs of Lemmas D.4, D.5, and D.6 are in the
subsequent subsections.
Lemma D.4. Let ε, δ, β ∈ (0, 1/2). There exists an algorithm FindKthLargestVarianceε,δ , which
receives variance estimates V (1), . . . , V (m) ∈ Rd and an integer k ∈ [d], and satisfies the following,
provided that

m ≥ Ω

(
1

ε
log

1

δβ

)
.

• Privacy: FindKthLargestVarianceε,δ is (ε, δ)-DP with respect to changing each input
vector V (j).

• Accuracy: denote the k-th largest entry of {Σ11, . . . ,Σdd} by Q and the algorithm’s output
by Q̂. If the estimates (V (1), . . . , V (m)) are valid wrt Σ, then there exists a universal
constant C > 0 such that with probability at least 1− β,

Q/8 ≤ Q̂ ≤ 8Q .

Lemma D.5. Let ε, δ, β ∈ (0, 1). There exists an algorithm VarianceSumε,δ, which receives
variance estimates V (1), . . . , V (m) ∈ Rd and a subset I ⊆ [d]. It has the exact same guarantees
as FindKthLargestVariance from Lemma D.4, except that it provides an estimate for

∑
i∈I Σii

instead of an estimate for the k-th largest diagonal entry of Σ.

Assume for now that the estimates V (j)
i are valid. With these procedures at hand, we first compute R

such that (by rescaling) Q/64 ≤ R ≤ Q, where Q is the k-th largest diagonal entry of Σ. Then, we
call a procedure that finds k entries i such that Σii ≥ R. Its guarantees are listed below:
Lemma D.6. Let ε, δ, β ∈ (0, 1). There exists an (ε, δ)-DP algorithm TopVarε,δ(V,R), such that, if
V is valid,

m ≥ Ω

(√
k log(1/δ)

εn
log

d

β

)
,

and |{i : Σii ≥ R}| ≥ k, then the algorithm outputs a set Itop of size k such that for all i ∈ Itop,
Σii ≥ R/4.

At the next step, we would like to find, up to a constant factor, the variances corresponding to these
coordinates: the values Σii for i ∈ Itop. We use the algorithm VarianceSum k times, providing the
sets {i} for i ∈ Itop. We obtain estimates Σ̂ii that approximate Σii up to a constant factor.

Next, we estimate the mean µ in the coordinates Itop, denoted µtop, separately from Ibot := [d]\Itop,
denoted µbot: since we approximately know the variances in Itop, we can obtain a better estimate.
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Both for estimating µtop, and for estimating µbot, we use AvgM,λ,ε,δ (Algorithm 1 from Section 3)
with appropriate choices of parameters M,λ. Recall that Algorithm 1 satisfies the guarantees of
Theorem B.1.

For estimating µtop, we use AvgM,λ,ε,δ for estimating the mean of a k-dimensional Gaussian,

with input vectors restricted to coordinates Itop, X(1)
Itop

, . . . , X
(n)
Itop

, the k × k-dimensional diagonal

matrix M , with Mii = Σ̂ii (we assume that the rows and columns of M are indexed by Itop),

and λ = O

(√∑
i∈Itop

Σ̂
1/2
ii log n

β

)
. Denote the output by µ̂top. Theorem B.1 shows that with

probability 1− β, ∥µ̂top − µtop∥2 ≤ α, if

n ≥ Ω̃

 tr(Σ)

α2
+

√
log(1/δ)

∑
i∈Itop

Σ
1/2
ii

αε
+

log(1/δ)

ε

 , (17)

where Ω̃ hides multiplicative logarithmic factors in 1/β and the second term.

For estimating Ibot, we do not know the variances. In order to perform the estimation, we first
call the algorithm VarianceSum to provide an estimate Ŝbot such that 1

C

∑
i∈Ibot

Σii ≤ Ŝbot ≤
C
∑

i∈Ibot
Σii for a constant C. Given that estimate, we again will call AvgM,λ,ε,δ , now for a (d−k)-

dimensional estimation problem. We input the samples X(1)
Ibot

, . . . , X
(n)
Ibot

, replace the matrix M with

the identity of dimension (d− k)× (d− k), and let λ = O
(√

Ŝbot log
n
β

)
.6 Denote the output by

µ̂bot. The guarantees of Theorem B.1 provide that with probability 1− β, ∥µ̂bot − µbot∥2 ≤ α, if,
additionally to Eq. (17), we have

n ≥ Ω̃


√
d log 1

δ

∑
i∈Ibot

Σii

αε

 , (18)

where Ω̃ hides multiplicative logarithmic factors of 1/β and of the term in parentheses. As we prove
below, combining these guarantees would yield the desired result. Additionally, we note that in order
for the proof to go through, we split the sample into two groups. One group is used for estimating
the variances and the other group is given as an input to the two invocations of VarianceSum. We
provide the formal pseudocode in Algorithm 2.

Accuracy analysis. We put together the statements of the lemmas above, to establish the overall
accuracy guarantee of Algorithm 2. By Lemma D.2, the estimates V

(j)
i are valid (i.e., at least

4m/5 of the groups have approximation up to 2 for every coordinate), with probability 1 − β as
long as m = Ω(log 1

β ). Consequently, Lemma D.4 implies that as long as m = Ω( 1ε log
1
δβ ),

FindKthLargestVariance outputs an estimate of the k-th largest variance, which is accurate up to a
constant factor C = 8, with probability 1−β. By scaling, we can assume that, R̂/8, is upper bounded

by the k-th largest variance. Under this assumption, and as long as m = Ω

(√
k log(1/δ)

εn log d
β

)
,

Lemma D.6 implies that w.p. 1− β, the output of TopVar, Itop, is a set of size k, containing indices

of elements whose variances are at least R̂/32. By Lemma D.5, as long as m = Ω
(

1
ε′ log

1
δ′β′

)
=

Ω

(√
k log(1/δ)

ε log k
δβ

)
, the estimates Σ̂ii to the variances in the indices in Itop are accurate up to a

constant factor, with a failure probability of β/k for each invocation of this lemma, which sums up to
a failure probability of β. Similarly, the estimate Ŝbot has the same guarantee. If n is large enough to
satisfy the requirement of Line 1, then all previous constraints on m are satisfied.

Lastly, the two estimates from AvgM,λ,ε,δ suffer an approximation of α, each with a failure probability
of β, provided that the conditions on the sample complexity n, that are given in Eq. (17) and Eq. (18),

6We could additionally privately learn the largest variance among Ibot, denoted by ŝ and set λ =

O
(√

Ŝbot +
√

ŝ log n
β

)
to decouple Ŝbot from the logarithmic factor, but we choose not to for simplicity, and

since we did not optimize for logarithmic factors overall.
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hold. By assumption on the sample complexity (Eq. (13),(14)), the guarantee of Eq. (17) indeed holds.
It remains to prove that the guarantee of Eq. (18) holds as well. We analyze the term

√∑
i∈Ibot

Σii.

Denote vector σbot = ({σi}i∈Ibot
) where σi = Σ

1/2
ii . Then

√∑
i∈Ibot

Σii = ∥σbot∥2. By Hölder’s
inequality,

∥σbot∥2 ≤
√
∥σbot∥1∥σbot∥∞ ≤

√
∥σ∥1∥σbot∥∞.

By the guarantees of TopVar and FindKthLargestVariance, except for a failure probability of
O(β), there exists a universal constant C > 1 such that

max
i∈Ibot

Σ
1/2
ii ≤ CR̂1/2.

Further, by assumption, R̂ is up to a constant the k-th largest diagonal element of Σ, hence,

CR̂1/2 ≤ 1

k

d∑
i=1

Σ
1/2
ii .

Substituting this above, we obtain that√ ∑
i∈Ibot

Σii ≤
1√
k

d∑
i=1

Σ
1/2
ii .

Thus, it suffices for the stated sample complexity to additionally satisfy n =

Ω̃

(√
d log(1/δ)

∑d
i=1 Σ

1/2
ii√

kαε

)
. Substituting the definition for k, we obtain Eq. (15), which

completes the proof.

Privacy analysis. Notice that the output of the algorithm is obtained by composing multiple
differentially private mechanisms. Some of these mechanisms access the estimates V (1), . . . , V (m)

instead of the original dataset. Yet, since each input datapoint X(i) influences only one vector V (j),
this implies that any DP guarantees for algorithms that use the V (j) estimates, directly translate to
DP guarantees on the original input dataset.

Notice that the algorithm has O(1) calls to (ε, δ)-DP mechanisms, and k calls to (ε′, δ′)-DP mecha-
nisms: these are the calls to VarianceSum. By Lemma A.6 (advanced composition), the concate-
nation of all the calls to VarianceSum are together, (O(ε), O(δ)). By basic composition of the
same lemma, composing the resulting composion with the other calls to DP mechanisms, yields an
(O(ε), O(δ))-DP mechanism.

D.1 The variance estimates are valid: Proof of Lemma D.2

The random variable (X
(j,2r−1)
i −X

(j,2r)
i )/

√
2Σii is standard normal. Thus,

ℓ∑
r=1

(X
(j,2r−1)
i −X

(j,2r)
i )2

2Σii

follows a chi-squared distribution with ℓ degrees of freedom. We use the following concentration
property of a Chi-squared random variable [45, Lemma 1]: if Z is Chi-squared with ℓ degrees of
freedom,

Pr[E[Z]/2 ≤ Z ≤ 2E[Z]] ≥ 1− 2e−cℓ ,
for some constant c > 0. Consequently,

Pr

[
ℓ

2
≤

ℓ∑
r=1

(X
(j,2r−1)
i −X

(j,2r)
i )2

2Σii
≤ 2ℓ

]
≥ 1− 2e−cℓ,

for some constant c > 0.

By a union bound over all dimensions i, the probability that all dimensions’ variance estimates fall
within the specified bounds in a single group j is at least 1− 2d exp(−cℓ). Assuming ℓ ≥ C log d
ensures this probability is very high (e.g., at least 7/8 for suitable constant C).

Using the Chernoff bound for the binomial distribution, if each group independently satisfies the
variance bounds with probability at least 7/8, then the probability that at least 4/5 of the groups
satisfy the variance bounds is at least 1− β for m = Ω(log(1/β)).
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D.2 Finding the indices of the largest variances: Proof of Lemma D.6

We propose an algorithm which, receives estimates V (j)
i for the variances and a threshold R, and

outputs k indices i ∈ [d] whose variance is at least R/C for some universal constant C. To do so, we
use the sparse vector algorithm, which receives a dataset D, queries Q1(D), . . . , Qd(D), a threshold
T and a natural number k. It outputs k indices i such that Qi(D) ≥ T (approximately). In order
to use the sparse vector to identify the largest variances, our dataset D will be V , the collection of
estimates. The query Qi(V ) will capture whether the i’th variance is Ω(R). We define the query

Qi(V ) =
1

m

∣∣∣{j : V (j)
i ≥ R/2

}∣∣∣ ,
and the threshold T = 1/2. Intuitively, if Qi(V ) ≥ 1/2 this means that at least half of the values of
j, V (j)

i ≥ R/2, which implies that Σii ≥ Ω(R), provided that the estimates V are valid. Otherwise,
it implies Σii ≤ R.

We now formally define the sparse vector algorithm [26, 54, 31], and review its guarantees. See [23,
Section 3.6] for a detailed analysis of the sparse vector technique.

Algorithm 3 Sparse(D, {Qi}, T, d, ε, δ), from [23]
Require: Input is a private database D, an adaptively chosen stream of sensitivity 1/n queries

Q1, . . ., a threshold T , a cutoff point k, and privacy parameters ε, δ.
1: T̂ ← T + Lap

(
2
εn

)
2: σ ←

√
32k ln(1/δ)

εn

3: count← 0
4: I ← ∅
5: for each query i do
6: vi ← Lap(σ)
7: if Qi(D) + vi ≥ T̂ then
8: I ← I ∪ {i}
9: count← count + 1

10: if count ≥ k then
11: return I
12: return I

Lemma D.7 (Sparse guarantees). Sparse (Algorithm 3) is (ε, δ)-differentially private. Let β ∈ (0, 1)
and define

α = 2σ

(
log d+ log

2

β

)
=

√
128k ln(1/δ)

εn

(
log d+ log

2

β

)
.

For any sequence of d queries Q1, . . . , Qd if there are at least k queries i such that Qi(D) ≥ T + α,
then the following holds with probability 1− β: the output of Algorithm 3, I , is a set of size k, and
for each i ∈ I , Qi(D) ≥ T − α.

Next, we formally define the algorithm TopVar, to find the indices of the largest variances.

Algorithm 4 TopVarε,δ(V,R, k)

Require: Variance estimates V = {V (j)
i }j∈[m],i∈[d], threshold R ∈ R, privacy parameters ε, δ ∈

(0, 1), number of indices k ∈ N.
1: Define queries Qi(D) for each i ∈ [d] as:

Qi(D) =
1

m

∣∣∣{j : V (j)
i ≥ R/2

}∣∣∣
2: T ← 1/2
3: return Sparse(V, {Qi}, T, k, δ)
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The privacy guarantees of TopVar follow directly from the guarantees of the sparse vector. Next,
we describe how to derive the accuracy guarantees. Notice that if the V

(j)
i are valid, then, for any i

such that Σii ≥ R: for at least 4m/5 values of j, it holds that V (j)
i ≥ R/2, hence, Qi(D) ≥ 4/5.

Further, for any i such that Σii < R/4, for at least 4m/5 values of j it holds that V (j)
i < R/2, hence

Qi(D) ≤ 1/5. Hence, if we set the threshold at T = 1/2, and α = 1/4, then, for any i output by the
algorithm, Σii ≥ R/4. Further, if there are at least k indices i such that Qii ≥ R, the algorithm will
output k indices.

D.3 Finding the k-th largest variance: Proof of Lemma D.4

We propose an algorithm, Algorithm 5, that receives pre-computed variance estimates V (j)
i for each

group j and coordinate i. The algorithm uses them to compute an estimate for the k-th largest
variance for each V (j):

Mj := k-th largest of
{
V

(j)
1 , . . . , V

(j)
d

}
i∈[d]

.

Our algorithm combines all of these estimates in a differentially private manner, using a stable
histogram: Algorithm 6. That algorithm splits the real line into buckets, {Bb}b∈Z∪{−∞}. It receives
the estimates M1, . . . ,Mm ∈ R and outputs the index b of the bucket that contains the largest number
of estimates Mj (approximately).

In our application, we would like to estimate the k-th largest variance up to a multiplicative constant
factor, hence, we define the buckets as

Bb =

{
[4b, 4b+1) b ∈ Z
{0} b = −∞.

Denote by b∗ index of the bucket that contains the k-th largest diagonal entry of Σ. If the estimates
V (1), . . . , V (m) are valid then, by definition of validity (Definition 4.2), it follows that at least 4m/5
of the estimates Mj fall into the union Bb∗−1 ∪Bb∗ ∪Bb∗+1. Under this assumption, Algorithm 6 is
guaranteed to output one of b∗ − 1, b∗ or b∗ + 1, with probability 1− δ.

The algorithm for k-th largest variance, Algorithm 5, is presented here:

Algorithm 5 FindKthLargestVarianceε,δ({V
(j)
i }i∈[d],j∈[m], k)

Require: Pre-computed variance estimates V (j)
i for each group j and each coordinate i. Privacy

parameters ε, δ > 0. Integer k ≤ d. Number of groups m.
1: for j ∈ [m] do
2: Mj ← k-th largest value among {V (j)

1 , V
(j)
2 , . . . , V

(j)
d }

3: Define bins {Bb}b∈Z∪{−∞} by:

Bb =

{
[4b, 4b+1) b ∈ Z
{0} b = −∞

4: b← StableHistogramε,δ({Mj}j∈[m], {Bb})
5: return M̂ = 4b

We proceed by defining StableHistogram as introduced in [16] and providing its guarantees, and
then we conclude with the proof of Lemma D.4. The presentation of StableHistogram is from [13].
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Algorithm 6 StableHistogramε,δ({Mi}, {Bb}), from [16]

Require: Items M1, . . . ,Mm ∈ U . Bins {Bb}b∈Z. Privacy parameters ε, δ > 0.
1: for b ∈ Z do
2: cb ← |{i : zi ∈ Bb}|
3: for b with cb > 0 do
4: c̃b ← cb + Lap(2/ε)

5: τ ← 1 + 2 log(1/δ)
ε

6: Let bmax = argmaxb c̃b, with arbitrary tie breaks
7: if c̃bmax ≥ τ then
8: return bmax
9: else

10: return ⊥

We use its privacy and accuracy guarantees, proved as Lemma C.1 in [13]:
Lemma D.8 (Stable Histogram Guarantees). StableHistogramε,δ (Algorithm 6) is (ε, δ)-
differentially private. Suppose that there exists b∗ ∈ Z such that

|{M1, . . . ,Mm} ∩ (Bb∗−1 ∪Bb∗ ∪Bb∗+1)| ≥ 3m/4 .

There exists a constant C > 0 such that, for all 0 < ε, β, δ < 1, if

m ≥ C

ε
log

1

δβ
,

then with probability at least 1− β, the algorithm’s output lies in {b− 1, b, b+ 1}.

The privacy guarantees of Algorithm 5 follow directly from the privacy guarantees of Algorithm 6.
For the accuracy guarantees, notice that if the estimates V (j) are valid then at least 4m/5 of the
values Mj fall into the bucket Bb∗ that contains the true value of the k-th largest entry of the diagonal
of Σ. Under this assumption, Algorithm 6 is guaranteed to output, with probability 1 − β, one of
b∗ − 1, b∗ or b∗ + 1. This implies that the output of Algorithm 5 is approximates the target quantity
up to a constant, as required.

D.4 Finding a sum of variances: Proof of Lemma D.5

We propose an algorithm that is similar to Algorithm 5, with a single difference: given each estimate
V (j), the algorithm computes

Mj =
∑
i∈I

V
(j)
i .

The algorithm is summarized below:

Algorithm 7 VarianceSumε,δ({V (j)
i }i∈[d],j∈[m], I)

Require: Pre-computed variance estimates V (j)
i for each group j and each coordinate i. Privacy

parameters ε, δ > 0. Subset I ⊆ [d]. Number of groups m.
1: for j ∈ [m] do
2: Mj ←

∑
i∈I V

(j)
i

3: Define bins {Bb}b∈Z∪{−∞} by:

Bb =

{
[4b, 4b+1) b ∈ Z
{0} b = −∞

4: b← StableHistogramε,δ({Mj}j∈[m], {Bb})
5: return M̂ = 4b

The proof is identical to the proof of Lemma D.4. In order to carry that proof, one has to notice that
if b∗ is the bucket that contains

∑
i∈I Σii and if the estimates V (j) are valid, then at least 4m/5 of

the estimates Mj fall within Bb∗−1 ∪Bb∗ ∪Bb∗+1.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe that the presented research conforms with the NeurIPS Code of
Ethics, as it is theoretical and does not enable harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper is theoretical and contributes to a line of work that aims to design
privacy-preserving statistical estimators, which use few samples, even in high-dimensional
settings. We believe that in the long-term, the societal impact of this line of work will be
positive, in the sense that it will enable the use of privacy-preserving methods, and possibly
even mitigate the need for collection of large data sets.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not contribute data or models with high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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