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Abstract

This paper studies the problem of active causal discovery when the experiments
can be done based on multi-fidelity oracles, where higher fidelity experiments are
more precise and expensive, while the lower ones are cheaper but less accurate.
In this paper, we formally define the task of multi-fidelity active causal discovery,
and design a probabilistic model for solving this problem. In specific, we first
introduce a mutual-information based acquisition function to determine which
variable should be intervened at which fidelity, and then a cascading model is
proposed to capture the correlations between different fidelity oracles. Beyond the
above basic framework, we also extend it to the batch intervention scenario. We find
that the theoretical foundations behind the widely used and efficient greedy method
do not hold in our problem. To solve this problem, we introduce a new concept
called ϵ-submodular, and design a constraint based fidelity model to theoretically
validate the greedy method. We conduct extensive experiments to demonstrate the
effectiveness of our model.

1 Introduction

Causal discovery aims to learn the causal structure of a set of variables, which is fundamental for
many real-world applications, including health caring [1], education [2] drug discovery [3] and
protein synthesis [4]. In general, causal structure learning is an NP-hard problem [5], and purely
based on the observational datasets, one cannot identify the unique causal structure, where the best
result is discovering its Markov equivalence class [6].

To more accurately identify the unique causal structure, a promising direction is active causal
discovery (ACD), where the model is allowed to actively intervene the causal structure to query key
information for orienting the causal relations between different variables. For example, to study
the causal relations between the drugs and diseases, one can conduct clinical tests via selectively
administering the medicines to the patients. The key of active causal discovery is how to design
effective experiments when the total cost (e.g., the number of experiments) is limited. To achieve this
goal, recent years have witnessed many promising models. For example, Agrawal et al. [7] proposes
to intervene on the variables which can orient as many as possible undirected edges. Tigas et al. [8]
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designs a mutual information based method to determine the variables and values to be intervened,
and study both single and batch intervention scenarios.

While the above models have achieved remarkable successes, they only allow to query a single oracle
(e.g., the real causal structure) for the experiments3. However, in many real-world applications,
the experiments can be done via different methods. For example, to investigate the drug-disease
causal relations, in addition to the clinical tests, one can also build simulators to obtain the medicine
effects on the patients [9]. Usually, each experimental method corresponds to a unique oracle, and
different oracles have various fidelites. Higher-fidelity experiments are more accurate but expensive,
for example, administering drugs to the real patients. Lower-fidelity experiments are cheaper but
inaccurate, for example, using patient simulators. These different fidelity oracles may offer better
cost-benefit trade-offs, which, however, cannot be handled by existing active causal discovery models.

To bridge the above gap, in this paper, we formally define the task of active causal discovery with
multi-fidelity oracles, where the model has to actively select which variables and values to intervene
at which fidelities. This task is non-trivial due to the following reasons: to begin with, because of
the introduction of multi-fidelity oracles, the model has to strategically choose the lower-cost and
informative enough experiments to uncover the real causal structure, which needs our special designs.
Then, given the experiment results with different fidelities, how to infer the real causal structure is
also not easy, since the experiment results can be not produced from the oracle corresponding to the
real causal structure. In addition, in practice, an efficient experiment should allow simultaneously
intervening multiple variables [10]. However, how to extend our model to the batch intervention
scenario is still not clear.

To overcome the above challenges, we design a Bayesian active causal discovery model, which is
composed of two components. The first one is a mutual information (MI) based acquisition function.
It aims to select the interventional variables, values and fidelities which are more informative for the
real causal structure. The second one is a cascading fidelity model. In specific, we first regard the
highest fidelity oracle as the real causal structure, and then a cascading model is built to correlate
different fidelity oracles, so that the experiment results at one fidelity can be leveraged to infer the
oracle at another fidelity. To achieve more efficient experiments, we also extend our model to the
batch intervention scenario. Previously, the greedy method is demonstrated to be an efficient and
effective strategy for batch intervention [8]. However, we found that, by allowing multi-fidelity
oracles, the theoretical foundations behind the greedy method do not hold. For alleviating this
problem, we introduce a new concept called ϵ-submodular, and design a constraint-based fidelity
model to theoretically validate the greedy method.

The main contributions of this paper are summarized as follows: (1) we formally define the task
of active causal discovery with multi-fidelity oracles, which, to our knowledge, is the first time in
the field of causal discovery. (2) To solve the above task, we propose a Bayesian framework, which
is composed of a mutual information based acquisition function and a cascading fidelity model.
(3) To extend our framework to the batch intervention scenario, we introduce a constraint-based
fidelity model, which provides theoretical guarantees for the efficient greedy method. (4) We conduct
extensive experiments to demonstrate the effectiveness of our model.

2 Preliminaries

2.1 Structure Causal Model

Structure causal model (SCM) is an effective language for describing and learning the causal relations
between different random variables [11]. Usually, SCM is composed of a causal graph and a set of
structure equation models (SEM).

For the causal graph, we denote it by G = ⟨V,E⟩, where V is the node set, and E is the adjacency
matrix. Each node in V corresponds to a variable. Suppose there are d variables in our studied
problem, then we use XV = [X1, X2, . . . , Xd] to denote the variable set. The adjacency matrix
E ∈ {0, 1}d×d describes the causal relations between different variables. Eij = 1 means that Xi is a

3In the following, we may interchangeably use “oracle”, “causal structure” and “structure causal model” to
represent the underlying model for generating the results of the experiments.
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parent of Xj , and there exists an edge from Xi to Xj , while Eij = 0 indicates that there is no edge
between Xi and Xj .

For the structure equation models, we denote them by g = {g1, g2, ..., gd}, where each gi quan-
titatively describes the relation between Xi and its parents. Formally, we implement F with the
commonly used additive noise models (ANM) [12], that is:

Xi = gi(pa(i); γi) + ϵi, ϵi ∼ N (0, σ2
i ), (1)

where γi is the parameter set of gi, and the noise term ϵi follows the Gaussian distribution with σ2
i as

the variance. We denote the complete parameter set of g as θ = {γ,σ}, where γ = {γ1, γ2, . . . , γd}
and σ = {σ1, σ2, . . . , σd}. Noted that, given the above equation, we can easily derive the distribution
of XV , that is, p(XV ) =

∏d
i=1N (gi(pa(i); γi), σ

2
i ).

Based on the above formulation, given an observational dataset D = {xk}Nk=1 ∼ p(XV ), causal
discovery aims to learn the adjacency matrix E, or more generally, simultaneously identify E and the
SEM parameter θ. In this paper, we focus on the general case, and denote ϕ = (θ,E).

2.2 Active Causal Discovery

Previous work has demonstrated that, purely based on the observational dataset, the real causal graph
can only be identifiable to its Markov equivalence class. Active causal discovery holds the promise of
identifying more accurate causal graph via designing interventional experiments.

Formally, an interventional experiment is represented by e = {(j, v)}, which means cutting all the
causal relations pointing to Xj , and fixing the value of Xj as v. In causal learning, the experiment
e can also be represented by do(Xj = v). Obviously, the distribution of XV is changed after the
experiment e, and we denote the experiment-induced distribution by p(XV |do(Xj = v)). In practice,
we cannot access the implementation of p, but can only observe the experiment result sampled from
p(XV |do(Xj = v)). The key of active causal discovery is to design a series of experiments within
limited budgets, such that the results can be better leveraged to identify ϕ.

2.3 Multi-Fidelity Active Causal Discovery

Existing ACD models mostly obtain the experiment results via interacting with the real SCM.
However, in practice, the experiments can be done in different ways (e.g., real clinical tests or patient
simulators). Each type of experiment corresponds to an underlying oracle, which produces the results
of the experiments. Different oracles may provide better cost-benefit trade-offs for the experiment
designs, which are failed to be considered by the previous work.

Formally, suppose we have M oracles, and the parameters of the ith oracle is denoted by ϕi. Let
the experiment cost of the ith oracle be λi, and without loss of generality, we assume λ1 ≤ λ2 ≤
· · · ≤ λM . Intuitively, if an oracle is more accurate (i.e., has higher fidelity), then it should be more
expensive4. We regard the real SCM as the most accurate oracle, thus we set ϕM = ϕ. We denote all
the oracle parameters and costs as Φ = {ϕ1,ϕ2, ...,ϕM} and Λ = {λ1, λ2, ..., λM}, respectively.

Due to the introduction of multi-fidelity oracles, the experiment in traditional active causal discovery
is extended to be a triplet e = {(j, v),m}, where in addition to the intervention pair (j, v), the fidelity
m should also be considered in the experiment design. We define the dataset for model training as
D = {et,xt}Tt=1, where et = {(j, v),m} indicates the distribution for generating xt. In general,
{(j, v),m} means that xt is generated from pm(XV |do(Xj = v)), which is induced by ϕm and the
intervention (j, v). If (j, v) = ∅, then xt is an observational data, which is sampled from ϕm without
any intervention. Finally, we define the task of multi-fidelity active causal discovery as follows:

Definition 1 (Multi-Fidelity Active Causal Discovery (MFACD)). Given M oracles with different
costs Λ, we need to design a model f , which can strategically determine the intervention pair (j, v)
and fidelity m to achieve better cost-benefit trade-off in terms of identifying the real SCM ϕM .

4Noted that if some oracle costs more than another one with higher fidelity, then this oracle is useless, since
one may always choose to query the higher fidelity oracle.
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3 The Licence Model

For solving the task of MFACD, we design a Bayesian framework called Licence (Multi-fidelity
active learning for causal discovery), which is composed of two components. The first one is an
acquisition function based on mutual information, which is responsible for designing the experiments.
The second one is a cascaded fidelity model, which is designed to capture the correlation between
different ϕi’s. The experiment results obtained from the first component are leveraged to update the
fidelity model, and ϕM in the fidelity model is the finally predicted result. At last, we introduce how
to extend our model to the batch intervention scenario.

3.1 MI-based Acquisition Function

Intuitively, a better experiment should leverage little cost to reveal as much as possible information
about the real SCM ϕM . Thus, we design the following acquisition function:

f(j, v,m) =
I(x;ϕM |e, D)

λm
,

where e = {(j, v),m} is the experiment to be designed. D is the dataset already collected, which
will be enlarged after each experiment. I(x;ϕM |e, D) is the mutual information, which indicates
that if we conduct experiment e, then how much information the experiment result may share with the
target parameter ϕM . Obviously, we should select e which can lead to larger I(x;ϕM |e, D). λm is
the cost of e. By dividing I(x;ϕM |e, D) with λm, we trade-off the experiment informativeness and
cost. To determine (j, v,m), we derive an estimator for f(j, v,m) following the idea of Bayesian
Active Learning by Disagreement (BALD) [13], that is:

f(j, v,m) =
H(x|e, D)−H(x|ϕM , e, D)

λm

=
−Ep(x|e,D)

[
logEp(ϕm|e,D)[p(x|e,ϕm)]

]
+ Ep(ϕM |D)

[
Ep(x|e,ϕM )[log p(x|e,ϕM )]

]
λm

,

(2)

where p(x|e, D) and p(ϕm|e, D) correspond to the distributions of x and ϕm after observing D
under the intervention (j, v). p(ϕM |D) is the posterior of ϕM after observing D. p(x|e,ϕm) is the
probability of x based on ϕm intervened by (j, v). We approximate the expectation operator based
Monte Carlo sampling. The detailed derivation process can be seen in the appendix.

Obviously, determining the best (j, v,m) equals to solving the following problem:
{j∗, v∗,m∗} = arg max

{j,v,m}
f(j, v,m). (3)

In our task, the intervention value v is continuous. Following the previous work, we firstly learn the
optimal v for each (j,m) pair based on Bayesian optimization (BO). Then, we compare all the results,
and select the solution which can lead to the largest f(j, v,m). We present the detailed Bayesian
optimization process in the appendix. It should be noted that one can also leverage more advanced
BO methods for jointly learning (j, v,m) [14]. However, we do not find significant performance
improvements by these models.

3.2 Cascaded Fidelity Model

Intuitively, the experiment results from different oracles may share common information. The samples
at one fidelity may help to infer the oracles at other fidelities. To capture the correlations between
different oracles, we build a cascaded probabilistic model (see Figure 1), where the oracles with
different fidelities are successively connected, and the observed samples are only determined by their
corresponding oracles.

Formally, to achieve more robust optimization, we first regard the discrete adjacency matrix E as
the samples from Bernoulli distribution. In specific, we let Eij ∼ Bernoulli(σ(ST·iT·j)), where
S,T ∈ RK×d (K ≪ d) are two continuous matrices. S·i and T·j are the ith and jth columns of S
and T, respectively. By replacing E with S and T, we revise the parameter set ϕ as (θ,S,T).

For each fidelity m, we assign a prior distribution of ϕm given ϕm−1 as follows:

p(ϕ1) ∝ e−β·f(S1,T1) · N (0, I),

p(ϕm|ϕm−1) ∝ e−β·f(Sm,Tm) · N (aϕm−1 + b,σ2I), m ≥ 2,
(4)
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Figure 1: The cascaded probabilistic model is shown above. Different fidelity oracles are successively
connected, and the observed samples are only determined by their corresponding oracles.

where we add subscript m to indicate different fidelities. f(Sm,Tm) = Ep(E|Sm,Tm)[λ1 ·
{trace

(
eE
)
− d} + λ2 · ||E||1] is a regularizer to encourage E to be a sparse and directed acyclic

graph [15]. λ1, λ2, a, b and σ2 are hyper-parameters.

Since the real SCM is ϕM , we need to infer the posterior p(ϕM |D), where D is the initially
observational dataset or experiment results. Directly computing p(ϕM |D) is not easy, since the
dataset D may contain samples from different fidelity oracles. To solve this problem, we first
obtain the joint distribution p(Φ|D), where Φ = {ϕ1,ϕ2, ...,ϕM} is the collection of all the oracle
parameters. Then we derive p(ϕM |D) by marginalizing out {ϕ1,ϕ2, ...,ϕM−1}.
To efficiently compute and sample from p(Φ|D), we introduce a variational approximator q(Φ),
which is specified as follows:

q(ϕ1) ∼ N (0, I),

qψm
(ϕm|ϕm−1) ∼ N (cmϕm−1 + dm,σ

2
mI), m ≥ 2,

q(Φ) = q(ϕ1)

M∏
m=2

q(ϕm|ϕm−1),

(5)

where ψm = {cm,dm,σm} is the set of learnable parameters, and we denote Ψ = {ψm}Mm=2.
According to the theory of variational inference [16], we maximize the following evidence lower
bound (ELBO) [16] to learn Ψ:

ELBO =EΦ∼q(Φ) [log p(D|Φ)− KL(q(Φ)||p(Φ))] ,

=EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)] ,
(6)

where the likelihood p(D|Φ) can be easily obtained based on equation (1). More detailed derivation
on the ELBO can be seen in the appendix. Once we have learned Ψ, the posterior p(Φ|D) is
approximated by q(Φ), and further, we have the following theory:
Theorem 1. If p(Φ|D) ≈ q(Φ), then for any variable sets A,B ⊆ Φ, p(A|B,D) ≈ q(A|B). As a
special case p(ϕM |D) ≈ q(ϕM ).

The proof of this theory is immediate, since

p(A|B,D) =
p(A,B|D)

p(B|D)
=

∫
Φ−A−B

p(Φ|D)dΦ−A−B∫
Φ−B

p(Φ|D)dΦ−B
≈

∫
Φ−A−B

q(Φ)dΦ−A−B∫
Φ−B

q(Φ)dΦ−B

=
q(A,B)

q(B)
= q(A|B)

Let A = ϕM and B = ∅, we have p(ϕM |D) ≈ q(ϕM ). Based on this theory, we leverage q to
replace p in (2) for easy sampling.
Remark. According to the specification of qψm(ϕm|ϕm−1), we can easily demonstrate that q(Φ)
follows Gaussian distribution. Such property enables us to use the reparameterization trick [17] to
relate Φ with Ψ. Different from traditional variational models, in our objective, the adjacency matrix
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E in f(Sm,Tm) is sampled from a discrete distribution, which cuts down the back-propagation signal.
To solve this problem, we leverage gumbel-softmax to further associate E with (Sm,Tm) ∈ Φ.
Since Φ can be further represented by Ψ, all the variables in (6) can be reparameterized by Ψ, which
enables us to optimize it in an end to end manner. We present the detailed derivation process and the
complete learning algorithm in the appendix.

3.3 Extension to Batch Intervention

In practice, simultaneously intervening multiple variables can be more efficient due to the lower
frequency on interacting with the oracles. However, under the setting of batch intervention, the
candidate intervention space exponentially increases with respect to the number of targets. Suppose
we need to select c out of d variables for intervention, then the size of the candidate space is dc.
Previous work found that the greedy strategy is a both efficient and effective method for the batch
intervention scenario [8]. From the efficiency perspective, the greedy method only need to search in a
cd-sized candidate space. From the effectiveness perspective, people demonstrate that the mutual
information obtained by the greedy strategy is not worse than that of the optimal solution multiplied
by (1− 1

e ) [18]. In the following, we introduce how to extend our model to the batch intervention
scenario, and leverage the greedy strategy to solve our task.

Objective for batch intervention in MFACD. We use the following objective for batch intervention
scenario:

argmax
{ei}n

i=1

I({xi}ni=1;ϕM |{ei}ni=1, D),

s.t.
n∑
i=1

λi ≤ C,
(7)

where ei = {(ji, vi),mi} is an experiment, xi is the observed sample from the experiment ei, that
is, xi ∼ pmi(XV |do(Xji = vi)). λi is the cost of experiment ei. This objective aims to design a
series of experiments with budget C, which can reveal the information about ϕM as much as possible.
The number of intervention targets n is not a fixed value, which is constrained by the total budget.

The greedy method for MFACD. The greedy method designs each experiment independently, and at
each step, it selects the experiment which can maximize the average information gain. Following [19],
the kth experiment is determined based on the following objective:

argmax
ek

I({xi}k−1
i=1 ∪ xk;ϕM |{ei}k−1

i=1 ∪ ek, D)− I({xi}k−1
i=1 ;ϕM |{ei}

k−1
i=1 , D))

λm

s.t.

k−1∑
m=1

λm + λk ≤ C,
(8)

where {ei}k−1
i=1 is the previously designed experiments, and is fixed when learning ek.

What’s wrong with the greedy method. The theoretical foundations of the greedy method is
demonstrated by the previous work [19] as follows:
Theorem 2. If I(x;ϕM |e, D) is (1) submodular and (2) non-decreasing, then

I({xgi }
n
i=1;ϕM |{e

g
i }
n
i=1, D) ≥ (1− 1

e
)I({x∗

i }ni=1;ϕM |{e∗i }ni=1, D), (9)

where {egi }ni=1 is the solution obtained from the greedy method, and {e∗i }ni=1 is the optimal solution.

However, due to the introduction of multi-fidelity, in our model, I(x;ϕM |e, D) is actually not
submodular. More specifically, in the proof of submodular, two samples xs and xt has to be
independent given ϕM (e.g., see B.4 in [8]). In the single-fidelity setting, this requirement naturally
holds, since ϕM is exactly the parameter used to sample xs and xt. However, when we introduce
multi-fidelity, xs and xt may not independent given ϕM , since they are only directly influenced by
their own oracles (see Figure 1).

An improved greedy method tailored to MFACD. To alleviate the above problem, in this section
we design an improved greedy method tailored to our task. In specific, we first define several new
concepts, and then build theories based on these concepts to inspire our model designs.
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Definition 2 (ϵ-independent). For random variables A,B and C, if their mutual information satisfy
I(A;B|C) ≤ ϵ, then we say A and B are ϵ-independent given C.

Definition 3 (ϵ-submodular). Suppose f(·) is a set function on Ω. If for any A,B ⊆ Ω, A ⊆ B and
x ∈ Ω\B, f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B)− ϵ, then we say f is ϵ-submodular on Ω.

Based on the above two definitions, we have:

Theorem 3. For any two experiments es and et, if the corresponding samples xs and xt are
ϵ-independent given ϕM , {es, et} and D, then I(·;ϕM |·, D) is ϵ-submodular.

Theorem 4. If I(·;ϕM |·, D) is ϵ-submodular on X and non-decrease, for any i, j, λi

λj
≤ Bλ, then

I({xgi }
n
i=1;ϕM |{e

g
i }
n
i=1, D) ≥ (1− e−

1
Bλ )I({x∗

i }ni=1;ϕM |{e∗i }ni=1, D)−B,
where B = ϵ

Bλ
·
∑n
i=1(1−

1
Bλn

)i−1.

Following this theory, we improve objective (6) to a constaint-based ELBO as follows to capture the
degree of independence between different experiment results:

max EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)] ,

s.t.
∑

{es,et}

I(xs;xt|ϕM , {es, et}, D) ≤ ϵ. (10)

The proofs of the above theories are presented in the appendix, and similar to objective (2), we use
Monte Carlo method to approximate the mutual information in objective (10).

4 Related Works

Bayesian Active Causal Discovery. Causal discovery [20–22] refers to recovering causality in
a set of variables, especially trying to find a directed acyclic graph (DAG) that can represent the
relationship between variables in a system. Active causal discovery was first proposed in [23, 24]
with the assumption that the data is discrete-valued. In active causal discovery, the experimenter
attempts to intervene on the variables in the system at each step, utilizes the interventional data to
recover causal relation, and finally identifies the entire causal structure with minimal cost [25]. Many
methods have been discussed in different settings over the past decades, including continuous linear
Bayesian networks [26, 27], non-linear causal models [28], and large-scale causal models [8].

Multi-fidelity Settings. The fidelity commonly refers to how accurate the model or environment can
be when providing information. Higher-fidelity models are more accuracy but cost much, while lower
ones are less accurate but cheaper. In order to combine the strength of each model, multi-fidelity
models are proposed to achieve an accurate model with lower costs. Multi-fidelity models can
be divided into two main categories [29]: Multi-fidelity Surrogate Models (MFSM) [30–32] and
Multi-fidelity Hierarchical Models (MFHM) [33–35]. In addition to optimization, multi-fidelity
models can also be used for uncertainty propagation [36] and statistical inference [37]. Recent works
also start to study the multi-fidelity settings when conducting Bayesian experiments [38–40], and
adopt deep learning frameworks to solve corresponding problems.

Our paper makes a first step towards multi-fidelity active causal discovery, and solve the non-trivial
challenges when combining the above two fields, which, to the best of our knowledge, is the first
time in the causal inference domain.

5 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of our model, where we
focus on the following problems: (1) whether our model can achieve better performance than the
previous ACD methods? (2) Whether the constraint in objective (10) in necessary? (3) How the DAG
regularization coefficient influence the model performance? In the following, we first introduce the
experiment setup, and then present and analyze the results.

7



Figure 2: Results of the overall performance on different datasets and budgets. Lower SHD, RMSE
or larger AUPRC indicate better performances. We conduct each experiment for ten times, and report
the average performances and error bars.

5.1 Experimental Setup

We experiment with three commonly used causal discovery datasets, including Erdős-Rényi graph
(ER) [41], Scale-Free graph (SF) [42] and DREAM [43]. To demonstrate the effectiveness of our
model, we compare it with AIT [44] and CBED [8], which are the recent state-of-the-art models in
this field. Since they cannot select different fidelities, we design two variants for each of the baseline,
that is, X-REAL and X-RANDOM, which means that the model always interacts with the ground
truth oracle ϕM or randomly select the oracles. Here “X” is AIT or CBED. For the evaluation metrics,
we use SHD [45], AUPRC [46] and RMSE to evaluate different models. The first two metrics aim to
evaluate the accuracy of the learned topological structure, and the last one measures the performance
of functional relations. For single intervention, we first generate several observational samples to
initialize the model. Then, we indicate a total intervention budget, and let the model interact with
the causal graph with different fidelities until the budget runs out. For each interaction, the model
will provide an intervention, and correspondingly obtain a sample from the oracles, which is used
to update the model. Finally, the model outputs the estimated causal graph, which is leveraged to
evaluate the performance. For batch intervention, we indicate the total budget for each intervention
step, and the model determines n interventions simultaneously, which are delivered to the oracles to
obtain the samples. We present more detailed settings in the appendix.

5.2 Overall Performance

In this experiment, we evaluate the models under different total budgets, and we present the results on
ER and SF datasets with 10 graph nodes. The experiments on DREAM and more nodes are presented
in the appendix. From the results shown in Figure 2, we can see: as the total budget becomes larger,
the performances of all the models tend to increase on both datasets. This is not surprising, since more
experiment budgets enable us to conduct more interventions or query more accurate oracles, which
can reveal more information about the ground truth and facilitate more accurate causal discovery.
In most cases, our model can perform better than the baselines across different datasets, evaluation
metrics and intervention budgets. These results demonstrate the effectiveness of our model. In
specific, on the metrics of SHD, AUPRC and RMSE, our model can on average improve performance
of the best baseline by about 27.74%, 82.35% and 22.74% on ER, and 17.69%, 60.27% and 21.62%
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(a) Batch Intervention with 30 Budget
Model SHD ↓ AUPRC (%) ↑ RMSE (%) ↓

AIT-REAL 20.10 ± 2.26 17.74 ± 0.32 3.11 ± 0.00
AIT-RANDOM 19.92 ± 2.81 17.57 ± 0.43 3.53 ± 0.01
CBED-REAL 20.12 ± 2.17 20.25 ± 0.19 3.51 ± 0.00

CBED-RANDOM 19.34 ± 1.72 24.32 ± 0.47 3.74 ± 0.01
Licence (w/o reg) 17.10 ± 3.71 32.55 ± 1.81 3.12 ± 0.02

Licence 16.75 ± 5.68 37.94 ± 1.90 2.66 ± 0.01

Figure 3: (a) The results of experiments on ER graph with 10 graph nodes under the batch intervention
scenario. The average performance and error bars are provided. (b) The results of Licence model
with different DAG regulation coefficient β’s. The experiment is conducted based on ER graph with
10 graph nodes.

on SF, respectively. If we look more carefully, we find that, for both AIT and CBED, randomly
querying the oracles can sometimes perform better than always interacting with the ground truth
oracles. This result suggests that lower fidelity oracles can be helpful to trade-off the performance
and cost. However, the random method is still suboptimal, and designing more principled and tailored
strategies to select the fidelities is necessary, which is evidenced by the lowered performance of
“X-RANDOM” than our model.

5.3 Necessity of the Mutual Information Constraint in Objective (10)

In our model, the mutual information constraint in objective (10) aims to make the greedy method
validate. In this section, we study whether it is necessary by experiments. To achieve this goal,
we introduce a variant of our model Licence (w/o reg), where we remove the mutual information
constraint. We evaluate the models based on the dataset of ER with 10 graph nodes, and the total
budget is set as 30. The results are presented in Figure 3(a). We can see, in some cases, “X-RANDOM”
performs better than “X-REAL”, which is consistent with the above experiments, and demonstrates
that always querying the ground truth oracle may not lead to better performance under limited budget.
By comparing our model with the variant Licence (w/o reg), we find that our model can consistently
achieve better performances on all the evaluation metrics. In specific, Licence can improve the
performance of Licence (w/o reg) by about 2.05%, 16.57% and 14.92% on SHD, AUPRC and RMSE
respectively. These results demonstrate that the mutual information constraint is necessary in our
model, which empirically verifies the theories proposed in section 3.3.

5.4 Influence of the DAG regularization coefficient

In this section, we analysis the influence of the DAG regulation coefficient β in equation (4). The
results are reported based on AUPRC. The coefficient β reflects the importance of DAG regulation
when updating the model. As β increases, the DAGness is more emphasized for the causal graph.
In this subsection, we conduct experiments for various β, ranging from 0.0 to 1.0, and the results
are shown in Figure 3(b). We can see as β increases, the performance of AUPRC improves as well,
and peaks at β = 0.8. That is probably because lower β will decrease the acyclic property of causal
graphs, which is incompatible with the prior knowledge of true causal graphs. However, higher
coefficient may also impact the optimization process, which leads to sub-optimal results. We think
a trade-off between mild constraint for easy optimization and solid constraint for DAG property is
supposed to take into consider for different tasks and settings.

6 Conclusion

This paper formally defines the task of active causal discovery with multi-fidelity oracles, which,
to our knowledge, is the first time in the causal discovery domain. To solve this task, we propose
a Bayesian framework, which is composed of a mutual information based acquisition function and
a cascading fidelity model. We also extend our framework to the batch intervention scenario, and
propose a constraint-based fidelity model to validate the efficient greedy method.
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This paper actually makes an initial step toward considering different oracles in active causal discovery.
There is much room left for improvement. To begin with, one can design more advanced batch
intervention strategies, which can bypass the greedy method and does not need to introduce the
mutual information constraint in the fidelity model. In addition, since the experiments in active
causal discovery are conducted sequentially, and the former experiment results may influence the
latter ones, it is interesting to consider the experiment designs as a Markov decision process, and
leverage reinforcement learning to optimize the total information gains of all the experiments in a
more principled manner.
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A Monte Carlo Approximation for f(j, v,m)

A.1 Derivation Process for f(j, v,m)

Considering that the mutual information is not directly tractable, we approximate f(j, v,m) by:

f(j, v,m) =− 1

λm ·K1 · L1

K1∑
k1=1

L1∑
l1=1

log

[
1

C

C1∑
c1=1

p(x(k1,l1)
m |ϕ(c1)

m , e)

]

+
1

λm ·K2 · L2 · C2

K2∑
k2=1

L2∑
l2=1

C2∑
c2=1

log
[
p(x(k2,l2,c2)

m |ϕ(k2)
M , e)

]
,

where e = {(j, v),m} is the experiment to be designed, ϕ(c1)
m ,ϕ

(k1)
m ∼ p(ϕm|D), x(k1,l1)

m ∼
p(x|ϕ(k1)

m , e), ϕ(k2)
M ∼ p(ϕM |D), ϕ(k2,l2)

m ∼ p(ϕm|ϕ(k2)
M , D) and x

(k2,l2,c2)
m ∼ p(x|ϕ(k2,l2)

m , e).

We present the detailed approximation process as follows:

f(j, v,m) =
1

λm
I(x;ϕM |e, D)

=
1

λm
[H(x|e, D)−H(x|ϕM , e, D)]

=
1

λm

[
−Ep(x|e,D)

[
log p(x|e, D) + Ep(ϕM |D)

[
Ep(x|ϕM ,e) [log p(x|e,ϕM )]

]]]
=

1

λm

[
−Ep(x|e,D)

[
logEp(ϕm|e,D) [p(x|e,ϕm)]

]]
︸ ︷︷ ︸

E

+
1

λm

[
Ep(ϕM |D)

[
Ep(x|e,ϕM ) [log p(x|e,ϕM )]

]]
︸ ︷︷ ︸

F

For part E, we can estimate it by

E = − 1

λm ·K1 · L1

K1∑
k1=1

L1∑
l1=1

log

[
1

C

C1∑
c1=1

p(x(k1,l1)
m |ϕ(c1)

m , e)

]
,

where for the first expectation on p(ϕm|e, D), we first sample ϕ
(k1)
m from ϕ

(k1)
m ∼ p(ϕm|e, D) for

K1 times, and then for each ϕ
(k1)
m , we sample x

(k1,l1)
m from x

(k1,l1)
m ∼ p(x|ϕ(k1)

m , e) for L1 times.
For the second expectation on p(ϕm|e, D), we sample ϕ

(c1)
m ∼ p(ϕm|e, D) for C1 times.

For part F , we have

F =
1

λm
·
[
Ep(ϕM |D)

[
Ep(x|ϕM ,e) [log p(x|ϕM , e)]

]]
=

1

λm
·
[
Ep(ϕM |D)

[∫
p(x|ϕM , e) log p(x|ϕM , e) dx

]]
=

1

λm
·
[
Ep(ϕM |D)

[∫ ∫
p(x|ϕm, e)p(ϕm|ϕM ) dϕm log p(x|ϕM , e) dx

]]
=

1

λm
·
[
Ep(ϕM |D,e)

[∫ ∫
p(x|ϕm, e)p(ϕm|ϕM ) log p(x|ϕM , e) dx dϕm

]]
=

1

λm
·
[
Ep(ϕM |D,e)

[∫
Ep(x|ϕm,e) [p(ϕm|ϕM ) log p(x|ϕM , e)] dϕm

]]
=

1

λm
·
[
Ep(ϕM |D,e)

[
Ep(ϕm|ϕM )

[
Ep(x|ϕm,e) [log p(x|ϕM , e)]

]]]
.

It can be estimated by

1

λm ·K2 · L2 · C2

K2∑
k2=1

L2∑
l2=1

C2∑
c2=1

log
[
p(x(k2,l2,c2)

m |ϕ(k2)
M , e)

]
,
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where for the expectation on p(ϕM |D, e), we sample ϕ(k2)
M from ϕ

(k2)
M ∼ p(ϕM |e, D) for K2 times.

For the expectation on p(ϕm|ϕM ), for each ϕ
(k2)
M , we sample ϕ(k2,l2)

m from ϕ
(k2,l2)
m ∼ p(ϕm|ϕ(k2)

M )

for L2 times. For the expectation on p(x|ϕm, e), for each ϕ
(k2)
M and ϕ

(k2,l2)
m , we sample x

(k2,l2,c2)
m

from x
(k2,l2,c2)
m ∼ p(x|ϕ(k2,l2)

m , e) for C2 times.

Therefore, we can conclude that f(j, v,m) can be estimated by

f(j, v,m) =− 1

λm ·K1 · L1

K1∑
k1=1

L1∑
l1=1

log

[
1

C

C1∑
c1=1

p(x(k1,l1)
m |ϕ(c1)

m , e)

]

+
1

λm ·K2 · L2 · C2

K2∑
k2=1

L2∑
l2=1

C2∑
c2=1

log
[
p(x(k2,l2,c2)

m |ϕ(k2)
M , e)

]
,

where ϕ
(c1)
m ,ϕ

(k1)
m ∼ p(ϕm|D), x

(k1,l1)
m ∼ p(x|ϕ(k1)

m , e), ϕ
(k2)
M ∼ p(ϕM |D), ϕ

(k2,l2)
m ∼

p(ϕm|ϕ(k2)
M , D) and x

(k2,l2,c2)
m ∼ p(x|ϕ(k2,l2)

m , e).

Obviously, the above approximation of f(j, v,m) only depends on p(ϕm|D), p(ϕm|ϕM , D) and
p(x|ϕm, e). In the next, we show how to sample from them in Section A.2, A.3 and A.4, respectively.

A.2 Sampling from p(ϕm|D)

Basically, sampling from the posterior of “p(·|D)” is not easy. To solve this problem, as mentioned
in the main paper, we introduce a variational probability “q” to approximate “p”. In specific, in order
to sample from p(ϕm|D), we first obtain a sample ϕ1 from ϕ1 ∼ N (0, I), and then get ϕm from
the distribution q(ϕm|ϕ1).

Since

q(ϕm|ϕ1) =

∫
ϕm−1

· · ·
∫
ϕ2

q(ϕm,ϕm−1, . . . ,ϕ2|ϕ1) dϕm−1 . . . dϕ2.

and

q(ϕm,ϕm−1, . . . ,ϕ2|ϕ1) =

m∏
i=2

q(ϕi|ϕi−1)

q(ϕi|ϕi−1) = N (ciϕi−1 + di,σ
2
i I),

we have q(ϕm|ϕ1) is a Gaussian distribution, which is easy for sampling.

In our model, ci and σ2
i I are diagonal matrices, which means that the dimensions in ϕi are indepen-

dent with each other. We denote ϕi = [ϕi,1, ϕi,2 . . . ϕi,d], where ϕi,j is the jth element of ϕi. Then,
we have

q(ϕm,ϕm−1, . . . ,ϕ2|ϕ1) =

d∏
j=1

q(ϕm,j , ϕm−1,j , . . . , ϕ2,j |ϕ1,j).

So our target can be converted to calculate the probability q(ϕm,j , ϕm−1,j , . . . , ϕ2,j |ϕ1,j) for all
dimensions ∀1 ≤ j ≤ d. Let ci,j , di,j and σ2

i,j be the jth element of ci, di and σ2
i , respectvely. We

assume that σi,j =
√
c2i−1,j + 1 ·σi−1,j (i ≥ 4) and σ3,j = σ2,j = e, where e is the hyper-parameter.

Suppose µi,j is the mean of the Gaussian distribution for q(ϕi,j |ϕi−1,j), that is,

µi,j = ci,jϕi−1,j + di,j (i ≥ 2),

then, the approximated joint distribution can be represented as

q(ϕm,j , ϕm−1,j , . . . , ϕ2,j |ϕ1,j) =
m∏
i=2

q(ϕi,j |ϕi−1,j)

=

m∏
i=2

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

.
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Then, we integrate ϕ2,j , ϕ3,j , . . . , ϕm−1,j sequentially to obtain q(ϕm,j |ϕ1,j).
First of all, we integrate ϕ2,j for the joint distribution, where we have:

q(ϕm,j , ϕm−1,j , . . . , ϕ3,j |ϕ1,j)

=

∫
q(ϕm,j , ϕm−1,j , . . . , ϕ3,j , ϕ2,j |ϕ1,j) dϕ2,j

=

∫ m∏
i=2

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

dϕ2,j

=

m∏
i=4

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· 1√
2πσ3,j

· 1√
2πσ2,j

·
∫
e

−1

2σ2
3,j

[ϕ3,j−(c3,jϕ2,j+d3,j)]
2

·

e
−1

2σ2
2,j

[ϕ2,j−(w2ϕ1,j+d3,j)]
2

dϕ2,j .

Denote c̄2,j = c2,j and d̄2,j = d2,j , and because of σ3,j = σ2,j , we have

q(ϕm,j , ϕm−1,j , . . . , ϕ3,j |ϕ1,j)

=
1√

2πσ2,j
·
m∏
i=4

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· 1√
2πσ3,j

∫
e

−1

2σ2
3,j

[ϕ3,j−(c3,jϕ2,j+d3,j)]
2

·

e
−1

2σ2
3,j

[ϕ2,j−(c̄2,jϕ1,j+d̄2,j)]
2

dϕ2,j

=
1√

2πσ2,j
·
m∏
i=4

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· 1√
2πσ3,j

∫
·

e

−1

2σ2
3,j

{
[ϕ3,j − (c3,jϕ2,j + d3,j)]

2
+
[
ϕ2,j − (c̄2,jϕ1,j + d̄2,j)

]2}︸ ︷︷ ︸
S1 dϕ2,j .

For S1, we have

S1 = [ϕ3,j − (c3,jϕ2,j + d3,j)]
2
+
[
ϕ2,j − (c̄2,jϕ1,j + d̄2,j)

]2
=ϕ23,j + c23,jϕ

2
2,j + d23,j + 2d3,jc3,jϕ2,j − 2c3,jϕ3,jϕ2,j − 2d3,jϕ3,j + ϕ22,j

+ c̄22,jϕ
2
1,j + d̄22,j + 2d̄2,j c̄2,jϕ1,j − 2c̄2,jϕ1,j − 2d3,jϕ3,j

=(c23,j + 1)·ϕ22,j + 2(d3,jc3,j − c3,jϕ3,j − c̄2,jϕ1,j − d̄2,j)
c23,j + 1

+

(
d3,jc3,j − c3,jϕ3,j − c̄2,jϕ1,j − d̄2,j

c23,j + 1

)2


− (d3,jc3,j − c3,jϕ3,j − c̄2,jϕ1,j − d̄2,j)2

c23,j + 1
+ ϕ23,j + c̄22,jϕ

2
1,j + d̄22,j + 2d̄2,j c̄2,jϕ1,j − 2d3,jϕ3,j

=(c23,j + 1) ·

(
ϕ2,j −

c3,jϕ3,j + c̄2,jϕ1,j + d̄2,j − d3,jc3,j
c23,j + 1

)2

+
c23,jϕ

2
3,j + c̄22,jc

2
3,jϕ

2
1,j + d̄22,jc

2
3,j + 2d3,j c̄2,jc3,jϕ1,j − c̄22,jϕ21,j − d̄22,j − 2d̄2,j c̄2,jϕ1,j

c23,j + 1

+
ϕ23,j + c̄22,jϕ

2
1,j + d̄22,j + 2d̄2,j c̄2,jϕ1,j − 2d3,jϕ3,j − c23,jd23,j − c23,jϕ23,j + 2c23,jd3,jϕ3,j

c23,j + 1

+
2c3,j d̄2,jd3,j − 2c3,jϕ3,j c̄2,jϕ1,j − 2c3,jϕ3,j d̄2,j + 2d̄2,j c̄2,jc

2
3,jϕ1,j − 2d3,jc

2
3,jϕ3,j

c23,j + 1
.
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Then we have

S1 =(c23,j + 1) ·

(
ϕ2,j −

c3,jϕ3,j + c̄2,jϕ1,j + d̄2,j − d3,jc3,j
c23,j + 1

)2

+
ϕ23,j − 2(c̄2,jc3,jϕ1,j + d̄2,jc3,j + d3,j)ϕ3,j

c23,j + 1

+

(
c̄2,jc3,jϕ1,j + d̄2,jc3,j + d3,j

)2 − d23,j · (c23,j + 1)

c23,j + 1

=(c23,j + 1) ·

(
ϕ2,j −

c3,jϕ3,j + c̄2,jϕ1,j + d̄2,j − d3,jc3,j
c23,j + 1

)2

+
1

c23,j + 1
·
[
ϕ3,j − (c3,j c̄2,jϕ1,j + d̄2,jc3,j + d3,j)

]2 − d23,j .
Therefore we have

q(ϕm,j , ϕm−1,j , . . . , ϕ3,j |ϕ1,j)

=
1√

2πσ2,j
·
m∏
i=4

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

·

∫
√
c23,j + 1
√
2πσ3,j

e

−(c23,j+1)

2σ2
3,j

(
ϕ2,j−

c3,jϕ3,j+c̄2,jϕ1,j+d̄2,j−d3,jc3,j

c2
3,j

+1

)2

dϕ2,j


︸ ︷︷ ︸

S2

·

e
−1

2σ2
3,j

·(c2
3,j

+1)
[ϕ3,j−(c3,j c̄2,jϕ1,j+d̄2,jc3,j+d3,j)]

2

· e
d23,j

2σ2
3,j · 1√

c23,j + 1

The S2 part is the integration form of ϕ2,j ∼ N (
c3,jϕ3,j+c̄2,jϕ1,j+d̄2,j−d3,jc3,j

c23,j+1
,
σ2
3,j

c23,j+1
), which is

equal to 1, so we have

q(ϕm,j , ϕm−1,j , . . . , ϕ3,j |ϕ1,j)

=
1√

2πσ2,j
·
m∏
i=4

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· e
−1

2σ2
3,j

·(c2
3,j

+1)
[ϕ3,j−(c3,j c̄2,jϕ1,j+d̄2,jc3,j+d3,j)]

2

·

e

d23,j

2σ2
3,j · 1√

c23,j + 1
.

We denote c̄3,j = c3,j c̄2,j and d̄3,j = d̄2,jc3,j + d3,j , and denote r2,j = e

d23,j

2σ2
3,j · 1√

c23,j+1
, so we have

q(ϕm,j , ϕm−1,j , . . . , ϕ3,j |ϕ1,j)

=
1√

2πσ2,j
·
m∏
i=4

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· e
−1

2σ2
3,j

·(c2
3,j

+1)
[ϕ3,j−(c̄3,jϕ1,j+d̄3,j)]

2

· r2,j

=
1√

2πσ2,j
·
m∏
i=5

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· 1√
2πσ4

· e
−1

2σ2
4
[ϕ4−(c4ϕ3,j+d4)]

2

·

e
−1

2σ2
3,j

·(c2
3,j

+1)
[ϕ3,j−(c̄3,jϕ1,j+d̄3,j)]

2

· r2,j

=
1√

2πσ2,j
·
m∏
i=5

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

· 1√
2πσ4

· e
−1

2σ2
4
[ϕ4−(c4ϕ3,j+d4)]

2

·

e
−1

2σ2
4
[ϕ3,j−(c̄3,jϕ1,j+d̄3,j)]

2

· r2,j
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Similarly, then we integrate ϕ3,j

q(ϕm,j , ϕm−1,j , . . . , ϕ4|ϕ1,j)

=

∫
q(ϕm,j , ϕm−1,j , . . . , ϕ3,j |ϕ1,j) dϕ3,j

=
r2,j√
2πσ2,j

·
m∏
i=5

1√
2πσi,j

· e
−1

2σ2
i,j

(ϕi,j−µi,j)
2

·
∫

1√
2πσ4

· e
−1

2σ2
4
[ϕ4−(c4ϕ3,j+d4)]

2

·

e
−1

2σ2
4
[ϕ3,j−(c̄3,jϕ1,j+d̄3,j)]

2

dϕ2,j .

The formulation is similar to the previous one, so we can utilize the process above to integrate
succesively, and we finally obtain

q(ϕm,j |ϕ1,j) =
∏m−1
i=2 ri,j√
2πσ2,j

· e
−1

2σ2
m,j

·(c2
m,j

+1)
[ϕm,j−(c̄m,jϕ1,j+d̄m,j)]

2

,

which indicates

p(ϕm,j |ϕ1,j , D) ≈
∏m−1
i=2 ri,j√
2πσ2,j

· e
−1

2σ2
m,j

·(c2
m,j

+1)
[ϕm,j−(c̄mϕ1,j+d̄m,j)]

2

,

where we have the iterative calculation by

ri,j = e

d2i+1,j

2σ2
i+1,j · 1√

c2i+1,j + 1
,

c̄i,j = ci,j c̄i−1,j , (i ≥ 3),

d̄i,j = d̄i−1,jci,j + di,j , (i ≥ 3).

A.3 Sampling from p(ϕm|ϕM , D)

To sample from the distribution p(ϕm|ϕM , D), we first obtain a sample ϕ1 from the prior distribution
(i.e., ϕ1 ∼ N (0, I)), then get ϕm from a consecutive sampling process:

ϕM−1 ∼ p(ϕM−1|ϕM ,ϕ1, D),

ϕM−2 ∼ p(ϕM−2|ϕM−1,ϕ1, D),

...
ϕm ∼ p(ϕm|ϕm+1,ϕ1, D),

because of the Markov property in our cascaded model. So our target is obtaining the distributions
p(ϕi−1|ϕi,ϕ1, D). For a certain p(ϕi−1|ϕi,ϕ1, D), according to the Bayes rule, we have

p(ϕi−1|ϕi,ϕ1, D) =
p(ϕi|ϕi−1,ϕ1, D) · p(ϕi−1|ϕ1, D)

p(ϕi|ϕ1, D)
.

Similarly with the last section, we use non-bold symbols to represent one dimension of the multi-
dimension parameters, where they are able to transfer independently, and finally construct the eventual
parameters by concatenating, that is,

p(ϕi−1|ϕi,ϕ1, D) =

d∏
j=1

p(ϕi,j |ϕi−1,j , ϕ1,j , D).

So our target can be converted to calculate the probability p(ϕi,j |ϕi−1,j , ϕ1,j , D) for all dimensions
∀1 ≤ j ≤ d. According to the Markov property and the transportation probability, we have

p(ϕi,j |ϕi−1,j , ϕ1,j , D) ≈ q(ϕi,j |ϕi−1,j , ϕ1,j)

=
1√

2πσi,j
· e

−1

2σ2
i,j

·[ϕi,j−(ciϕi−1,j+di,j)]
2

.
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According to the previous section, we have

p(ϕi,j |ϕ1,j , D) ≈ q(ϕi,j |ϕ1,j) =
∏i−1
i=2 ri,j√
2πσ2,j

· e
−1

2σ2
i,j

·(c2
i,j

+1)
[ϕi,j−(c̄iϕ1,j+d̄i)]

2

,

p(ϕi−1,j |ϕ1,j , D) ≈ q(ϕi−1,j |ϕ1,j) =
∏i−2
i=2 ri,j√
2πσ2,j

· e
−1

2σ2
i−1,j

·(c2
i−1,j

+1)
[ϕi−1,j−(c̄i−1,jϕ1,j+d̄i−1,j)]

2

.

Then we have

p(ϕi−1,j |ϕi,j , ϕ1,j , D) ≈ q(ϕi,j |ϕi−1,j , ϕ1,j) · q(ϕi−1,j |ϕ1,j)
q(ϕi,j |ϕ1,j)

=
1√

2πσi,j · ri−1

· e
−1

2σ2
i,j

·[ϕi,j−(ci,jϕi−1,j+di,j)]
2

· e
[ϕi−1,j−(c̄i−1,jϕ1,j+d̄i−1,j)]

2

−2σ2
i−1,j

·(c2
i−1,j

+1)

e

[ϕi,j−(ci,jϕi−1,j+di,j)]
2

−2σ2
i,j

·(c2
i,j

+1)

=

√
ci,j + 1

2πσ2
i,j

· e
2σ2

i,j

d2
i,j · e

[ϕi,j−(ci,jϕi−1,j+di,j)]
2

2σ2
i+1,j · e

[ϕi,j−(ci,jϕi−1,j+di,j)]
2

−2σ2
i,j · e

[ϕi−1,j−(c̄i−1,jϕ1,j+d̄i−1,j)]
2

−2σ2
i,j

=

√
ci,j + 1

2πσ2
i,j

· e
2σ2

i,j

d2
i,j

+
[ϕi,j−(ci,jϕi−1,j+di,j)]

2

2σ2
i+1,j ·

e

1

−2σ2
i,j

·
{
[ϕi,j − (ci,jϕi−1,j + di,j)]

2
+
[
ϕi−1,j − (c̄i−1,jϕ1,j + d̄i−1,j)

]2}︸ ︷︷ ︸
C

Then we calculate the part C as

C = [ϕi,j − (ci,jϕi−1,j + di,j)]
2
+
[
ϕi−1,j − (c̄i−1,jϕ1,j + d̄i−1,j)

]2
= ϕ2i,j + (ci,jϕi−1,j + di,j)

2 − 2(ci,jϕi−1,j + di,j)ϕi,j

+ ϕ2i−1,j + (w̄i−1ϕ1,j + d̄i−1,j)
2 − 2ϕi−1,j(c̄i−1,jϕ+ d̄i−1,j)

= ϕ2i,j + c2i,jϕ
2
i−1,j + d2i,j + 2di,jci,jϕi−1,j − 2ci,jϕi−1,jϕi,j − 2di,jϕi,j + ϕ2i−1,j

+ c̄2i−1,jϕ
2
1,j + d̄2i−1,j + 2c̄i−1,j d̄i−1,jϕ1,j − 2c̄i−1,jϕ1,jϕi−1,j − 2d̄i−1,jϕi−1,j

= (w̄2
i−1 + 1) ·

[
ϕi−1,j −

ci,jϕi,j + c̄i−1,jϕ1,j + d̄i−1,j − di,jci,j
c2i,j + 1

]2
+B,

where B does not include ϕi, which indicates

p(ϕi−1,j |ϕi,j , ϕ1,j , D) ∼ N (
ci,jϕi,j + c̄i−1,jϕ1,j + d̄i−1,j − di,jwi−2

c2i,j + 1
,

σ2
i,j

c2i,j + 1
).

A.4 Calculation of p(x|e,ϕm)

In this section, we will show how to calculate the graph probability p(x|e,ϕm). Remember the graph
parameters ϕm = [θm;Sm;Tm], so we have

p(x|e,ϕm) =

∫
E

p(x|e,θm,E) · p(E|e,Sm,Tm) dE

= EE∼p(E|Sm,Tm) [p(x|e,θm,E)] .

According to Monte Carlo sampling, we have

p(x|e,ϕm) =
1

K
·
K∑
l=1

p(x|e,θm,El),

where El[i, j] ∼ Bernoulli(σ(STm[i] ·Tm[j])). In order to conduct intervention process, we change
the jth column of El to zeros, and represent it with Ẽl. Moreover, we replace the jth element of x
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with v, and get the result x̃. We change the jth element of ϵm with zero, and get the result ϵ̃m. Then
according the definition of causal graphs, we have

p(x|e,ϕm) =
1

K

K∑
l=1

N (x;f(x̃; Ẽl,γm), ϵ̃m),

where f is the causal function that depends on the parameter γm.

B Bayesian Optimization for Determining (j∗, v∗,m∗)

We intend to find the best tuple for acquisition, that is,

(j∗, v∗,m∗) = argmax
(j,v,m)

f(j, v,m).

We define the best interventional value v under interventional node j and fidelity m as

v∗(j,m) = argmax
v

f(j, v,m)

= argmax
v

fj,m(v).

where fj,m(v) is rewritten from f(j, v,m) under given j,m. Therefore, our task is calculat-
ing v∗(j,m) for ∀j ∈ [d],m ∈ [M ] with Bayesian optimization [47]. We utilize a Gaus-
sian Process (GP) [48] to model surrogate function distributions for each v∗(j,m). We denote
f ∼ GP(0,K(vi, vj)), and K(vi, vj) is the kernel of GP. We sequentially find vt and calculate
fj,m(vt) to direct the process. According to GP, the previous t functions and the t+ 1 function are
multivariate Gaussian distribution,[

F1:t

ft+1

]
∼ N

(
0,

[
Kt kt+1

kTt+1 K(vt+1, vt+1)

])
,

where we define

F1:t = [f1, f2, . . . , ft] ,

kt+1 = [K(vt+1, v1),K(vt+1, v2), . . . ,K(vt+1, vt+1)]
T
,

Kt =

K(v1, v1) · · · K(vt, v1)
...

. . .
...

K(vt, v1) · · · K(vt, vt)

 . (11)

Given previous t steps, we have the posterior probability is

p(ft+1|{(vi, fj,m(vi))}ti=1, vt+1) = N (µt(vt+1), σ
2
t (vt+1)),

with the non-parametric means and variances

µt(vt+1) = kTt+1(K+ I)−1F1:t, (12)

σ2
t (vt+1) = K(vv+1, vt+1)− kTt+1(K+ I)−1kt+1. (13)

We acquire the next vt+1 with GP-UCB [49] function

at+1(v) = µt(v) + βac ·
√
σ2
t (v),

vt+1 = argmax
v

at+1(v).

where βac is a hyper-parameter. Suppose the maximum of steps is T , the final output of function
v∗(j,m) is

v∗(j,m) = argmax
v

µT (v).

Then we choose the best interventional node j and fidelity m by their best values under O(d ·M)

j∗,m∗ = argmax
j,m

v∗(j,m),

v∗ = v∗(j∗,m∗).
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C Detailed Training Process of ELBO

C.1 Derivation Process of ELBO

Because we use the distribution q(ϕm) to approximate the distribution p(ϕm), then we intend to
minimize the distance between these two distributions optimize the parameters of q(ϕm), where we
utilize KL divergence to measure the distance, that is,

Ψ∗ = argmin
Ψ

KL[q(Φ||p(Φ|D)].

According to the variational inference, we have

KL [q(Φ)||p(Φ|D)]

=

∫
q(Φ) log

q(Φ)

p(Φ|D)
dΦ

=

∫
q(Φ) log q(Φ) dΦ−

∫
q(Φ) log p(Φ|D) dΦ

= EΦ∼q(Φ) [log q(Φ)]−
∫
q(Φ) log

p(Φ, D)

p(D)
dΦ

= EΦ∼q(Φ) [log q(Φ)]−
∫
q(Φ) log p(Φ, D) dΦ+

∫
q(Φ) log p(D) dΦ

= EΦ∼q(Φ) [log q(Φ)]− EΦ∼q(Φ) [log p(Φ, D)] +

∫
q(Φ) log p(D) dΦ

= EΦ∼q(Φ) [log q(Φ)]− EΦ∼q(Φ) [log p(Φ, D)]︸ ︷︷ ︸
−ELBO

+ log p(D).

Because log p(D) is not related to Ψ, minimizing KL [q(Φ)||p(Φ|D)] is equivalent to maximizing
the ELBO part, and we have

ELBO = EΦ∼q(Φ) [log p(Φ, D)]− EΦ∼q(Φ) [log q(Φ)]

= EΦ∼q(Φ) [log p(D|Φ)] + EΦ∼q(Φ) [log p(Φ)]− EΦ∼q(Φ) [log q(Φ)]

= EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)]

Above all, we can conclude that

Ψ∗ = argmin
Ψ

KL[q(Φ||p(Φ|D)]

is equivalent to maximize evidence lower bound

Ψ∗ = argmax
Ψ

ELBO

= argmax
Ψ

EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)] .

C.2 Estimation of ELBO

We represent the equation of ELBO as

ELBO = EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)]

= EΦ∼q(Φ) [log p(D|Φ)]︸ ︷︷ ︸
A

−EΦ∼q(Φ) [log q(Φ)− log p(Φ)]︸ ︷︷ ︸
B

.

For the part A, we have

A = EΦ∼q(Φ)

[
log

N∏
i=1

p(x(i)|j(i), v(i),m(i),Φ)

]
,
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where N is the current number of samples in buffer. Then we have

A =EΦ∼q(Φ)

[
log

N∏
i=1

p(x(i)|j(i), v(i),m(i),Φ)

]

=EΦ∼q(Φ)

[
N∑
i=1

log p(x(i)|j(i), v(i),m(i),Φ)

]

=

N∑
i=1

EΦ∼q(Φ)

[
log p(x(i)|j(i), v(i),m(i),Φ)

]
=

N∑
i=1

Eϕ
m(i)∼q(ϕm(i) )

[
log p(x(i)|j(i), v(i),m(i),ϕm(i))

]
.

Using Monte Carlo sampling [50], we can calculate the expectation by NS samples for each point.

A =

N∑
i=1

NS∑
j=1

log p(x(i)|j(i), v(i),m(i),ϕ
(j)

m(i)),

where we sample ϕ
(j)

m(i) ∼ q(ϕm(i)) with size NS .

Then we denote the distribution q(Φ) = N (µ̃all, Σ̃all), and similarly, we have p(Φ) =∏M
m=1 e

−β·f(Sm,Tm) · N (µall,Σall). Both the parameter µ̃all, Σ̃all can be represented by the
parameters in Ψ, while µall and Σall are constant. Then we calculate part B

B =EΦ∼q(Φ) [log q(Φ)− log p(Φ)]

=

∫
Φ

N (µ̃all, Σ̃all) log
N (µ̃all, Σ̃all)∏M

m=1 e
−β·f(Sm,Tm) · N (µall,Σall)

dΦ

=

∫
Φ

N (µ̃all, Σ̃all) log
N (µ̃all, Σ̃all)

N (µall,Σall)
dΦ+

∫
Φ

N (µ̃all, Σ̃all) log
1∏M

m=1 e
−β·f(Sm,Tm)

dΦ

=KL[N (µ̃all, Σ̃all)||N (µall,Σall)]︸ ︷︷ ︸
C

+

∫
Φ

N (µ̃all, Σ̃all) log

M∏
m=1

eβ·f(Sm,Tm) dΦ︸ ︷︷ ︸
D

.

According to KL divergence of Gaussian distribution, we can calculate C in a close-form.

C =KL[N (µ̃all, Σ̃all)||N (µall,Σall)]

=
1

2

[
log
||Σall||
||Σ̃all||

− d+ tr(Σ−1
all Σ̃all) + (µ̃all − µall)

TΣ−1
all (µ̃all − µall)

]
.

Then we calculate D by the following steps:

D =

∫
Φ

N (µall,Σall) log

M∏
m=1

eβ·f(Sm,Tm) dΦ

=

∫
Φ

N (µall,Σall)

M∑
m=1

log eβ·f(Sm,Tm) dΦ

= ·
∫
Φ

N (µall,Σall)

M∑
m=1

β · f(Sm,Tm) dΦ

= β · EΦ∼N (µall,Σall)

[
M∑
m=1

f(Sm,Tm)

]
.
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Using Monte Carlo sampling, we can calculate the expectation by ND samples for each point.

D = β ·
ND∑
i=1

M∑
m=1

f(S(i)
m ,T(i)

m ).

= β ·
ND∑
i=1

M∑
m=1

E
p(E|S(i)

m ,T
(i)
m )

[
λ1 ·

[
tr
(
eE
)
− d
]
+ λ2 · ||E||

]
,

where we samples Φ(i) ∼ N (µall,Σall) with size ND. Using Monte Carlo sampling again, we can
calculate the expectation by NE samples.

D = β ·
ND∑
i=1

M∑
m=1

NE∑
j=1

[
λ1 ·

[
tr
(
eE
)
− d
]
+ λ2 · ||E||

]
,

where we samples E(j) ∼ p(E|S(i)
m ,T

(i)
m ) with size NE .

Finally, we obtain the estimation

ELBO =

N∑
i=1

NS∑
j=1

log p(x(i)|j(i), v(i),m(i),ϕ
(j)

m(i))

− 1

2

[
log
||Σall||
||Σ̃all||

− d+ tr(Σ−1
all Σ̃all) + (µ̃all − µall)

TΣ−1
all (µ̃all − µall)

]

− β ·
ND∑
i=1

M∑
m=1

NE∑
j=1

[
λ1 ·

[
tr
(
eE
)
− d
]
+ λ2 · ||E||

]
.

C.3 Gaussian Reparameterization Trick

In the last section, we derive the objection function for optimizing the model parameters, where we
can use methods of the gradient decent to solve it. However, a significant problem rises due to the
sampling process, because the gradient of model parameters can not pass backward from the naive
sampling process(i.e., untraceable). Therefore, we use Gaussian reparameterization trick to make the
Gaussian sampling process traceable.

In specific, we will demonstrate the traceable calculation of ϕ by Gaussian reparameterization
trick. In order to sample ϕ ∼ N (µ,Σ), we first sample δ ∼ N (0, I) instead, and then obtain
ϕ = µ+ δ ⊙Σ. Therefore, the gradient can be traced from ϕ to µ and Σ. In specific, both µ and Σ
can be represented with the function of learnable parameter Ψ.

C.4 Gumbel-softmax Reparameterization Trick

Besides of the Gaussian sampling process, the Bernoulli sampling in our equation is not traceable
either, so we utilize Gumbel-softmax reparameterization trick to make it traceable.

We demonstrate the traceable calculation of E ∼ p(E|S,T) by Gumbel-max reparameterization
trick. According to Gumbel-max [51], we have

Bernoulli(p) ⇐⇒ 1 [G1 + log p > G0 + log(1− p)] , G0, G1 ∼ Gumbel(0, 1).

Instead of using unit step function, we utilize sigmoid function

σ(G1 + log p > G0 + log(1− p)).

Therefore, we have

Ei,j = σ(Li,j + STi ·Tj),

where Li,j ∼ L(0, 1). Therefore, we sample Li,j ∼ L(0, 1) instead, where L(0, 1) is logistic
distribution, and calculate Ei,j = σ(Li,j + STi ·Tj) to trace gradients. Specifically, both Si and Ti
can be represented with the function of learnable parameter Ψ.
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C.5 Optimization of ELBO

With the estimation and reparameterization trick, we are able to conduct gradient descent methods to
optimize our parameters with the objection function

Ψ∗ = argmax
Ψ

ELBO.

The format of stochastic gradient descent (SGD) is

Ψ← Ψ+ γ · ∂ELBO
∂Ψ

,

where γ is the learning rate.

D Training Process of Constraint based ELBO

We intend to optimize our parameter with

Ψ∗ =argmax
Ψ

EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)] ,

s.t.
∑

{es,et}

I(xs;xt|ϕM , {es, et}, D) ≤ ϵ.

However, the objection has a constraint, which is hard to optimize with gradient descent methods. So
we utilize Lagrange multiplier [52] to convert it to a constraint-free method:

Ψ∗ =argmax
Ψ

EΦ∼q(Φ) [log p(D|Φ)− log q(Φ) + log p(Φ)] + λ ·
∑

{es,et}

I(xs;xt|ϕM , {es, et}, D),

where λ is the Lagrange multiplier. Then, we intend to calculate the constraint part.

First of all, we have

I(xs;xt|ϕM , {es, et}, D)

=H(xs|ϕM , {es, et}, D) +H(xt|ϕM , {es, et}, D)−H(xs,xt|ϕM , {es, et}, D)

=H(xs|ϕM , es, D) +H(xt|ϕM , et, D)−H(xs,xt|ϕM , {es, et}, D),

For the term H(xs|ϕM , es, D), we have

H(xs|ϕM , es, D) = −
∫
p(xs|ϕM , es, D) log p(xs|ϕM , es, D) dxs

= −Ep(xs|ϕM ,es,D) [log p(xs|ϕM , es, D)] .

We use Monte Carlo sampling to estimate H(xs|ϕM , es, D), and we have

H(xs|ϕM , es, D) ≈ 1

K1 ·K2

K1∑
k1=1

K2∑
k2=1

log p(x(k1,k2)|es,ϕM ),

where we sample graphs ϕk1m ∼ q(ϕm|es,ϕM ), and obtain samples x(k1,k2) ∼ p(x|es,ϕk1m ).
Similarly, we can calculate

H(xt|ϕM , et, D) ≈ 1

K1 ·K2

K1∑
k1=1

K2∑
k2=1

log p(x(k1,k2)|et,ϕM ),

where we sample graphs ϕk1m ∼ q(ϕm|et,ϕM ), and obtain samples x(k1,k2) ∼ p(x|et,ϕk1m ).

And we have

H(xs,xt|ϕM , {es, et}, D) ≈ 1

K1 ·K2 ·K3

K1∑
k1=1

K2∑
k12=1

K2∑
k22=1

log p(x(k1,k
1
2),x(k1,k

2
2)|{es, et},ϕM ),

25



where we sample graphs ϕk1m ∼ q(ϕm|{es, et},ϕM ), obtain samples x(k1,k
1
2) ∼ p(x|es,ϕk1m ), and

obtain samples x(k1,k
2
2) ∼ p(x|et,ϕk1m ).

Therefore, we add constraint on the original loss function to obtained the estimation of constraint
based ELBO, that is,

ELBO =

N∑
i=1

NS∑
j=1

log p(x(i)|j(i), v(i),m(i),ϕ
(j)

m(i))

− 1

2

[
log
||Σall||
||Σ̃all||

− d+ tr(Σ−1
all Σ̃all) + (µ̃all − µall)

TΣ−1
all (µ̃all − µall)

]

− β ·
ND∑
i=1

M∑
m=1

NE∑
j=1

[
λ1 ·

[
tr
(
eE
)
− d
]
+ λ2 · ||E||

]
+ λ · [I(xs;xt|ϕM , {es, et}, D)] .

E Proof of Theory 3

Proof. To begin with, we introduce two anchor variables x, e, indicating existing samples and
experiments in the system, which are independent with the following experiments. Since xs,xt are
ϵ-independent given ϕM , {es, et} and D, we have:

I(xs;xt|ϕM , {es, et}, D) = I(xs;xt|ϕM ,x, e ∪ {es, et}, D) ≤ ϵ
⇔ H(xs|ϕM ,x, e ∪ {es, et}, D) +H(xt|ϕM ,x, e ∪ {es, et}, D)

−H(xs,xt|ϕM ,x, e ∪ {es, et}, D) ≤ ϵ,
Since
I(xs;ϕM |x, e ∪ {es, et}, D) =H(xs|x, e ∪ {es, et}, D)−H(xs|ϕM ,x, e ∪ {es, et}, D)

I(xt;ϕM |x, e ∪ {es, et}, D) =H(xt|x, e ∪ {et, et}, D)−H(xt|ϕM ,x, e ∪ {es, et}, D)

We have:
I(xs;ϕM |x, e ∪ {es, et}, D) + I(xt;ϕM |x, e ∪ {es, et}, D)

=H(xs|x, e ∪ {es, et}, D) +H(xt|x, e ∪ {et, et}, D)

−H(xs|ϕM ,x, e ∪ {es, et}, D)−H(xt|ϕM ,x, e ∪ {es, et}, D)

≥H(xs,xt|x, e ∪ {es, et}, D)−H(xs,xt|ϕM ,x, e ∪ {es, et}, D)− ϵ
=I(xs,xt;ϕM |x, e ∪ {es, et}, D)− ϵ.

According to the basic mutual information property I(A,B;C)− I(B;C) = I(A;C|B), we have:

I(x ∪ xs;ϕM |e ∪ {es, et}, D)− I(x;ϕM |e ∪ {es, et}, D)

+I(x ∪ xt;ϕM |e ∪ {es, et}, D)− I(x;ϕM |e ∪ {es, et}, D)

≥I(x ∪ {xt,xs};ϕM |e ∪ {es, et}, D)− I(x;ϕM |e ∪ {es, et}, D)− ϵ.
Thus, we have:

I(x ∪ xs;ϕM |e ∪ {es, et}, D) + I(x ∪ xt;ϕM |e ∪ {es, et}, D)

≥I(x ∪ {xt,xs};ϕM |e ∪ {es, et}, D) + I(x;ϕM |e ∪ {es, et}, D)− ϵ.
Since different experiments are independent, we have:

I(x ∪ xs;ϕM |e ∪ {es}, D) + I(x ∪ xt;ϕM |e ∪ {et}, D)

≥I(x ∪ {xt,xs};ϕM |e ∪ {es, et}, D) + I(x;ϕM |e, D)− ϵ.
Thus, I(·;ϕM |·, D) is ϵ-submodular.

F Proof of Theory 4

For clear presentation, we denote g({ei}ni=1) = I({xi}ni=1;ϕM |{ei}ni=1, D), then we need to solve
the following problem:

argmax
{ei}n

i=1

g({ei}ni=1), (14)
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Suppose S∗ = {e∗i }ni=1 is the optimal solution for objective (14), and the results of the greedy
method is S = {ei}ni=1, where the experiments are sequentially determined from e1 to en. We
denote S1:j = {ei}ji=1, and ∆(e|S1:j) = g(S1:j ∪ e)− g(S1:j), according to the greedy method, we
have:

ej+1 = argmax
e

∆(e|S1:j)

λe
,

where λe is the cost of experiment e.

Based on all the above notations, we have:

g(S∗) ≤ g(S∗ ∪ S1:j)

= g(S1:j) + g(S1:j ∪ e∗1)− g(S1:j)

+ g(S1:j ∪ e∗1 ∪ e∗2)− g(S1:j ∪ e∗1)

+ . . .

+ g(S1:j ∪ {e∗1, ..., e∗n})− g(X1:i ∪ {e∗1, ..., e∗n−1})

= g(S1:j) +

n∑
k=1

[
g(S1:j ∪ {e∗1, ..., e∗k})− g(X1:i ∪ {e∗1, ..., e∗k−1})

]
≤ g(S1:j) +

n∑
k=1

[g(S1:j ∪ {e∗k})− g(S1:j) + ϵ]

= g(S1:j) +

n∑
k=1

[∆({e∗k}|S1:j) + ϵ] ,

where the first inequality holds because of the non-decreasing property, and the second inequality
holds because of the ϵ-submodular property.

Since ej+1 = argmaxe
∆(e|S1:j)

λe
, we have ∆(e|S1:j)

λe
≤ ∆(ej+1|S1:j)

λej+1
for any e, thus ∆(e|S1:j) ≤

λe

λej+1
∆(ej+1|S1:j) ≤ Bλ∆(ej+1|S1:j). By bringing this result into the above equation, we have:

g(S∗) ≤ g(S1:j) +

n∑
k=1

[∆({e∗k}|S1:j) + ϵ]

≤ g(S1:j) +

n∑
k=1

[Bλ∆(ej+1|S1:j) + ϵ]

= g(S1:j) + nBλ∆(ej+1|S1:j) + nϵ

Let Tj = g(S∗)− g(S1:j), we have:

Tj − Tj+1 = g(S1:j+1)− g(S1:j) = ∆(ej+1|S1:j) ≥
Tj − nϵ
nBλ

Then

Tn ≤ (1− 1

nBλ
)Tn−1 +

ϵ

Bλ
≤ [(1− 1

nBλ
)]2Tn−2 + (1− 1

nBλ
)
ϵ

Bλ
+

ϵ

Bλ

≤ ... ≤ [(1− 1

nBλ
)]nT0 + [(1− 1

nBλ
)]n−1 ϵ

Bλ
+ ...+

ϵ

Bλ

Let B = [(1 − 1
nBλ

)]n−1 ϵ
Bλ

+ ... + ϵ
Bλ

= ϵ
Bλ

∑n
i=1[(1 −

1
nBλ

)]i−1, and considering that [(1 −
1

nBλ
)]n = e

− 1
Bλ , we have:

g(S∗)− g(S1:n) ≤ e−
1

Bλ g(S∗) +B

Thus, we have g(S1:n) ≥ (1− e−
1

Bλ )g(S∗)−B.
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Algorithm 1: Algorithm of Licence for Single Intervention Scenario

Input: Variable set XV , number of oracles M , cost of oracles Λ, observational data DO, total
budget C, and learning rate η.

Output: Causal graph ϕM .
1 Initialize the model parameter Ψ .
2 Optimize Ψ with the training process of ELBO under DO.
3 Initialize DI = ∅.
4 while Budget C does not run out do
5 Initialize j∗,m∗, v∗ and let ζ∗ = −∞.
6 for (j,m) in {1, 2, . . . , d} × {1, 2, . . . ,M} do
7 Calculate v∗(j,m) with BO.
8 if f(j, v∗(j,m),m) > ζ∗ then
9 Update j∗ ← j,m∗ ← m and v∗ ← v∗(j,m).

10 Update ζ∗ ← f(j, v∗(j,m),m).
11 end
12 end
13 Subtract the budget with C ← C − λm∗ .
14 Acquire (j∗, v∗,m∗) towards the true causal graph to obtain x∗ ∼ pm(XV |do(Xj = v)).
15 Update DI ← DI ∪ {x∗}.
16 Optimize Ψ with training process of ELBO under DO ∪DI .
17 end
18 Sample ϕM from p(ϕM |D)
19 return Causal graph ϕM .

G Algorithm

The algorithm for Licence method for single interventiion scenario is shown in Algorithm 1. Moreover,
the algorithm for Licence method for batch interventiion scenario is shown in Algorithm 2.

H More Experiments

H.1 Experimental Settings

H.1.1 Datasets

The details of our experimental datasets are presented as follows:

• Erdős-Rényi (ER) [41] graph is a random graph introduced by Paul Erdős and Alfréd Rényi. For
ER graph, a graph with n vertices is generated by connecting each pair of vertices with a probability
p.

• Scale-Free (SF) [42] graph is a type of random graph that has a degree distribution following power
law. A small number of vertices in SF graph own a large number of edges, while the vast majority of
vertices have relatively few edges.

• DREAM [43] is the abbreviation for Dialogue for Reverse Engineering Assessments and Methods,
which can estimate the reverse quality that causal discovery methods perform. Specifically, we use a
biological graph generator GeneNetWeaver for our experiments, which is a real-word public dataset.

H.1.2 Baselines

The details of experimental baselines are demonstrated as follows. We utilize DiBS [53] as our basic
graph representation component. For acquisition methods, we use AIT and CBED and obtain the
query tuples of node and value.

• AIT [44] is an active learning method that utilize f-score to select intervention queries.
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Algorithm 2: Algorithm of Licence for Batch Intervention Scenario

Input: Variable set XV , number of oracles M , cost of oracles Λ, observational data DO, total
batch experiment step T , total budget C, and learning rate η.

Output: Causal graph ϕM .
1 Initialize the model parameter Ψ .
2 Optimize Ψ with training process of constraint based ELBO under DO.
3 Initialize BI = ∅
4 for t in 1, 2, . . . , T do
5 while Budget C does not run out do
6 Initialize j∗,m∗, v∗ and let ζ∗ = −∞.
7 for (j,m) in {1, 2, . . . , d} × {1, 2, . . . ,M} do
8 Calculate v∗(j,m) with BO.
9 if f(j, v∗(j,m),m) > ζ∗ then

10 Update j∗ ← j,m∗ ← m and v∗ ← v∗(j,m).
11 Update ζ∗ ← f(j, v∗(j,m),m).
12 end
13 end
14 Subtract the budget with C ← C − λm∗ .
15 Update BI ← BI ∪ {(j∗, v∗,m∗)}.
16 end
17 Acquire BI towards the true causal graph to obtain

{x∗ ∼ pm(XV |do(Xj = v))}(j,v,m)∈BI .
18 Update DI ← DI ∪ {x∗}(j,v,m)∈BI .
19 Optimize Ψ with training process of constraint based ELBO under DO ∪DI .
20 end
21 Sample ϕM from p(ϕM |D)
22 return Causal graph ϕM .

•CBED [8] is based on the calculation of mutual information (MI), which intend to select intervention
queries with maximal MI scores after obtaining new samples under current queries.

For the batch intervention scenario, we extend above methods with greedy strategy, which can
promise an lower bound for approximation with submodular property. For choosing the fidelities to
query, we use two circumstances, i.e., REAL and RANDOM.

• REAL fidelity means the model always choose the highest fidelity to conduct experiments. This
strategy is aligned with classic causal discovery under active learning paradigm without multi-fidelity
settings, which can just choose the most accurate samples to conduct discovery process.

• RANDOM fidelity means the model choose different fidelities randomly with uniform probability.

H.1.3 Metrics

The details of experimental metrics are demonstrated as follows. We utilize SHD and AUPRC to
reflect the topological structure discovering performance, and design RMSE to reflex the predicting
performance of functional relations.

• SHD [45] is the abbreviation for Structural Hamming Distance, and it estimate the topological
structure by counting the number of different edges on adjacency matrix. We calculate the expectation
of SHD under multiple graph samplings.

• AUPRC [46] is the area under precision-recall curve, where we consider entities on the adjacency
matrix as binary classification problem. The AUPRC is also under the expectation for multiple graph
sampling.

• RMSE is designed for estimating the performance of grasping functional relations. We obtain
several samples from the true causal graph, and let our model and the true causal function to conduct
forward process respectively, then calculate the RMSE between the two results. We calculate RMSE
by sampling graphs for multiple times.
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Table 1: The left table demonstrate the details of the configuration of device and platform. The right
table shows the details of time cost on computation.

Name Details
CPU Intel Xeon Platinum 8350C 2.60GHz
GPU RTX A5000 (24GB)

Memory 42GB RAM
Python Version 3.8

Java Version 1.8.0 (Necessary for DREAM)

Model Time (secs)
AIT-REAL 7.686

AIT-RANDOM 7.451
CBED-REAL 7.998

CBED-RANDOM 7.989
Licence 8.320

Table 2: The details of experimental settings.

Name Explanation Value
budget The total budget for interventional experiments, (i.e., C). 10/20/30/40/50

oracle number The number of oracles, (i.e., M ) 3
oracle cost The cost for each oracle, (i.e., Λ) 2, 8, 32

oracle noise The extra additive noise for each oracle. 0.04, 0.02, 0.00
observation number The number of observational samples. 1000
expect edge number The number of expect edges. 2

additive noise The value of additive noise during data generations. 0.01

H.2 Simulation of Oracles with Different Fidelities

For a given intervention (j, v), suppose we have M oracles {ϕ1, ϕ2, ..., ϕM}, then the experiment
results {xj,v,1, xj,v,2, ..., xj,v,M} are specified as follows:

xj,v,m = xj,v,M + δm,

δm ∼ N(0, σm),

where xj,v,M is the ground truth, which can be directly obtained from the datasets. Since xj,v,m is
correlated with xj,v,M by the first line, their underlying oracles ϕm and ϕM are correlated in our
simulation. In our experiment, we set δ1 > δ2 > ... > δM = 0. Suppose the cost of ϕm as λm, then
we set λ1 < λ2 < ... < λM .

H.3 Details of Configurations and Computation

The details of the configurations of device and platform are demonstrate in Table 1(left). We will
show the details of the time cost on computation. We measure the time cost on the generation of each
intervention per fidelity for all models, and the results are shown in Figure 1(right). We find that our
method cost a little more than the baselines, which is probably due to the more complex sampling
process in our model.

We also show the details of experimental settings for our overall experiments in Table 2. We carefully
tune the hyper-parameters for baselines and our model, and the final values can be obtained in the
configuration file in our codes.

H.4 Experiments on DREAM Dataset

We conduct experiments on a real-world biological dataset, called DREAM. Note that, DREAM does
not support the calculation of RMSE, because of the lack of interface in this real-world dataset. We
use two sub-datasets Ecoli and Yeast as our true causal graphs. The results are shown in Figure 4. We
find that our model outperforms that other baselines on both Ecoli and Yeast, and both single and
batch intervention scenario.

H.5 Experiments on More Nodes

In this section, we conduct further experiments on datasets with more nodes. We extend the number
of nodes from 10 to 20, and experiment on the ER graph. The results are shown in Figure 3. We find
that our model is still effective on the scenario of more nodes, and is better than baselines.
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Figure 4: The performance among models on DREAM datasets with different datasets and budgets.
Lower SHD, RMSE indicate better performances. We conduct each experiment for ten times, and
report the average performances and error bars.

Table 3: SHD results of 20 nodes graphs on different budgets. Lower SHD indicates better perfor-
mances. We conduct each experiment for ten times, and report average performances and error bars.

Model Budget(10) Budget(20) Budget(30) Budget(40) Budget(50)
AIT-REAL 63.36±4.89 64.36±5.18 64.53±6.83 63.28±4.86 64.35±5.19

AIT-RANDOM 63.62±4.61 62.16±5.75 64.60±5.23 66.87±6.47 63.53±5.27
DiBS-REAL 63.58±6.35 61.50±7.69 63.50±6.86 63.56±6.34 61.45±7.69

DiBS-RANDOM 63.68±6.77 65.07±6.41 63.91±7.14 63.99±4.46 63.86±3.00
Licence 49.67±11.64 49.61±8.08 55.68±8.63 51.34±11.24 51.36±9.11

H.6 Supplementary Experiments on MAE Metric

We further compare our model with the baselines based on the Mean Absolute Error (MAE) metric.
The experiments are conducted based on ER with different total budgets. The results are presented in
Table 4.

Table 4: Results of the metric MAE (%).

Model Budget(10) Budget(20) Budget(30) Budget(40) Budget(50)
AIT-REAL 3.46±0.01 2.43±0.01 2.63±0.01 3.46±0.01 2.42±0.01

AIT-RANDOM 3.71±0.02 2.42±0.01 2.82±0.01 2.68±0.00 2.54±0.01
CBED-REAL 3.73±0.01 2.56±0.00 2.54±0.00 3.69±0.01 2.52±0.00

CBED-RANDOM 4.00±0.02 2.53±0.00 2.88±0.00 3.14±0.01 2.70±0.01
Licence 2.06±0.00 2.20±0.01 1.70±0.00 1.77±0.00 2.07±0.00

The results indicate that our model surpasses the baselines in terms of MAE. This further provides
evidence that the superior performance of our model is a general conclusion.

H.7 Supplementary Experiments on Different Oracle Settings

To demonstrate that our model is generally effective for different cost- and noisy-levels. We conduct
experiments based on different sets of oracles. In specific, the experiments are conducted based on
the following settings in Table 5. The results are presented in Figure 5.

From the results, we can see that our model can always perform better than the baselines on different
sets of oracles.
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Table 5: Settings for different cost and noise levels.

Setting 1 Setting 2
Oracle (m) cost (λm) noise (σm) Oracle (m) cost (λm) noise (σm)

1 2 0.04 1 2 0.04
2 8 0.02 2 8 0.02
3 32 0 3 16 0

Setting 3 Setting 4
Oracle (m) cost (λm) noise (σm) Oracle (m) cost (λm) noise (σm)

1 2 0.04 1 2 0.04
2 4 0.02 2 8 0.02
3 32 0 3 32 0

Setting 5 Setting 6
Oracle (m) cost (λm) noise (σm) Oracle (m) cost (λm) noise (σm)

1 2 0.08 1 2 0.04
2 8 0.02 2 8 0.03
3 32 0 3 32 0

H.8 Supplementary Experiments on Regularization Coefficient λ

In our model, the ϵ-independent constraint in Equation 10 is an important contribution. In the
optimization process, we convert it to the objective. We study the influence of the coefficient λ by
tuning it in the range of [10−5,10−6,10−7,10−8,10−9]. The results are presented in Figure 6.

From the results, we can see the performances of our model varies as we set different λ’s. In most
cases, the best performance is achieved when λ is moderated (not too large or too small).

H.9 Supplementary Experiments on Ablation Studies

To study whether the correlation modeling between different oracles are necessary, we first build a
variant of our model by regarding different oracles as independent components, that is, removing the
links between different ϕ’s in Figure 1, and then compare our model with such variant. The results
are presented in Table 6.

Table 6: Results of the Licence and Licence without the cascaded relation.

Metrics Model Budget(10) Budget(20) Budget(30) Budget(40) Budget(50)

SHD ↓
Licence (w/o rel) 14.61±2.30 15.25±2.74 15.47±3.74 15.17±4.30 18.52±4.65

Licence 14.67±2.98 14.73±2.04 14.29±3.20 14.83±3.24 15.02±3.01

AUPRC (%) ↑
Licence (w/o rel) 28.96±1.28 35.05±1.35 31.74±1.50 37.85±2.03 33.70±4.36

Licence 35.75±2.13 25.12±2.01 41.79±1.71 40.89±2.92 41.76±3.19

RMSE (%) ↓
Licence (w/o rel) 3.34±0.04 3.10±0.02 2.46±0.00 2.61±0.00 2.83±0.00

Licence 2.82±0.01 2.75±0.00 2.40±0.00 2.68±0.01 2.69±0.01

We can see, in most cases, our model can achieve better performance than its variant without modeling
the correlations between different oracles.

I Potentially Negative Social Impact

Causal discovery focuses on understanding causal relationships between variables. While causal
discovery has the potential to bring about positive social impacts, it is important to consider both the
positive and negative implications of its applications. In this response, I will focus on the negative
impact of causal discovery.

• Reductionism and Oversimplification. Causal discovery techniques often aim to identify simple
cause-and-effect relationships. However, complex social phenomena often involve a multitude of
interconnected factors, making it difficult to capture the full complexity of the system. Relying
solely on causal discovery may lead to oversimplification and reductionism, neglecting the nuanced
interactions between variables.
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Figure 5: Results of different settings of oracles in terms of cost and noise.

Figure 6: Results of extensive experiments on regularization λ.
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• Ethical Concerns. Causal discovery can involve analyzing sensitive data, such as personal
information or medical records. If not handled carefully, the use of this data can raise significant
ethical concerns related to privacy, consent, and potential discrimination. Improper handling of data
could lead to violations of privacy and unfair treatment of individuals or groups.

• Overreliance on Correlation. Causal discovery often relies on identifying statistical correlations
between variables. However, correlation does not imply causation, and there is a risk of mistakenly
inferring causal relationships based solely on correlation. Overreliance on such methods can lead to
erroneous conclusions, leading to misguided decision-making and ineffective interventions.

• Social Bias and Inequality. Causal discovery relies on the data used for analysis, which can reflect
existing biases and inequalities present in society. If the data used is biased, the causal relationships
discovered may perpetuate or exacerbate existing social inequalities. Causal discovery methods need
to be sensitive to potential biases and strive for fairness and inclusivity in both data collection and
analysis.

In conclusion, while causal discovery holds promise in understanding complex systems, it is crucial
to consider its potential negative impacts. Oversimplification, ethical concerns, overreliance on
correlation, and social bias are all factors that need to be addressed to ensure responsible and
beneficial applications of causal discovery. It is essential to approach this field with caution and
incorporate broader societal considerations to mitigate the negative impacts and harness its potential
for positive social change.

J Limitations

In this section, we analyze the limitations of our work, including sub-optimum of greedy method,
estimation of mutual information, and scale of causal graph.

• Sub-optimum of greedy method. For the whole process of active causal discovery, the interven-
tional data will be acquired successively in the greedy manner. Therefore, even if the strategy for
acquisition is the optimal for each current step, the entire trajectory of causal discovery is sub-optimal.
A possible solution is finding the best acquisition trajectory by reinforcement learning.

• Estimation of mutual information. For different circumstances, the costs, accuracy and data scale
can be various. Therefore, the scale of mutual information can be affected as well. So it is important
to adjust hyper-parameters accordingly.

• Scale of causal graph. It is a classic problem for causal discovery that most existing methods
suffer from the difficulty in extending to large-scale graphs. The efficiency and effectiveness are
supposed to be further improved, and we will optimize our model as well.
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