
Enhancing Protein Language Model with Feature
Integration for Anticancer Peptide Prediction
Tiara Natasha Binte Sayuti1, Shen Cheng2, Santhisenan Ajith1, Abdul Hadi Bin Abdul Samad3,

and Jagath C. Rajapakse1

Abstract—In the fight against cancer, anticancer peptides
(ACP) hold promising therapeutic potential due to their selec-
tive cytotoxicity and lower side effects compared to traditional
treatments. However, identifying novel ACP is challenged by
high costs and labor-intensive processes. Protein language models
(PLMs), such as ESM-2 and ProtBERT, have revolutionized
peptide prediction by leveraging vast datasets to capture complex
biological patterns through pre-training. However, they often
struggle to accurately model specific biochemical interactions.
To address this limitation, we integrated four sequence-based
features: amino acid composition (AAC), dipeptide composition
(DPC), composition of k-spaced amino acid group pairs (CKS),
and k-mer sparse matrix (k-mer) through a cross-attention
mechanism. These features infuse biochemical insights that PLM
alone may overlook, enabling a more detailed prediction of anti-
cancer properties. This integration enhances biochemical insights,
improving prediction accuracy by 15.8% for ProtBERT and 2.9%
for ESM-2, with ESM-2 achieving the highest accuracy at 77.8%.
SHapley Additive exPlanations (SHAP) analysis confirms the
importance of these features, demonstrating that incorporating
amino acid features into PLMs enhances ACP prediction.

Index Terms—amino-acid compositions, anticancer peptide
prediction, cross-attention, protein language models

I. INTRODUCTION

Cancer remains a daunting global health concern. In 2022,
the World Health Organization (WHO) reported 20 million
new cancer cases and 9.7 million fatalities, translating to
approximately 1 in 5 individuals developing cancer within
their lifetime. By 2050, over 35 million new diagnoses are
forecasted, emphasizing the urgent need for enhanced cancer
prevention, detection, and treatment efforts [1].

Traditional treatments like chemotherapy and radiotherapy
are central to current cancer management. However, their
effectiveness wanes as tumors develop resistance, and the side
effects significantly impact patients’ quality of life [2]. When
these treatments end, alternatives are often scarce, presenting
a substantial clinical challenge. Thus, exploring alternatives
with comparable efficacy and few side effects are crucial.
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Anticancer peptides (ACP) are promising alternatives due to
their selective cytotoxicity towards cancer cells and relatively
lower side effects. ACP offer a safer, more targeted approach,
making them appealing as potential replacements for tradi-
tional therapies [3]. However, discovering and validating new
ACP face challenges such as high synthesis costs and extensive
laboratory efforts required for experimental validation, which
are resource-intensive and time-consuming [4].

Recent advancements in protein language models (PLM)
offer significant advantages for ACP prediction. PLMs lever-
age vast amounts of protein sequence data to understand and
predict protein structure, function, and interactions, providing
rich representations of peptide sequences [5]–[7]. PLM are
suitable for this task due to their ability to capture intricate
relationships within protein sequences through pre-training on
large datasets, followed by fine-tuning for specific tasks [5].
Despite their sophisticated ability to encode protein sequences
into informative embeddings, PLM exhibit limitations in cap-
turing specific biochemical interactions, making it necessary
to enhance the model through additional features.

To further enhance the predictive power of ACP predic-
tors, we incorporate four sequence-based features: amino acid
compositions (AAC), dipeptide compositions (DPC), compo-
sitions of k-spaced amino acid group pairs (CKS), and k-
mer sparse matrix (k-mer) with the PLM embeddings. These
features provide biochemical insights that complement the
embeddings from PLMs, enabling a more detailed and accurate
prediction of anticancer properties. AAC provides an overview
of the peptide’s composition, DPC captures local sequence
order, CKS identifies non-adjacent relationships, and k-mer
represents specific sub-sequences of amino acids. Together,
these features offer improved representation of ACPs and
differentiate the method from previous approaches, potentially
accelerating the discovery of new therapeutic peptides.

II. RELATED WORKS

A. Machine Learning in ACP Prediction

Early studies in ACP prediction predominantly utilized tra-
ditional machine learning models. For instance, Vijayakumar
and Lakshmi developed a prediction technique using Support
Vector Machines based on compositional and distributional
metrics of amino acids, significantly improving the precision
of ACP prediction [8]. On the other hand, Chen et al. improves
ACP predictor with optimized g-gap dipeptides [9].



B. Deep Learning in ACP Prediction

With the advent of deep learning, neural network-based
models began to show improved performance in ACP pre-
diction. Yuan et al. proposed a model that ensembles deep
learning and machine learning algorithms, specifically in-
tegrating bidirectional long short-term memory (BiLSTM),
Convolutional Neural Network (CNN), and Light Gradient
Boosting Machine (LightGBM) to predict ACPs from po-
sitional encoded peptide sequences [10]. Yang et al. also
developed a deep learning framework called CACPP, that
utilizes CNN and contrastive learning to enhance the accuracy
of ACP predictions [11].

C. Protein Language Model in ACP Prediction

Recent studies have shifted focus towards integrating gen-
eral word embeddings to represent peptide sequences. Zhu
et al. introduced ACP-ST, an ACP prediction model based
on general word embedding features and a Swin Transformer
with a multi-head self-attention mechanism, achieving supe-
rior performance on benchmark datasets [12]. More recent
advancements have leveraged PLMs and further revolutionized
the field. Bepler and Berger discussed how deep protein lan-
guage models can learn evolutionary, structural, and functional
information from vast protein sequence databases, capturing
complex biological insights that can inform function predic-
tions and design new proteins [13]. Additionally, Ruffolo and
Madani discussed the foundations and applications of PLMs
in protein engineering. They emphasized how PLMs, trained
on extensive datasets of protein sequences, can learn the
underlying patterns of protein structure and function, enabling
tasks such as sequence design and variant effect prediction
[14].

D. Incorporating Sequence-Based Features in ACP Prediction

Incorporating sequence-based features has proven to be a
positive component in enhancing predictive models. Fazal et
al. presented an approach using kernel sparse representation
classification with the composition of k-spaced amino acid
pairs to capture a diverse range of peptide sequences, yielding
a comprehensive feature vector that enhances ACP classifica-
tion performance [15]. Similarly, Li et al. employed sequence-
based features such as amino acid composition, dipeptide
composition, and k-spaced amino acid pairs in improving
the predictive power of ACP prediction, demonstrating the
importance of sequence-based features in enhancing prediction
models [16].

E. Our Motivation

PLMs effectively learn embeddings directly from sequence
data, capturing rich contextual information crucial for un-
derstanding protein structure and function. However, incor-
porating additional features such as AAC, DPC, CKS, and
k-mer provides further biochemical and structural insights.
These features offer complementary information that is not
captured by sequence embeddings alone, potentially enhancing
the performance of PLMs. Motivated by these advancements,

our work integrates the four sequence-based features with
PLM embeddings via cross-attention, aiming to generate a
more enriched representation of ACPs and ultimately enhance
the performance of the ACP prediction model.

III. METHODOLOGY

A. Dataset

We utilize the AntiCP 2.0 dataset, a collection of experimen-
tally validated peptides for anticancer activity, including 861
anticancer and 861 non-anticancer peptides [17]. The balanced
nature of the AntiCP 2.0 dataset addresses class imbalance,
mitigating bias towards the more prevalent class and enhancing
the performance of predictive models [17].

B. Protein Language Models

PLMs like ProtBERT and ESM-2 apply natural language
processing (NLP) techniques to analyze protein sequences,
aiming to predict protein structure, function, and interactions.
These models encode protein sequences into high-dimensional
embeddings, akin to how NLP models grasp word context and
meaning in sentences [18].

1) ProtBERT: ProtBERT employs the Bidirectional En-
coder Representations from Transformers (BERT) architec-
ture, utilizing masked language modeling (MLM) during pre-
training. This technique involves masking random segments
of protein sequences for the model to predict, facilitating
the learning of contextual relationships within the sequences
[6]. Trained on the Big Fantastic Dataset (BFD), ProtBERT
captures diverse protein relationships directly from sequence
data, enabling it to understand both local and global structural
information within protein sequences, making it a versatile
tool for various bioinformatics tasks [6].

2) Evolutionary Scale Modeling 2 (ESM-2): ESM-2 also
employs MLM but distinguishes itself by leveraging evolution-
ary data. It is trained on the UniRef protein sequence dataset,
which provides a broader representation of protein sequences
through clustering similar sequences to reduce redundancy
[7]. This dataset enables ESM-2 to incorporate evolutionary
patterns, enhancing its ability to predict and understand protein
structures and functions.

By training on evolutionary data, ESM-2 can more effec-
tively model protein dynamics and structural nuances, which
are critical for tasks such as high-resolution structure predic-
tion. This evolutionary insight enables ESM-2 to offer a more
comprehensive understanding of protein sequences compared
to models that do not utilize such data [7].

While both ProtBERT and ESM-2 utilize MLM, their train-
ing datasets and focus differ. ProtBERT’s training on BFD
enables it to capture a wide range of protein relationships
without evolutionary bias, making it highly versatile for vari-
ous peptide analysis [6]. In contrast, ESM-2’s training on the
UniRef dataset leverages evolutionary information, providing
a deeper understanding of protein dynamics and structure [7].

By integrating these complementary sequence-based fea-
tures with the PLM embeddings, we enhance the model’s
representation of anticancer peptides. This approach combines



the deep contextual knowledge derived from PLMs with
the specific biochemical insights provided by sequence-based
features, ultimately improving the accuracy of ACP prediction.

C. Sequence-Based Features
Sequence-based features are employed to extract attributes

that encode biological knowledge about peptide sequences into
a format that computational models can process. These fea-
tures are crafted based on structural and biochemical properties
of peptides. In this study, four sequence-based features were
utilised to increase the input information of the amino acids
in the peptide sequences. The four features are AAC, DPC,
CKS and k-mer.

1) Amino Acid Composition: AAC represents the relative
frequency of each standard amino acid within a peptide and
is given for a peptide sequence of length L as:

AAC(a) =
Count(a)

L
(1)

where Count(a) is the number of times amino acid a ap-
pears in the peptide sequence. This feature provides a 21-
dimensional vector where each dimension corresponds to the
relative frequency of one of the 20 standard amino acids and
one dimension for the relative frequency of any non-standard
or unknown amino acids. Quantifying the relative abundance
of amino acids offers insight into the primary structure and
key functional properties, such as hydrophobicity, charge, and
isoelectric point, all of which are influenced by the side chains.
These properties play a critical role in determining anticancer
activity.

2) Dipeptide Composition: DPC quantifies the frequency
of consecutive amino acid pairs throughout the peptide se-
quence and is given by:

DPC(a, b) =
Count(a, b)

L− 1
(2)

where Count(a, b) is the number of times the dipeptide ab
appears in a peptide sequence of length L. By capturing the
local sequence order and interactions between adjacent amino
acids, including secondary structures and potential electrostatic
interactions between charged residues, this approach effec-
tively distinguishes ACPs from non-ACPs.

3) Composition of K-Spaced Amino Acid Group Pairs:
CKS captures long-range interactions between non-adjacent
amino acids, which are essential for understanding tertiary
structure and function. CKS groups amino acids based on
physicochemical properties, such as aliphatic, aromatic,
positive charge, negative charge, or uncharged, revealing
their impact on peptide folding and stability. The idea is
to count occurrences of pairs of these groups separated by
k residues within the sequence, providing insight into how
these properties are distributed along the peptide chain.

Let Ga and Gb be two groups, and k be the gap (i.e., the
number of residues between the pair). The CKS feature for a
given gap k is computed as:

CKS(Ga, Gb, k) =

∑L−k−1
i=1 I(xi ∈ Ga, xi+k+1 ∈ Gb)∑L−k−1
i=1 I(xi ∈ G, xi+k+1 ∈ G)

(3)

where I (condition) is an indicator function that equals 1 if
the condition is true and 0 otherwise, xi is the amino acid at
position i, G is the set of all amino acid groups, and L is the
length of the sequence. Values of k range from zero to five
are used to capture various levels of long-range interactions
within the peptide, enhancing the model’s understanding of
how peptides fold and how their structural properties influence
their ability to interact and disrupt cancer cell membranes.

4) K-mer Sparse Matrix: The k-mer capture the presence
and frequency of specific k-length subsequences within a
peptide sequence. In this work, k = 3 (triad) is chosen as
it strikes a balance between capturing local recurring se-
quence motifs and maintaining computational efficiency. This
choice is based on the conjoint triad feature, a bioinformatics
technique that groups amino acids into seven classes (AGV,
ILFP, YMTS, HNQW, RK, DE, C) based on their dipole
moments and side chain volumes. This approach enhances the
model’s ability to recognize structural motifs that are critical
for peptide biological functions, such as receptor binding,
which is particularly important for ACPs.

All possible combinations of triads are generated from the
group labels. Each amino acid in the peptide sequence is
translated into its corresponding group label using a translation
dictionary. This reduces the complexity of the sequence while
preserving essential biochemical properties.

For each translated sequence, a frequency matrix is con-
structed where each row corresponds to a triad and each
column corresponds to a position in the sequence. The value at
each position in the matrix indicates the presence or absence
of the corresponding triad at that position as follows:

M = {mij}7k×(L−k+1) (4)

mij =

{
1, if ajaj+1aj+2 = k-mer(i)
0, else

(5)

Afterwards, the frequency matrix is decomposed using Singu-
lar Value Decomposition (SVD) into three matrices: U , S, and
V T defined as follows:

M = U · S · V T (6)

where the matrix U contains the left singular vectors, S is
a diagonal matrix with singular values, and V T contains the
right singular vectors.

The k-mer sparse matrix is constructed by combining the
components captured by the left singular vectors U and scaling
them by their corresponding singular values S. This is done to
capture the most significant patterns in the k-mer composition
of the sequence. The k-mer sparse matrix for a sequence is
given by:

k-mer =

L−K+1∑
i=1

(ui · si
L

)
(7)

where ui are the rows of left singular vector U and si are the
singular values from diagonal matrix S, normalized by the
sequence length L.



Fig. 1. Illustration of the proposed architecture for ACP prediction, including the architecture of the classifier and its constituent elements. Part A shows
the overall model, from feature extraction to the classification head. Part B zooms in on the classification head, highlighting the modified spatial transformer
block outlined in dashed lines, alongside an MLP block. Part C details the transformer block, emphasizing the cross-attention mechanism.

D. Model Architecture

The proposed model architecture for ACP classification inte-
grates sequence-based features and PLM embeddings through
a classification head via cross-attention. This head includes a
modified spatial transformer block [19] and a multi-layer per-
ceptron (MLP), collectively designed to enhance the model’s
capability to capture and retain salient features, thereby im-
proving overall classification performance. The model archi-
tecture is illustrated in Figure 1. Initially, the peptide se-
quences are processed through a PLM to generate embeddings
that encapsulate the complex dependencies and contextual
information inherent in the sequences, as shown in Figure 1
Part A. The classification head leverages both the sequence-
based features and the PLM embeddings to produce accurate
predictions. It comprises a modified spatial transformer block

and a MLP.

The modified spatial transformer block in Figure 1 Part B
includes three key components: an input convolution layer, a
transformer block, and an output convolution layer [19]. The
input convolution layer projects the embeddings into a higher-
dimensional space, facilitating enhanced feature extraction.
This step is crucial for preparing the embeddings for more
detailed processing in subsequent layers.

The core of the transformer block in Figure 1 Part C is
decomposed into three distinct stages: self-attention, cross-
attention, and feed-forward. The self-attention stage allows
the model to focus on different parts of the embeddings
themselves, capturing the internal structure and relationships
within the sequence. The cross-attention stage integrates the
sequence-based features with the embeddings, enabling the



TABLE I
PERFORMANCE COMPARISON OF FEATURE INTEGRATION TO PROTEIN LANGUAGE MODELS PROTBERT AND ESM-2

Method Accuracy F1 Precision Sensitivity Specificity
CNN 0.7164 0.7087 0.7284 0.6901 0.7427
Bi-LSTM 0.6901 0.6728 0.7124 0.6374 0.7427
LightGBM 0.7398 0.7493 0.7228 0.7778 0.7017
ProtBERT 0.5380 0.6108 0.5277 0.7251 0.3509
ESM-2 0.7485 0.7598 0.7273 0.7953 0.7018
ProtBERT with feature integration 0.6959 0.7263 0.6603 0.8070 0.5848
ESM-2 with feature integration 0.7778 0.7829 0.7654 0.8012 0.7544

model to leverage external contextual information effectively.
This mechanism ensures that the model considers both the
intrinsic properties of the sequences and the additional bio-
chemical features. Finally, the feed-forward stage further
processes the information, enhancing the model’s ability to
capture complex patterns.

The final convolution layer in Figure 1 Part B projects
the transformed embeddings back to the original specified
dimension. This processed output is then combined with the
original embeddings through a residual connection, ensuring
that essential features are preserved and not diminished during
the transformation process. The MLP, consisting of two linear
layers, serves as the final stage of the classification head. It
processes the output from the modified spatial transformer
block to produce the final logits used for classification.

IV. EXPERIMENTS AND RESULTS

A. Data Preprocessing

Effective data preprocessing is important for preparing the
peptide sequences and their associated features for deep learn-
ing models. In this study, each peptide sequence was tokenized
and padded to a maximum length of 50 to ensure uniformity.
The maximum length of 50 was chosen as it was the length of
the longest peptide in the dataset. In addition, sequence-based
features such as AAC, DPC, CKS and k-mer were extracted
and accurately prepared before model training.

B. Model Training

Our peptide classification model was designed with specific
hyperparameters to ensure robust performance and generaliz-
ability. We used a learning rate of 3 × 10−5, balancing the
speed of convergence and training stability. The weight decay
was set to 1 × 10−4 within the AdamW optimizer, which
incorporates weight decay directly into the weight update
rule. This regularization technique penalizes large weights,
encouraging simpler models by reducing the risk of overfitting.

The model was trained for 20 epochs with a batch size
of 8, with an early stopping mechanism in place to halt
training if no improvement in validation loss was observed
over 10 consecutive epochs with a minimum delta of 10.
This allows for efficient training while managing memory
constraints effectively. This ensured that the model generalized
well to unseen data. Dropout is used to randomly drop units
during training to prevent overfitting. However, in our case, the
model achieved optimal results without the need for dropout,

likely due to the effective regularization already provided by
weight decay and early stopping.

To further ensure the robustness and generalizability, we
employed 5-fold cross-validation, where the dataset was split
into five subsets, training on four and validating on the remain-
ing one. The best model across five iterations was evaluated
on the test set. This provides a comprehensive performance
assessment, ensuring generalizability across different datasets
and conditions.

C. Performance Results

The performance of our model was evaluated using accu-
racy, F1 measure, precision, sensitivity, and specificity. Table
I presents a comprehensive comparative analysis of our model
with feature integration using cross-attention against a range of
baseline models, including CNN, Bi-LSTM, and LightGBM.
Additionally, experiments using only ESM-2 and ProtBERT
embeddings for the prediction of anticancer peptides were also
conducted.

The ESM-2 with feature integration using cross-attention
model achieved the highest overall accuracy, registering at
0.7778, thereby surpassing all other models. This superior
performance highlights the robustness and reliability of inte-
grating additional features with cross-attention into the PLM,
attesting to its efficacy in accurately classifying a majority of
samples.

In terms of the F1 score, which assesses the balance
between precision and sensitivity, the ESM-2 with feature
integration using a cross-attention model continues to lead
with a score of 0.7829. This result indicates that our model not
only effectively detects positive samples but also maintains a
commendably low rate of false positives.

Moreover, the same model demonstrated the highest pre-
cision among the models evaluated, with a score of 0.7654.
This metric illustrates the model’s capacity to identify a greater
proportion of true positives, reducing the risk of false positive
errors.

For sensitivity, the ESM-2 with feature integration model
performed exceptionally well, achieving a score of 0.8012.
This metric indicates the model’s ability to correctly identify
positive samples. It is noteworthy that the ProtBERT with
feature integration method achieved the highest sensitivity
at 0.8070, emphasizing how the integration of additional
features significantly enhances the model’s ability to detect
true positive samples compared to using the embeddings alone.



TABLE II
ABLATION ANALYSIS OF FUSION OF DIFFERENT FEATURES CONFIGURATIONS USING A CROSS-ATTENTION MODEL

Features Accuracy F1 Precision Sensitivity Specificity
AAC 0.7661 0.7661 0.7661 0.7661 0.7661
DPC 0.7222 0.7425 0.6919 0.8011 0.6433
k-mer 0.7485 0.7514 0.7429 0.7602 0.7368
CKS 0.7398 0.7479 0.7253 0.7719 0.7076
AAC + DPC 0.7456 0.7616 0.7165 0.8129 0.6783
AAC + CKS 0.7281 0.7320 0.7216 0.7427 0.7135
AAC + k-mer 0.7047 0.7038 0.7059 0.7018 0.7076
DPC + CKS 0.7281 0.7380 0.7120 0.7661 0.6901
DPC + k-mer 0.7251 0.7251 0.7251 0.7251 0.7251
CKS + k-mer 0.7749 0.7794 0.7640 0.7953 0.7544
AAC + DPC + CKS 0.7398 0.7375 0.7440 0.7310 0.7485
AAC + DPC + k-mer 0.7398 0.7450 0.7303 0.7602 0.7193
AAC + CKS + k-mer 0.7632 0.7652 0.7586 0.7719 0.7544
DPC + CKS + k-mer 0.7602 0.7500 0.7834 0.7193 0.8012
AAC + DPC + CKS + k-mer 0.7778 0.7829 0.7654 0.8012 0.7544

The highest specificity was observed in the ESM-2 with
feature integration model at 0.7544, showcasing its ability to
correctly identify negative samples.

Feature integration with cross-attention mechanisms has not
only bolstered the performance metrics of the ESM-2 model
but also enhanced the ProtBERT model. This method of
knowledge injection proves effective in enriching the model
embeddings, resulting in improved predictive accuracy and
reliability. The cross-attention technique integrates sequence-
based features in a manner that enhances the model’s ability to
discern and predict the properties of anticancer peptides. The
ESM-2 with feature integration model not only outperforms
existing models in terms of accuracy, F1 score, precision, and
specificity, but also exemplifies the efficacy of using cross-
attention for knowledge injection.

D. Ablation Studies of Feature Configurations

Table II summarizes the performance of various feature
configurations using the cross-attention method with the ESM-
2 embeddings. The key metrics evaluated include accuracy,
F1 score, precision, sensitivity, and specificity. This compre-
hensive analysis helps identify which combination of features
contributes most significantly to the model’s performance in
predicting ACPs.

The results indicate that integrating multiple sequence-based
features generally boosts the model’s performance. Notably,
the combination of all four features achieved the highest
accuracy (0.7778) and F1 score (0.7829). This enhancement
suggests that each feature captures distinct, crucial aspects of
peptide sequences, thereby contributing to a more robust and
predictive model.

AAC displayed considerable standalone performance with
an accuracy of 0.7661, showcasing its strong foundational
relevance in ACP prediction. However, AAC may also lead
to false positives due to shared amino acid compositions
between ACPs and non-ACPs. This explains why configura-
tions without AAC, such as the trio of DPC, CKS, and k-
mer, achieved the highest precision (0.7834) and specificity
(0.8012). These features excel in distinguishing non-ACP
sequences and minimizing false positives. By removing AAC,

the model focuses on specific features like DPC, CKS, and
k-mer, which capture structural details unique to ACPs, thus
improving precision and specificity.

It is also worth noting that the incorporation of the CKS
feature, in addition to k-mer, using triads (k=3), identifies
recurring motifs by classifying amino acids based on their
dipole moment and molecular volumes, while CKS captures
long-range interactions through the spatial distribution of
amino acids grouped by physicochemical properties. As shown
in Table II, the combination of CKS and k-mer led to higher
precision (0.7640) and specificity (0.7544) compared to either
feature alone. This demonstrates the complementary nature of
these features in capturing both local sequence patterns and
global structural interactions, improving the model’s ability to
differentiate ACPs from non-ACPs.

DPC was particularly outstanding for achieving the highest
sensitivity (0.8011) when used alone, emphasizing its utility
in identifying true positive ACP cases. The pairing of AAC
and DPC reached the highest sensitivity recorded in the study
(0.8129), highlighting the synergistic effect of these features
in enhancing model sensitivity.

This ablation study emphasizes the significant impact of
integrating diverse configurations of sequence-based features
with PLM embeddings through the cross-attention method.
The enhanced performance across all metrics when using a
combination of features confirms that each provides comple-
mentary information, contributing to the overall effectiveness
of the model. This integration not only leverages the deep
contextual understanding provided by ESM-2 embeddings but
also enhances it with specific biochemical insights, leading
to more accurate and reliable ACP predictions. Such findings
are pivotal for furthering ACP research and could potentially
guide the development of more effective anticancer therapies.

E. Model Interpretation

To investigate the impact of various sequence-based fea-
tures and PLM embeddings on the model’s performance, we
employed eXplainable Artificial Intelligence (XAI) to interpret
the model and observe the effects of each feature. XAI is a



set of processes and methods that allow human users to com-
prehend and trust the output of machine learning algorithms.
By providing clear explanations, XAI helps in understanding
how models make decisions, which is crucial for validating
and improving model performance.

We employed the Shapley Additive exPlanations (SHAP)
technique [20], which allows us to understand individual pre-
dictions from a model and assess the importance of different
input features. By applying SHAP [20], we can derive additive
feature importance measures, which facilitate the identification
of the relative significance of various input features.

We conducted a feature analysis focusing on AAC, DPC,
k-mer, CKS, and embeddings, where embeddings are the
sequence output from the PLM. We selected the ESM-2 model
for SHAP analysis as it returned the best results. For this
analysis, we used the SHAP Deep explainer, which treats our
model’s classification head containing the cross-attention as a
black box.

The training dataset was split into two halves. The first half
was used to train the SHAP model, while the second half
was used to compute the SHAP values. Given that all the
features are multi-dimensional, we first normalized them and
then reduced their dimensions using t-distributed Stochastic
Neighbor Embedding (t-SNE) [21] due to the non-linear nature
of the data. We then plotted the dependence and summary plots
based on the positive class in Figures 2 and 3.

Fig. 2. SHAP values indicating feature importance in predicting ACP.

Figure 2 displays the distribution of SHAP values for each
feature, offering a detailed view of how individual feature
values influence the prediction of ACP. The X-axis represents
the contribution of each feature to the model’s prediction.
Positive SHAP values indicate that the feature pushes the
prediction higher, whereas negative values suggest a downward
influence. The color gradient of each feature encodes the
magnitude of the feature values, with blue indicating low
values and pink representing high values.

From Figure 2, the embeddings exhibit a wide range of
SHAP values, from approximately -30 to +40, signifying a
substantial influence on the model’s output. The distribution
indicates that both high and low values of embeddings can
have a significant positive or negative impact. AAC also shows
a broad range, with SHAP values spanning from -30 to +40.
This suggests a notable impact, similar to the embeddings.

CKS displays a narrower range compared to embeddings
and AAC, yet remains significant. The SHAP values range
between -30 and +30. DPC predominantly influences the
model positively, with SHAP values clustered between -20
and +15. K-mer exhibits the least variability in SHAP values,
ranging from approximately -10 to +10, indicating a smaller
impact relative to the other features.

Fig. 3. SHAP ranked feature weights on cross-attention model output.

Figure 3 provides a summary of the average impact of each
feature, offering a more concise view of feature importance.
The X-axis represents the mean absolute SHAP value, re-
flecting the average magnitude of each feature’s impact on
the model predictions. From Figure 3, embeddings emerge
as the most influential feature, with a mean SHAP value of
18.61. AAC is the second most impactful feature, with a
mean SHAP value of 17.79. CKS holds significant importance
with a mean SHAP value of 15.33. DPC displays moderate
influence, evidenced by a mean SHAP value of 5.48. K-mer
exhibits the least influence among those analyzed, with a mean
SHAP value of 2.88. Figures 2 and 3 display the respective
features and their impact on the cross-attention model for the
positive class. It is interesting to note that in the cross-attention
configuration, embeddings and AAC have the highest impact
on the model’s prediction. This finding is supported by Table
II, which shows the high accuracy achieved when only AAC
features are used compared to other features.

Other features such as CKS, DPC, and k-mer, while still
relevant, exert a comparatively smaller influence. Figure 2
detailed SHAP value distributions highlight the specific con-
tributions of each feature value, while Figure 3 succinctly
summarizes their overall importance. By leveraging SHAP to
explain our model’s predictions, we gain valuable insights into
how each feature contributes to the model’s decisions. This
not only helps in validating the model’s behavior but also in
identifying potential areas for improvement.

V. DISCUSSION AND CONCLUSION

Our study focussed on predicting anticancer peptides by in-
tegrating sequence-based features with protein language model
embeddings. In order to fuse the different features, we used a
cross-attention mechanism. By using two PLMs, namely ESM-
2 and ProtBERT, we demonstrated that our method enhances
the ACP predictions by the PLMs alone.



SHAP analysis further reveals that PLM embeddings and
amino acid compositions are the most influential features, with
mean SHAP values of 18.61 and 17.79, respectively. While
embeddings capture relationships within protein sequences,
sequence-based features provide complementary biochemical
insights, enhancing the model’s overall predictive capability.

The feature integration for ESM-2 models, using cross-
attention mechanism achieved the highest accuracy (77.8%)
in ACP prediction, outperforming baseline models like CNN,
Bi-LSTM, LightGBM, ESM-2, and ProtBERT. It also showed
superior F1 score (78.3%), precision (76.5%), and specificity
(75.4%), demonstrating its robustness in identifying true pos-
itive ACPs while maintaining a low false positive rate. These
metrics indicate that the cross-attention mechanism effectively
integrates diverse features, enhancing the model’s ability to
detect intricate patterns indicative of anticancer activity.

Ablation studies validate the importance of integrating mul-
tiple sequence-based features. The combination of all four
features (AAC, DPC, CKS, and k-mer) resulted in the highest
performance in terms of accuracy and F1 score with 77.8%
and 78.3% respectively. The combination of AAC and DPC
alone achieved the highest sensitivity (81.3%), highlighting
their critical role in detecting true positive cases. Conversely,
DPC, CKS, and k-mer achieved the highest precision (78.3%)
and specificity (80.1%), demonstrating their effectiveness in
correctly identifying non-ACP sequences, minimizing false
positives.

Future research could explore several avenues to further en-
hance ACP prediction models. Firstly, incorporating additional
biochemical features or larger external biological databases
could provide even more comprehensive insights into pep-
tide characteristics. Secondly, extending the cross-attention
mechanism to include other types of biological data, such
as structural or functional annotations, may further improve
the model’s performance. Lastly, implementing advanced in-
terpretability techniques beyond SHAP, such as integrated
gradients [22] or attention flow analysis [23], could provide
deeper insights into the model’s decision-making process,
facilitating more transparent and trustworthy predictions.

In conclusion, our study shows the potential of combining
PLM embeddings with sequence-based features using cross-
attention mechanisms to enhance ACP prediction. This ap-
proach not only achieves high predictive accuracy but also
offers valuable interpretability, paving the way for more ef-
fective and reliable computational tools in anticancer peptide
research.
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