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ABSTRACT

Current zero-shot anomaly detection (ZSAD) methods show remarkable success
in prompting large pre-trained vision-language models to detect anomalies in
a target dataset without using any dataset-specific training or demonstration.
However, these methods are often focused on crafting/learning prompts that
capture only coarse-grained semantics of abnormality, e.g., high-level semantics
like ‘damaged’, ‘imperfect’, or ‘defective’ objects. They therefore have
limited capability in recognizing diverse abnormality details that deviate from
these general abnormal patterns in various ways. To address this limitation,
we propose FAPrompt, a novel framework designed to learn Fine-grained
Abnormality Prompts for more accurate ZSAD. To this end, we introduce a
novel compound abnormality prompting module in FAPrompt to learn a set
of complementary, decomposed abnormality prompts, where each abnormality
prompt is formed by a compound of shared normal tokens and a few learnable
abnormal tokens. On the other hand, the fine-grained abnormality patterns can
be very different from one dataset to another. To enhance their cross-dataset
generalization, we further introduce a data-dependent abnormality prior module
that learns to derive abnormality features from each query/test image as a sample-
wise abnormality prior to ground the abnormality prompts in a given target dataset.
Comprehensive experiments conducted across 19 real-world datasets, covering
both industrial defects and medical anomalies, demonstrate that FAPrompt
substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP
in both image- and pixel-level ZSAD tasks.

1 INTRODUCTION

Anomaly Detection (AD) is a critical task in computer vision, aiming to identify instances that
deviate significantly from the majority of data. It has a wide range of real-world applications, e.g.,
industrial inspection and medical imaging analysis (Pang et al., 2021; Cao et al., 2024). Traditional
AD methods focus on learning specialized detectors with large training samples. Consequently,
these methods often rely on application-specific, carefully curated datasets to train a detection
model, making them inapplicable for application scenarios where such data access is not possible
due to data privacy issue, or where the test data significantly differs from the training set due to
substantial distribution shifts arising from new deployment environments or other natural variations
in datasets. Zero-shot AD (ZSAD), which aims at learning generalist models for detecting anomalies
in a target dataset without using any dataset-specific training or demonstration, has been recently
emerging as a promising approach to address this limitation of traditional AD approaches.

In recent years, large pre-trained vision-language models (VLMs) such as CLIP (Radford et al.,
2021) have demonstrated impressive zero/few-shot recognition capabilities across a broad range
of vision tasks, including the ZSAD task (Chen et al., 2023b; Jeong et al., 2023; Deng et al.,
2023; Zhou et al., 2024). To leverage VLMs for AD, the methods craft/learn text prompts to
extract the textual semantic of normal/abnormal from VLMs for matching visual anomalies. These
methods, such as WinCLIP (Jeong et al., 2023) and AnoVL (Deng et al., 2023), attempt to capture
a range of abnormality semantics for better ZSAD by including a wide variety of pre-defined
state-aware tokens (e.g., using ‘damaged’, ‘imperfect’, or ‘defective’ to depict defects on
different objects like carpet) or domain-aware tokens (e.g., ‘industrial’, ‘manufacturing’,
or ‘surface’) into the text prompts. Others (Zhou et al., 2024; 2022b;a) employ learnable text
prompts to extract more general-purpose features for representing the normal/abnormal class, such
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Figure 1: Left: FAPrompt vs. two related methods. Right: Their image-level ZSAD results in AUROC.

as AnomalyCLIP (Zhou et al., 2024). However, these methods are often focused on crafting/learning
prompts that capture only coarse-grained semantics of abnormality, e.g., high-level semantics like
‘damaged’, ‘imperfect’, or ‘defective’ objects. They therefore have limited capability
in recognizing diverse abnormalities that deviate from these coarse-grained abnormal patterns in
various ways, as shown in the top of Fig. 1 Left (see Fig. 3 in Sec. 4.1 for detailed analysis). A recent
approach AnomalyGPT (Gu et al., 2023) deals with this issue by using detailed text description of
abnormal objects through an additional Large Language Model (LLM), but it requires the reference
samples from the target data, which is a different task from ZSAD. It also heavily relies on costly
human annotations for the detailed textual descriptions.

To tackle these issues, we propose a novel framework, namely FAPrompt, designed to learn Fine-
grained Abnormality Prompts for more accurate ZSAD. In contrast to previous prompting methods,
FAPrompt focuses on learning the prompts that can model diverse fine-grained abnormality
semantics without requiring detailed human annotations or text descriptions, as illustrated by
various discriminative abnormal patterns in the bottom of Fig. 1 Left. To this end, in FAPrompt
we introduce a novel Compound Abnormality Prompting module, namely CAP, to learn a set
of complementary, decomposed abnormality prompts on top of a normal prompt, where each
abnormality prompt is formed by a compound of the same tokens in the normal prompt and a few
learnable abnormal tokens. The insight of this design is rooted from our observation that each
abnormal pattern can be considered as some unexpected patterns overlaying on top of common
normal patterns, e.g., color stains on normal texture of carpet. Such a compound prompting strategy
enables the learning of different abnormality semantics easily while maintaining abnormality
prompts in good proximity to the normal prompt. This helps avoid learning trivial abnormality
prompts that are too far away from the normal prompt, lacking discriminability for distinguishing
normal and abnormal samples.

On the other hand, the fine-grained abnormality patterns can be very different from one dataset to
another. Thus, to achieve better cross-dataset generalization, the learned fine-grained abnormality
prompts should be adaptive to any target testing datasets. We therefore further introduce a Data-
dependent Abnormality Prior module, namely DAP, to enhance the cross-dataset generalizability of
the abnormal tokens in CAP. It learns to derive abnormality features from each query/test image as
a sample-wise abnormality prior to dynamically adapt the abnormality prompts in CAP to a given
target dataset. This interaction between CAP and DAP enables the learning of abnormality prompts
that have fine-grained semantics and are adaptive to different testing datasets, enabling better ZSAD
across a wide range of image AD datasets, as shown in Fig. 1 Right.

Accordingly, we make the following main contributions.

• We propose a novel ZSAD framework FAPrompt. Unlike existing methods that capture
coarse-grained semantics of abnormality only, FAPrompt offers an effective approach
for learning adaptive fine-grained abnormality semantics without any reliance on detailed
human annotation/text description of the diverse anomaly categories.
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• To achieve this, we first introduce a novel Compound Abnormality Prompting module
(CAP) in FAPrompt. It learns a small set of complementary, decomposed abnormality
prompts on top of the normal prompt via a compounding normal-abnormal token design
and an orthogonal constraint among the abnormality prompts.

• We further introduce a Data-dependent Abnormality Prior module (DAP). It learns to select
the most relevant abnormal features from anomaly images while refraining from normal
images for adapting the fine-grained abnormalities learned in CAP to a given target dataset.

• Comprehensive experiments on 19 diverse real-world industrial and medical image AD
datasets show that FAPrompt significantly outperforms state-of-the-art ZSAD models by
at least 3%-5% AUC/AP in both image- and pixel-level detection tasks.

2 RELATED WORK

2.1 CONVENTIONAL ANOMALY DETECTION

There have been different types of AD approaches introduced over the years. In particular, one-
class classification methods (Tax & Duin, 2004; Yi & Yoon, 2020; Bergman & Hoshen, 2020;
Chen et al., 2022; Ruff et al., 2020) aim to compactly describe normal data using support vectors.
Reconstruction-based methods (Akcay et al., 2019; Schlegl et al., 2019; Zavrtanik et al., 2021b;
Yan et al., 2021; Zaheer et al., 2020; Zavrtanik et al., 2021a; Park et al., 2020; Hou et al., 2021;
Xiang et al., 2023; Liu et al., 2023; Yao et al., 2023b;a) train models to reconstruct normal images,
with anomalies identified through higher reconstruction errors. Distance-based methods (Pang et al.,
2018; Defard et al., 2021; Cohen & Hoshen, 2020; Roth et al., 2022) detect anomalies by measuring
the distance between the test image and normal images. Knowledge distillation methods (Deng
& Li, 2022; Bergmann et al., 2020; Salehi et al., 2021; Wang et al., 2021; Cao et al., 2023;
Tien et al., 2023; Zhang et al., 2023) focus on distilling normal patterns from pre-trained models
and detecting anomalies by comparing discrepancies between the distilled and original features.
However, these methods often rely on application-specific datasets to train the detection model,
limiting their applicability in real-world scenarios where data access is restricted due to privacy
concerns, proprietary restrictions, or resource constraints. Also, these approaches tend to struggle
when there is a significant difference between the distribution of the training and test data.

2.2 ZERO-SHOT ANOMALY DETECTION

ZSAD has been made possible due to the development of large pre-trained foundation models, such
as vision-language models (VLMs). CLIP (Radford et al., 2021) has been widely used as a VLM
to enable ZSAD on visual data (Jeong et al., 2023; Zhou et al., 2024; Deng et al., 2023; Chen
et al., 2023a). CLIP-AC adapts CLIP for ZSAD by using text prompts designed for the ImageNet
dataset as in (Radford et al., 2021). By using manually defined textual prompts specifically
designed for industrial AD dataset, WinCLIP (Jeong et al., 2023) achieves better ZSAD performance
compared to CLIP-AC, but it often does not generalize well to non-defect AD datasets. APRIL-
GAN (Chen et al., 2023a) adapts CLIP to ZSAD through tuning some additional linear layers
with annotated auxiliary AD data. AnoVL (Deng et al., 2023) introduces domain-aware textual
prompts and test time adaptation in CLIP to enhance the ZSAD performance. AnomalyCLIP (Zhou
et al., 2024) employs learnable, object-agnostic textual prompts to extract more general-purpose text
features for the normal and abnormal classes. All these methods are focused on crafting/learning
prompts that capture only coarse-grained semantics of abnormality, failing to detect anomalies that
exhibit different patterns from these coarse abnormal patterns. There are a number of other studies
leveraging CLIP for AD, but they are designed for empowering few-shot (Gu et al., 2023; Zhu &
Pang, 2024) or conventional AD task (Joo et al., 2023; Wu et al., 2024a;c;b).

3 METHODOLOGY

3.1 PRELIMINARIES

Problem Statement. Let Dtrain = {Xtrain, Ytrain} denote an auxiliary training dataset consisting
of both normal and anomalous samples, where Xtrain = {xi}Ni=1 is a set of N images and Ytrain =
{yi,Gi}Ni=1 contains the corresponding ground truth labels and pixel-level anomaly masks. Each

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Data-dependent
Abnormality Prior (DAP)

...

...

...

... ...

... ...

Text Encoder

Image Encoder

Compound Abnormality
Prompting (CAP)

Compound Abnormality Prompting (CAP)

Text
Encoder

Data-dependent Abnormality Prior (DAP)

...

...

Prototype

M

Normal Text Prompt

La
ye

r 1

La
ye

r 2

La
ye

r N

Normal Text Embedding Abnormal Text Embedding Image Token Embedding Patch Token Embeddings Sample-wise Abnormality Prior

M

Inner Product

Element-wise Addition

Maximum Value

if     = 0:

or

Abnormality
Features

Auxiliary Image

if     = 1:

Picking the Top        Patches

 

Figure 2: Overview of FAPrompt. It consists of two novel modules, including the Compound Abnormality
Prompting (CAP) module and the Data-dependent Abnormality Prior (DAP) module detailed in the top-right
and bottom-right corners respectively. CAP is devised to learn fine-grained abnormality semantics without
relying on detailed human annotations or text descriptions, while DAP is designed to adaptively select the most
abnormal features from each query/test image as a sample-wise abnormality prior to enhance the cross-dataset
generalizability of the abnormality prompts in CAP.
image xi is labeled by yi, where yi = 0 indicates a normal image and yi = 1 signifies an anomalous
one. The anomaly mask Gi provides pixel-level annotation of xi. During the testing phase, we are
presented with a collection of target datasets, T = {D1

test,D2
test, · · · ,Dt

test}, where each Dj
test =

{Xj
test, Y

j
test} is a test set from a target application dataset that have different normal and abnormal

samples from those in the training data Dtrain. The goal of ZSAD is to develop models on the
auxiliary dataset Dtrain, with the ability to generalize to detect anomalies in different test sets in
T . Particularly, given an input RGB image x ∈ Rh×w×3 from Dtrain, with h and w respectively
representing the height and width of x, a ZSAD model is required to output both an image-level
anomaly score sx ∈ R and a pixel-level anomaly map Mx ∈ Rh×w. The image-level anomaly
score sx provides a global assessment of whether the image is anomalous, while the pixel-level
anomaly map Mx indicates the likelihood of each pixel being anomalous. Both sx and the values
in Mx lie in [0, 1], where a larger value indicates a higher probability of being abnormal.

VLM Backbone. To enable accurate ZSAD, large pre-trained VLMs are typically required.
Following existing approaches (Chen et al., 2023b; Deng et al., 2023; Jeong et al., 2023; Zhou et al.,
2024), the pre-trained CLIP (Radford et al., 2021) is used in our study, which comprises a visual
encoder fv(·) and a text encoder ft(·), where the visual and text representations are well-aligned
through pre-training on web-scaled text-image pairs.

3.2 OVERVIEW OF FAPROMPT

In this work, we propose a ZSAD framework FAPrompt to learn adaptive fine-grained abnormality
semantics without any reliance on detailed human annotations or text descriptions. Fig 2 illustrates
the overall framework of FAPrompt that consists of two novel modules, including Compound
Abnormality Prompting module (CAP) and Data-dependent Abnormality Prior module (DAP).
To be more specific, the proposed CAP module is devised to specify the design of fine-grained
abnormality prompts. The key characteristic of CAP is to obtain the abnormality prompts via a
compound prompting method, where we have one normal prompt and multiple abnormality prompts
are added on top of it. These normal and abnormal text prompts are then processed by the CLIP’s
text encoder ft(·) to generate the corresponding normal and abnormal text embeddings, respectively.
For a given image x, FAPrompt extracts both an image token embedding fv(x) and a set of patch
token embeddings Fv ∈ Rl×d, with l and d respectively representing the length and dimensionality
of Fv . The prompts are then learned using Dtrain based on the similarity between the image and text
embeddings, where the fine-grained abnormality prompts are aggregated into an abnormality prompt
prototype before its use in similarity calculation. Further, the DAP module is introduced to improve
cross-dataset generalization capability of the fine-grained abnormality prompts. DAP derives the
most relevant abnormality features based on the given query/test image x, serving as a sample-wise
abnormality prior to dynamically adapt the abnormality prompts in CAP to the characteristics of
a given target dataset. During training, the original parameters of CLIP remain frozen, and only
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the attached learnable tokens in the text encoder layers, along with the normal and fine-grained
abnormality prompts, are optimized. Below we present these modules in detail.

3.3 COMPOUND ABNORMALITY PROMPT LEARNING

Learning Fine-grained Abnormalities via Compound Normal and Abnormal Tokens. Previous
approaches that rely on coarse-grained learnable text prompts fail to capture the fine-grained
abnormality semantics for detecting diverse anomalies across different datasets. To address this,
we propose the novel CAP module. The core insight is that abnormal samples typically exhibit
different magnitude of deviation from their normal counterparts while still belonging to the same
class. CAP models this by learning a set of complementary, decomposed abnormality prompts built
on a shared normal prompt. Following previous work (Zhou et al., 2024), a set of learnable normal
tokens and the fixed token ‘object’ are concatenated to define the normal text prompt Pn. For the
abnormality prompt, CAP aims to learn a small set of prompts of complementary semantics, denoted
as Pa = {Pa1 ,Pa2 , ...PaK}, where each Pai is formed by a compound of the same tokens in the
normal prompt Pn and a few learnable abnormal tokens. Formally, the normal and abnormality
prompts can be defined as:

Pn = [V1][V2]...[VE ][object],

Pa = {Pa1 ,Pa2 , ...PaK},
with Pai = [V1][V2]...[VE ][A

i
1][A

i
2]...[A

i
E′ ][object],

(1)

where {V1, V2, ...VE} and {Ai
1, A

i
2, ...A

i
E′}Ki=1 are learnable normal and abnormal tokens,

respectively. This compound prompting strategy enables the learning of different abnormality
semantics easily while maintaining abnormality prompts in good proximity to the normal prompt,
supporting the learning of non-trivial, semantically-meaningful abnormality prompts.

Learning Complementary Abnormality Prompts. To capture complementary fine-grained
abnormalities and reduce redundant information captured by the abnormality prompts, it is essential
to maximize the diversity among the fine-grained abnormalities. A straightforward approach would
be to train distinct abnormal prompts on separate, annotated subsets with samples from different
anomalous types. However, this would require extensive human annotations. To address this issue,
we propose to add an orthogonal constraint loss Loc into the abnormality prompts in CAP as a
alternative method to encourage this diversity. Formally, the objective for this can be formulated as:

Loc =
∑

i,j∈K;i̸=j

abs(
ft(Pai) · ft(Paj )

||ft(Pai)|| × ||ft(Paj )||
), (2)

where the text encoder ft(·) is used to extract the embeddings of the abnormality prompts, [·] denotes
inner product, abs(·) returns the absolute value, and || · || indicates the norm of vectors.

To provide more representative embedding for the fine-grained abnormalities, we compute the
prototype of the multiple abnormality prompt embeddings as the final fine-grained abnormality
embedding via Fa = 1

|Pa|
∑

Pai∈Pa ft(Pai). The normal text prompt embedding is Fn = ft(Pn).

3.4 LEARNING TO SELECT DATA-DEPENDENT ABNORMALITY PRIOR

One issue in ZSAD is that the fine-grained abnormality patterns can be very different from the
auxiliary dataset to test datasets. In addition to the learning of a set of complementary fine-
grained abnormality prompts, it is important to ensure that the learned fine-grained abnormality
patterns are generalized to target testing datasets. Inspired by the instance-conditional information
design in CoCoOp (Zhou et al., 2022a), we introduce the DAP module to enhance the cross-dataset
generalizability of the abnormal tokens in CAP by adaptively selecting the embeddings of the most
abnormal regions to serve as a sample-wise abnormality prior for each image input. Particularly,
given a query/test image x, DAP selects the most abnormal image patches as the abnormality prior
to be fed into CAP for assisting the abnormality prompt learning. It achieves this by picking the top
M patches whose token embeddings are most similar to the abnormality prompt prototype Fa:

Sa
x(i, j) =

exp(Fv(i, j)F
⊺
a)

exp(Fv(i, j)F
⊺
n) + exp(Fv(i, j)F

⊺
a)
, (3)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where [·]⊺ denotes a transpose operation, Fv(i, j) is the token embedding of the patch centered at
(i, j) and Sa

x(i, j) is a patch-level anomaly score. The corresponding normal scores can be calculated
via Sn

x(i, j) using the similarity to Fn in the numerator in Eq. 3.

Let px = {p1, p2, ...pM} be the top M patch embeddings of x, FAPrompt then adds additional
learnable layers ψ(·), namely abnormality prior network, to model the sample-wise abnormality
prior based on px. This prior Ωx = ψ(px) is then incorporated as data-dependent abnormal features
into the learnable abnormal tokens of the abnormality prompts in CAP to dynamically adapt the
learned fine-grained abnormalities to a given target dataset, with each individual abnormality prompt
refined as follows:

P̂ai = [V1][V2]...[VE ][A
i
1 ⊕ Ωx][A

i
2 ⊕ Ωx]...[A

i
E′ ⊕ Ωx][object], (4)

where Ωx is a vector-based prior of the same dimensionality as the abnormal tokens and ⊕ denotes
element-wise addition. Thus, the abnormality prompt set is updated as P̂a = {P̂a1 , P̂a2 , ...P̂aK},
and the abnormality prompt prototype can be accordingly refined as F̂a = 1

|P̂a|

∑
P̂ai∈P̂a ft(P̂ai).

The goal of DAP is to introduce sample-wise abnormality information. However, there is no
abnormality from the top M patches of normal images, and thus, simply applying the prior Ωx

to normal images would introduce noise into the learnable abnormal tokens, damaging the learning
of fine-grained abnormalities. To address this issue, we propose an abnormality prior learning loss
Lprior to enforce that Ωx is the features mapped from the most abnormal M patches if x is an
abnormal image, while it is minimized to be a null vector if it is a normal image. Formally, Lprior

can be defined as follows:

Lprior =
∑
yx=0

∑
ω∈Ωx

ω2
x, (5)

where ω is an entry of Ωx.

3.5 TRAINING AND INFERENCE

Training. During training, FAPrompt first generates an abnormality-oriented segmentation map
M̂a ∈ Rh×w using Ŝa

x whose entries are calculated via Eq. 3 with Fa replaced by the prior-enabled
F̂a:

M̂a = Φ(Ŝa
x), (6)

where Φ(·) is a reshape and interpolation function that transforms the patch-level anomaly scores
into a two-dimensional segmentation map. In the same way, we can generate the segmentation map
M̂n = Φ(Ŝn

x ) based on the prior-enabled normal score Ŝn
x . Let Gx represent the ground-truth

mask of the query image x, following AnomalyCLIP (Zhou et al., 2024), the learning objective in
FAPrompt for optimizing pixel-level AD can then be defined as:

Llocal =
1

N

∑
x∈Xtrain

LFocal([M̂n,M̂a],Gx) + LDice(M̂a,Gx) + LDice(M̂n, I −Gx), (7)

where I is a full-one matrix, LFocal(·) and LDice(·) denote a focal loss (Lin et al., 2017) and a Dice
loss (Li et al., 2019b), respectively. To ensure the accuracy of locating the top abnormal features in
DAP, we apply the same learning objective to optimize the segmentation maps Mn ∈ Rh×w and
Ma ∈ Rh×w, which are derived from the normality-oriented scores Sn

x and abnormality-oriented
scores Sa

x , respectively.

For image-level supervision, FAPrompt first computes the probability of the query image x being
classified as abnormal based on its cosine similarity to the two prompt embeddings F̂a and Fn:

sa(x) =
exp(fv(x)F̂

⊺
a)

exp(fv(x)F
⊺
n) + exp(fv(x)F̂

⊺
a)
. (8)
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The final image-level anomaly score is then defined as the average of this image-level score and the
maximum pixel-level anomaly score derived from the anomaly score maps:

s(x) =
1

2
(sa(x) + s′a(x)), (9)

where s′a(x) =
1
2

(
max(Sa

x) + max(Ŝa
x)
)

represents the average of the maximum anomaly scores

from Sa
x and Ŝa

x . Following previous methods (Zhu & Pang, 2024; Chen et al., 2023a; Zhou
et al., 2024; Jeong et al., 2023), s′a(x) is treated as a complementary anomaly score to sa(x) and
incorporated into Eq. 9, as s′a(x) are helpful for detecting local abnormal regions. The image-level
anomaly score s(x) is then optimized by minimizing the following loss on Xtrain:

Lglobal =
1

N

∑
x∈Xtrain

Lb(s(x), yx), (10)

where Lb is specified by a focal loss function due to the class imbalance in Xtrain. Overall,
FAPrompt is optimized by minimizing the following combined loss, which integrates both local
and global objectives, along with the two constraints from the CAP and DAP modules:

L = Llocal + Lglobal + Lprior + Loc, (11)

Inference. During inference, given a test image x′, it is fed through the visual encoder of CLIP to
generate the segmentation maps Mn, Ma, M̂n, and M̂a. Then the pixel-level anomaly map Mx′

is calculated by averaging over these segmentation maps as follows:

Mx′ =
1

4
(Ma ⊕ 1⊖Mn ⊕ M̂a ⊕ 1⊖ M̂n), (12)

where ⊖ is element-wise subtraction. The image-level anomaly score sx′ is computed using Eq. 9.

4 EXPERIMENTS

Datasets. To verify the effectiveness of FAPrompt, we conduct extensive experiments across 19
publicly available datasets, including nine popular industrial defect inspection datasets on varying
products/objects (MVTecAD (Bergmann et al., 2019), VisA (Zou et al., 2022), DAGM (Wieler
& Hahn, 2007), DTD-Synthetic (Aota et al., 2023), AITEX (Silvestre-Blanes et al., 2019),
SDD (Tabernik et al., 2020), BTAD (Mishra et al., 2021), MPDD (Jezek et al., 2021), and
ELPV(Deitsch et al., 2019)) and ten medical anomaly detection datasets on different organs like
brain, fundus, colon, skin and thyroid (BrainMRI (Salehi et al., 2021), HeadCT (Salehi et al., 2021),
LAG (Li et al., 2019a), Br35H (Hamada, 2020), CVC-ColonDB (Tajbakhsh et al., 2015), CVC-
ClinicDB (Bernal et al., 2015), Kvasir (Jha et al., 2020), Endo (Hicks et al., 2021), ISIC (Gutman
et al., 2016), TN3K (Gong et al., 2021)) (see Appendix A for details about the datasets).

To assess the ZSAD performance, the models are trained on the MVTecAD dataset by default and
evaluated on the test sets of other datasets without any further training or fine-tuning. We obtain the
ZSAD results on MVTecAD by changing the training data to the VisA dataset.

Competing Methods and Evaluation Metrics. We compare our method, FAPrompt, with
several state-of-the-art (SotA) methods, including five handcrafted text prompt-based methods –
raw CLIP (Radford et al., 2021), CLIP-AC and WinCLIP (Jeong et al., 2023), APRIL-GAN (Chen
et al., 2023a), and AnoVL (Deng et al., 2023) – and three learnable text prompt-based methods –
CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), and AnomalyCLIP (Zhou et al., 2024).
As for evaluation metrics, we follow previous works (Jeong et al., 2023; Zhou et al., 2024) and
use two popular metrics: AUROC (Area Under the Receiver Operating Characteristic) and average
precision (AP) to assess the image-level AD performance; for pixel-level AD performance, we
employ AUROC and Area under per region overlap (PRO) to provide a more detailed analysis.
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Table 1: Image-level ZSAD results (AUROC, AP) on 13 AD datasets. The best and second-best results are
respectively highlighted in red and blue. The results for MVTecAD, VisA, DAGM, DTD-Synthetic, BTAD, and
MPDD are averaged performance across their multiple data subsets (see Appendix D for breakdown results).

Data Type Dataset Handcrafted Text Prompts Learnable Text Prompts
CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Industrial

MVTecAD (74.1, 87.6) (71.5, 86.4) (91.8, 96.5) (86.2, 93.5) (92.5, 96.7) (88.8, 94.8) (71.8, 84.9) (91.5, 96.2) (91.9, 95.7)
VisA (66.4, 71.4) (65.0, 70.2) (78.8, 81.4) (78.0, 81.4) (79.2, 81.7) (62.8, 68.1) (78.1, 82.3) (82.1, 85.4) (84.5, 86.8)
SDD (95.5, 87.9) (94.7, 77.9) (94.0, 87.2) (97.5, 93.4) (95.3, 91.3) (96.8, 90.0) (89.9, 50.4) (98.1, 93.4) (98.6, 95.9)

BTAD (34.5, 52.5) (51.0, 62.1) (68.2, 70.9) (73.6, 68.6) (80.3, 73.1) (66.8, 77.4) (48.4, 53.9) (88.3, 87.3) (92.0, 92.2)
MPDD (54.3, 65.4) (56.2, 66.0) (63.6, 69.9) (73.0, 80.2) (68.9, 71.9) (55.1, 64.2) (61.0, 69.1) (77.0, 82.0) (80.6, 83.3)
AITEX (71.0, 45.7) (71.5, 46.7) (73.0, 54.7) (57.6, 41.3) (72.5, 55.4) (66.2, 39.0) (48.6, 37.8) (62.2, 40.4) (71.9, 53.2)
DAGM (79.6, 59.0) (82.5, 63.7) (91.8, 79.5) (94.4, 83.8) (89.7, 76.3) (87.5, 74.6) (96.3, 85.5) (97.5, 92.3) (98.9, 95.7)

DTD-Synthetic (71.6, 85.7) (66.8, 83.2) (93.2, 92.6) (86.4, 95.0) (94.9, 97.3) (83.1, 91.9) (84.1, 92.9) (93.5, 97.0) (95.9, 98.3)
ELPV (59.2, 71.7) (69.4, 80.2) (74.0, 86.0) (65.5, 79.3) (70.6, 83.0) (73.0, 86.5) (78.4, 89.2) (81.5, 91.3) (83.5, 92.0)

Medical

BrainMRI (73.9, 81.7) (80.6, 86.4) (86.6, 91.5) (89.3, 90.9) (88.7, 91.3) (61.3, 44.9) (78.2, 86.7) (90.3, 92.2) (95.5, 95.6)
HeadCT (56.5, 58.4) (60.0, 60.7) (81.8, 80.2) (89.1, 89.4) (81.6, 84.2) (78.4, 78.8) (80.3, 73.4) (93.4, 91.6) (94.8, 93.5)

LAG (58.7, 76.5) (58.2, 76.9) (59.2, 74.8) (73.6, 84.8) (65.1, 78.0) (69.6, 82.9) (72.6, 84.7) (74.3, 84.9) (75.6, 85.4)
Br35H (78.4, 78.8) (82.7, 81.3) (80.5, 82.2) (93.1, 92.9) (88.4, 88.9) (86.0, 87.5) (85.7, 89.1) (94.6, 94.7) (97.8, 97.5)

Table 2: Pixel-level ZSAD results (AUROC, PRO) on 14 AD datasets. The best and second-best results are
respectively highlighted in red and blue. Note that medical datasets in Table 1 do not have pixel-level ground
truth. Thus, different medical datasets are used here. Detailed breakdown results for MVTecAD, VisA, DAGM,
DTD-Synthetic, BTAD, and MPDD can be found in Appendix D.

Data Type Dataset Handcrafted Text Prompts Learnable Text Prompts
CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Industrial

MVTecAD (38.4, 11.3) (38.2, 11.6) (85.1, 64.6) (87.6, 44.0) (89.8, 76.2) (33.3, 6.6) (86.7, 79.6) (91.1, 81.4) (90.6, 83.3)
VisA (46.6, 14.8) (47.8, 17.2) (79.6, 56.8) (94.2, 86.8) (89.9, 71.2) (24.1, 3.8) (93.6, 86.7) (95.5, 87.0) (95.9, 87.5)
SDD (28.4, 5.1) (33.5, 7.6) (95.9, 78.4) (93.0, 84.6) (97.9, 82.6) (91.8, 81.7) (93.7, 85.0) (98.1, 95.2) (98.3, 93.6)

BTAD (30.6, 4.4) (32.8, 8.3) (72.7, 27.3) (60.8, 25.0) (93.2, 62.8) (28.6, 3.8) (86.1, 72.0) (94.2, 74.8) (95.6, 75.2)
MPDD (62.1, 33.0) (58.7, 29.1) (76.4, 48.9) (94.1, 83.2) (84.0, 61.0) (15.4, 2.3) (95.2, 84.2) (96.5, 87.0) (96.5, 87.9)
AITEX (53.2, 15.3) (47.3, 11.8) (62.5, 41.5) (78.2, 68.8) (59.2, 49.1) (67.7, 54.9) (52.1, 56,9) (83.0, 66.5) (82.0, 62.6)
DAGM (28.2, 2.9) (32.7, 4.8) (87.6, 65.7) (82.4, 66.2) (92.0, 78.8) (17.5, 2.1) (82.8, 75.1) (95.6, 91.0) (98.3, 95.4)

DTD-Synthetic (33.9, 12.5) (23.7, 5.5) (83.9, 57.8) (95.3, 86.9) (97.5, 90.4) (55.8, 36.0) (93.7, 83.7) (97.9, 92.3) (98.3, 93.1)

Medical

CVC-ColonDB (49.5, 15.8) (49.5, 11.5) (70.3, 32.5) (78.4, 64.6) (77.9, 49.8) (40.5, 2.6) (79.1, 69.7) (81.9, 71.3) (84.6, 74.7)
CVC-ClinicDB (47.5, 18.9) (48.5, 12.6) (51.2, 13.8) (80.5, 60.7) (82.1, 55.0) (34.8, 2.4) (83.4, 68.8) (82.9, 67.8) (84.7, 70.1)

Kvasir (44.6, 17.7) (45.0, 16.8) (69.7, 24.5) (75.0, 36.2) (72.5, 28.2) (44.1, 3.5) (79.1, 38.6) (78.9, 45.6) (81.2, 47.8)
Endo (45.2, 15.9) (46.6, 12.6) (68.2, 28.3) (81.9, 54.9) (80.5, 47.7) (40.6, 3.9) (83.1, 59.0) (84.1, 63.6) (86.4, 67.2)
ISIC (33.1, 5.8) (36.0, 7.7) (83.3, 55.1) (89.4, 77.2) (90.6, 79.8) (51.7, 15.9) (81.9, 68.9) (89.7, 78.4) (90.9, 81.2)

TN3K (42.3, 7.3) (35.6, 5.2) (70.7, 39.8) (73.6, 37.8) (80.9, 50.5) (34.0, 9.5) (72.4, 41.0) (81.5, 50.4) (84.5, 54.1)

Implementation Details. Following previous approaches (Zhou et al., 2024; Chen et al., 2023a),
we implement FAPrompt using the same CLIP implementation, OpenCLIP (Ilharco et al., 2021),
using the publicly available pre-trained VIT-L/14@336px backbone. The parameters of both
the visual and text encoders in CLIP are kept frozen. By default, learnable token embeddings are
attached to the first nine layers of the text encoder, with a token length of four for each layer. The
lengths of the learnable normal and abnormal text prompts are respectively set to five and two by
default. The number of fine-grained abnormality prompts and selected patch tokens in the DAP
module are both set to ten. We use the Adam optimizer with an initial learning rate of 1e-3. Further
implementation details for FAPrompt and the competing methods are provided in Appendix B.

4.1 MAIN RESULTS

Image-level ZSAD Performance. Table 1 presents the image-level ZSAD results of FAPrompt,
compared to eight SotA methods across 13 AD datasets, including nine industrial defect AD datasets
and four medical AD datasets. The results show that FAPrompt significantly outperforms the
SotA models across almost all datasets. On average, compared to the best competing methods,
it achieves up to 3.7% AUROC and 4.9% AP on industrial AD datasets and 5.2% AUROC and
3.4% AP on medical AD datasets. In particular, the weak performance of CLIP and CLIP-AC
can be attributed to its over-simplified text prompt design. By utilizing more carefully designed
handcrafted prompts, WinCLIP achieves better results than CLIP and CLIP-AC while preserving the
training-free nature. APRIL-GAN and AnoVL improve over WinCLIP by using additional learnable
layers and/or domain-aware tokens within the textual prompts. However, they heavily rely on
sensitive handcrafted textual prompts and capture mainly coarse-grained semantics of abnormality,
leading to poor performance when faced with anomalies that does not fit well to the pre-defined text
descriptions, e.g., BTAD, MPDD, BrainMRI, HeadCT, and Br35H.

As for text prompt learning methods, CoOp and CoCoOp are designed for general vision tasks, i.e.,
discriminating different objects, so they have weak capability in capturing the differences between
normality and abnormality on the same object. AnomalyCLIP significantly improves performance
by learning object-agnostic textual prompts for AD, demonstrating strong generalization capabilities
across diverse datasets. However, AnomalyCLIP overlooks fine-grained abnormality details.
FAPrompt overcomes this limitation via its two novel modules, CAP and DAP.
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Pixel-level ZSAD Performance. We also compare the pixel-level ZSAD results of our FAPrompt
with SotA methods across 14 AD datasets in Table 2. Similar observations can be derived as the
image-level results. In particular, CLIP and CLIP-AC are the weakest among the handcrafted
text prompt-based methods, primarily due to inappropriate text prompt designs. With better
prompt engineering (and adaptation to AD in some cases), WinCLIP, APRIL-GAN, and AnoVL
demonstrate better performance. For the learnable text prompt approaches, CoOp shows poor
performance due to overfitting on the adaptation dataset, while CoCoOp mitigates this limitation
by introducing instance-conditional information, achieving substantial improvement over CoOp
and competitive performance to AnomalyCLIP. FAPrompt demonstrates superior performance in
identifying a wide range of pixel-level anomalies, significantly outperforming SotA models across
nearly all datasets. It surpasses the best competing methods by up to 2.7% AUROC and 4.4% AP
on the industrial AD datasets, and by 3.0% AUROC and 3.7% AP on the medical AD datasets. This
demonstrates the effectiveness of the fine-grained abnormality prompt in FAPrompt that adaptively
capture detailed abnormality semantics in different datasets.

Performance of Learning Complementary Abnormalities. To assess the complementarity
of the abnormality prompts learned by FAPrompt, we empirically evaluate the
discriminability of each abnormality prompt and its difference to the rest of
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Figure 3: t-SNE visualization of prompt-
wise anomaly scores on BTAD (01).

other prompts. To this end, we calculate the patch-level
anomaly scores Sa

x of an image based on the similarity of
its patch token embeddings to each individual abnormal
prompt embedding (rather than the prototype of the
abnormal prompt embeddings) in CAP, and subsequently
project the anomaly scores of each sample into a two-
dimensional space via t-SNE. As depicted in Fig. 3 on an
exemplar dataset, two key observations can be derived: i)
despite having slight overlapping, the normal and abnormal
samples are distributed into a different group for each
individual abnormality prompt, indicating the learning
of different abnormal patterns per abnormality prompt;
and ii) there is clear separation between normal and
abnormal samples for the use of each abnormality prompt
in anomaly scoring, indicating the good discriminability of
each prompt learned in FAPrompt. Similar patterns can
be found in more visualization and comparison with the baselines in Appendix C.3.

4.2 ABLATION STUDY

Module Ablation. Our ablation study results based on averaged performance across 18 industrial
and medical datasets are shown in Table 3, where AnomalyCLIP is used as our base model (Base)
and each of our two modules is separately added on this base model (i.e., ‘+ CAP’ and ‘+ DAP’).
The dataset-wise performance and module ablation on single abnormality prompt can be found
in Appendix D.2 and C.5, respectively. It can be seen that applying CAP alone results in a
significant improvement in image-level ZSAD performance due to its ability in learning the fine-
grained abnormality details. To assess how important the orthogonal constraint loss (Loc) is in
CAP, we further evaluate the performance with Loc removed, denoting as ‘+ CAP w\o Loc’.

Table 3: Image-level (AUROC, AP) and pixel-level
(AUROC, PRO) results of ablation study.

Model Industrial Datasets Medical Datasets
Image-level Pixel-level Image-level Pixel-level

AnomalyCLIP (85.0, 83.6) (94.4, 84.8) (87.7, 90.6) (83.2, 62.9)
+ CAP (88.1, 87.0) (94.6, 83.9) (90.6, 93.1) (83.8, 63.8)

+ CAP w\o Loc (87.2, 86.3) (94.3, 83.5) (90.3, 91.8) (83.6, 63.8)

+ DAP (86.9, 85.2) (94.8, 84.9) (90.2, 92.3) (84.6, 64.8)
+ DAP w\o Lprior (86.5, 85.1) (94.7, 83.7) (89.9, 92.3) (84.5, 64.3)

AnomalyCLIP Ensemble (85.5, 84.0) (94.7, 85.0) (89.3, 91.3) (83.2, 62.4)
AnomalyCLIP Ensemble* (85.5, 82.6) (94.6, 84.5) (88.8, 91.0) (83.5, 65.6)

FAPrompt (88.2, 87.2) (95.0, 85.0) (90.9, 93.0) (85.4, 65.9)

The results indicate that the orthogonal
constraints imposed by Loc help the CAP
module work in a more effective way, justifying
its effectiveness in encouraging the learning
of unique and complementary fine-grained
abnormal patterns in CAP.

As shown in Table 3, when DAP is applied
independently, it results in substantial
improvements in not only image-level
performance but also pixel-level performance.
The improvement is clearer on the medical datasets. This can be attributed to its ability of
deriving data-dependent abnormality information from any target data to enhance the cross-dataset
generalization of FAPrompt. We similarly assess the importance of the abnormality prior selection

9
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loss (Lprior) in DAP by having the variant, ‘DAP w\o Lprior’ that removes Lprior from DAP. The
results show that removing Lprior may introduce irrelevant priors from normal samples and lead
to a significant drop in pixel-level performance. When all components are applied, the full model
FAPrompt achieves its best performance. This shows that the interaction between CAP and DAP
enables the learning of abnormality prompts that capture fine-grained semantics and are adaptive to
different test datasets.

FAPrompt vs Ensemble Methods. To learn more abnormalities, a straightforward solution
is to ensemble existing ZSAD methods. We hence conduct two ensemble strategies
in AnomalyCLIP for comparison: i) to learn an ensemble of AnomalyCLIP with each
learning a abnormality prompt tuned on the auxiliary dataset with a different random
seed (‘AnomalyCLIP Ensemble’), and ii) to learn AnomalyCLIP with an ensemble of
multiple abnormality prompts with orthogonal constraint loss (‘AnomalyCLIP Ensemble*’).
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Figure 4: Averaged results on industrial datasets
with varying K and M .

The results in Table 3 show that two simple
ensemble methods can improve AnomalyCLIP
to some extent, but their abnormality prompts
are much less effective than FAPrompt as
these simple strategies lead to learning of highly
redundant abnormality prompts, rather than the
complementary prompts learned in FAPrompt.
This showcases the effectiveness of the abnormality
prompts learned in FAPrompt in capturing the
fine-grained abnormality details which cannot be
learned in simple prompt ensemble approaches.

Hyperparameter Sensitivity Analysis. We analyze the sensitivity of two key hyperparameters of
FAPrompt on industrial datasets in terms of image-level (‘I-AUROC’ and ‘I-AP’) and pixel-level
(‘P-AUROC’ and ‘P-PRO’) ZSAD performance in Fig. 4, including the number of abnormality
prompts K in CAP and the number of selected patch tokens M in DAP (similar results can be found
for medical datasets in Appendix. C.5).
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Figure 5: Averaged results of FAPrompt with
varying prompt sizes of (E,E′).

In particular, the performance gets improved with
increasing K, typically peaking at K = 10.
The performance may slightly declines when K
is chosen beyond 10. This suggests that while
increasing the number of prompts helps capture
a wider range of abnormalities, too large K
values may introduce noise or redundancy into the
prompts. As for the number of selected tokens, M ,
the performance exhibits a similar pattern, with the
best performance obtained at a medium value. This

suggests that selecting too many abnormal patch candidates may introduce noise or less relevant
patches into CAP, leading to the learning of less effective fine-grained anomalities. Additionally,
we also evaluate the sensitivity of the length of learnable normal and abnormal tokens {E,E′} in
CAP module. The Image-level and pixel-level ZSAD results are shown in Fig. 5. Overall, the
setting of (5, 2) works best for both industrial and medical AD, yielding strong ZSAD performance.
Longer prompt lengths, such as (10, 4), can introduce more complexity without clear performance
improvement, particularly in pixel-level performance. Using shorter prompt lengths, e.g., the
setting of (2, 1), lacks sufficient capacity to support the ZSAD task, leading to consistently weaker
performance.

5 CONCLUSION

In this paper, we propose FAPrompt, a novel framework designed to enhance CLIP’s performance
in ZSAD by learning adaptive fine-grained abnormality semantics. FAPrompt introduces a
Compound Abnormality Prompting (CAP) module that generates complementary abnormality
prompts without relying on exhausting human annotations. Additionally, it incorporates a Data-
dependent Abnormality Prior (DAP) module, which refines these prompts to improve cross-dataset
generalization. The interaction between CAP and DAP enables the model to learn adaptive fine-
grained abnormality semantics. Extensive experiments on 19 datasets demonstrate that FAPrompt
significantly outperforms state-of-the-art ZSAD methods.
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Table 4: Data statistics of MVTec AD and VisA.

Dataset Subset Type Original Training Original Test
Normal Normal Anomalous

MVTec AD

Carpet Texture 280 28 89
Grid Texture 264 21 57

Leather Texture 245 32 92
Tile Texture 230 33 83

Wood Texture 247 19 60
Bottle Object 209 20 63

Capsule Object 219 23 109
Pill Object 267 26 141

Transistor Object 213 60 40
Zipper Object 240 32 119
Cable Object 224 58 92

Hazelnut Object 391 40 70
Metal_nut Object 220 22 93

Screw Object 320 41 119
Toothbrush Object 60 12 30

VisA

candle Object 900 100 100
capsules Object 542 60 100
cashew Object 450 50 100

chewinggum Object 453 50 100
fryum Object 450 50 100

macaroni1 Object 900 100 100
macaroni2 Object 900 100 100

pcb1 Object 904 100 100
pcb2 Object 901 100 100
pcb3 Object 905 101 100
pcb4 Object 904 101 100

pipe_fryum Object 450 50 100

A DATASET DETAILS

A.1 DATA STATISTICS OF TRAINING AND TESTING

We conduct extensive experiments on 19 real-world Anomaly Detection (AD) datasets, including
nine industrial defect inspection datasets (MVTecAD (Bergmann et al., 2019), VisA (Zou et al.,
2022), DAGM (Wieler & Hahn, 2007), DTD-Synthetic (Aota et al., 2023), AITEX (Silvestre-
Blanes et al., 2019), SDD (Tabernik et al., 2020), BTAD (Mishra et al., 2021), MPDD (Jezek et al.,
2021), ELPV(Deitsch et al., 2019)) and ten medical anomaly detection datasets (BrainMRI (Salehi
et al., 2021), HeadCT (Salehi et al., 2021), LAG (Li et al., 2019a), Br35H (Hamada, 2020), CVC-
ColonDB (Tajbakhsh et al., 2015), CVC-ClinicDB (Bernal et al., 2015), Kvasir (Jha et al., 2020),
Endo (Hicks et al., 2021), ISIC (Gutman et al., 2016), TN3K (Gong et al., 2021)).

To assess the ZSAD performance, the full dataset of MVTec AD, including both training set and test
set, is used as the auxiliary training data, on which AD models are trained, and they are subsequently
evaluated on the test set of the other 18 datasets without any further training. We train the model on
the full dataset of VisA when evaluating the performance on MVTec AD. Table 4 provides the data
statistics of MVTec AD and VisA, while Table 5 shows the test set statistics of the other 17 datasets.

B IMPLEMENTATION DETAILS

B.1 DETAILS OF MODEL CONFIGURATION.

Following previous works (Deng et al., 2023; Chen et al., 2023a; Zhou et al., 2024), FAPrompt
adopts a modified version of CLIP –OpenCLIP (Ilharco et al., 2021) and its publicly available pre-
trained backbone VIT-L/14@336px– as the VLM backbone to enhance the model’s attention to
local features while preserving its original structure. Following Zhou et al. (2024), we replace the
original Q-K self-attention mechanism in the visual encoder with a V-V self-attention mechanism
during patch feature extraction, starting from the 6th layer of the visual encoder. The parameters of
both the visual and text encoders in CLIP are frozen throughout the experiments.
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Table 5: Data statistics of the other 17 AD datasets. They are used for ZSAD inference only.

Data type Dataset Modalities |C| Normal Anomalous

Object
SDD Photography 1 286 54

BTAD Photography 3 451 290
MPDD Photography 6 176 282

Textual

AITEX Photography 12 564 183
DAGM Photography 10 6996 1054

DTD-Synthetic Photography 12 357 947
ELPV Electroluminescence 2 377 715

Brain
BrainMRI Radiology (MRI) 1 98 155
HeadCT Radiology (CT) 1 100 100
Br35H Radiology (MRI) 1 1500 1500

Fundus LAG Fundus Photography 1 786 1711

Colon

CVC-ColonDB Endoscopy 1 0 380
CVC-ClinicDB Endoscopy 1 0 612

Kvasir Endoscopy 1 0 1000
Endo Endoscopy 1 0 200

Skin ISIC Photography 1 0 379

Thyroid TN3K Radiology (Utralsound) 1 0 614

Inspired by previous works (Jia et al., 2022; Zhou et al., 2024; Khattak et al., 2022), We use text
prompt tuning to refine the original textual space of CLIP by adding additional learnable token
embeddings into its text encoder. By default, the learnable token embeddings are attached to the
first 9 layers of the text encoder to refine the textual space, with a token length of four for each layer.
The lengths of the learnable normal prompt and abnormal tokens in CAP are set to five and two,
respectively. The number of fine-grained abnormality prompts (K) and selected patch tokens (M )
in DAP are both set to 10. To align with the dimension of VIT-L/14@336px, the abnormality prior
network ψ(·) is configured with the input and output dimensions of 768×M and 768, respectively,
and includes a hidden layer of size (768×M)/16 with ReLU activation.

We utilize the Adam optimizer with an initial learning rate of 1e-3 to update the model parameters.
The input images are resized to 518×518 with a batch size of eight. This resizing is also applied
to other baseline models for a fair comparison, while preserving their original data preprocessing
methods, if applicable. The training is conducted for seven epochs across all experiments. During
the inference stage, a Gaussian filter with σ = 10 is applied to smooth the anomaly score map. All
experiments are conducted using PyTorch on a single GPU (NVIDIA GeForce RTX 3090).

B.2 IMPLEMENTATION OF COMPARISON METHODS

To evaluate the efficiency of FAPrompt, we compare its performance against eight state-of-the-
art (SotA) baselines. The results for CLIP (Ilharco et al., 2021), CLIP-AC (Ilharco et al., 2021),
WinCLIP (Jeong et al., 2023), APRIL-GAN (Chen et al., 2023a), CoOp (Zhou et al., 2022b),
and AnomalyCLIP (Zhou et al., 2024) are sourced from AnomalyCLIP, except the newly added
datasets (SDD, AITEX, ELPV, LAG). For fair comparison, these implementations follow the
setup of AnomalyCLIP. We use the official implementations of AnoVL (Deng et al., 2023) and
CoCoOp (Zhou et al., 2022a). To adapt CoCoOp for ZSAD, we replace its learnable text prompt
templates with normality and abnormality text prompt templates, which is consistent with the
implementation of CoOp in existing ZSAD studies. All other parameters remain consistent with
those specified in their original papers.

C ADDITIONAL RESULTS

C.1 MODEL COMPLEXITY OF FAPROMPT VS. SOTA METHODS

We compare the model complexity of FAPrompt with SotA methods in Table 6, evaluating
the number of parameters, per-batch training time, and per-image inference time. The batch
size for all approaches is set to eight for fair comparison, excluding training-free methods
WinCLIP and AnoVL. While FAPrompt introduces additional trainable parameters, leading to
a slightly longer training time, this minor computational overhead results in substantial performance
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Table 6: Number of parameters, per-batch training time (ms) and per-image inference time (ms) in comparison
with competing methods.

Model Number of Para. Training Time Inference Time
WinCLIP 0 0 227.5±0.7

AnoVL 0 0 171.4±0.5

APRIL-GAN 3148800 368.7±0.5 47.9±0.1

CoOp 9216 643.8±1.1 89.9±0.7

CoCoOp 83760 737.4±3.6 93.8±0.7

AnomalyCLIP 5555200 914.1±0.9 124.2±0.9

FAPrompt 9612256 1354.1±1.7 214.7±0.8

improvements over competing methods. Additionally, since training is performed offline, this
training computational overhead is generally negligible in real-world applications. In terms of
inference time, our approach remains reasonably efficient and responsive.

C.2 COMPARISON WITH SOTA FULL-SHOT METHODS AND PROMPT TUNING METHODS

We conduct experiments on five of the most commonly used datasets to examine the performance
gap between FAPrompt and two SotA full-shot methods, PatchCore (Roth et al., 2022) and
RD4AD (Deng & Li, 2022). Note that it is not a fair comparison as PatchCore and RD4AD utilize
the full training data of each testing dataset in its detection while ZSAD methods like FAPrompt
does not use any of such training data. The results presented in Table 7 are only for analyzing
the possible upper bound performance of ZSAD. Despite the unfair utilization of the dataset-
specific training data in PatchCore and RD4AD, FAPrompt obtains rather impressive detection
performance, further reducing the performance gap between ZSAD and full-shot methods.

We also compare FAPrompt with SotA prompt tuning approache TCP (Yao et al., 2024) to further
verify the effectiveness of fine-grained abnormality prompt. Sine TCP is not originally designed
for anomaly detection and its contextual information relies heavily on handcrafted text prompts,
we adapted TCP for the ZSAD by testing two types of AD-oriented text prompts, resulting in two
variants of TCP for ZSAD, TCP_V1 and TCP_V2:

• TCP_V1, where we use a straightforward prompt design: the normal prompt is in the form
of “This is a photo of [cls]." while the abnormal prompt is in the form of “This is a photo
of damaged [cls]."

• TCP_V2, where we adopt the complete set of the prompt templates from WinCLIP.

For a fair comparison, we maintained the original model designs of TCP throughout the experiments.
As shown in Table 8, both TCP variants largely underperform AnomalyCLIP and FAPrompt in the
ZSAD task. This is primarily due to the fact that TCP is not designed for ZSAD and also has strong
reliance on handcrafted text prompts.

In contrast, FAPrompt is specifically designed for the ZSAD task, leveraging data-dependent
abnormality prior of the query images to learn complementary abnormality prompts. This adaptive
approach enables FAPrompt to more effectively capture a wide variety of anomalies, resulting in
promising performance in both image-level and pixel-level ZSAD tasks.

C.3 T-SNE VISUALIZATION OF PROMPT-WISE ANOMALY SCORES

To explore the complementarity of abnormality prompts in FAPrompt, we provide two-
dimensional t-SNE visualization of the anomaly score map Sa

x and quantitative results of
‘AnomalyCLIP’, prompt ensemble method ‘AnomalyCLIP Ensemble*’ for their comparison with
FAPrompt on the three datasets. The results are shown in Fig. 6. Note that the difference between
AnomalyCLIP and FAPrompt/AnomalyCLIP Ensemble* in the figure is because AnomalyCLIP
learns one single abnormality prompt only while the FAPrompt/AnomalyCLIP Ensemble* learns
10 abnormality prompts.
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Table 7: Comparison of ZSAD performance between FAPrompt and two SotA full-shot methods. The best
and second-best results are respectively highlighted in red and blue.

Dataset AnomalyCLIP FAPrompt PatchCore RD4AD
Image-level (AUROC, AP)

MVTecAD (91.5, 96.2) (91.9, 95.7) ( 99.0, 99.7) (98.7, 99.4)
VisA (82.1, 85.4) (84.5, 86.8) (94.6, 95.9) ( 95.3, 95.7)

BTAD (88.3, 87.3) (92.0, 92.2) (93.2, 98.6) ( 93.8, 96.8)
MPDD (77.0, 82.0) (80.6, 83.3) ( 94.1, 96.3) (91.6, 93.8)
DAGM (97.5, 92.3) ( 98.9, 95.7) (92.7, 81.3) (92.9, 79.1)

Pixel-level (AUROC, PRO)
MVTecAD (91.1, 81.4) (90.6, 83.3) ( 98.1, 92.8) (97.8, 93.6)

VisA (95.5, 87.0) (95.9, 87.5) ( 98.5, 92.2) (98.4, 91.2)
BTAD (94.2, 74.8) (95.6, 75.2) (97.4, 74.4) ( 97.5, 75.1)
MPDD (96.5, 87.0) (96.5, 87.9) ( 98.8, 94.9) (98.4, 95.2)
DAGM (95.6, 91.0) ( 98.3, 95.4) (95.9, 87.9) (96.8, 91.9)

Table 8: Comparison with TCP.

Industrial Medical
Model image-level pixel-level image-level pixel-level

AnomalyCLIP (85.0, 83.6) (94.4, 84.8) (87.7, 90.6) (83.2, 62.9)
TCP_V1 (61.3, 55.9) (87.2, 66.6) (56.4, 61.7) (80.2, 60.9)
TCP_V2 (64.9, 59.1) (88.5, 71.5) (53.3, 60.3) (76.8, 52.9)

Ours (88.2, 87.2) (95.0, 85.0) (90.9, 93.0) (85.4, 65.9)

FAPrompt vs. AnomalyCLIP. It is clear that compared to AnomalyCLIP, FAPrompt learns a set
of effective complementary abnormal patterns captured by the 10 abnormality prompts, resulting in
better detection performance on datasets with complex anomaly cases.

For example, on the datasets BTAD(01) and VisA (pcb4), several anomalies, which are distributed
very closely to, or overlapped with part of the normal images, are difficult to detect using
single abnormality prompt in AnomalyCLIP, indicating that its single abnormality prompt is not
discriminative w.r.t. these anomalies. FAPrompt alleviates this situation with the abnormality
prompts that show visually different, discriminative power.

For datasets with simpler patterns like VisA (chewinggum), single abnormality prompt is sufficient,
while having multiple abnormality prompts in FAPrompt do not have adverse effect. This
demonstrates the performance of FAPrompt in achieving stable, effective detection across simple
and complex datasets.

FAPrompt vs. the prompt ensemble method ‘AnomalyCLIP Ensemble*’. Despite also
learning multiple abnormality prompts, it is clear from the visualization that the abnormality
prompts in AnomalyCLIP Ensemble* tend to be clustered closely, while that in FAPrompt is
much more disperse, e.g., two clustered patterns on BTAD(01) and one clustered pattern on VisA
(pcb4) learned by AnomalyCLIP Ensemble* vs. four disperse patterns on both datasets learned
by FAPrompt. Importantly, the more disperse abnormal patterns from FAPrompt provides
complementary discriminative power to each other, substantiated by the enhanced AUROC/AP
performance compared to AnomalyCLIP Ensemble*.

C.4 COMPARISON WITH ALTERNATIVES TO AVERAGING STRATEGY IN CAP

Despite the simplicity, the use of the averaging operation is due to its general effectiveness in
aggregating multiple patterns. This strategy is also widely used in existing ZSAD and FSAD
methods, such as WinCLIP and AnoVL, to deal with diverse and complementary abnormality text
information To validate its advantage over the alternatives, we conduct additional experiments to
evaluate two variants of FAPrompt, with the results presented in Table 9:

• FAPrompt0.1: Selecting the most similar prompt for each detected abnormality.
In this variant of FAPrompt, we calculate the cosine similarity between the individual
abnormality prompts and each test image to select the similarity to the most similar prompt
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Figure 6: 2-D t-SNE visualizations and quantitative results (Image-level AUROC, Image-level AP) (Pixel-level
AUROC, Pixel-level PRO) of FAPrompt, AnomalyCLIP and its ensemble method AnomalyCLIP Ensemble*.

as the anomaly score during inference. While this approach shows comparable performance
on image-level ZSAD results, it can largely underperform the primary FAPrompt in pixel-
level ZSAD. This is mainly because selecting only a single prompt can lead to the loss of
complementary information from other abnormality prompts, limiting the model’s ability
to detect the full spectrum of abnormalities.

• FAPrompt0.2: Using weighted abnormality prompts. In this variant, we use a prompt
importance learning network to learn a set of weights for each abnormality prompt based
on the selected most abnormal patch tokens of the query images. These weights are then
used to combine multiple abnormality prompts into a single weighted abnormality prompt
(a weighted abnormality prototype) for ZSAD. Although FAPrompt0.2 outperforms
FAPrompt0.1 by retaining some complementary abnormality information, it does not
match the performance of the simple averaging. This may be due to the greater power of
the model in fitting the query images, which can lead to overfitting of the tuning auxiliary
dataset in the zero-shot setting, i.e., the learned weights may well reflect the significance of
each prompt in the tuning dataset but not in the target datasets.
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Table 9: Comparison with alternatives to averaging the abnormality prompts in FAPrompt.

Model Industrial Datasets Medical Datasets
Image-level Pixel-level Image-level Pixel-level

AnomalyCLIP (85.0, 83.6) (94.4, 84.8) (87.7, 90.6) (83.2, 62.9)
FAPrompt0.1 (87.9, 87.0) (93.0, 82.2) (90.6, 93.0) (84.4, 65.1)
FAPrompt0.2 (87.7, 86.7) (94.4, 83.2) (90.9, 92.3) (85.1, 65.7)
FAPrompt (88.2, 87.2) (95.0, 85.0) (90.9, 93.0) (85.4, 65.9)
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Figure 7: Averaged results on medical data with varying K and M .

Given these results, we chose to average the abnormality prompts to generate the abnormality
prompt prototype in FAPrompt, as it offers a straightforward yet effective way to integrate diverse
abnormalities while preserving their complementary information.

C.5 HYPERPARAMETER SENSITIVITY ANALYSIS

Sensitivity Analysis for K and M . We present the image-level and pixel-level results for the
sensitivity w.r.t. the number of abnormality prompts (K) in CAP and the number of selected patch
tokens (M ) across the medical datasets in DAP in Fig. 7. The trend of the results is consistent with
the industrial datasets shown in Fig. 4.

Ablation Studies on K = 1. To verify the necessity of using multiple prompts, we conduct module
ablation on K = 1 and K = 10. As shown by the results in Table 10, even without applying
DAP, the FAPrompt variant using a single compound abnormality prompt ‘+CAP (K = 1)’ also
gains improved performance over the base model ‘AnomalyCLIP’. This improvement becomes more
pronounced as k increases to 10, which denoted as ‘+CAP (K = 10)’. This improvement indicates
that multiple prompts are effective in capturing a broader spectrum of abnormalities.

The combination of ‘+ CAP (k=1) + DAP’ underperforms compared to using DAP alone. This
is because ‘+ CAP (k=1) + DAP’ relies on just a single abnormality prompt with a limited set of
abnormal tokens, restricting its ability to capture the full diversity of abnormalities and leverage the
abnormality prior provided by DAP effectively. However, when the number of abnormality prompts
increases to 10, the ability of FAPrompt to learn diverse abnormal patterns improves substantially.

Table 10: Ablation study on FAPrompt with K = 1 and K = 10.

Model Industrial Medical
image-level pixel-level image-level pixel-level

AnomalyCLIP (85.0, 83.6) (94.4, 84.8) (87.7, 90.6) (83.2, 62.9)

+DAP (86.9, 85.2) (94.8, 84.9) (90.2, 92.3) (84.6, 64.8)

+ CAP (K = 1) (85.7, 85.5) (94.5, 83.9) (89.9, 91.3) (83.6, 63.8)
+ CAP (K = 1) +DAP (86.1, 86.2) (94.3, 83.7) (90.4, 91.3) (83.9, 63.5)

+ CAP (K = 10) (88.1, 87.0) (94.6, 83.9) (90.6, 93.1) (83.8, 63.8)
+ CAP (K = 10) +DAP (88.2, 87.2) (95.0, 85.0) (90.9, 93.0) (85.4, 65.9)
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Table 11: Hyperparameter analysis of the number of layers with learnable tokens and the length of the tokens.

Model Industrial Datasets Medical Datasets
Image-level Pixel-level Image-level Pixel-level

Length of learnable token

2 (88.4, 87.4) (95.0, 84.8) (90.7, 91.7) (84.9, 65.1)
4 (88.2, 87.2) (95.0, 85.0) (90.9, 93.0) (85.4, 65.9)
6 (90.0, 87.7) (94.8, 85.3) (91.2, 93.5) (85.0, 65.2)
8 (87.8, 86.6) (94.9, 84.3) (90.6, 92.3) (85.0, 65.1)

Layers having learnable tokens

5 (88.0, 87.3) (94.2, 85.5) (91.2, 93.0) (84.6, 65.0)
7 (88.0, 86.9) (94.6, 84.3) (91.0, 93.3) (85.3, 65.2)
9 (88.2, 87.2) (95.0, 85.0) (90.9, 93.0) (85.4, 65.9)

11 (88.1, 87.2) (94.9, 84.5) (90.5, 92.7) (84.5, 63.5)

As a result, ‘+ CAP (k=10) + DAP’, which is also our full FAPrompt, achieves the best performance
across various datasets.

These results demonstrate that using multiple prompts enables FAPrompt to better capture diverse,
complementary abnormalities, maximizing the benefit of both CAP and DAP components for the
overall superior performance.

Sensitivity Analysis for Learnable Tokens. To evaluate the sensitivity of the learnable tokens,
we also conduct ablation studies on the number of layers with learnable tokens and the length of
the tokens. As shown by the results in Table 11, the performance generally gets improved with an
increasing number of layers, reaching optimal performance at 9 layers. Beyond 9 layers, it tends
to over-generalization, leading to a decrease in the detection performance. A similar pattern was
observed with the token length, where FAPrompt achieves the best overall performance with a
token length of 4 and 6.

C.6 QUALITATIVE RESULTS OF FAPROMPT

We compare the anomaly maps generated by FAPrompt with those produced by other ZSAD
models across various datasets, as shown in Fig. 8. APRIL-GAN and AnomalyCLIP are selected as
representatives of handcrafted and learnable text prompt competitors, respectively. The visualization
results show that FAPrompt demonstrates significantly more accurate segmentation compared
to the other two methods across both industrial and medical domains. In particular, despite not
accessing any additional information or training from medical data, FAPrompt effectively localizes
abnormal lesion/tumor regions, which highlight the cross-dataset generalization superiority of the
fine-grained abnormality semantics learned by FAPrompt.

To assess the performance on samples containing multiple anomalous types within a single image,
we also provide visualization of pixel-level detection results on such samples from three MVTecAD
categories (zipper, pill and wood) and AITEX. The results shown in Fig. 9 demonstrate that
despite using a single abnormality prompt prototype, FAPrompt can still effectively detect multiple
anomaly types in a single image.

In addition, we also provide pixel-level anomaly score maps on diverse datasets to further showcase
the strong segmentation capability of FAPrompt in Figs. 10 to 19. Specifically, for the industrial
AD datasets, we select three object categories (capsule, pipe_fryum in VisA and metal_plate in
MPDD) and three texture categories (grid, tile in MVTecAD and AITEX) for visualization. For
the medical AD datasets, we visualize the pixel-level anomaly detection performance for the brain,
colon, skin, and thyroid anomalies.

C.7 FAILURE CASES AND LIMITATIONS

While the proposed FAPrompt demonstrates promising detection results across various categories
without any dataset-specific references, it may fail in certain cases. Fig. 20 illustrates some of
these failure cases. Some cases can be attributed to annotation errors. For example, images that
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Figure 8: Visualization of anomaly maps generated by different ZSAD methods.

contain multiple types of anomalies but are only partially labeled may lead to segmentation errors
due to labeling inconsistencies, as can be seen in the stain defect in Fig. 20 (1). Additionally,
instrument artifacts in some medical datasets are often misinterpreted as anomalies, leading to
incorrect detection, e.g., Fig. 20 (2). In other cases, FAPrompt may fail in challenging cases
like the ones illustrated in Fig. 20 (3)-(6), where the anomalous regions may be too small, subtle, or
overshadowed by other suspicious areas (according to FAPrompt’s interpretation). Nevertheless,
as demonstrated in this figure and Figs. 10 to 19, FAPrompt consistently strives to identify the
most likely abnormal regions, without relying on any reference from the target datasets. Moving
forward, incorporating more prior knowledge, e.g., from in-context examples, knowledge graphs, or
Large Language Models (LLMs), would be helpful for providing more discriminative information
for achieving more accurate anomaly detection.

D DETAILED EMPIRICAL RESULTS

D.1 BREAKDOWN RESULTS ON VISA AND MVTEC AD

Tables 12 to 19 present detailed downbreak ZSAD results of FAPrompt against eight SotA
methods across each category of the MVTecAD and VisA datasets.

D.2 DATASET-SPECIFIC RESULTS ON ABLATION STUDY

In this section, we present the dataset-specific image-level and pixel-level ZSAD results for module
ablation in Table 20 and Table 21, respectively.
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Figure 9: Visualization of anomaly maps of FAPrompt on samples containing multiple anomalous types in a
single image.

Figure 10: Anomaly maps generated by FAPrompt for the capsules category in VisA. The first row represents
the input images, while the second row displays the ground truth of anomalous regions. The bottom row
illustrates the segmentation results from FAPrompt.
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Figure 11: Anomaly maps generated by FAPrompt for the pipe_fryum category in VisA. The first row
represents the input images, while the second row displays the ground truth of anomalous regions. The bottom
row illustrates the segmentation results from FAPrompt.

Figure 12: Anomaly maps generated by FAPrompt for the metal_plate category in MPDD. The first row
represents the input images, while the second row displays the ground truth of anomalous regions. The bottom
row illustrates the segmentation results from FAPrompt.

Figure 13: Anomaly maps generated by FAPrompt for grid category in MVTecAD. The first row represents
the input images, while the second row displays the ground truth of anomalous regions. The bottom row
illustrates the segmentation results from FAPrompt.
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Figure 14: Anomaly maps generated by FAPrompt for tile category in MVTecAD. The first row represents
the input images, while the second row displays the ground truth of anomalous regions. The bottom row
illustrates the segmentation results from FAPrompt.

Figure 15: Anomaly maps generated by FAPrompt for AITEX. The first row represents the input images,
while the second row displays the ground truth of anomalous regions. The bottom row illustrates the
segmentation results from FAPrompt.

Figure 16: Anomaly maps generated by FAPrompt for brain-related anomalies. The first row represents the
input images, while the second row displays the ground truth of anomalous regions. The bottom row illustrates
the segmentation results from FAPrompt.
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Figure 17: Anomaly maps generated by FAPrompt for colon-related anomalies. The first row represents the
input images, while the second row displays the ground truth of anomalous regions. The bottom row illustrates
the segmentation results from FAPrompt.

Figure 18: Anomaly maps generated by FAPrompt for skin-related anomalies. The first row represents the
input images, while the second row displays the ground truth of anomalous regions. The bottom row illustrates
the segmentation results from FAPrompt.

Figure 19: Anomaly maps generated by FAPrompt for thyroid-related anomalies. The first row represents the
input images, while the second row displays the ground truth of anomalous regions. The bottom row illustrates
the segmentation results from FAPrompt.
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(1) (2) (3) (4) (5) (6)

Figure 20: Failure cases of FAPrompt. The first row represents the input images, while the second row
displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from
FAPrompt.

Table 12: Breakdown AUROC results of image-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 96.0 93.1 100.0 99.5 - 99.9 98.7 100.0 100.0
Grid 72.5 63.7 98.8 86.3 - 94.7 87.7 97.0 97.9

Leather 99.4 99.5 100.0 99.7 - 99.9 98.5 99.8 99.9
Tile 88.5 89.0 100.0 99.9 - 99.7 99.4 100.0 99.7

Wood 94.0 94.9 99.4 99.0 - 97.7 44.4 96.8 98.0
Bottle 45.9 46.1 99.2 92.0 - 87.7 80.2 89.3 89.8

Capsule 71.4 68.8 72.9 79.9 - 81.1 84.2 89.9 92.4
Pill 73.6 73.8 79.1 80.5 - 78.6 83.3 81.8 89.6

Transistor 48.8 51.2 88.0 80.8 - 92.2 77.3 92.8 81.7
Zipper 60.1 36.1 91.5 89.6 - 98.8 54.5 98.5 98.4
Cable 58.1 46.6 86.5 88.4 - 56.7 29.6 69.8 74.7

Hazelnut 88.7 91.1 93.9 89.6 - 93.5 11 97.2 96.5
Metal_nut 62.8 63.4 97.1 68.4 - 85.3 81.3 93.6 89.7

Screw 78.2 66.7 83.3 84.9 - 88.9 59 81.1 85.0
Toothbrush 73.3 89.2 88.0 53.8 - 77.5 88.6 84.7 85.6

MEAN 74.1 71.5 91.8 86.2 92.5 88.8 71.8 91.5 91.9

Table 13: Breakdown AP results of image-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 98.8 97.8 100.0 99.8 - 100.0 99.6 100.0 100.0
Grid 87.1 83.9 99.6 94.9 - 98.1 95.8 99.1 99.3

Leather 99.8 99.8 100.0 99.9 - 100.0 99.3 99.9 100.0
Tile 95.9 96.2 100.0 100.0 - 99.9 99.8 100.0 99.9

Wood 97.9 98.3 99.8 99.7 - 99.4 68.2 99.2 99.4
Bottle 78.9 79.8 99.8 97.7 - 96.4 93.1 97.0 96.7

Capsule 92.1 90.9 91.5 95.5 - 95.7 96.5 97.9 98.4
Pill 93.4 93.6 95.7 96.0 - 94.2 96.2 95.4 97.9

Transistor 48.1 49.9 87.1 77.5 - 90.2 71.1 90.6 78.9
Zipper 87.4 73.9 97.5 97.1 - 99.7 86.7 99.6 99.5
Cable 70.8 64.3 91.2 93.1 - 69.4 50.8 81.4 82.9

Hazelnut 94.6 95.9 96.9 94.8 - 96.7 45.9 98.6 98.1
Metal_nut 87.7 89.2 99.3 91.9 - 96.3 93.6 98.5 97.5

Screw 91.4 86.6 93.1 93.6 - 96.2 81.2 92.5 93.6
Toothbrush 90.7 96.0 95.6 71.5 - 90.4 95.1 93.7 93.8

MEAN 87.6 86.4 96.5 93.5 96.7 94.8 84.9 96.2 95.7
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Table 14: Breakdown AUROC results of pixel-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 11.5 10.7 95.4 98.4 - 6.7 96.7 98.8 99.0
Grid 8.7 11.9 82.2 95.8 - 7.8 89.8 97.3 96.9

Leather 9.9 5.6 96.7 99.1 - 11.7 98.5 98.6 98.5
Tile 49.9 39.1 77.6 92.7 - 41.7 87.4 94.6 95.7

Wood 45.7 42.4 93.4 95.8 - 31.4 94.5 96.5 96.4
Bottle 17.5 23.3 89.5 83.4 - 23.1 89.7 90.4 90.3

Capsule 50.9 49.1 86.9 92.0 - 35.5 80.1 95.8 95.2
Pill 55.8 60.8 80.0 76.2 - 46.5 78.7 92.0 90.5

Transistor 51.1 48.5 74.7 62.4 - 50.1 66.2 71.0 69.8
Zipper 51.5 44.7 91.6 91.1 - 33.4 92.0 91.4 91.8
Cable 37.4 37.5 77.0 72.3 - 49.7 73.3 78.9 79.5

Hazelnut 25.2 34.0 94.3 96.1 - 30.2 95.9 97.1 97.5
Metal_nut 43.9 53.6 61.0 65.4 - 49.3 71.0 74.4 71.4

Screw 80.1 76.4 89.6 97.8 - 17.0 98.3 97.5 97.4
Toothbrush 36.3 35.0 86.9 95.8 - 64.9 89.1 91.9 89.7

MEAN 38.4 38.2 85.1 87.6 89.8 33.3 86.7 91.1 90.6

Table 15: Breakdown PRO results of pixel-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 2.9 1.9 84.1 48.5 - 0.5 94.1 90.1 94.1
Grid 0.9 2.4 57.0 31.6 - 1.0 74.5 75.6 81.6

Leather 0.2 0.0 91.1 72.4 - 1.8 97.9 92.2 95.7
Tile 21.5 16.3 51.2 26.7 - 10.1 76.9 87.6 89.3

Wood 13.7 10.3 74.1 31.1 - 5.1 93.1 91.2 92.3
Bottle 1.4 4.9 76.4 45.6 - 4.5 79.4 80.9 81.0

Capsule 13.2 14.9 62.1 51.3 - 5.7 82.8 87.2 83.9
Pill 6.0 8.2 65.0 65.4 - 3.2 84.4 88.2 87.6

Transistor 15.3 11.2 43.4 21.3 - 9.3 51.5 58.1 59.0
Zipper 17.7 15.2 71.7 10.7 - 11.6 78.3 65.3 75.1
Cable 7.3 6.9 42.9 25.7 - 12.2 55.5 64.4 68.2

Hazelnut 2.8 9.4 81.6 70.3 - 4.7 89.2 92.4 93.3
Metal_nut 2.9 10.3 31.8 38.4 - 7.0 71.5 71.0 70.9

Screw 57.8 56.2 68.5 67.1 - 6.4 93.8 88.0 89.7
Toothbrush 5.8 5.2 67.7 54.5 - 16.6 71.6 88.5 87.3

MEAN 11.3 11.6 64.6 44.0 76.2 6.6 79.6 81.4 83.3

Table 16: Breakdown AUCROC results of image-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 37.9 33.0 95.7 83.8 - 46.2 63.7 79.3 87.2
capsules 69.7 75.3 85.0 61.2 - 77.2 69.8 81.5 91.6
cashew 69.1 72.7 92.2 87.3 - 75.7 93.3 76.3 90.5

chewinggum 77.5 76.9 95.3 96.4 - 84.9 96.5 97.4 97.6
fryum 67.2 60.9 75.3 94.3 - 80.0 76.6 93.0 96.5

macaroni1 64.4 67.4 77.8 71.6 - 53.6 68.0 87.2 83.1
macaroni2 65.0 65.7 66.7 64.6 - 66.5 75.4 73.4 71.4

pcb1 54.9 43.9 79.8 53.4 - 24.7 81.5 85.4 68.2
pcb2 62.6 59.5 52.6 71.8 - 44.6 61.6 62.2 66.4
pcb3 52.2 49.0 70.2 66.8 - 54.4 66.4 62.7 68.6
pcb4 87.7 89.0 84.5 95.0 - 66.0 93.8 93.9 95.4

pipe_fryum 88.8 86.4 69.4 89.9 - 80.1 91.0 92.4 97.4

MEAN 66.4 65.0 78.7 78.0 79.2 62.8 78.1 82.1 84.5
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Table 17: Breakdown AP results of image-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 42.9 40.0 96.1 86.9 - 52.9 67.7 81.1 89.7
capsules 81.0 84.3 91.0 74.3 - 85.3 81.9 88.7 96.2
cashew 83.4 86.1 96.5 94.1 - 87.1 96.8 89.4 95.9

chewinggum 90.4 90.2 97.9 98.4 - 93.1 98.6 98.9 99.1
fryum 82.0 76.6 88.1 97.2 - 90.2 89.6 96.8 98.4

macaroni1 56.8 58.7 77.7 70.9 - 52.3 73.0 86.0 82.5
macaroni2 65.0 65.8 63.3 63.2 - 62.2 72.2 72.1 68.5

pcb1 56.9 48.4 81.8 57.2 - 36.0 82.4 87.0 72.5
pcb2 63.2 59.8 50.4 73.8 - 47.3 64.6 64.3 68.2
pcb3 53.0 47.6 70.4 70.7 - 54.8 71.1 70.0 76.5
pcb4 88.0 90.6 81.5 95.1 - 66.3 94.0 94.4 95.6

pipe_fryum 94.6 93.7 82.1 94.8 - 89.7 95.1 96.3 98.6

MEAN 71.4 70.2 81.4 81.4 81.7 68.1 82.3 85.4 86.8

Table 18: Breakdown AUROC results of pixel-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 33.6 50.0 88.9 97.8 - 16.3 97.9 98.8 98.9
capsules 56.8 61.5 81.6 97.5 - 47.5 89.7 95.0 96.3
cashew 64.5 62.5 84.7 86.0 - 32.5 85.8 93.8 95.2

chewinggum 43.0 56.5 93.3 99.5 - 3.4 98.5 99.3 99.3
fryum 45.6 62.7 88.5 92.0 - 21.7 93.3 94.6 94.4

macaroni1 20.3 22.9 70.9 98.8 - 36.8 98.6 98.3 98.2
macaroni2 37.7 28.8 59.3 97.8 - 27.5 99.0 97.6 96.8

pcb1 57.8 51.6 61.2 92.7 - 19.8 90.4 94.1 96.0
pcb2 34.7 38.4 71.6 89.7 - 22.9 89.3 92.4 92.7
pcb3 54.6 44.6 85.3 88.4 - 18.0 91.3 88.4 88.2
pcb4 52.1 49.9 94.4 94.6 - 14.0 93.6 95.7 97.1

pipe_fryum 58.7 44.7 75.4 96.0 - 29.2 96.1 98.2 98.1

MEAN 46.6 47.8 79.6 94.2 89.9 24.1 93.6 95.5 95.9

Table 19: Breakdown PRO results of pixel-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 3.6 6.0 83.5 92.5 - 1.1 92.4 96.2 95.8
capsules 15.8 22.4 35.3 86.7 - 18.4 72.8 78.5 84.9
cashew 9.6 10.9 76.4 91.7 - 1.7 93.6 91.6 90.0

chewinggum 17.8 30.2 70.4 87.3 - 0.1 86.1 91.2 90.1
fryum 12.1 29.3 77.4 89.7 - 2.6 91.3 86.8 87.1

macaroni1 8.1 13.4 34.3 93.2 - 18.1 93.9 89.8 89.9
macaroni2 20.9 18.4 21.4 82.3 - 2.7 89.5 84.2 80.3

pcb1 11.7 12.5 26.3 87.5 - 0.1 82.1 81.7 87.3
pcb2 12.8 13.9 37.2 75.6 - 0.7 72.9 78.9 77.8
pcb3 31.7 23.6 56.1 77.8 - 0.0 84.6 77.1 77.8
pcb4 17.1 20.3 80.4 86.8 - 0.0 84.8 91.3 91.7

pipe_fryum 16.7 6.0 82.3 90.9 - 0.6 96.2 96.8 97.2

MEAN 14.8 17.2 56.8 86.8 71.2 3.8 86.7 87.0 87.5

Table 20: Dataset-specific image-level ZSAD results (AUROC, AP) of our ablation study.

Data type Dataset Base CAP CAP w\o Loc DAP DAP w\o Lprior FAPrompt

Object

VisA (82.1, 85.4) (83.8, 86.7) (83.8, 86.7) (82.7, 85.0) (81.0, 83.3) (84.5, 86.8)
SDD (98.1, 93.4) (98.6, 96.1) (98.0, 95.8) (98.1, 95.5) (98.3, 95.3) (98.6, 95.9)

BTAD (88.3, 87.3) (91.5, 92.4) (90.8, 91.1) (90.7, 90.7) (91.0, 89.3) (92.0, 92.2)
MPDD (77.0, 82.0) (78.7, 81.3) (77.9, 81.3) (74.6, 78.3) (73.4, 77.8) (80.6, 83.3)

Textual

AITEX (62.2, 40.4) (72.8, 55.8) (72.7, 75.4) (73.6, 54.1) (75.9, 57.8) (71.9, 53.2)
DAGM (97.5, 92.3) (97.9, 93.0) (97.9, 93.0) (96.5, 88.2) (95.7, 89.6) (98.9, 95.7)

DTD-Synthetic (93.5, 97.0) (96.3, 98.5) (95.7, 93.9) (96.0, 98.0) (96.3, 98.1) (95.9, 98.3)
ELPV (81.5, 91.3) (84.8, 92.6) (80.8, 90.7) (83.0, 91.6) (80.6, 89.9) (83.5, 92.0)

Medical

BrainMRI (90.3, 92.2) (95.2, 95.2) (95.0, 94.6) (95.9, 96.0) (95.9, 96.5) (95.5, 95.6)
HeadCT (93.4, 91.6) (94.7, 94.6) (93.7, 90.4) (92.3, 90.4) (92.0, 91.0) (94.8, 93.5)

LAG (74.3, 84.9) (75.2, 85.4) (75.2, 85.4) (75.2, 85.5) (74.5, 84.6) (75.6, 85.4)
Br35H (94.6, 94.7) (97.4, 97.1) (97.1, 96.8) (97.3, 97.1) (97.0, 96.9) (97.8, 97.5)
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Table 21: Dataset-specific pixel-level ZSAD results (AUROC, PRO) of our ablation study.

Data type Dataset Base CAP CAP w\o Loc DAP DAP w\o Lprior FAPrompt

Object

VisA (95.5, 87.0) (95.1, 85.1) (95.1, 85.0) (95.8, 86.1) (95.6, 85.1) (95.9, 87.5)
SDD (98.1, 95.2) (98.3, 93.8) (98.3, 93.2) (97.9, 95.6) (97.7, 92.5) (98.3, 93.6)

BTAD (94.2, 74.8) (94.4, 70.5) (94.4, 70.5) (95.4, 73.7) (95.5, 75.2) (95.6, 75.2)
MPDD (96.5, 87.0) (95.9, 86.2) (95.9, 86.2) (95.8, 86.4) (95.5, 85.4) (96.5, 87.9)

Textual
AITEX (83.0, 66.5) (82.3, 64.5) (81.3, 61.9) (82.4, 65.2) (82.0, 62.1) (82.0, 62.6)
DAGM (95.6, 91.0) (98.1, 95.2) (97.5, 95.2) (98.5, 96.0) (98.2, 94.4) (98.3, 95.4)

DTD-Synthetic (97.9, 92.3) (97.9, 92.3) (97.9, 92.3) (98.1, 91.4) (98.1, 91.3) (98.3, 93.1)

Medical

CVC-ColonDB (81.9, 71.3) (83.7, 72.8) (82.9, 68.1) (83.8, 73.9) (84.0, 73.0) (84.6, 74.7)
CVC-ClinicDB (82.9, 67.8) (83.2, 67.8) (83.4, 72.9) (83.6, 68.4) (83.3, 68.3) (84.7, 70.1)

Kvasir (78.9, 45.6) (78.8, 48.1) (78.5, 48.0) (79.3, 45.5) (79.0, 45.3) (81.2, 47.8)
Endo (84.1, 63.6) (84.3, 63.4) (84.1, 63.4) (84.7, 63.8) (84.8, 64.2) (86.4, 67.2)
ISIC (89.7, 78.4) (88.7, 78.0) (88.1, 76.8) (91.0, 80.9) (91.4, 81.3) (90.9, 81.2)

TN3K (81.5, 50.4) (84.2, 52.7) (84.5, 53.4) (84.9, 56.0) (84.2, 53.5) (84.5, 54.1)
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