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Abstract

The task of Text-to-SQL enables anyone to re-001
trieve information from SQL databases using002
natural language. Despite several challenges,003
recent models have made remarkable advance-004
ments in this task using large language models005
(LLMs). Interestingly, we find that LLM-based006
models without fine-tuning exhibit distinct na-007
tures compared to their fine-tuned counterparts,008
leading to inadequacies in current evaluation009
metrics to accurately convey their performance.010
Thus, we analyze the two primary metrics, Test011
Suite Execution Accuracy (EXE) and Exact Set012
Matching Accuracy (ESM), to examine their ro-013
bustness for this task and address shortcomings.014
We compare the performance of 9 LLM-based015
models using EXE, the original ESM, and our016
improved ESM (called ESM+). Our results show017
that EXE and ESM have high false positive and018
negative rates of 11.3% and 13.9%, while ESM+019
gives those of 0.1% and 2.6% respectively, pro-020
viding a significantly more stable evaluation.021
We release the ESM+ script as open-source for022
the community to contribute, while enjoying a023
more reliable assessment of Text-to-SQL.024

1 Introduction025

While interacting with SQL databases through nat-026

ural language interfaces makes them significantly027

more accessible to non-experts, the task of mapping028

natural language requests to SQL queries for rela-029

tional databases, known as Text-to-SQL, remains030

challenging. Lately, the advent of the transformer031

(Vaswani et al., 2017) and large language models032

(LLMs; Brown et al. (2020); Raffel et al. (2020))033

has led to momentous advancements in this field.034

Notably, LLMs have overcome several challenges035

in Text-to-SQL, as the leaderboard for the Spider036

dataset (Yu et al., 2018), the most popular bench-037

mark for the task, is primarily dominated by models038

utilizing LLMs, underscoring their effectiveness in039

handling complex, multi-table SQL query genera-040

tion that previous approaches had struggled with.041

Evaluating Text-to-SQL models is also challenging 042

because SQL equivalence has been shown undecid- 043

able (Abiteboul et al., 1995). Text-to-SQL models 044

are tested using two metrics: Test Suite Execution 045

Accuracy (EXE) and Exact Set Matching Accuracy 046

(ESM). EXE checks if the SQL execution result of the 047

predicted query matches that of the gold standard 048

query. However, EXE can yield false positives, as se- 049

mantically different queries may produce the same 050

execution (Figure 1a). On the other hand, ESM as- 051

sesses the predicted query by comparing sets of 052

keywords and their arguments to those of the gold 053

query. While more rigorous than EXE, ESM is still 054

prone to false negatives, because SQL queries may 055

be semantically equivalent yet syntactically diverse 056

(Figure 1b). These issues raise the need for a more 057

robust evaluation metric that accurately evaluates 058

the performance of Text-to-SQL models. 059

SELECT name FROM dogs;

SELECT name FROM dogs WHERE age < 100;

(a) Semantically distinct queries producing the same execution
result, as there are no dogs with age ≥ 100.

SELECT MAX(weight) FROM dogs;

SELECT weight FROM dogs ORDER BY weight DESC
↪→ LIMIT 1;

(b) Syntactically distinct but semantically equivalent queries
for finding the weight of the heaviest dog.

Figure 1: Examples of a false positive yielded by EXE
(1a) and a false negative yielded by ESM (1b).

Models using pretrained LLMs without fine-tuning, 060

such as GPT (henceforth PLM), perform particu- 061

larly well on EXE, which is the main metric used on 062

the Spider leaderboard. Surprisingly, they do not 063

show a similar level of performance on ESM. This 064

discrepancy is even more pronounced when dealing 065

with a more intricate task, Conversational Text-to- 066

1



SQL (Co-SQL), where the leaderboard uses ESM as067

the primary metric (Yu et al., 2019) such that no068

PLM-based models rank highly, a stark contrast to069

the Spider leaderboard. Therefore, it is critical to070

analyze these metrics and refine the most appropri-071

ate approach for an accurate evaluation of model072

performance, especially those generated by PLMs,073

as the dichotomy between the two metrics dispro-074

portionately affects PLM-based models more than075

models using fine-tuned LLMs (henceforth, FLM).076

This paper first examines potential issues in ESM077

and proposes a new enhanced metric, called ESM+,078

which addresses many shortcomings present in the079

original metric (Section 3). Two PLM-based base-080

line and seven other state-of-the-art models are then081

evaluated on the Spider and Co-SQL datasets, com-082

paring their performance using EXE, ESM, and ESM+083

(Section 4). Finally, a comprehensive error analysis084

is conducted on the evaluation results using these085

three metrics, revealing the superior robustness of086

ESM+ (Section 5). We posit that ESM+ will serve as a087

pivotal metric for assessing the real capabilities of088

LLM-based Text-to-SQL models, thereby enabling089

them to reach new heights of performance.1090

2 Related Work091

2.1 Text-to-SQL Models092

The current state-of-the-art performance has been093

achieved by PLM-based models using GPT (Ope-094

nAI et al., 2024). Dong et al. (2023) introduced095

C3, which employs schema linking to rank tables096

and columns based on their relevance to the ques-097

tion, and prompts GPT to generate the final query.098

Pourreza and Rafiei (2023) proposed DIN-SQL that099

predicts schema links to determine which database100

components will be in the final query. It then clas-101

sifies the query’s difficulty and prompts GPT with102

one of four templates based on this difficulty to gen-103

erate the final query, followed by another prompt104

for output debugging. Gao et al. (2023) presented105

DAIL-SQL, which searches for similar questions106

in the training set and uses them to create a few-107

shot prompt with GPT to generate an initial query.108

This is then used to find more similar queries in the109

training set, and the most similar ones are used in a110

second few-shot prompt to generate the final query.111

Despite achieving high ranks on the Spider leader-112

board, evaluated on EXE (Zhong et al., 2020), none113

1All our resources, including the new evaluation script and the
model outputs, are available through our open-source project:
https://github.com/anonymous

of these PLM-based models appear on the CoSQL 114

leaderboard, evaluated on ESM (Yu et al., 2019). 115

Several FLM-based models, such as fine-tuned 116

T5 (Raffel et al., 2020), have also been introduced, 117

showing comparable results to PLM-based models 118

on Spider. Qi et al. (2022) proposed RASAT, which 119

incorporates relation-aware self-attention, enabling 120

better understanding of relations between database 121

schemas while inheriting pre-trained weights from 122

T5. Coupled with PICARD (Scholak et al., 2021), 123

RASAT is also a state-of-the-art model for CoSQL. 124

Li et al. (2023b) introduced Graphix-T5, which 125

augments T5 with graph-aware layers to integrate 126

semantic information from transformer blocks with 127

structural information from graph neural networks. 128

Li et al. (2023a) presented RESDSQL that utilizes 129

an encoder to identify relevant schema items and 130

a decoder to first generate the SQL skeleton with 131

keywords, followed by the complete query. 132

2.2 Evaluation of SQL Equivalence 133

Although evaluating the equivalence of two queries 134

plays a crucial role in advancing Text-to-SQL mod- 135

els, only a few works have addressed this challenge. 136

Chu et al. (2017) introduced Cosette, an automatic 137

SQL solver that compiles queries over relational 138

tables and checks for their semantic equivalence, 139

producing counterexamples when the queries are 140

not equivalent; however, it supports a limited set 141

of SQL operations. Zhou et al. (2019) presented 142

EQUITAS, an automated verification tool that trans- 143

forms a wide range of SQL queries into first-order 144

logic and uses a SMT solver to verify equivalence. 145

While computationally more efficient and capable 146

of handling more features than Cosette, its source 147

code is not publicly available for research purposes. 148

Therefore, the most accessible and widely used 149

automatic evaluation approaches for Text-to-SQL 150

remain EXE (Zhong et al., 2020) and ESM (Yu et al., 151

2018). Their combined evaluation script provides 152

options to disable value and distinct checks, which 153

were employed because models at the time strug- 154

gled with predicting values and using the DISTINCT 155

keyword while performing Text-to-SQL. However, 156

despite the proficiency of LLM-based models in 157

handling those aspects, their results in the litera- 158

ture for Spider and CoSQL are still reported with 159

both value and distinct checking disabled. This per- 160

sistent practice obscures the true performance of 161

LLM-based models in real applications where accu- 162

rate value prediction and handling of the DISTINCT 163

operation are essential. 164
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3 ESM+: Enhanced Exact Set Matching165

For a comprehensive analysis of the two metrics,166

Test Suite Execution Accuracy (EXE) and Exact Set167

Matching (ESM), our GPT baseline model (§4.1) is168

run on the development sets of the Spider (Yu et al.,169

2018) and Co-SQL (Yu et al., 2019) datasets. Cases170

of false positives (§3.1) and negatives (§3.2) in ESM171

are thoroughly examined through this analysis, and172

addressed in our new metric, ESM+ (§3.3).173

3.1 False Positives in ESM174

We first analyze the queries predicted by our model175

along with their gold standard counterparts that are176

considered equivalent by ESM but not by EXE. Since177

ESM is a more stringent metric, it is expected that178

no query pair considered a mismatch by EXE would179

be considered a match by ESM. Upon closer inspec-180

tion, however, it becomes evident that ESM has sev-181

eral shortcomings in its evaluation approach.182

One major issue is that ESM does not account for183

JOIN conditions, which are essential parts of many184

SQL queries. In Figure 2, the two queries produce185

different outputs such that EXE correctly considers186

them a mismatch. ESM mistakenly considers them a187

match, however, because it ignores the JOIN condi-188

tions (t2.breed_code vs. t2.breed_name).189

SELECT t1.dog_id, t2.breed_name FROM dogs AS
↪→ t1 JOIN breeds AS t2 ON t1.breed_code =
↪→ t2.breed_code;

SELECT t1.dog_id, t2.breed_name FROM dogs AS
↪→ t1 JOIN breeds AS t2 ON t1.breed_code =
↪→ t2.breed_name;

Figure 2: A query pair, correctly considered a mismatch
by EXE, but mistakenly considered a match by ESM.

Another issue arises when evaluating queries with190

the DISTINCT keyword. Even when distinct checks191

are enabled in the ESM script (Section 2.2), it con-192

siders DISTINCT only within aggregate keywords,193

e.g., COUNT or AVE, failing to recognize it in simpler194

and more commonly used cases (Figure 3).195

SELECT DISTINCT name FROM dogs;

SELECT name FROM dogs;

Figure 3: A query pair mistakenly considered a match
by ESM due to its disregard of the DISTINCT keyword.

Additionally, the ESM script ignores specified LIMIT196

values even when value checks are enabled (Fig. 4).197

SELECT transcript_date FROM Transcripts
↪→ ORDER BY transcript_date DESC LIMIT 2;

SELECT transcript_date FROM Transcripts
↪→ ORDER BY transcript_date DESC LIMIT 1;

Figure 4: A query pair mistakenly considered a match
by ESM due to its disregard of the LIMIT values.

3.2 False Negatives in ESM 198

We also analyze the predicted and gold query pairs 199

that EXE finds equivalent but not ESM. Some of these 200

cases are false positives for EXE, where the queries 201

are semantically distinct but accidentally return the 202

same result when executed. The other cases involve 203

queries that are semantically equivalent but syntac- 204

tically distinct, causing ESM to mistakenly considers 205

them a mismatch. Many of these false negatives for 206

ESM occur because assessing semantic equivalence 207

is often contingent on certain assumptions about the 208

database. In Figure 5, the queries are semantically 209

equivalent only if the column dog_id is NON_NULL. 210

This can be verified by the database schema, which 211

gives information about tables & columns, primary 212

key-foreign key relationships, and constraints. 213

SELECT count(dog_id) FROM dogs;

SELECT count(*) FROM dogs;

Figure 5: A query pair that is semantically equivalent
with a verifiable assumption.

The queries in Figure 3 can be considered a match 214

if the column name in the table dogs is UNIQUE and 215

NON_NULL. To this end, we carefully examine every 216

false negative case and compile verifiable assump- 217

tions that are sufficiently general for any database 218

schema to alleviate this challenge (Table 1). 219

3.3 New Evaluation Metric 220

We present ESM+, a new evaluation metric based on 221

ESM that addresses all the issues in Sections 3.1 and 222

3.2, as well as other critical issues. The following 223

summarizes key updates in ESM+; detailed explana- 224

tions and examples are provided in Appendix A.1: 225

1. The keywords LEFT JOIN, RIGHT JOIN, OUTER 226

JOIN, and INNER JOIN, previously disregarded 227

by ESM, are now properly considered. 228

2. ESM rebuilds queries such that all foreign keys 229

become their primary key counterparts, causing 230

incorrect matching. In ESM+, all foreign keys are 231

preserved as they are. 232
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ID Equivalent Queries Verifiable Assumptions

1 SELECT _ FROM t1 WHERE c1 = (SELECT MIN/MAX(c1) FROM t1); c1 is UNIQUE
SELECT _ FROM t1 ORDER BY c1 ASC/DESC LIMIT 1;

2 SELECT DISTINCT c1 FROM t1; c1 is UNIQUE
SELECT c1 FROM t1;

3 SELECT c1 FROM t1 WHERE d1 INTERSECT SELECT c1 FROM t1 WHERE d2; c1 is UNIQUE
SELECT c1 FROM t1 WHERE d1 AND d2;

4 SELECT c1 FROM t1 WHERE d1 UNION SELECT c1 FROM t1 WHERE d2; c1 is UNIQUE
SELECT c1 FROM t1 WHERE d1 OR d2;

5 SELECT _ FROM t1 WHERE GROUP BY c1,c2,...; c1 is UNIQUE
SELECT _ FROM t1 WHERE GROUP BY c1;

6 SELECT c1 FROM t1 EXCEPT (q1); c1 is UNIQUE
SELECT c1 FROM t1 WHERE c1 NOT IN (q1); and NON_NULL

7 SELECT COUNT(*) FROM t1; c1 is NON_NULL
SELECT COUNT(c1) FROM t1;

8 SELECT c1 FROM t1 WHERE c1 is NOT NULL; c1 is NON_NULL
SELECT c1 FROM t1;

9 SELECT MIN/MAX(c1) FROM t1; t1 is not empty
SELECT c1 FROM t1 ORDER BY c1 ASC/DESC LIMIT 1;

10 SELECT * FROM t1; t1 consists of
SELECT c1, c2, ... FROM t1; only c1, c2, ...

11 SELECT _ FROM t1 WHERE c1 = 'x'; x is a number not
SELECT _ FROM t1 WHERE c1 = x; starting with zero

12 SELECT _ FROM t2 WHERE c2 IN (SELECT c1 FROM t1 WHERE d1); Case 1
SELECT _ FROM t1 JOIN t2 ON t1.c1 = t2.c2 WHERE d1; (refer to the caption)

13 SELECT X FROM t1 JOIN t2 on t1.c1 = t2.c2; Case 2
SELECT X from t2; (refer to the caption)

14 SELECT c1 FROM t1 as t; None
SELECT c1 FROM t1 t;

15 SELECT _ FROM t1 WHERE c1 IN/NOT IN (x, y,...); None
SELECT _ FROM t1 WHERE c1 =/!= x OR/AND c1 =/!= y OR/AND ...;

16 SELECT t1.c1 FROM table1 JOIN t2 on t1.c1 = t2.c2; None
SELECT t2.c2 FROM t1 JOIN t2 on t1.c1 = t2.c2;

17 SELECT c1 FROM t1 WHERE c1 IN (SELECT c1 FROM t1 WHERE d1); None
SELECT c1 FROM t1 WHERE d1;

18 q1; None
q1 UNION/INTERSECT q1;

19 SELECT _ FROM t1 WHERE c1 BETWEEN x AND y; None
SELECT _ FROM t1 WHERE c1 >= x/y and c1 <= x/y;

20 SELECT _ FROM t1 WHERE c1 !=/>/</>=/<=/= x; None
SELECT _ FROM t1 WHERE NOT c1 =/<=/>=/</>/!= x;

Table 1: Equivalent queries with verifiable assumptions implemented in ESM+. t*: table, c*: column, d*: condition,
q*: full query. Case 1: a primary key-foreign key relation, where t1.c1 is the primary key and t2.c2 is the foreign
key. Case 2: t1.c1 must be non-composite and X can be any column(s) in t2. / denotes options, but consistency is
required in selecting between options across corresponding elements of the queries.

3. Conditions for any JOIN are now assessed that233

were previously disregarded by ESM.234

4. ESM extends schema and alias checks always to235

the entire query, causing issues with sub-queries236

where aliases are local. ESM+ properly scopes237

the schema and alias checks exclusively to their238

corresponding sub-queries.239

5. While ESM checks for DISTINCT only within ag-240

gregate functions, ESM+ consistently considers241

it across the entire query (§3.1).242

6. The value of LIMIT is always checked, which 243

were previously disregarded by ESM (§3.1). 244

7. ESM allows the keyword IN followed by a sub- 245

query, but doesn’t allow a list of values. ESM+ 246

properly parses and evaluates value lists within 247

the IN keyword. 248

Additionally, a set of verifiable equivalence rules 249

is devised to enhance false negatives in ESM (§3.2). 250

Table 1 provides a full list of equivalent queries and 251

verifiable assumptions incorporated into ESM+. 252
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### You are a sql generator, only output plain SQL code, starting with "SELECT" and nothing else.
### Answer the questions based on the following schema for the database (table (col1 [example value],
col2 [example value],...))
### Only output what is necessary to answer the question, do not output any additional information.
### If you are unable to answer the question, output your best guess.
# continents (ContId* [1], Continent [america])
# countries (CountryId* [1], CountryName [japan], Continent [1]) Foreign key continent references
continents.contid
# car_makers (Id* [1], Maker [amc], FullName [Ford Motor Company], Country [1]) Foreign key country
references countries.countryid
# mode_list (ModelId* [1], Maker [1], Model [amc] UNIQUE) Foreign key maker references car_makers.id
# car_names (MakeId* [1], Model [chevrolet], Make [volkswagen model 111]) Foreign key model references
model_list.model
# cars_data (Id* [1], MPG [18], Cylinders [8], Edispl [307.0], Horsepower [130], Weight [3504],
Accelerate [12.0], Year [1970]) Foreign key id references car_names.makeid

Which companies have three or more models?
SELECT

Figure 6: An example of the schema-based prompt used for our PLM baseline models.

4 Experiments253

4.1 PLM Baseline Models254

We build strong baseline models by using schema-255

based prompting with two PLMs, GPT 4-Turbo256

(GPT4) and Claude 3-Opus (CLA3), and run them257

on the Spider and CoSQL datasets. These models258

leverage PLMs’ intrinsic capabilities to interpret259

natural language inputs and generate corresponding260

queries, without fine-tuning on the target datasets.261

Figure 6 describes the prompt used by our models;262

detailed explanation are provided in Appendix A.2.263

4.2 Spider Models264

Three PLM-based and three FLM-based models are265

evaluated on the Spider dataset (Yu et al., 2018).266

Section 2 provides the descriptions of these models.267

Below are their names as listed on the leaderboard:2268

• DAIL (PLM): DAIL-SQL + GPT4 (Gao et al., 2023)269
https://github.com/BeachWang/DAIL-SQL270

• DIN (PLM): DIN-SQL + GPT4 (Pourreza and Rafiei, 2023)271
https://github.com/MohammadrezaPourreza/272
Few-shot-NL2SQL-with-prompting273

• C3 (PLM): C3 + ChatGPT + Zero-Shot (Dong et al., 2023)274
https://github.com/bigbigwatermalon/C3SQL275

• R+N (FLM): RESDSQL-3B + NatSQL (Li et al., 2023a)276
https://github.com/RUCKBReasoning/RESDSQL277

• G+P (FLM): Graphix-3B + PICARD (Li et al., 2023b)278
https://github.com/AlibabaResearch/279
DAMO-ConvAI/tree/main/graphix280

• R+P (FLM): RASAT + PICARD (Qi et al., 2022)281
https://github.com/LUMIA-Group/rasat282

For the development set, we obtain the outputs for283

DAIL, DIN, C3, and G+P from their repositories,284

while we reproduce the outputs for R+N and R+P285

2https://yale-lily.github.io/spider

using their sources. For the evaluation set, since it 286

was not released when these models debuted, no 287

model outputs are publicly available for it; thus, we 288

reproduce the outputs for all models on this set. 289

4.3 CoSQL Models 290

Three FLM-based state-of-the-art models are eval- 291

uated on the CoSQL dataset (Yu et al., 2019): 292

• R+P: the same model as described in Section 4.2 293

• RAS: R+P without PICARD (Scholak et al., 2021) 294

• STAR: the highest scoring model in the leaderboard3 (Cai 295
et al., 2022) https://github.com/AlibabaResearch/ 296
DAMO-ConvAI/tree/main/star 297

Since no PLM-based models have been introduced 298

for this task, our baselines are the only PLM-based 299

models compared against these FLM-based ones. 300

4.4 Results 301

Table 2 shows the results of our baseline models 302

(§4.1) and the six Spider models (§4.2) with respect 303

to EXE, ESM, and ESM+. For the development set, 304

R+N performs the highest across all three metrics. 305

DAIL shows a competitive score compared to R+N 306

on EXE, although its ESM score is 10.5% lower. This 307

discrepancy is diminished to 3.7% with ESM+; more 308

importantly, DAIL regains the 2nd-place ranking 309

on ESM+, as it does on EXE. The trend is quite clear; 310

FLM-based models exhibit 6-7% decreases in per- 311

formance from ESM to ESM+, whereas PLM-based 312

models show 1-28% increases. This impact is even 313

more dramatic for simpler models; CLA3 performs 314

relatively well on EXE (2.8% lower than R+N) but 315

extremely poor on ESM (47.1% lower than R+N), 316

which is substantially recovered on ESM+ (13.2% 317

3https://yale-lily.github.io/cosql
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Model Development Set Evaluation Set Reported
EXE ESM ESM+ EXE ESM ESM+ EXE ESM

GPT4 PLM 73.0 (8) 40.5 (7) 54.8 (8) 71.6 (7) 38.1 (6) 53.6 (6) - -
CLA3 PLM 81.3 (5) 33.4 (8) 61.5 (6) 79.1 (5) 32.1 (7) 60.4 (7) - -

DAIL PLM 83.1 (2) 70.0 (4) 71.0 (2) 83.1 (1) 66.1 (3) 67.8 (3) 86.2 (1) 66.5 (4)
DIN PLM 82.8 (3) 60.1 (5) 63.6 (5) 82.3 (2) 60.7 (4) 63.9 (4) 85.3 (2) 60.0 (5)
C3 PLM 81.9 (4) 46.9 (6) 60.1 (7) 80.6 (3) 44.6 (5) 58.2 (5) 82.3 (3) -

R+N FLM 84.1 (1) 80.5 (1) 74.7 (1) 80.0 (4) 72.0 (1) 69.5 (1) 79.9 (4) 72.0 (2)
G+P FLM 80.9 (6) 77.1 (2) 70.8 (3) - - - 77.6 (5) 74.0 (1)
R+P FLM 78.2 (7) 75.2 (3) 67.9 (4) 79.0 (6) 70.6 (2) 68.8 (2) 75.5 (6) 70.9 (3)

Table 2: Model performance on the Spider dataset in %. Column-wise rankings are indicated in parentheses. The
Evaluation Set columns display the results from the model outputs reproduced by us, while the Reported columns
show the results on the evaluation set as reported in the respective literature and the leaderboard for those models.

lower than R+N). This is because ESM does not han-318

dle query styles that deviate from the Spider dataset319

as effectively. This has less impact on FLM-based320

models since they are trained to learn those styles321

from the training set; however, it has a huge impact322

on PLM-based models that often produce queries323

in styles that are not captured in the training set,324

and yet are still semantically equivalent.325

For the evaluation set, the trend between ESM and326

ESM+ stays consistent. It is evident that PLM-based327

models dominate FLM-based models on EXE as the328

best PLM-based model, DAIL, gives a 3.1% higher329

score than the best FLM-based model, R+N.4 This330

dominance is reversed for ESM, where R+N’s score331

is 5.9% higher than DAIL’s, although the gap is332

reduced to 1.7% on ESM+. Note that the EXE scores333

of PLM-based models decrease from the reported334

scores to our replicated results, whereas they stay335

similar or even increase for the FLM-based models.336

This is due to the high variance in PLM-based ap-337

proaches, which we discuss further in Section 5.2.338

Model EXE ESM ESM+
Q I Q I Q I

GPT4 P 70.0 39.2 45.9 16.7 54.7 22.9
CLA3 P 72.9 41.0 38.3 13.7 54.0 21.2

R+P F 66.9 39.6 58.6 27.0 54.5 22.9
RAS F 63.2 34.1 56.1 25.9 52.2 21.5

STAR F 28.3 11.3 59.8 30.7 21.2 6.8

Table 3: Model results on the CoSQL development set
in %. Q/I: Question/Interaction-level evaluation.

Table 3 illustrates the results of our baseline mod-339

els and the three CoSQL models (§4.3). For both340

the question-level and interaction-level evaluations,341

our simple PLM-based models significantly outper-342

form the FLM-based models on EXE, whereas the343

4Unfortunately, we were unable to run the G+P model, so its
results on the evaluation set are omitted from Table 2.

trend is again reversed for ESM. Notably, the ESM+ 344

results align with the EXE results, as both GPT4 and 345

CLA3 show state-of-the-art performance alongside 346

R+P on ESM+. When comparing the performance of 347

CLA3 and R+P, their EXE results for the Spider eval- 348

uation set are the same, whereas CLA3 scores 6% 349

higher on EXE for the CoSQL dataset. This implies 350

that while their SQL generation abilities are com- 351

parable, CLA3 exhibits a superior dialogue con- 352

text understanding ability, leading to its higher EXE 353

performance for CoSQL. Note that STAR, ranked 354

highest on the CoSQL leaderboard based on ESM, 355

does not produce any value, rendering its results on 356

EXE and ESM+ incomparable to the others. 357

The performance decrease from ESM to ESM+ for 358

the FLM-based models across all datasets is likely 359

because they are not optimized for the SQL features 360

that ESM does not assess (§3), causing incorrect han- 361

dling of those (e.g., generating random conditions 362

for JOIN would not have any impact on ESM but 363

it affects ESM+). This highlights the need for a ro- 364

bust evaluation metric, such as ESM+, to facilitate 365

enhancement in the field of Text-to-SQL. 366

5 Discussions 367

5.1 Model Evaluation 368

Upon analysis of why PLM-based models achieve 369

high EXE scores but not on ESM+, we find that they 370

often generate queries that would be equivalent to 371

the gold query under certain verifiable assumptions 372

specific to the particular tables. These assumptions 373

are not enforced in ESM+ because they are not gen- 374

eralizable across different schemas. Nevertheless, 375

they happen to hold true for those tables, leading 376

to false positives in EXE, as the predicted queries 377

are not guaranteed to produce correct results across 378

all schemas. In such cases, ESM+ is a more robust 379

metric than EXE, yielding fewer false positives. 380
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For Spider, our baseline models give much lower381

ESM scores compared to most other models. This is382

because the other models leverage the training set383

in some way. The FLM-based models are finetuned384

on the set, thereby imitating its query style. DAIL385

searches for questions similar to the input from the386

training set and uses them for few-shot prompting.387

DIN and C3 employ highly specialized prompts de-388

signed with the dataset’s style in mind, such as cali-389

bration hints and elaborate classification prompting.390

Since our baselines are built without any specific391

style in mind, they are much more creative in query392

generation, which is exactly the type of prediction393

heavily penalized by ESM. However, it is alleviated394

with ESM+, as the gaps to the other models become395

much less stark, providing a more accurate depic-396

tion of model efficacy on this task.397

This is also the reason why the FLM-based mod-398

els do not exhibit a performance increase from ESM399

to ESM+. Since their generation styles closely match400

the dataset’s style and ESM already incorporates nec-401

essary verifiable assumptions for this style, only a402

few of the new verifiable rules introduced in ESM+403

are applied to evaluate these outputs. Moreover, the404

issues addressed in our metric cause certain outputs405

to be evaluated more strictly, resulting in their ESM+406

scores dropping compared to their ESM scores.407

5.2 PLM Variance408

The discrepancy between the published results and409

our reproduced results on EXE for the PLM-based410

models in Table 2 is due to the high natural vari-411

ability inherent in PLMs, such as GPT and Claude.412

This variability not only hinders the replicability of413

the work but also creates a situation where, given414

enough attempts, even a worse model can outper-415

form a more consistent model. This is exacerbated416

when EXE is used as the primary evaluation metric,417

since many of the tables do not have sufficient edge418

cases to catch all the false assumptions made by419

these models. Given this high variability, we recom-420

mend evaluating PLM-based models multiple times421

and reporting their average scores with variances,422

rather than solely reporting the top scores, which423

does not represent their practical performance.424

With ESM+, however, we see that the discrepancy425

decreases drastically. ESM+ aims to reduce the vari-426

ance in PLMs by being more stringent, akin to ESM,427

so that it forces the model to generate a query that428

always predicts the correct values, which is much429

more challenging, but leads to less variance in the430

model outputs when evaluated under ESM+.431

5.3 Error Analysis 432

To understand whether our new metric gives a more 433

accurate evaluation, we perform an analysis of the 434

false positives and false negatives that each metric 435

produces for each model on the Spider evaluation 436

set. Since disabling distinct and value checks leads 437

to an abundance of false positives in both EXE and 438

ESM due to not considering those conditions, and 439

most current state-of-the-art models predict values, 440

we analyze them with those checks enabled. 441

Model EXE ESM ESM+
FP FN FP FN FP FN

GPT4 P 12.8 0.0 1.8 21.0 0.1 3.7
CLA3 P 12.1 0.0 0.6 32.0 0.6 4.6

DAIL P 10.7 0.0 2.1 8.2 0.1 2.0
DIN P 13.2 0.0 2.4 10.8 0.1 2.3
C3 P 15.3 0.0 2.0 19.3 0.3 3.3

R+N F 7.2 0.0 3.4 3.0 0.1 1.0
R+P F 7.7 0.0 1.1 3.1 0.1 1.0

Table 4: False positives and negative rates (%) for all
models with respect to the three metrics on the Spider
evaluation set. ESM and EXE are evaluated with distinct
and value checking enabled.

Table 4 presents the error analysis results. Despite 442

enabling distinct and value checks, EXE and ESM 443

still yield a high volume of false positives and false 444

negatives, respectively. For all models, the amount 445

of false positives from EXE and false negatives from 446

ESM decreases significantly in ESM+. The decrease 447

in false positives from EXE stems from the new con- 448

straints in ESM+ that correctly identify mismatches. 449

The false negative decrease from ESM is attributed 450

to our equivalence rules in Table 1. Lastly, the de- 451

crease in false positives from ESM is due to the fixes 452

of the issues described in Section 3.2. 453

Most models tend to make assumptions that are 454

not verified within the schema, such as the unique- 455

ness of columns, which causes false positives upon 456

execution. On both EXE and ESM, the false positives 457

and false negatives disproportionately affect certain 458

models more than others. However, ESM+ exhibits 459

a notably smaller discrepancy among the best and 460

worst models, implying that ESM+ is a less biased 461

metric than either EXE or ESM. When comparing 462

individual models for ESM+, our baselines yield the 463

highest false negative rates among the others. This 464

trend follows for C3 and DIN, two other models 465

with high diversity in output, indicating that more 466

equivalence rules can be added to decrease the false 467

negative rate, which we will explore in future work. 468
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5.4 Equivalence Rule Analysis469

To look into this further, we perform an analysis470

of improvement of the ESM+ metric as equivalence471

rules are added (Figure 7).472

Figure 7: False negative rates on ESM+ (%) as our equiv-
alence rules are accumulated. ESM: no update is applied,
0: ESM with the issues in §3.2 fixed, n: 0 + equivalence
rules 1 to n in Table 1 are applied, ESM+: 0 + all of 20
equivalence rules are applied, which is our final ESM+.

When no equivalence rules are used, there is al-473

ready a large decrease in false negative rate from474

ESM to ESM+ in our baseline models and C3 model475

due to the fixes in functionality (§3.3). The other476

models actually have an increased false negative477

rate with the fixes. Some issues we fixed, like JOIN478

condition checking, along with the implementation479

of value and distinct checking, caused certain SQL480

queries that were previously evaluated as equiva-481

lent by ESM to now be evaluated as semantically482

distinct. However, when the equivalence rules are483

added, we find that that the queries actually were484

equivalent. In such cases, ESM had a lower false485

negative rate than ESM+ with no equivalence rules,486

but for the wrong reasons. By the same token, in487

most of those cases ESM had a higher false positive488

rate. ESM+ evaluates these cases correctly.489

The overall trend shows that as expected, each490

rule we cumulatively add decreases the false nega-491

tive rate of ESM+. However, the equivalence rules492

did not have equal impact on the improvement from493

ESM to ESM+. Certain models benefitted more from494

certain rules, and others didn’t have a reliance on495

any one rule in particular. The models that directly496

used Spider’s training set (DAIL, R+N, R+P) all497

had the smallest reduction in false negative rate498

with any one individual rule. Rule 13 (which en-499

tailed unecessary use of JOIN) was the most im-500

portant addition for these models because even the501

training set was not consistent in whether the JOIN 502

keywords it used were necessary. Thus, the models 503

that relied on it had similar levels of variation. 504

The models that were more reliant on generating 505

without access to examples from the training set 506

had much more reliance on specific rules, indicat- 507

ing a certain preference for styles of SQL queries. 508

All the models based on GPT (GPT4, DAIL, DIN, 509

C3) had Rule 7 as the most useful, indicating that 510

GPT has a bias towards generating COUNT (c1) in- 511

stead of COUNT (*). CLA3, on the other hand, had 512

a dramatic 14.1% decrease in false negative rate 513

when adding Rule 14, indicating that it prefers to 514

write aliases without the AS keyword. 515

If the trend continues as new equivalence rules 516

are added, we may see some models surpass oth- 517

ers in terms of ESM+ as their false negative rates 518

decline. As more rules are added, the discrepancy 519

in false negatives between the best and worst mod- 520

els decreases, showing that each equivalence rule 521

added reduces bias in ESM+. 522

6 Conclusion 523

This study introduces Enhanced Exact Set Match- 524

ing (ESM+), a novel evaluation metric for Text-to- 525

SQL that overcomes several limitations of the previ- 526

ous metrics, Test Suite Execution (EXE) and Exact 527

Set Matching (ESM). Our findings indicate that ESM+ 528

offers a substantial improvement by reducing the 529

occurrences of both false positives and false nega- 530

tives that commonly plague the earlier metrics. By 531

adopting the more rigorous approach of ESM and 532

incorporating verifiable equivalence rules to allow 533

query diversity, ESM+ can discern more granular dis- 534

tinction in query correctness, allowing for a more 535

accurate measurement of the semantic accuracy of 536

the generated queries and a better understanding of 537

LLMs’ true capabilities in generating SQL queries. 538

Moving forward, we plan to extend the list of 539

verifiable rules to strengthen ESM+ with the help of 540

community feedback, thereby increasing its robust- 541

ness in evaluating complex SQL query structures. 542

As we continue to refine and enhance ESM+, our 543

goal is to establish a new standard for evaluating 544

Text-to-SQL models that can accurately represent 545

their practical utility and technical proficiency in 546

real-world applications. With the introduction of 547

ESM+, we hope that more PLM-based approaches 548

will be proposed to tackle CoSQL as well as Spider, 549

as they will no longer be as restricted by the lack 550

of variation enforced by ESM. 551

8



7 Limitations552

ESM+ inherits certain limitations from ESM that553

could affect its efficacy, listed here:554

1. Retrieving columns from a subquery: Queries555

retrieving columns from the subquery are not556

properly parsed. An example of this is SELECT557

c1 FROM (SELECT * FROM t1).558

2. Precedence of conditional statements:559

Queries using parentheses to order conditional560

statements are not always handled correctly. For561

example, the SQL query SELECT c1 FROM t1562

WHERE c1 = x AND (c2 = y OR c1 = z) is563

incorrectly treated the same with and without564

parentheses.565

3. Aliases: Only table names can have aliases. In566

SQL, column names, as well as expressions in-567

cluding aggregates can be given aliases. Al-568

though the ESM+ evaluation script will not break569

upon encountering them (like ESM), it will not570

consider them when they are actually used.571

4. Additional equivalence rules: There could be572

any number of additional equivalence rules to573

be added to further decrease the false negative574

rate of ESM+. Missing equivalence rules could575

punish certain types of generation, leading to576

inaccurate model evaluation.577

Addressing these limitations of ESM+ critical when578

evaluating the text-to-SQL task.579

In addition, while analyzing Spider and CoSQL,580

we noticed that sometimes the the gold queries581

make non-verifiable assumptions about the ques-582

tion or the real world (Figure 8).

How many graduates of the school are there?

SELECT COUNT(*) FROM students;

Figure 8: A question and gold query pair from CoSQL
that assumes that every student has graduated. This
assumption is not verifiable.

583
A potential option to mitigate this issue would584

be to have multiple possible correct queries for585

each question, in order to allow for a larger array586

of interpretations of each question. We recognize587

that Spider 2.0 is under development, and we hope588

that it corrects this aspect of Spider, but it is crucial589

to address this issue in both Spider and in CoSQL.590

8 Ethical Considerations 591

We utilized the Spider and CoSQL datasets, which 592

are maintained under the Apache 2.0 license and 593

distributed under the CC BY-SA 4.0 license. Our 594

use of these datasets adhered strictly to the terms 595

specified by these licenses, ensuring compliance 596

with their intended and allowed use. 597

In conducting this study, we have upheld the 598

highest standards of ethical research, focusing par- 599

ticularly on transparency and fairness. Our method- 600

ologies, data sources, and results are fully docu- 601

mented and openly accessible to ensure that our 602

work is transparent, reproducible, and verifiable 603

by the research community. We recognize the po- 604

tential for biases in automated systems and have 605

rigorously tested our models and methods to iden- 606

tify and mitigate any such biases. We do not collect 607

any personal information or data. 608

Moreover, we consider the broader impacts and 609

risks of our research, particularly in how such tech- 610

nologies might influence data accessibility and 611

decision-making processes in industries that tra- 612

ditionally rely on SQL expertise. By enhancing 613

the usability of database systems through natural 614

language interfaces, our work aims to help democ- 615

ratize data access, enabling a wider range of users 616

to leverage database resources effectively. 617
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A Appendix791

A.1 Key updates in ESM+792

This section describes the key updates of ESM+ sum-793

marized in Section 3.3.794

1. We added functionality for ESM+ to parse and795

interpret the keywords LEFT JOIN, RIGHT JOIN,796

OUTER JOIN, and INNER JOIN, and include them797

in equivalence checks. Any query with those798

keywords is automatically disregarded by ESM.799

2. ESM rebuilds queries such that all foreign keys800

become their primary key counterparts, causing801

incorrect matching. Foreign keys are not the802

same as primary keys. Although only data in803

their primary key counterpart may be present in804

the foreign key, the foreign key can include dif-805

ferent amounts of them, as well as NULL values.806

3. Conditions for any JOIN are now assessed. ESM807

collected information about the join conditions,808

but never compared the conditions of the two809

queries. This bug was fixed in ESM+.810

4. ESM extends schema and alias checks always to811

the entire query, causing issues with sub-queries812

where aliases are local. ESM+ properly scopes813

the schema and alias checks exclusively to their814

corresponding sub-queries (Listing 1).815
816

SELECT c1 FROM t1 AS t JOIN t2 ON t.c1=t2.c2817
↪→ WHERE c1 IN (SELECT c3 FROM t3 AS t);818819

Listing 1: ESM evaluates this incorrectly as it does not
recognize that t is not only an alias for t3 in the subquery
but also for t1 in the outer query.

5. While ESM checks for DISTINCT only within ag-820

gregate functions, ESM+ consistently considers821

it across the entire query (§3.1).822

6. The value of LIMIT is always checked, which823

were previously disregarded by ESM (§3.1).824

7. ESM allows the keyword IN followed by a sub-825

query, but doesn’t allow a list of values. ESM+826

properly parses and evaluates value lists within827

the IN keyword (Listing 2).828
829

SELECT c1 FROM t1 WHERE c1 IN (1, 2, 3);830831

Listing 2: ESM disregards this query as it is not capable
of parsing a list of values within the IN keyword.

8. CoSQL’s evaluation script replaces all occur-832

rences of the string ‘value’ with ‘1’ when value833

checks are disabled, causing execution errors if834

a column is named value. In ESM+, all values835

are properly considered.836

A.2 PLM Baseline Models 837

Our prompt is shown in Figure 6. In this nota- 838

tion, columns with an asterisk (*) denote a primary 839

key column. The examples enclosed in brackets 840

represent the database content from that column 841

which best aligns with the user question. This 842

alignment is determined by a two-stage n-gram 843

similarity matching process: initially at the ques- 844

tion level, and subsequently at the character level 845

if no matches are found or in the event of ties. This 846

approach is inspired by Qi et al. (2022), who only 847

included database content of the most relevant col- 848

umn to the question. We decided to use examples 849

from every column to give the PLM a more holis- 850

tic understanding of the database content. After 851

the example within brackets, we include any re- 852

strictions from the schema of the database, such as 853

NON_NULL or UNIQUE. The foreign key relations at 854

the end of each table are included to give the PLM 855

an understanding of the underlying structure of the 856

database, following Gao et al. (2023), who asserted 857

that these relations help PLMs with the prediction 858

of JOIN clauses. 859

A.3 Computational Resources 860

All experiments replicating existing models that 861

used GPUs were run on two A6000 GPUs, and 862

followed the hyperparameters listed on github 863

for those models (§4.2,4.3). For the base- 864

line models, GPT4 adopted the OpenAI model 865

gpt-4-0125-preview, and CLA3 was based on 866

the Anthropic model claude-3-opus-20240229. 867

Both baseline models used temperature 0 for all 868

experiments. 869
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