
Fewer Truncations Improve Language Modeling

Hantian Ding 1 Zijian Wang 1 Giovanni Paolini 1 Varun Kumar 1 Anoop Deoras 1 Dan Roth 1 Stefano Soatto 1

Abstract
In large language model training, input documents
are typically concatenated together and then split
into sequences of equal length to avoid padding to-
kens. Despite its efficiency, the concatenation ap-
proach compromises data integrity—it inevitably
breaks many documents into incomplete pieces,
leading to excessive truncations that hinder the
model from learning to compose logically co-
herent and factually consistent content that is
grounded on the complete context. To address
the issue, we propose Best-fit Packing, a scalable
and efficient method that packs documents into
training sequences through length-aware combi-
natorial optimization. Our method completely
eliminates unnecessary truncations while retain-
ing the same training efficiency as concatenation.
Empirical results from both text and code pre-
training show that our method achieves superior
performance (e.g., relatively +4.7% on reading
comprehension; +16.8% in context following; and
+9.2% on program synthesis), and reduces closed-
domain hallucination effectively by up to 58.3%.

1. Introduction
Large language models (LLMs) have achieved unprece-
dented success on a number of natural language process-
ing and coding benchmarks (Brown et al., 2020; Chen
et al., 2021) and in complex real-world tasks (Ouyang et al.,
2022). This remarkable progress is driven by large-scale
pre-training over a massive amount of unlabeled documents.
When formatting the training inputs, naı̈vely padding every
document to a fixed length is inefficient as short documents
lead to an excessive amount of padding. Instead, the com-
mon practice is to concatenate all documents together and
then split them into sequences of exactly the model’s context
length. A sentinel token (e.g., <|endoftext|>) is often
added at the end of each document to indicate document

1AWS AI Labs. Correspondence to: Hantian Ding <dhan-
tian@amazon.com>, Zijian Wang <zijwan@amazon.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

boundaries within each training sequence. This concatenate-
then-split (hereafter “concatenation”) approach has been
widely adopted in training language models in both natu-
ral language (Brown et al., 2020; Chowdhery et al., 2022;
Rae et al., 2021; Zhang et al., 2022; Touvron et al., 2023b;
Scao et al., 2022) and programming language (Nijkamp
et al., 2023), thanks to its optimal training efficiency as no
padding is needed. However, such training efficiency comes
at the expense of data integrity—documents that could have
been processed in their entirety by the model are instead
fragmented into independent segments, which naturally re-
sults in loss of information. Further, truncation reduces the
amount of context within each segment, causing next-token
prediction to be potentially ungrounded to its context, and
thus making models more prone to hallucination.

We argue that data integrity is the key towards better lan-
guage modeling. To realize this, we first show that it is
feasible to group billions of documents at pre-training scale
into sequences in a way that is as token-efficient as concate-
nation without incurring any unnecessary truncation: only
documents beyond model’s context length need to be seg-
mented. Data grouping strategies that preserve the entirety
of individual samples have been widely adopted for encoder-
only and encoder-decoder models (Liu et al., 2019; Raffel
et al., 2020b; Krell et al., 2021). Nonetheless, these existing
strategies either exhibit limited scalability or compromise
training efficiency, making them less favorable compared to
the concatenation method in LLM training at scale.

In response, we propose Best-fit Packing to eliminate un-
necessary document truncations without sacrificing training
efficiency. As illustrated in Figure 1, we first segment long
documents into multiple chunks by model’s context length.
Documents shorter than that are kept as singleton chunks.
Next, we pack all the chunks into training sequences with-
out breaking them any further. This step is essentially an
instance of the bin packing problem1, which is NP-hard. We
employ Best-Fit-Decreasing (Eilon & Christofides, 1971),
an approximation algorithm, and further optimize it to han-
dle billions of documents efficiently. Empirical results show
that the packed training sequences only contain a negligible

1Bin packing is an optimization problem in which items of
different sizes must be packed into a finite number of bins or
containers, each of a fixed given capacity, in a way that minimizes
the number of bins used (Bernhard & Vygen, 2008).

1

Fewer Truncations Improve Language Modeling

Figure 1. An illustration of the proposed Best-fit Packing compared with concatenation (baseline). We set max sequence length to 8 tokens
in this example. Top: Original training documents. Each box stands for a token. Contiguous boxes in the same color represent a document.
There are five documents of lengths 14, 7, 5, 2, 3, respectively. Bottom-left: Best-fit Packing. In step 1, we segment the long document
(e.g., blue) into chunks with ≤ 8 tokens. In step 2, we group chunks into training sequences in a smart way that results in the smallest
number of sequences. We do not break any chunk in the second step. In total, only one document was truncated and this is necessary to
meet the max sequence length requirement. Bottom-right: The concatenation approach. 3 out of the 5 documents are truncated.

amount of padding, which enables us to maintain the same
training efficiency as the concatenation approach while pre-
venting unnecessary document truncation.

To validate the effectiveness of truncation reduction, we pre-
train a set of models with inputs formatted by concatenation
and Best-fit Packing respectively, ranging from 7B to 13B
in model size, 2k to 8k in context length, on both Natu-
ral Language (NL) and Programming Language (PL) data.
Evaluation covers 22 tasks across reading comprehension,
natural language inference, context following, summariza-
tion, world knowledge, and program synthesis. Results
show that models trained with fewer truncations demon-
strate superior performance and exhibit less hallucination.

In summary, our main contributions are the following.

• We highlight the truncation issue inherent in the widely-
used concatenation method for LLM pre-training (§2).

• We analytically show the adverse impact of truncation
on learning through a simplified model (§2.1).

• We propose Best-fit Packing, a scalable data grouping
method that eliminates unnecessary document trunca-
tions at almost no cost of training efficiency (§3).

• We empirically quantify the benefits of truncation re-
duction in a variety of downstream scenarios (§4).

2. The Curse of Truncation
A well-written document in its entirety is naturally coherent
and self-contained. In particular, factual statements in the

document often logically depend on their aforementioned
context through reference, entailment, or more sophisticated
reasoning. We refer to the key span(s) of context that serves
to establish such a dependency relation as grounding context.
When learning from next-token prediction, if the grounding
context is missing, the model will be forced to spuriously
predict token(s) that in fact cannot be derived from the
observed partial context. Consequently, at inference time,
the model has a higher chance to ignore the grounding
context (even when it is provided) and generate content
that either contradicts or cannot be verified from the given
context, which is known as closed-domain hallucination2

(OpenAI et al., 2023). We illustrate this point in Figure 2.

Figure 2(a) shows an example in Python. Despite the orig-
inal code being correct, splitting variable definitions and
corresponding usages into two distinct training sequences
introduces grammatical errors. As self-attention does not
cross sequence boundaries, DecoderModel and config
are essentially undefined in the latter training sequence. For-
matting data in such a fragmented way makes models learn
pathological patterns, potentially leading to hallucination
in downstream tasks. For example, in a program synthe-
sis task, the model may directly use config without its
definition. Even worse, the model may disregard the pro-
vided context and fabricate an irrelevant name: if we intend
to instantiate an EncoderModel, and specify import
EncoderModel in context, the model may still generate
model=DecoderModel(...) due to the learned spuri-
ous association between model and DecoderModel.

2Hallucination is an overloaded term. In this work, we focus
on context-based hallucination as opposed to knowledge-based.

2

Fewer Truncations Improve Language Modeling

(a) Undefined Names (b) Ungrounded content (c) Missing knowledge

Figure 2. Examples where document truncation leads to hallucination or loss of knowledge. (a) Variable definitions (in blue) are truncated
and subsequent usage calls result in undefined names (in red). (b) Key context information is truncated (in blue), making the summary
unfaithful (in red). (c) Where ICML 2024 is held is unknown to the model due to truncation.

Figure 2(b) illustrates the same issue in natural language
where truncation harms faithfulness. The phrase Monday
morning in the summary cannot be grounded to any part of
the context in the same training sequence, and thus turns into
a fabrication. Such incomplete samples can reduce models’
context-awareness (i.e., the ability to attend to context) and
result in unfaithful generation or nonsensical reasoning.

Besides exacerbating hallucination, truncation can also im-
pede knowledge acquisition during training, as textual rep-
resentation of knowledge often takes the form of complete
sentences or paragraphs, which is vulnerable to fragmenta-
tion. For example, in Figure 2(c), the model will not be able
to learn the location of ICML because the conference name
and its venue are located in different training sequences.

2.1. Analytical Study via a Simplified Stochastic Process

As an additional source of intuition, we describe a simplified
stochastic process (Xn)n∈N for which we can analytically
show that a model trained on truncated sequences achieves
a strictly worse sequence modeling accuracy than a model
trained on full sequences, even if the amount of training data
is infinite. While it is difficult to rigorously establish a theory
on how truncation impacts learning with transformer models,
we would like to make a first attempt on the analytical
exploration to better motivate our proposal.

In analogy with language modeling, we can think of the
Xn’s as tokens in the binary vocabulary {0, 1}. Our process
is defined recursively, starting from a Bernoulli variable X0

which takes the value 0 with probability 0.5 and the value
1 otherwise. For n ≥ 1, the variable Xn takes the value of

X0 with probability p and 1 −X0 with probability 1 − p,
where p ∈ (0.5, 1) is fixed. A graphical model associated
with this process would be a tree with X0 as the root and
X1, X2, . . . as the leaves.

We now compare a “model A” trained on sequences
X0:L := (X0, X1, . . . , XL−1), against a “model B” trained
on sequences (X0) and X1:L := (X1, X2, . . . , XL−1).
Thus, training of model B is affected by truncation. We
assume that there is a sufficient amount of data for the mod-
els to perfectly fit the training sequences.

For m ≥ 1, the expected classification loss achieved by
model A on token Xm is given by the conditional entropy

H(Xm | X0:m) = H(Xm | X0) = −p log p− q log q,

where q = 1− p. On the other hand, if we feed a sequence
of observations (x0, . . . , xm−1) to Model B, its prediction
for the next token is equal to

P
(
Xm+1 | X1:m+1 = (x0, . . . , xm−1)

)
.

This distribution can be computed analytically thanks to
the simplicity of the process (see Appendix A), allowing
us to determine the expected loss of model B. The relative
increase in loss from model A to model B is shown in Figure
3 as a function of m. We see that model B is always worse,
even under the assumption of sufficient data. The relative
loss increase always converges to 0 as m goes to infinity, but
the convergence rate hinges on p, i.e., on how strongly the
visible tokens depend on the truncated one. This exemplifies
an effect that exists also in real-world language modeling:
if a key piece of information is truncated but then repeated

3

Fewer Truncations Improve Language Modeling

shortly after (high p), then the absence of the first mention
does not have a lasting impact; on the other hand, if only
vaguely related information about the truncated concept is
available (low p), then the effect of truncation lasts longer.

Figure 3. Relative increment in expected loss of model B (trained
on truncated sequences) with respect to model A (trained on full
sequences), as a function of token position m ≥ 1, for different p.

3. Best-fit Packing
We propose a new method to group training data efficiently
while eliminating unnecessary truncation, as illustrated in
Figure 1. Given the model’s max sequence length L, we
first segment every document into chunks that are at most L
tokens long. Note that this is the minimally required trunca-
tion, constrained by the context length. Then, to construct
each training sequence, we select a number of document
chunks to fill up as much of the L-token space as possible,
without breaking any of them. The selection strategy, which
we refer to as the packing algorithm, is discussed in §3.1.
There are two challenges: first, as it’s not always feasible
to fill up the L-token sequence fully, padding tokens are
used, leading to an increased number of training sequences
compared to the concatenation approach. This increase ne-
cessitates more training steps per epoch. Therefore, packed
sequences must be compact enough to minimize the use of
padding tokens in order to retain training efficiency. Second,
the algorithm must be scalable and fast enough so that it can
operate on datasets of billions of documents.

3.1. The Packing Algorithm

We formulate Best-fit Packing as a combinatorial optimiza-
tion problem. We then present an efficient algorithm that
scales linearly with data size, and show the solution achieves
the same level of compactness as the usual concatenation,
thus incurring a negligible loss in training efficiency. Em-
pirically, we validate our method on large-scale pre-training
datasets, specifically the RefinedWeb (Penedo et al., 2023)
for text, and the Stack (Kocetkov et al., 2022) for code.

Algorithm 1 First/Best-Fit-Decreasing
Input: items C = {ci}Ni=1, bin size L
Define l(c): the weight of item c
Define r(b): the remaining capacity of bin b
(b1, b2, . . . , bN)← Initialize empty bins
SC ← Sort C by weight in descending order
for ci in SC do

Let J = {j|r(bj) ≥ l(ci)}
• FFD: Find j∗ = min(J)
• BFD: Find j∗ = argminj∈Jr(bj)
Add ci to bj∗

end for

Given a set of document chunks C = {c1, . . . , cN}, where
l(c) is the length of c in tokens and l(ci) ≤ L, packing these
chunks into training sequences is equivalent to determining
a partition of C, denoted as S = {s1, . . . , sM}, subject to∑

c∈si
l(c) ≤ L. A training sequence is constructed by con-

catenating all chunks in an si. Our goal is to find a partition
S of the smallest possible size, which in practical terms
means generating the fewest number of training sequences.

The above optimization problem is known as the bin packing
problem (Bernhard & Vygen, 2008), in which N items of
different sizes must be packed into a finite number of bins
or containers, each of a fixed given capacity, in a way that
minimizes the number of bins used. Computationally, the
problem is NP-hard. There exist several approximation
algorithms, among which First-Fit-Decreasing (FFD) and
Best-Fit-Decreasing (BFD) are the most popular ones that
strike a good balance between efficiency and accuracy. We
briefly describe these heuristics in Algorithm 1.

Time Complexity In general, both FFD and BFD take
O(N logN) sorting time and O(N logN) packing time.
The search step for j∗ is typically implemented with an
O(N)-sized balanced binary tree that tracks all existing
bins. However, in our case, notice that the sequence length
is always an integer in [1, L], where L ≪ N . This re-
duces the sorting cost to O(N) via count sort, and more
importantly, allows further optimization on the packing part.
Since in BFD we do not distinguish among bins with the
same remaining capacity, it suffices to track the remaining
capacity values instead of the actual bins, which effectively
reduces the tree size to O(L), and consequently the packing
time to O(N logL). However, the same does not apply to
FFD, because the order of bins matters.

In practice, we implemented the above fast search in BFD
using a segment tree defined as follows:

• The tree has L leaf nodes. The value of the i-th leaf is i
if there exists at least one bin whose remaining capacity
is i, and zero otherwise. Initially, all leaf nodes are set
to zero, except the last one which is set to L.

4

Fewer Truncations Improve Language Modeling

• The value of every internal node is the maximum value
of its children.

To find the best-fit bin, we query the tree from the root. At
every internal node, we go left if the left child is no less than
the item weight, and go right otherwise. We end up at a leaf
node whose value is the best-fit capacity. A capacity-to-bin
map is used to retrieve the best-fit bin. Finally, we update
the tree to restore the two properties listed above. Please
refer to Appendix B for a more detailed illustration.

Table 1 presents a runtime comparison of the Optimized
Best-Fit Decreasing (OBFD) algorithm against the standard
First-Fit Decreasing (FFD) at 2048 context length on dif-
ferent data scales by up/down-sampling the RefinedWeb
dataset which consists of roughly 1 billion documents. As
demonstrated, our optimized BFD saves 60% of the running
time at 1B scale, and the relative speedup (FFD/OBFD)
increases logarithmically to the data size. With this efficient
implementation, our method is able to scale up to even larger
datasets as the asymptotic time complexity only depends
linearly on the data size.

Table 1. We benchmark the running time in seconds of FFD and
our optimized BFD (OBFD) on 1 million to 2 billion documents at
2048 context length. Both algorithms are implemented in Python
and run on a single CPU thread. The baseline FFD uses a similar
segment tree as the optimized BFD, except having N leaves that
correspond to all bins. Our optimized BFD significantly improves
the packing efficiency with linear scalability.

Document Count

1M 10M 100M 1B 2B

FFD (sec) 17 205 2,311 26,354 55,074
OBFD (sec) 10 106 1,066 10,816 22,244
FFD / OBFD 1.7 1.93 2.17 2.44 2.48

Compactness The other important perspective of packing
is how compact the resulting training sequences are. Theo-
retically, both FFD and BFD are guaranteed to use no more
than 11/9 of the optimal number of bins asymptotically
(Johnson et al., 1974). However, practically, the majority of
documents are short compared to context length, as shown
by the dashed curves in Figure 4. The abundance of small-
sized items makes packing much easier. Consequently, we
observe that the training sequences from packing are nearly
as compact as those obtained from concatenation. As shown
in Table 2, Best-fit Packing yields no more than 0.01% addi-
tional training sequences with either 2k or 8k context length
and across NL and PL datasets. From another perspective,
Table 2 also indicates that with Best-fit Packing, the amount
of padding is negligibly small. The results prove that Best-
fit Packing achieves roughly the same training efficiency as
concatenation, as measured by the number of non-padding
tokens processed using the same amount of compute.

Table 2. Compactness of Best-fit Packing. We present the number
of training sequences generated by concatenation, and the incre-
ment in number (or percentage) of sequences generated by Best-fit
Packing with respect to concatenation. The difference between the
two approaches is negligible. Therefore, Best-fit Packing retains
the same training efficiency as concatenation.

RefinedWeb (NL) Stack (PL)

Max length 2048 8192 2048

Concat 2.6× 108 6.5× 107 6.4× 107

∆(Pack, Concat) +6253 +411 +1786
∆%(Pack, Concat) 0.0024% 0.00063% 0.0028%

Figure 4. Document count and truncation count for each document
length, under 2k or 8k max sequence length. The number of trun-
cations reduces significantly with Best-fit Packing. Top: Natural
Language. Bottom: Programming Language.

Truncation Reduction We study to what extent Best-fit
Packing alleviates the truncation problem. We count how
many times each document is truncated in both NL and PL
datasets, and aggregate by document length, as plotted in
Figure 4. Note that most documents contain fewer than
L = 2048 tokens; therefore, truncation caused by concate-

5

Fewer Truncations Improve Language Modeling

nation predominantly occurs within this range. By com-
pletely eliminating truncation for document lengths below
L, Best-fit Packing effectively preserves the integrity of an
overwhelming majority of documents, limiting truncation
only to longer documents where it is absolutely necessary.

4. Experiments and Results
To empirically validate the effectiveness of Best-fit Pack-
ing over concatenation, we pre-train a set of transformer
language models using the same architecture as LLaMA
(Touvron et al., 2023a), covering different domains, sizes,
and context lengths as in Table 3. We use two popular
pre-training datasets in our study: the Falcon RefinedWeb
dataset (Penedo et al., 2023) for text, and the Stack (Ko-
cetkov et al., 2022) for code. Please refer to Appendix C.1
for additional details on the training setup.

Table 3. Model specs. We list the number of model parameters,
context length, and the number of tokens trained.

Domain #Params Context Len. #Tokens

Natural Language 13B 2048 500B
Natural Language 13B 8192 500B

Programming Language 7B 2048 300B

We evaluate models on a variety of downstream tasks with
zero-shot and few-shot prompting. Our findings reveal that
Best-fit Packing improves performance in an array of tasks,
most significantly in reading comprehension (+4.7%), natu-
ral language inference (+9.3%), context following (+16.8%)
and program synthesis (+15.0%).3 We also show that Best-
fit Packing effectively reduces closed-domain hallucination.

Throughout this section, we denote results that are statis-
tically significant (p < 0.05) under a paired t-test by a
superscript s, and those that are not significant by n. On ev-
ery single task evaluated, our method either outperforms or
matches the baseline. Importantly, in no case do we observe
a statistically significant degradation with Best-fit Packing,
showing that the improvement is monotonic.

4.1. Reading Comprehension

Reading comprehension tests models’ ability to answer ques-
tions based on information from a given passage. We evalu-
ate the 13B natural language models with 5-shot in-context
learning on Narrative QA (Kočiský et al., 2018), Natural
Questions (Kwiatkowski et al., 2019), SQuAD (Rajpurkar
et al., 2018), and DROP (Dua et al., 2019); with 1-shot on
QuAC (Choi et al., 2018); and with zero-shot on BoolQ
(Clark et al., 2019) and RACE (Lai et al., 2017). We report
F1 score or exact match (EM) for generation tasks, and

3As the scale of metric varies task by task, we use relative
improvement in narratives by default unless otherwise noted.

accuracy for multiple-choice tasks. We adopt the few-shot
examples released by HELM (Liang et al., 2022) for Nar-
rative QA, QuAC, and Natural Questions, and randomly
sample from the training split for the rest datasets.

Results in Table 4 demonstrate the superior performance of
Best-fit Packing in reading comprehension at both 2k and 8k
context length: packing significantly outperforms concatena-
tion in half of the settings, and shows no degradation on the
rest. Across different benchmarks, we observe: 1) between
open-ended generation and multiple choice, Best-fit Pack-
ing generally achieves more significant gains on the former,
presumably because hallucination is less of a problem in
multiple choice questions where the answer space is highly
constrained. 2) Among generation tasks, the improvement
on Natural Questions is minimal. We speculate that this is
because these questions are designed to be answerable un-
der both open-book and closed-book settings, which allows
models to occasionally bypass the context and still provide
correct answers based on their inherent parametric knowl-
edge. 3) On all other generation tasks where the answer
must be inferred from context, the improved performance
aligns with our hypothesis that Best-fit Packing enhances
models’ context-awareness.

4.2. Natural Language Inference

We evaluate models’ capability in understanding dependen-
cies between sentences through natural language inference
(NLI) tasks. We use 5-shot in-context learning for Multi-
NLI (Williams et al., 2018) and RTE (Wang et al., 2019).
As shown in Table 5, Best-fit Packing improves NLI perfor-
mance by up to +9.3%. With truncation reduction, depen-
dency relations between sentences in training documents are
better preserved, which explains the observed improvement.

4.3. Context Following

To validate our hypothesis that excessive truncations impair
factual consistency and faithfulness of generation with re-
spect to the context, we consider special cases where the
context contradicts the model’s parametric knowledge and
the model must follow instructions or facts in the context
to answer correctly. Specifically, we evaluate with 5-shot
on NQ-Swap (Longpre et al., 2021), a perturbed version of
Natural Questions by replacing both the answer and answer
mentions in the context with a different entity, and with
zero-shot on MemoTrap (McKenzie et al., 2023), where the
instruction conflicts with models’ memorization. Table 5
shows our method excels concatenation in both settings by
up to +16.8%, thereby further strengthening our hypothe-
sis. This also suggests that Best-fit Packing can potentially
enhance in-context learning (Wei et al., 2023), presenting a
promising avenue for future exploration.

6

Fewer Truncations Improve Language Modeling

Table 4. Evaluation on Reading Comprehension tasks. Best-fit Packing outperforms the concatenation baseline on almost all datasets.

Seq Len Method
Narrative QA QuAC Natural Q SQuAD DROP BoolQ RACE-m RACE-h

Average
F1 F1 EM EM EM Acc Acc Acc

2k Concat 60.38% 33.86% 39.13% 53.86% 21.47% 70.64% 50.00% 44.31% 46.71%
Pack 63.91%s 35.09%n 39.87%n 61.61%s 24.44%s 70.73%n 50.55%n 45.17%n 48.92%

8k Concat 61.03% 33.68% 38.40% 59.19% 23.52% 69.33% 49.72%n 42.20% 47.13%
Pack 64.78%s 35.79%s 39.93%n 61.57%s 25.35%s 71.31%s 48.34% 45.17%s 49.03%

Table 5. Best-fit Packing excels over baseline in Natural Lan-
guage Inference and Context Following.

Len Method
NLI Context Following

MNLI RTE NQ-Swap MemoTrap

ACC ACC EM ACC

2k Concat 42.78% 55.74% 45.62% 35.58%
Pack 44.33%s 60.28%s 51.03%s 41.56%s

8k Concat 38.85% 54.66% 47.07% 37.61%
Pack 40.60%s 59.72%s 50.04%s 40.28%s

4.4. Summarization

We conduct 5-shot evaluation on CNN/DailyMail (See et al.,
2017; Hermann et al., 2015) and XSUM (Narayan et al.,
2018), using few-shot examples released by HELM. We
follow HELM to report ROUGE scores (Lin, 2004) for
accuracy on both datasets, along with SummaC (zero-shot)
(Laban et al., 2022) and QAFactEval (Fabbri et al., 2022)
scores for faithfulness on CNN/DailyMail. However, these
two metrics are suboptimal for XSUM (see Appendix C.2).
Thus, we report the binary factuality scores from FAVA
(Mishra et al., 2024) for faithfulness evaluation on XSUM.4

In Table 6, we observe improvement in all cases except
on XSUM with 2k context length, where both methods
perform close to each other. Models trained with Best-fit
Packing generally obtains not only higher ROUGE scores,
but also better faithfulness. The result further strengthens
our hypothesis that excessive truncation in training data is
one of the reasons for hallucination. By keeping documents
in their entirety to the maximum possible extent, Best-fit
Packing effectively improves the faithfulness of generations.

Interestingly, we also find that the choice between pack-
ing and concatenation makes a difference in the number of
generated sentences on CNN/DM. The prompts we used
explicitly ask models to summarize the article in 3 sentences.
Table 6 shows that models trained with packing do a better
job at following this instruction, while models trained with
concatenation tend to compose longer summaries. Best-fit
Packing seems to ameliorate an issue where the conven-
tional approach causes models to ramble on, despite being
prompted with a verbalized length constraint.

4A summary gets a score of 1 if FAVA does not detect any hal-
lucination (with the article as reference evidence), and 0 otherwise.

4.5. Commonsense and Closed-book QA

We evaluate models’ commonsense and world knowledge on
benchmarks where answers cannot be inferred solely from
context and models must rely on their parametric knowledge.
We use 5-shot in-context learning for SIQA (Sap et al.,
2019), ARC (Sakaguchi et al., 2020), TriviaQA (Joshi et al.,
2017), and zero-shot for HellaSwag (Zellers et al., 2019) and
PIQA (Bisk et al., 2020). We report exact match (EM) for
TriviaQA, and multiple-choice accuracy for the rest tasks.

Results are presented in Table 7. Best-fit Packing is slightly
better than concatenation on average, and individually the
performance can be very close on some of the datasets. Al-
though in §2 we discussed that truncation may also impede
knowledge acquisition during training, the impact is not uni-
form. Most of the standard evaluation sets focus on common
knowledge, and for a piece of knowledge to be considered as
common, it must be associated with abundant occurrences
in human language. Therefore, even if the knowledge is lost
due to one document getting truncated, the model still has
a good chance to learn it from other complete documents
carrying the same information. In contrast, tail knowledge
that appears less frequently is more vulnerable to truncation.

This conjecture is exemplified by our observation that trunca-
tion reduction results in a larger gain on ARC-C, which cov-
ers likely more tail knowledge, over ARC-E, which covers
likely more common knowledge. To verify this difference,
we follow Kandpal et al. (2023) to count the co-occurrences
of each question-answer pair from ARC-E and ARC-C re-
spectively, using the pre-computed Wikipedia entity map.
We report the distribution of QA co-occurrence counts in
Table 8, and show that indeed the challenge set contains a
larger portion of rarely co-occurring pairs. This supports
our earlier hypothesis and suggests a possible reason why
LLMs struggle to learn long-tail knowledge (Kandpal et al.,
2023).

4.6. Program Synthesis

We evaluate the 7B programming language models on Hu-
manEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
for zero-shot code generation. Following standard practice,
we generate 200 samples per problem, and report Pass@k
with k = 1, 10, 100 for functional correctness.

7

Fewer Truncations Improve Language Modeling

Table 6. Evaluation on Summarization tasks. We report ROUGE for accuracy, SummaC, QAFactEval, FAVA for faithfulness, and number
of generated sentences. Best-fit Packing generally achieves better performance except on XSUM at 2k length. ↑ indicates higher is better.

Seq Len Method
CNN/DailyMail XSUM

ROUGE-1/2/L SummaC(↑) QAFactEval(↑) #Sent. ROUGE-1/2/L FAVA(↑) #Sent.

2k Concat 29.46 / 11.04 / 19.47 32.77% 3.348 4.89 35.42 / 13.27 / 28.23 n 86.20%n 1.02
Pack 33.79 / 13.14 / 22.88 s 39.55%s 3.772 s 3.13 35.40 / 13.14 / 27.79 85.57% 1.02

8k Concat 33.92 / 13.41 / 23.18 48.89% 4.137 3.72 33.99 / 12.65 / 26.99 84.50% 1.02
Pack 35.71 / 14.43 / 23.84 s 49.65%n 4.224 s 3.23 35.29 / 13.35 / 27.69 s 85.80%n 1.03

Table 7. Evaluation on Commonsense and Closed-book QA tasks. Best-fit Packing is slightly better on average, with notable gains on
ARC-C and TriviaQA.

Seq Len Method
HellaSwag PIQA SIQA ARC-E ARC-C TriviaQA Average

Acc Acc Acc Acc Acc EM

2k Concat 75.43%n 80.25%n 53.53% 76.14%n 43.94% 57.01% 64.38%
Pack 75.31% 79.98% 53.99%n 75.88% 46.67%s 57.20%n 64.84%

8k Concat 74.30% 79.82% 53.74% 74.75%n 43.00% 55.21% 63.47%
Pack 75.16%n 80.63%s 53.89%n 74.33% 44.20%n 56.65%s 64.14%

Table 8. Distribution of QA co-occurrence counts in ARC.

ARC Co-occurrence Count

[1, 10) [10, 100) [100, 1k) [1k, +∞)

Easy 9% 26% 50% 14%
Challenge 15% 32% 42% 11%

Besides, a crucial and great aspect of evaluation with pro-
gramming language is that we can detect hallucination ac-
curately without relying on ML-based models which can
be error-prone. We resort to program analysis as a more
reliable alternative for hallucination detection. Following
(Ding et al., 2023), we identify undefined name errors using
static analysis, and report the percentage of generations with
at least one such error as the hallucination metric.

As shown in Table 9, our method both improves Pass@k
(+15.0% for Pass@100 on HumanEval and +5.8% on
MBPP), and reduces undefined name errors significantly
by up to 58.3%. With Best-fit Packing eliminating most
truncations in training inputs (cf. Table 4), models are ex-
posed to fewer partial code segments that contain undefined
names. Consequently, hallucination is suppressed in model-
generated code. Besides that, Best-fit Packing also benefits
functional correctness as reflected in Pass@k improvement,
which we believe is a combined effect of reduced halluci-
nation and a better understanding of programming logic by
learning from complete code examples.

5. Related Work
Pre-training Data Pre-training data is pivotal to the quality
of language models. There has been multiple high-quality

pre-training datasets that were made publicly available, e.g.,
C4 (Raffel et al., 2020b), Pile (Gao et al., 2021), RefinedWeb
(Penedo et al., 2023), RedPajama (Computer, 2023), and
the Stack (Kocetkov et al., 2022; Lozhkov et al., 2024).
On top of these, multiple papers (e.g., (Lee et al., 2022;
Marion et al., 2023; Chen et al., 2023; Chowdhery et al.,
2023; Touvron et al., 2023a; Raffel et al., 2020a)) propose
various filtering strategies to improve data quality. Our work
broadly applies on top of these pre-training datasets.

Data Grouping in Language Model Training Recent trans-
former language models have adopted different strategies to
group training data into batched sequences in order to tackle
the variable document length problem. For encoder-only
models, the choice of data formatting was first studied in
RoBERTa (Liu et al., 2019), which shows that concatenat-
ing sentences from more than one documents in the same
training sequence results in very little performance degrada-
tion. Krell et al. (2021) proposed an approximation-based
combinatorial packing method to accelerate BERT training
(Devlin et al., 2019), yet without improving downstream
performance. It is worth mentioning that document trunca-
tion is less of a concern for encoder models for two reasons:
first, they are usually trained on relatively short text spans
of 128-512 tokens that only respect sentence boundary. In
such case, document-wise truncation is inevitable given the
limited context size. Second, they are not intended for open-
ended generation, and thus, hallucination is not an issue.

Decoder-only language models have predominantly adopted
the concatenate-then-split strategy to maximize training ef-
ficiency (Brown et al., 2020; Chowdhery et al., 2022; Rae
et al., 2021; Zhang et al., 2022; Touvron et al., 2023b; Scao
et al., 2022). Very recently, Shi et al. (2024) proposed to

8

Fewer Truncations Improve Language Modeling

Table 9. Evaluation on Program Synthesis tasks. Best-fit Packing outperforms concatenation in terms of execution-based accuracy
(Pass@k). More importantly, our method can significantly reduce hallucination by up to 58.3% as measured by undefined name errors.

Seq Len Method
Accuracy (↑) Hallucination (↓)

HumanEval MBPP HumanEval MBPP

Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@100 Undef. Name Undef. Name

2k Concat 17.54% 25.91% 35.28% 22.60% 42.49% 59.46% 5.10% 9.52%
Pack 18.32%s 28.96%s 40.57%s 23.48%s 45.58%s 62.93%s 2.41%s 3.97%s

concatenate semantically relevant documents into the same
training sequence, which yields notable improvement on
downstream tasks. Nevertheless, the method as a variant of
concatenation still suffers from excessive truncation, and it
is orthogonal (and possibly complimentary) to our method.

Integration with LLM Training Framework Best-fit Pack-
ing operates on data level and can be handled as an offline
process. Thus, it does not require any change in the training
implementation and can be integrated into common dis-
tributed training frameworks like Megatron-LM (Shoeybi
et al., 2019) or DeepSpeed (Rasley et al., 2020) easily.

Hallucination in Language Generation With the rapid
development of generative language models of large scale,
hallucination has attracted increased attention as it can hin-
der performance and mislead users with fabricated facts
(Ji et al., 2022). Various approaches have been proposed
to tackle this problem, including retrieval augmented gen-
eration (Peng et al., 2023; Kang et al., 2023), prompt en-
gineering (Si et al., 2023; Ji et al., 2023), context-aware
decoding (Shi et al., 2024), and supervised finetuning (Tian
et al., 2023). However, hallucination mitigation during the
pre-training stage has largely been overlooked, and we are
among the first to explore in this direction.

6. Conclusion
The prevalent concatenate-then-split approach of data group-
ing in language model training inevitably results in fragmen-
tation of documents. We show that this truncation effect
undermines models’ ability to follow the context, and even
worse, makes models more prone to hallucination. Moti-
vated by these, we propose Best-fit Packing, a new data
grouping method that maximally preserves the entirety of
individual documents. The algorithm is scalable for datasets
of billions of documents, and maintains the same level of
compactness as concatenation. Empirically, we demonstrate
the effectiveness of truncation reduction by comparing mod-
els trained with different data grouping strategies at various
scales across both text and code. Specifically, we show
that by eliminating unnecessary truncations, Best-fit Pack-
ing excels in a broad range of tasks without compromising
performance on others. Additionally, it effectively reduces
closed-domain hallucination in language generation. While

the experiments conducted in this paper have primarily fo-
cused on the pre-training stage, Best-fit Packing is broadly
applicable to the finetuning stage as well. Our work con-
tributes to the ongoing efforts in developing more effective
and reliable language models.

Impact Statement
This paper highlights a critical and fundamental issue of
excessive truncation that broadly exists in the contempo-
rary LLM training practice. We propose Best-fit Packing,
a novel method that mitigates the issue with wide applica-
bility in LLM training. We demonstrate that it improves
language modeling while reducing hallucination. However,
it is crucial to acknowledge that no method can completely
eliminate the risk of generating false information or hallu-
cinating. We encourage readers to refer to Weidinger et al.
(2021) for an in-depth discussion on societal impact and
potential risks associated with LLMs.

Acknowledgements
We would like to express our sincere gratitude to Carson
Klingenberg, Bing Xiang, Wasi Ahmad, and colleagues at
AWS AI Labs for their help and valuable feedback. We
are also deeply grateful to the anonymous reviewers whose
insightful and constructive comments have significantly en-
hanced the quality of this work.

9

Fewer Truncations Improve Language Modeling

References
Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. ArXiv preprint, abs/2108.07732, 2021. URL
https://arxiv.org/abs/2108.07732.

Bernhard, K. and Vygen, J. Combinatorial optimization:
Theory and algorithms. Springer, Third Edition, 2005.,
2008.

Bisk, Y., Zellers, R., LeBras, R., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in nat-
ural language. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 7432–7439.
AAAI Press, 2020. URL https://aaai.org/ojs/
index.php/AAAI/article/view/6239.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
html.

Chen, D., Huang, Y., Ma, Z., Chen, H., Pan, X., Ge, C.,
Gao, D., Xie, Y., Liu, Z., Gao, J., et al. Data-juicer:
A one-stop data processing system for large language
models. ArXiv preprint, abs/2309.02033, 2023. URL
https://arxiv.org/abs/2309.02033.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,

J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating large language models trained
on code. ArXiv preprint, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W.-t., Choi, Y.,
Liang, P., and Zettlemoyer, L. QuAC: Question answering
in context. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp.
2174–2184, Brussels, Belgium, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1241.
URL https://aclanthology.org/D18-1241.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S.,
Dev, S., Michalewski, H., Garcia, X., Misra, V., Robin-
son, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D.,
Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Do-
han, D., Agrawal, S., Omernick, M., Dai, A. M., Pillai,
T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child,
R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta,
B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-
Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel,
N. Palm: Scaling language modeling with pathways.
ArXiv preprint, abs/2204.02311, 2022. URL https:
//arxiv.org/abs/2204.02311.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surpris-
ing difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/N19-1300. URL https://
aclanthology.org/N19-1300.

Computer, T. Redpajama: an open dataset for training
large language models, 2023. URL https://github.
com/togethercomputer/RedPajama-Data.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. ArXiv preprint,

10

https://arxiv.org/abs/2108.07732
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2309.02033
https://arxiv.org/abs/2107.03374
https://aclanthology.org/D18-1241
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

Fewer Truncations Improve Language Modeling

abs/2307.08691, 2023. URL https://arxiv.org/
abs/2307.08691.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Ding, H., Kumar, V., Tian, Y., Wang, Z., Kwiatkowski,
R., Li, X., Ramanathan, M. K., Ray, B., Bhatia, P., and
Sengupta, S. A static evaluation of code completion by
large language models. In Sitaram, S., Beigman Kle-
banov, B., and Williams, J. D. (eds.), Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 5: Industry Track), pp. 347–
360, Toronto, Canada, 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-industry.
34. URL https://aclanthology.org/2023.
acl-industry.34.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh,
S., and Gardner, M. DROP: A reading comprehen-
sion benchmark requiring discrete reasoning over para-
graphs. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 2368–2378, Min-
neapolis, Minnesota, 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1246. URL
https://aclanthology.org/N19-1246.

Eilon, S. and Christofides, N. The loading problem.
Management Science, 17(5):259–268, 1971. ISSN
00251909, 15265501. URL http://www.jstor.
org/stable/2628979.

Fabbri, A., Wu, C.-S., Liu, W., and Xiong, C. QAFactE-
val: Improved QA-based factual consistency evaluation
for summarization. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pp. 2587–2601, Seattle, United States,
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.naacl-main.187. URL https://
aclanthology.org/2022.naacl-main.187.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for lan-
guage modeling. ArXiv preprint, abs/2101.00027, 2021.
URL https://arxiv.org/abs/2101.00027.

Hermann, K. M., Kociský, T., Grefenstette, E., Espeholt, L.,
Kay, W., Suleyman, M., and Blunsom, P. Teaching ma-
chines to read and comprehend. In Cortes, C., Lawrence,
N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pp. 1693–1701, 2015.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y., Madotto, A., and Fung, P. Survey of halluci-
nation in natural language generation. ArXiv preprint,
abs/2202.03629, 2022. URL https://arxiv.org/
abs/2202.03629.

Ji, Z., Yu, T., Xu, Y., Lee, N., Ishii, E., and Fung,
P. Towards mitigating LLM hallucination via self
reflection. In Bouamor, H., Pino, J., and Bali,
K. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pp. 1827–
1843, Singapore, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
123. URL https://aclanthology.org/2023.
findings-emnlp.123.

Johnson, D. S., Demers, A. J., Ullman, J. D., Garey, M. R.,
and Graham, R. L. Worst-case performance bounds for
simple one-dimensional packing algorithms. SIAM J.
Comput., 3(4):299–325, 1974. doi: 10.1137/0203025.
URL https://doi.org/10.1137/0203025.

Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. Trivi-
aQA: A large scale distantly supervised challenge dataset
for reading comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1601–1611,
Vancouver, Canada, 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P17-1147. URL
https://aclanthology.org/P17-1147.

Kandpal, N., Deng, H., Roberts, A., Wallace, E., and Raffel,
C. Large language models struggle to learn long-tail
knowledge. In International Conference on Machine
Learning, pp. 15696–15707. PMLR, 2023.

Kang, H., Ni, J., and Yao, H. Ever: Mitigating hallucination
in large language models through real-time verification
and rectification, 2023.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T., et al.
The stack: 3 tb of permissively licensed source code.
ArXiv preprint, abs/2211.15533, 2022. URL https:
//arxiv.org/abs/2211.15533.

Kočiský, T., Schwarz, J., Blunsom, P., Dyer, C., Her-
mann, K. M., Melis, G., and Grefenstette, E. The Nar-

11

https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://aclanthology.org/N19-1423
https://aclanthology.org/2023.acl-industry.34
https://aclanthology.org/2023.acl-industry.34
https://aclanthology.org/N19-1246
http://www.jstor.org/stable/2628979
http://www.jstor.org/stable/2628979
https://aclanthology.org/2022.naacl-main.187
https://aclanthology.org/2022.naacl-main.187
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2202.03629
https://aclanthology.org/2023.findings-emnlp.123
https://aclanthology.org/2023.findings-emnlp.123
https://doi.org/10.1137/0203025
https://aclanthology.org/P17-1147
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533

Fewer Truncations Improve Language Modeling

rativeQA reading comprehension challenge. Transac-
tions of the Association for Computational Linguistics,
6:317–328, 2018. doi: 10.1162/tacl a 00023. URL
https://aclanthology.org/Q18-1023.

Krell, M. M., Kosec, M., Perez, S. P., and Fitzgibbon, A.
Efficient sequence packing without cross-contamination:
Accelerating large language models without impacting
performance. ArXiv preprint, abs/2107.02027, 2021.
URL https://arxiv.org/abs/2107.02027.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., De-
vlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M.,
Chang, M.-W., Dai, A. M., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: A benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:452–466, 2019. doi: 10.
1162/tacl a 00276. URL https://aclanthology.
org/Q19-1026.

Laban, P., Schnabel, T., Bennett, P. N., and Hearst, M. A.
SummaC: Re-visiting NLI-based models for inconsis-
tency detection in summarization. Transactions of the
Association for Computational Linguistics, 10:163–177,
2022. doi: 10.1162/tacl a 00453. URL https://
aclanthology.org/2022.tacl-1.10.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. RACE:
Large-scale ReAding comprehension dataset from ex-
aminations. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp.
785–794, Copenhagen, Denmark, 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1082.
URL https://aclanthology.org/D17-1082.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 8424–
8445, Dublin, Ireland, 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.
577. URL https://aclanthology.org/2022.
acl-long.577.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Ku-
mar, A., Newman, B., Yuan, B., Yan, B., Zhang, C.,
Cosgrove, C., Manning, C. D., Ré, C., Acosta-Navas,
D., Hudson, D. A., Zelikman, E., Durmus, E., Ladhak,
F., Rong, F., Ren, H., Yao, H., Wang, J., Santhanam,
K., Orr, L. J., Zheng, L., Yüksekgönül, M., Suzgun,
M., Kim, N., Guha, N., Chatterji, N. S., Khattab, O.,
Henderson, P., Huang, Q., Chi, R., Xie, S. M., San-
turkar, S., Ganguli, S., Hashimoto, T., Icard, T., Zhang,

T., Chaudhary, V., Wang, W., Li, X., Mai, Y., Zhang,
Y., and Koreeda, Y. Holistic evaluation of language
models. ArXiv preprint, abs/2211.09110, 2022. URL
https://arxiv.org/abs/2211.09110.

Lin, C.-Y. ROUGE: A package for automatic evaluation
of summaries. In Text Summarization Branches Out, pp.
74–81, Barcelona, Spain, 2004. Association for Compu-
tational Linguistics. URL https://aclanthology.
org/W04-1013.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. Roberta: A robustly optimized BERT pretraining
approach. ArXiv preprint, abs/1907.11692, 2019. URL
https://arxiv.org/abs/1907.11692.

Longpre, S., Perisetla, K., Chen, A., Ramesh, N., DuBois,
C., and Singh, S. Entity-based knowledge conflicts in
question answering. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pp. 7052–7063, Online and Punta Cana,
Dominican Republic, 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.
565. URL https://aclanthology.org/2021.
emnlp-main.565.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=Bkg6RiCqY7.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y.,
et al. Starcoder 2 and the stack v2: The next gener-
ation. ArXiv preprint, abs/2402.19173, 2024. URL
https://arxiv.org/abs/2402.19173.

Marion, M., Üstün, A., Pozzobon, L., Wang, A., Fadaee,
M., and Hooker, S. When less is more: Investigating
data pruning for pretraining llms at scale. ArXiv preprint,
abs/2309.04564, 2023. URL https://arxiv.org/
abs/2309.04564.

Maynez, J., Narayan, S., Bohnet, B., and McDonald, R. On
faithfulness and factuality in abstractive summarization.
In Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 1906–1919,
Online, 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.173. URL https:
//aclanthology.org/2020.acl-main.173.

McKenzie, I. R., Lyzhov, A., Pieler, M., Parrish, A., Mueller,
A., Prabhu, A., McLean, E., Kirtland, A., Ross, A.,
Liu, A., et al. Inverse scaling: When bigger isn’t
better. ArXiv preprint, abs/2306.09479, 2023. URL
https://arxiv.org/abs/2306.09479.

12

https://aclanthology.org/Q18-1023
https://arxiv.org/abs/2107.02027
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://aclanthology.org/2022.tacl-1.10
https://aclanthology.org/2022.tacl-1.10
https://aclanthology.org/D17-1082
https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
https://arxiv.org/abs/2211.09110
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2021.emnlp-main.565
https://aclanthology.org/2021.emnlp-main.565
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2309.04564
https://arxiv.org/abs/2309.04564
https://aclanthology.org/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173
https://arxiv.org/abs/2306.09479

Fewer Truncations Improve Language Modeling

Mishra, A., Asai, A., Balachandran, V., Wang, Y., Neubig,
G., Tsvetkov, Y., and Hajishirzi, H. Fine-grained halluci-
nations detections. ArXiv preprint, abs/2401.06855, 2024.
URL https://arxiv.org/abs/2401.06855.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give
me the details, just the summary! topic-aware con-
volutional neural networks for extreme summarization.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 1797–
1807, Brussels, Belgium, 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D18-1206. URL
https://aclanthology.org/D18-1206.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An open
large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=iaYcJKpY2B_.

OpenAI, :, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,

J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4 technical
report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike,
J., and Lowe, R. Training language models to follow
instructions with human feedback, 2022.

Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R., Cap-
pelli, A., Alobeidli, H., Pannier, B., Almazrouei, E.,
and Launay, J. The refinedweb dataset for falcon llm:
outperforming curated corpora with web data, and web
data only. ArXiv preprint, abs/2306.01116, 2023. URL
https://arxiv.org/abs/2306.01116.

Peng, B., Galley, M., He, P., Cheng, H., Xie, Y., Hu, Y.,
Huang, Q., Liden, L., Yu, Z., Chen, W., and Gao, J.
Check your facts and try again: Improving large language
models with external knowledge and automated feedback,
2023.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J.,
Song, H. F., Aslanides, J., Henderson, S., Ring, R., Young,
S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A.,
Powell, R., van den Driessche, G., Hendricks, L. A.,
Rauh, M., Huang, P., Glaese, A., Welbl, J., Dathathri, S.,
Huang, S., Uesato, J., Mellor, J., Higgins, I., Creswell,
A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S. M.,

13

https://arxiv.org/abs/2401.06855
https://aclanthology.org/D18-1206
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://arxiv.org/abs/2306.01116

Fewer Truncations Improve Language Modeling

Buchatskaya, E., Budden, D., Sutherland, E., Simonyan,
K., Paganini, M., Sifre, L., Martens, L., Li, X. L., Kun-
coro, A., Nematzadeh, A., Gribovskaya, E., Donato, D.,
Lazaridou, A., Mensch, A., Lespiau, J., Tsimpoukelli,
M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M.,
Pohlen, T., Gong, Z., Toyama, D., de Masson d’Autume,
C., Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark,
A., de Las Casas, D., Guy, A., Jones, C., Bradbury, J.,
Johnson, M. J., Hechtman, B. A., Weidinger, L., Gabriel,
I., Isaac, W., Lockhart, E., Osindero, S., Rimell, L., Dyer,
C., Vinyals, O., Ayoub, K., Stanway, J., Bennett, L.,
Hassabis, D., Kavukcuoglu, K., and Irving, G. Scaling
language models: Methods, analysis & insights from
training gopher. ArXiv preprint, abs/2112.11446, 2021.
URL https://arxiv.org/abs/2112.11446.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020a.
URL http://jmlr.org/papers/v21/20-074.
html.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020b.
URL http://jmlr.org/papers/v21/20-074.
html.

Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t
know: Unanswerable questions for SQuAD. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp.
784–789, Melbourne, Australia, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/P18-2124.
URL https://aclanthology.org/P18-2124.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Gupta, R.,
Liu, Y., Tang, J., and Prakash, B. A. (eds.), KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pp. 3505–3506. ACM, 2020. URL https://dl.
acm.org/doi/10.1145/3394486.3406703.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 8732–8740.

AAAI Press, 2020. URL https://aaai.org/ojs/
index.php/AAAI/article/view/6399.

Sap, M., Rashkin, H., Chen, D., Le Bras, R., and Choi,
Y. Social IQa: Commonsense reasoning about social
interactions. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473,
Hong Kong, China, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1454. URL https:
//aclanthology.org/D19-1454.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilic, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M.,
Tow, J., Rush, A. M., Biderman, S., Webson, A., Am-
manamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N.,
del Moral, A. V., Ruwase, O., Bawden, R., Bekman, S.,
McMillan-Major, A., Beltagy, I., Nguyen, H., Saulnier,
L., Tan, S., Suarez, P. O., Sanh, V., Laurençon, H., Jer-
nite, Y., Launay, J., Mitchell, M., Raffel, C., Gokaslan,
A., Simhi, A., Soroa, A., Aji, A. F., Alfassy, A., Rogers,
A., Nitzav, A. K., Xu, C., Mou, C., Emezue, C., Klamm,
C., Leong, C., van Strien, D., Adelani, D. I., and et al.
BLOOM: A 176b-parameter open-access multilingual
language model. ArXiv preprint, abs/2211.05100, 2022.
URL https://arxiv.org/abs/2211.05100.

See, A., Liu, P. J., and Manning, C. D. Get to the point: Sum-
marization with pointer-generator networks. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
1073–1083, Vancouver, Canada, 2017. Association for
Computational Linguistics. doi: 10.18653/v1/P17-1099.
URL https://aclanthology.org/P17-1099.

Shi, W., Min, S., Lomeli, M., Zhou, C., Li, M., Lin, X. V.,
Smith, N. A., Zettlemoyer, L., Yih, W.-t., and Lewis,
M. In-context pretraining: Language modeling beyond
document boundaries. In The Twelfth International Con-
ference on Learning Representations, 2024.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. ArXiv preprint, abs/1909.08053, 2019. URL
https://arxiv.org/abs/1909.08053.

Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber,
J. L., and Wang, L. Prompting GPT-3 to be reliable.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=98p5x51L5af.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embedding.

14

https://arxiv.org/abs/2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/P18-2124
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://aaai.org/ojs/index.php/AAAI/article/view/6399
https://aaai.org/ojs/index.php/AAAI/article/view/6399
https://aclanthology.org/D19-1454
https://aclanthology.org/D19-1454
https://arxiv.org/abs/2211.05100
https://aclanthology.org/P17-1099
https://arxiv.org/abs/1909.08053
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af

Fewer Truncations Improve Language Modeling

ArXiv preprint, abs/2104.09864, 2021. URL https:
//arxiv.org/abs/2104.09864.

Tian, K., Mitchell, E., Yao, H., Manning, C. D., and Finn,
C. Fine-tuning language models for factuality, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. ArXiv preprint, abs/2302.13971, 2023a.
URL https://arxiv.org/abs/2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., Bikel, D., Blecher, L., Canton-Ferrer, C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. ArXiv preprint, abs/2307.09288, 2023b.
URL https://arxiv.org/abs/2307.09288.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 3261–3275, 2019.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen,
X., Liu, H., Huang, D., Zhou, D., et al. Larger language
models do in-context learning differently. ArXiv preprint,
abs/2303.03846, 2023. URL https://arxiv.org/
abs/2303.03846.

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Ue-
sato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle,
B., Kasirzadeh, A., et al. Ethical and social risks
of harm from language models. ArXiv preprint,
abs/2112.04359, 2021. URL https://arxiv.org/
abs/2112.04359.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding

through inference. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 1112–1122,
New Orleans, Louisiana, 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N18-1101. URL
https://aclanthology.org/N18-1101.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. HellaSwag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 4791–
4800, Florence, Italy, 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1472. URL
https://aclanthology.org/P19-1472.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M. T., Li, X., Lin, X. V.,
Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig,
D., Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. OPT: open pre-trained transformer language models.
ArXiv preprint, abs/2205.01068, 2022. URL https:
//arxiv.org/abs/2205.01068.

15

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://aclanthology.org/N18-1101
https://aclanthology.org/P19-1472
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

Fewer Truncations Improve Language Modeling

A. Derivation of Model Accuracy on the Toy Process
We now describe the computations needed to compute the accuracy of models A and B on the toy process described in §2.1.

Let x = (x0, . . . , xm−1) be a sequence of observations, for a fixed m ≥ 1. The next token Xm is distributed as a Bernoulli
variable, taking the value x0 with probability p and 1 − x0 with probability q = 1 − p. This is exactly the distribution
predicted by model A. The expected classification loss of model A on the m-th token is therefore given by the entropy of a
Bernoulli distribution, and it does not in fact depend on m or on the value of x0 (because the entropy remains the same if we
swap p and q = 1− p).

Model B, however, “believes” that the observations x are part of a sequence (x̃0, x0, . . . , xm−1) drawn according to the
process (Xn)n∈N. We can then think of the inference of model B as consisting of two steps: first, predict the probability
distribution of the hidden token x̃0; then, predict the probability distribution of the next token in the sequence, which is
Xm+1 from the point of view of model B. In formulas:

P
(
Xm+1 = 0 | X1:m+1 = x

)
=

∑
x̃0∈{0,1}

P
(
X0 = x̃0 | X1:m+1 = x

)
· P

(
Xm+1 = 0 | X0 = x̃0

)
= P

(
X0 = 0 | X1:m+1 = x

)
· p + P

(
X0 = 1 | X1:m+1 = x

)
· q. (1)

The distribution of the hidden token can be computed using Bayes’ rule:

P
(
X0 = 0 | X1:m+1 = x

)
=

P
(
X1:m+1 = x | X0 = 0

)
· P

(
X0 = 0

)
∑

x̃0∈{0,1}

P
(
X1:m+1 = x | X0 = x̃0

)
· P

(
X0 = x̃0

)
=

pkqm−k · 12
pkqm−k · 12 + pm−kqk · 12

=
pkqm−k

pkqm−k + pm−kqk

where k is the number of zeros in the sequence x. We can substitute back in (1) and obtain an explicit expression for the
prediction of model B:

P
(
Xm+1 = 0 | X1:m+1 = x

)
=

pk+1qm−k + pm−kqk+1

pkqm−k + pm−kqk
. (2)

The expected classification loss of model B (for the given sequence of observations x) is the cross entropy between the
true distribution (a Bernoulli distribution that assigns probability p to x0 and probability q to 1− x0) and the distribution
predicted by model B, which is given by (2):

lossB(x) = −p1−x0qx0 log
pk+1qm−k + pm−kqk+1

pkqm−k + pm−kqk
− px0q1−x0 log

pkqm−k+1 + pm−k+1qk

pkqm−k + pm−kqk
(3)

where the first term corresponds to the outcome 0 while the second term corresponds to the outcome 1. Note that the
right-hand side of (3) only depends on x0 and k, so we can call it lossB(x0, k). Finally, the expected loss of model B is the
average of lossB(x0, k) over all possible observations x:

lossB =
1

2

∑
x0∈{0,1}

m−1∑
h=0

(
m− 1

h

)
(p1−x0qx0)h(px0q1−x0)m−1−hlossB(x0, h+ 1− x0),

where h indicates the number of zeros in the subsequence (x1, . . . , xm−1).

B. An Illustration of Optimized BFD Algorithm
We illustrate the proposed optimized Best-Fit-Decreasing algorithm with figures. At a high-level, we maintain three data
structures: (i) a bin-to-items table which tracks the current assignment of items to every bin; (ii) a space-to-bins table that

16

Fewer Truncations Improve Language Modeling

allow us to retrieve a bin given a certain remaining space; (iii) a segment tree that enables us to find the best-fit capacity in
O(logL) time. In this example, we assume the max sequence length (or max bin capacity) is 8.

Initialization: Both the bin-to-items table and the space-to-bins table are empty at the beginning. All nodes in the segment
tree are zero except for the right most path along which the nodes have value 8, because we only have empty bins of max
capacity at the very beginning.

Figure 5. Initialization

A running example: Below we demonstrate how to pack a new item given an intermediate state of the algorithm. Assume
that we have packed 4 items whose weights are 8, 6, 6, 4, and arrive at the following state. Now we are about to pack an
incoming item of weight 3.

Figure 6. State after packing four items of weight 8, 6, 6, 4. The bin-to-item table shows the 0th item (of weight 8) has been placed in bin
0, and the 1st item (of weight 6) in bin 1, and etc.. The space-to-bins table shows bin 1 and bin 2 each has 2 space left after packing an
item of weight 6, and bin 3 has 4 space left. In the segment tree, since we have bins with 2, 4, or 8 space left, the 2nd, 4th, and 8th leaves
from left to right are assigned value 2, 4, 8, respectively. All other leaves are zero. The internal nodes are recursively updated to be the
maximum of their children.

17

Fewer Truncations Improve Language Modeling

Figure 7. To pack a new item of weight 3, the first step is to find the best-fit capacity using the segment tree. We query the tree from the
root. At every internal node, we go left if the left child is no less than the item weight, and go right otherwise. We end up at a leaf node
whose value is the best-fit capacity (4 in this case).

Figure 8. We retrieve a bin with 4 space left, which is bin 3. This new 5th item (of weight 3) is then placed in bin 3. We update the
bin-to-items table and space-to-bins table accordingly. Finally, we update the segment tree recursively from the bottom up to restore
the two properties stated in §3: (i) The value of the i-th leaf is i if there exists at least one bin whose remaining capacity is i, and zero
otherwise; (ii) The value of every internal node is the maximum value of its children. This concludes one iteration of packing.

C. Additional Details on Experiments
C.1. Training Details

We use the same model architecture as LLaMA 7B/13B (Touvron et al., 2023a). In case a sequence contains multiple
documents, we follow the standard practice to allow attention to cross document boundaries when using concatenation
(Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023b), but mask that out when using Best-fit Packing, so that
Best-fit Packing is equivalent to treating each document as a standalone training sample, albeit in a much more compact way.
Thanks to the relative nature of rotary positional embeddings (RoPE) (Su et al., 2021), we do not adjust position ids from
model input. We perform additional ablations on cross-document attention in §C.3.

18

Fewer Truncations Improve Language Modeling

We train all models with the AdamW optimizer (Loshchilov & Hutter, 2019). We use a learning rate of 3e-4 with a cosine
learning rate scheduler, and warm up over the first 3,000 steps. The global batch size is 2M tokens. We use FlashAttention2
(Dao, 2023) to accelerate training. We find the implementation of document-wise block attention in FlashAttention2 does
not yield perceivable overhead compared with the standard full-sequence attention. All models were trained on a cluster of
256 A100 GPUs.

The data pipeline for Best-fit Packing is implemented as follows. In the offline stage, we tokenize the raw data into document
chunks up to max sequence length, and run BFD to get chunk indices for each training sequence. During training (the online
stage), for every sequence, we fetch the corresponding document chunks through the chunk indices, and build the training
sequence on the fly. This saves the expensive cost of concatenating individual chunks on disk.

For the Stack dataset, we use a subset of 7 popular programming languages: Python, Java, C#, JavaScript, TypeScript, C,
and C++.

C.2. Faithfulness Metrics for Summarization Tasks

We do not use SummaC (Laban et al., 2022) and QAFactEval (Fabbri et al., 2022) for faithfulness evaluation on XSUM for
two reasons. First, SummaC assumes that every sentence in a faithful summary can be entailed from another sentence in the
article. This generally does not apply to XSUM which requires summarizing the article in one sentence. If this only sentence
is an implication of just one sentence from the article, then the coverage of the summary will be very limited. Second, from
what has been reported in literature (Fabbri et al., 2022), both methods show lower accuracy on a summary inconsistency
detection benchmark constructed from XSUM (namely XSF (Maynez et al., 2020)), compared to other benchmarks from
CNN/DailyMail.

On CNN/DailyMail, we do not report the FAVA binary score because it does not take into consideration the length of the
summary. The metric is biased towards shorter generations that have less chance to make a hallucination. As noted in Table
6, there is a significant difference between the number of sentences generated by models trained with concatenation and
with packing. On the contrary, on XSUM, all models are able to follow the instruction to generate 1-sentence summaries.

In general, existing methods for evaluating faithfulness of summary have certain limitations, largely due to the complexity of
human language. In contrast, hallucination detection for code, which relies on program analysis, tends to be more reliable.

C.3. Ablation Study on Cross-Document Attention

Best-fit Packing treats each segment as individual and thus masks out cross-document attention in training (Appendix C.1).
To study the impact of this choice and to highlight the importance of our packing method, we pre-train a 2k NL model with
concatenation and cross-document attention mask enabled. In Table 10, we compare the three models by perplexity on
a validation set, and performance in downstream tasks. Note that every sequence in the validation set contains only one
document chunk. We find that though perplexity gain can be attributed to the attention mask, Best-fit Packing is critical
for achieving optimal performance in downstream tasks. In particular, using attention mask on top of the conventional
concatenation approach even degrades the model’s performance in summarization.

Table 10. Ablation results for cross-document attention. We additionally train a 2k-length model with concatenation and cross-document
attention mask. We report perplexity on validation set (PPL), and average performance in reading comprehension (RDC), natural language
inference (NLI), context following (CTX), summarization (SUM, in ROUGE-2), and commonsense (CMS).

Method Attn.
Mask PPL RDC NLI CTX SUM CMS

Concat ✗ 9.64 46.71% 49.26% 40.60% 12.16 64.38%
Concat ✓ 9.53 47.92% 50.35% 42.41% 11.79 64.77%
Pack ✓ 9.53 48.92% 52.31% 46.30% 13.14 64.84%

19

