

# 000 001 002 003 004 005 MODEL INVERSION ATTACKS ON VISION-LANGUAGE 006 MODELS: DO THEY LEAK WHAT THEY LEARN? 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

## ABSTRACT

Model inversion (MI) attacks pose significant privacy risks by reconstructing private training data from trained neural networks. While prior works have focused on conventional unimodal DNNs, the vulnerability of vision-language models (VLMs) remains underexplored. In this paper, we conduct the first study to understand VLMs' vulnerability in leaking private visual training data. To tailored for VLMs' token-based generative nature, we introduce four novel token-based and sequence-based model inversion strategies. Particularly, we propose *Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW)*, based on our insight that not all tokens are equally informative for inversion. By dynamically reweighting token-level feedback according to each token's informativeness for inversion, SMI-AW achieves consistent improvement in reconstruction quality. Through extensive experiments and user study on three state-of-the-art VLMs and multiple datasets, we demonstrate, for the first time, that VLMs are susceptible to training data leakage. The experiments show that our proposed sequence-based methods, particularly SMI-AW combined with a logit-maximization loss based on vocabulary representation, can achieve competitive reconstruction and outperform token-based methods in attack accuracy and visual similarity. Importantly, human evaluation of the reconstructed images yields an attack accuracy of 75.31%, underscoring the severity of model inversion threats in VLMs. Notably, we also demonstrate inversion attacks on the publicly released VLMs. Our study reveals the privacy vulnerability of VLMs as they become increasingly popular across many applications such as healthcare and finance. **Our code, pretrained models, and reconstructed images are available in OpenReview's discussion forum.**

## 1 INTRODUCTION

Model Inversion (MI) attacks aim to reconstruct training data by exploiting information encoded within a trained model. These attacks pose significant privacy risks to unimodal DNNs (Fredrikson et al., 2015; Zhang et al., 2020; Chen et al., 2021; An et al., 2022; Struppek et al., 2022; Kahla et al., 2022; Han et al., 2023; Nguyen et al., 2023b; Yuan et al., 2023; Nguyen et al., 2023a; Qiu et al., 2024). The goal of MI attack is to reconstruct private training images  $x$  associated with a target label  $y$ . These methods typically pose inversion as an optimization problem that maximizes the likelihood of  $y$  under the target model:

$$\max_w \log \mathbb{P}_{M_{DNN}}(y | G(w)) \quad (1)$$

Here,  $M_{DNN}$  is a unimodal DNN trained on private data  $\mathcal{D}_{priv}$ , and  $G$  represents a generative model (Goodfellow et al., 2014; Karras et al., 2019). The optimization is usually accomplished by performing  $N$  inversion update steps to generate a reconstruction  $x^* = G(w^*)$  that approximates the training sample in  $\mathcal{D}_{priv}$  for a given label  $y$ .

**Research Gap.** With the rapid advancement and widespread deployment of Vision-Language Models (VLMs) across various applications (Liu et al., 2024; Team et al., 2024; Bai et al., 2025), an important and timely question arises: *Are VLMs similarly vulnerable to Model Inversion attacks as unimodal DNNs?* In this context, we define an MI attack as the task of reconstructing VLM's training images by leveraging its textual input and output. Addressing this question is crucial for understanding and mitigating potential privacy threats in multimodal learning systems.

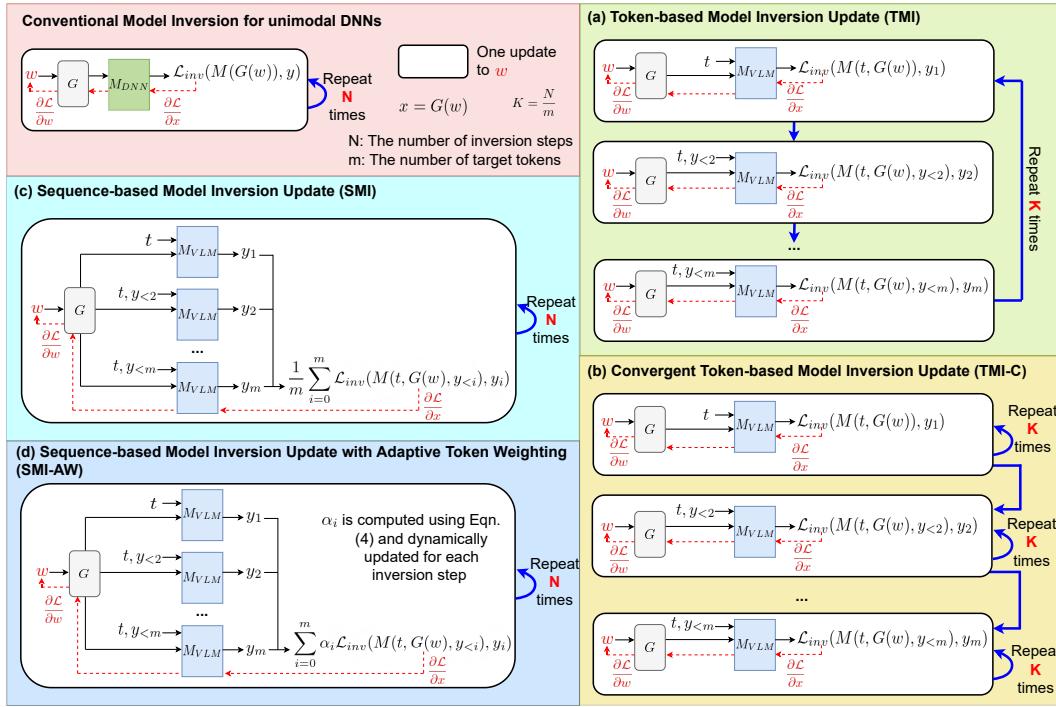


Figure 1: **Overview of our proposed Model Inversion attacks for VLMs.** Conventional MI typically targets unimodal DNNs, where the adversary seeks to reconstruct a training image  $x = G(w)$  that maximizes the likelihood of a target class label  $y$  under the target model  $M_{DNN}$ . The maximization is accomplished by repeating  $N$  inversion steps to recover a high-fidelity reconstruction. In contrast, VLMs  $M_{VLM}$  generate a sequence of tokens, and the target output  $y = (y_1, \dots, y_m)$  is also a sequence of  $m$  tokens. To address the unique nature of VLMs, we propose four MI strategies. **(a) Token-based Model Inversion (TMI):** We perform one gradient update to the latent variable  $w$  after each generated token. This process continues for all  $m$  tokens in the sequence, and the entire sequence-level inversion is repeated  $K = N/m$  times. **(b) Convergent Token-based Model Inversion (TMI-C):** To ensure correctness of earlier tokens before generating subsequent ones, we propose updating  $w$  for  $K$  steps per token  $y_i$ , conditioning on the previous tokens  $y_{<i}$ . **(c) Sequence-based Model Inversion (SMI):** We compute one gradient update to  $w$  based on the average loss over all  $m$  tokens, providing a global view of the sequence-level gradients. **(d) Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW):** We introduce adaptive token weights  $\alpha_i$  for each token  $y_i$  to dynamically emphasize tokens that could provide more essential feedback signals, guiding reconstruction toward an image that matches the target description.

Unlike unimodal DNNs, vision-language models  $M_{VLM}$  differ in several fundamental ways: they process multiple modalities (e.g., images and text), often comprise several distinct modules (e.g., separate encoders for vision and language, projector, language model), are often trained in multiple stages, and leverage broad, large-scale datasets. Crucially, a VLM’s output is language, represented as a sequence of tokens. Consequently, MI attacks on VLMs must contend with unique aspects not present in unimodal DNNs. Furthermore, in unimodal DNNs, private visual features are directly embedded in the model parameters, increasing the risk that model inversion attacks can extract private visual features directly from the model. In contrast, many VLMs keep the vision encoder frozen during training and primarily update the language model. As a result, inversion attacks on VLMs rely on private information embedded in the language model’s and projector’s parameters to guide the image reconstruction, rather than directly extracting visual features from the vision encoder. These differences highlight a timely and important research gap: *the urgent need for novel Model Inversion tailored to the multimodal VLMs to understand their privacy threats*.

**In this work**, we introduce four novel token-based and sequence-based model inversion strategies tailored for VLMs (Figure 1). Our token-based attacks leverage token-level gradients to optimize the reconstructed images. In contrast, our sequence-based attacks utilize gradients aggregated over the entire sequence, offering a global perspective for image reconstruction. Particularly, we introduce

108 *Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW)*, which is based on our  
 109 insight that not all tokens are equally informative for inversion. Low-confidence or mistaken tokens,  
 110 rather than being noise, provide important feedback that highlights errors in the current reconstruc-  
 111 tion and effectively guide the search toward the correct image matching the target description. By  
 112 dynamically reweighting token-level feedback at each inversion step to form the sequence-level  
 113 feedback signal, SMI-AW achieves improved reconstruction quality.

114 We conduct experiments on three VLMs across three datasets to demonstrate the effectiveness of  
 115 our inversion attacks. Notably, human evaluation of the reconstructed images achieves an attack  
 116 accuracy of 75.31%, highlighting the severity of model inversion threats in VLMs. Furthermore, we  
 117 validate the generalizability of our approach on publicly available VLMs, reinforcing its practical  
 118 applicability and security implications. Our key contributions are as follows:

- 120 • We present a pioneering study of model inversion attacks on vision-language models, un-  
 121 covering a novel security risk in the multimodal models.
- 122 • We introduce a suite of novel inversion strategies tailored for VLMs, including two Token-  
 123 based MI (TMI and TMI-C) and two Sequence-based MI attacks (SMI and SMI-AW).
- 124 • The extensive experimental validation shows our proposed attacks, especially SMI-AW,  
 125 achieve both high attack accuracy and good visual fidelity. Crucially, we showcase suc-  
 126 cessful and high-fidelity inversion attacks against publicly available VLMs, underscoring  
 127 the immediate and practical privacy risks posed by these models and the urgent need for  
 128 robust defense mechanisms.

## 129 2 PROBLEM FORMULATION

130 We present the first comprehensive study of model inversion attacks in VLMs, which are increas-  
 131 ingly used in real-world applications.

132 **Threat Model.** We consider a threat model where a VLM  $M$  is pre-trained on broad data and fine-  
 133 tuned on a private VQA dataset  $\mathcal{D}_{priv} = \{(t, \mathbf{x}, y)\}$ , where  $\mathbf{x}$  is the image,  $t$  and  $y$  are the textual  
 134 input and correct textual answer. For clarity, hereafter we use  $M$  to denote a VLM and  $M_{DNN}$  to  
 135 refer to a unimodal DNNs. Using the tokenizer of  $M$ , the textual input  $t$  and the textual answer  $y$  are  
 136 tokenized into sequences  $\mathbf{t} = (t_1, t_2, \dots, t_n)$  and  $\mathbf{y} = (y_1, y_2, \dots, y_m)$ , respectively. We denote the  
 137 full output sequence of  $M$  given input  $(\mathbf{t}, \mathbf{x})$  as  $M(\mathbf{t}, \mathbf{x})$ . The model’s prediction of the  $i$ -th token  
 138  $y_i$ , conditioned on the previous tokens  $y_{<i}$ , is denoted by  $M(\mathbf{t}, \mathbf{x}, y_{<i})$ .

139 **Attacker’s Goal.** Given a trained VLM  $M$ , the goal of a model inversion attack is to reconstruct a  
 140 representative image  $\mathbf{x}^*$  that reveals sensitive or private visual information from the private training  
 141 image  $\mathbf{x}$  in a data sample  $(t, \mathbf{x}, y) \in \mathcal{D}_{priv}$ . Specifically, the adversary is given access to the trained  
 142 model  $M$ , a textual input prompt  $t$ , and the corresponding target output  $y$ . The target is to synthesize  
 143 an image  $\mathbf{x}^*$  such that  $M(\mathbf{t}, \mathbf{x}^*) = \mathbf{y}$  where  $\mathbf{t} = (t_1, t_2, \dots, t_n)$  and  $\mathbf{y} = (y_1, y_2, \dots, y_m)$  are the  
 144 output token sequence associated with the input textual  $t$  and textual output  $y$ . In other words, the  
 145 model inversion attack seeks to infer a plausible visual input  $\mathbf{x}^*$  that, when paired with the given  
 146 input tokens  $\mathbf{t}$ , produces the high likelihood output sequence  $\mathbf{y}$ . This reconstructed image  $\mathbf{x}^*$  is  
 147 intended to approximate or reveal private features of the true image  $\mathbf{x}$ , thereby compromising the  
 148 visual confidentiality of the training data.

149 **Attacker’s Capabilities.** We consider a white-box setting (Zhang et al., 2020; Chen et al., 2021;  
 150 An et al., 2022; Struppek et al., 2022; Nguyen et al., 2023b; Qiu et al., 2024), where the attacker has  
 151 full access to the VLM’s architecture, parameters, output responses (e.g., generated text or logits),  
 152 input prompts  $t$ , and their corresponding ground-truth answers  $y$ . The attacker also has access to an  
 153 auxiliary public dataset  $\mathcal{D}_{pub}$  from the same domain as  $\mathcal{D}_{priv}$ .

## 154 3 MODEL INVERSION STRATEGIES FOR VLMs

155 Given a VLM  $M$  trained on broad data and fine-tuned with a private VQA dataset  $\mathcal{D}_{priv} =$   
 156  $\{(t, \mathbf{x}, y)\}$ . Performing MI attacks directly in the image space is computationally expensive and  
 157 often ineffective (Zhang et al., 2020). To reduce the search space of  $x^*$ , we follow conventional  
 158 MI approaches for DNNs by leveraging a generative model  $G$  trained on an auxiliary public dataset

162

**Algorithm 1 Token-based MI (TMI)**

163

```

1: INPUT:  $M, G, \mathbf{t}, \mathbf{y} = (y_1, \dots, y_m), N, \beta$ 
2: OUTPUT:  $G(w)$ 
3:  $K = N/m$ 
4: for  $k = 1$  to  $K$  do
5:   for  $i = 1$  to  $m$  do
6:      $\mathcal{L} = \mathcal{L}_{inv}(M(\mathbf{t}, G(w), y_{<i}), y_i)$ 
7:      $w = w - \beta \frac{\partial \mathcal{L}}{\partial w}$ 

```

164

165

166

167

168

169

170

171

172

173

174

175

$\mathcal{D}_{pub}$  (Zhang et al., 2020; Chen et al., 2021; Struppek et al., 2022; Nguyen et al., 2023b; Qiu et al., 2024). This allows us to shift the optimization from the high-dimensional image space to the lower-dimensional latent space of  $G$ , i.e.,  $x = G(w)$ , where  $w$  is the intermediate latent vector.

In contrast to conventional MI attacks targeting classification models, where the objective is to reconstruct an input image  $x$  that yields a specific class label, VLMs generate token sequences, and the target output also represented as a sequence of tokens. This requires a reformulation of the MI objective to account for token generation. Our goal is to reconstruct a representative image  $\mathbf{x}^* = G(w^*)$  by optimizing the latent vector  $w$  such that the generated image captures the semantic content of the private training image  $\mathbf{x}$  that associates with description  $y$ .

In this section, we model introduce four inversion strategies tailored for VLMs. The first two (TMI and TMI-C) are token-based approaches that leverage token-level gradients to optimize the reconstructed images. In contrast, the remaining two are sequence-based methods (SMI and SMI-AW) that aggregate gradients over the entire output sequence, providing a global perspective for inversion.

186

187

**3.1 TOKEN-BASED MODEL INVERSION (TMI)**

188

189

190

191

192

193

194

195

196

A natural approach is to treat the inversion process as a sequential update over individual token predictions. Given a target token sequence  $\mathbf{y}$ , we iteratively update the latent code  $w$  after each generated token (see Figure 1 (a)). The details are in Algorithm 1.  $N$  is the number of inversion steps,  $\beta$  is the update rate of MI,  $y_{<i}$  denotes the previous tokens.  $\mathcal{L}_{inv}$  presents the inversion loss, guiding the generative model  $G$  to produce images that induce the token  $y_i$ . We will discuss the design of  $\mathcal{L}_{inv}$  in the next section. The optimization is performed over multiple iterations, typically up to a update limit of  $N$  inversion steps. At each iteration, each token contributes independently to the optimization process.

197

198

**3.2 CONVERGENT TOKEN-BASED MODEL INVERSION (TMI-C)**

199

200

201

202

203

204

205

TMI performs a single update per token per iteration. However, VLMs generate each token  $y_i$  based on the preceding tokens  $y_{<i}$ . To better align with this generative dependency, we propose Convergent Token-based Model Inversion (TMI-C), which updates the latent vector  $w$  multiple times for each target token before proceeding to the next. Specifically, for each token  $y_i$ , we perform  $K$  updates to  $w$ , thereby encouraging convergence of the token-level inversion subproblem before advancing to  $y_{i+1}$  (see Figure 1 (b)). The details are presented in Algorithm 2.

206

207

**3.3 SEQUENCE-BASED MODEL INVERSION (SMI)**

208

209

210

211

212

213

214

215

Token-based model inversion methods treat each token independently, optimizing the latent vector  $w$  based on individual token-level losses. As the output of VLMs is a sequence of tokens, we propose Sequence-based Model Inversion (SMI), which performs a single gradient update to  $w$  by averaging the loss across all  $m$  tokens in the sequence (see Figure 1 (c)). By aggregating token-level

**Algorithm 2 Convergent Token-based MI (TMI-C)**

```

1: INPUT:  $M, G, \mathbf{t}, \mathbf{y} = (y_1, \dots, y_m), N, \beta$ 
2: OUTPUT:  $G(w)$ 
3:  $K = N/m$ 
4: for  $i = 1$  to  $m$  do
5:   for  $k = 1$  to  $K$  do
6:     Compute  $\mathcal{L}$  using Eqn. (2).
7:      $w = w - \beta \frac{\partial \mathcal{L}}{\partial w}$ 

```

**Algorithm 3 Sequence-based MI (SMI)**

```

1: INPUT:  $M, G, \mathbf{t}, \mathbf{y} = (y_1, \dots, y_m), N, \beta$ 
2: OUTPUT:  $G(w)$ 
3: for  $k = 1$  to  $N$  do
4:    $\mathcal{L} = \frac{1}{m} \sum_{i=1}^m \mathcal{L}_{inv}(M(\mathbf{t}, G(w), y_{<i}), y_i)$  (3)
5:    $w = w - \beta \frac{\partial \mathcal{L}}{\partial w}$ 

```

losses into a unified objective, SMI leverages the interdependencies among tokens and provides more coherent gradients that reflects the structure of the full sequence. This global view encourages the model to recover a latent representation that is consistent across the entire sequence, rather than optimizing for each token in isolation. The details are presented in Algorithm 3.

### 3.4 SEQUENCE-BASED MODEL INVERSION WITH ADAPTIVE TOKEN WEIGHTING (SMI-AW)

SMI in Eqn. (3) assumes that all tokens contribute equally to the inversion objective. In practice, however, some tokens are confidently predicted early during inversion, while others remain low-confident and potentially mispredicted. Importantly, these mistaken tokens provide essential feedback signals that guide the search toward a correct reconstructed image matching the target description. When uniform averaging is applied across all tokens, these signals are diluted and damped, weakening the inversion gradients and slowing convergence.

To address this, we propose an adaptive token weighting scheme that amplifies the loss contributions from low-confidence (mispredicted) tokens and suppresses those with high-confidence (see Figure 1 (d)). Specifically, we adaptively reweight the token-wise loss using confidence-aware weights  $\alpha_i$ . The weights  $\alpha_i$  are computed based on the predicted probability  $\mathbb{P}(y_i)$  of token  $y_i$  under the current model output. We define a token as *low-confidence* if  $\mathbb{P}(y_i) < p_{thres}$ , where  $p_{thres}$  is a confidence threshold. Let  $n$  be the number of such low-confidence tokens. The weights are then assigned as:

$$\alpha_i = \begin{cases} \frac{1}{n}, & \text{if } \mathbb{P}(y_i) < p_{thres}, \\ 0, & \text{if } \mathbb{P}(y_i) \geq p_{thres} \end{cases} \quad \text{if } n > 0, \\ \frac{1}{m}, \quad \text{if } n = 0. \quad (4)$$

This scheme dynamically focuses optimization on low-confidence tokens, amplifying gradient signals where prediction errors are more prominent. If there are no low-confidence tokens ( $n = 0$ ), we set  $\alpha_i = 1/m$ , allowing the model to update  $w$  with equal contributions from all tokens. The method is presented in Algorithm 4. **See Supp Sec C for further justification of SMI-AW via visual attention efficiency.**

---

#### Algorithm 4 Sequence-based MI with Adaptive Token Weighting (SMI-AW)

---

- 1: **INPUT:**  $M, G, \mathbf{t}, \mathbf{y} = (y_1, \dots, y_m), N, \beta, p_{thres}$
- 2: **OUTPUT:**  $G(w)$
- 3: **for**  $k = 1$  to  $N$  **do**
- 4:      $n =$  the number of low-confidence token in  $\mathbf{y}^{pred}$ .
- 5:     Compute  $\alpha_i$  for each token  $y_i$  using Eqn. (4)
- 6:      $\mathcal{L} = \sum_{i=1}^m \alpha_i \mathcal{L}_{inv}(M(\mathbf{t}, G(w), y_{<i}), y_i) \quad (5)$
- 7:      $w = w - \beta \frac{\partial \mathcal{L}}{\partial w}$

---

**Remark.** To tailored for VLMs' token-based generative nature, we propose 4 token-based and sequence-based that leverage token-level and sequence-level gradients for image reconstruction.

### 3.5 INVERSION LOSS DESIGN FOR VLMs

In this section, we present the adaptation of the inversion loss from conventional unimodal MI to VLMs. Specifically, the inversion loss in traditional MI typically consists of two components:  $\mathcal{L}_{inv} = \mathcal{L}_{id} + \mathcal{L}_{prior}$ , where the identity loss  $\mathcal{L}_{id}$  guides the generator  $G(w)$  to produce images that induce the label  $y$  from the target model  $M_{DNN}$ , and  $\mathcal{L}_{prior}$  is a regularization or prior loss. To extend this to VLMs, we focus on adapting the identity loss  $\mathcal{L}_{id}$ . We categorize it into two main types: cross-entropy-based and logit-based losses.

**Cross-entropy-based.** This loss is widely used in MI attacks (Zhang et al., 2020; Chen et al., 2021; Qiu et al., 2024) to optimize  $w$  such that the reconstruction has the highest likelihood for the target class under the model  $M$ . For VLMs, we adapt the cross-entropy loss  $\mathcal{L}_{CE}$  for each target token  $y_i$  as follows:

$$\mathcal{L}_{CE}(M(\mathbf{t}, G(w), y_{<i}), y_i) = -\log \mathbb{P}_M(y_i | \mathbf{t}, G(w), y_{<i}) \quad (6)$$

$\mathbb{P}_M(y_i | \mathbf{t}, G(w), y_{<i})$  denotes the predicted probability of token  $y_i$ , computed over the tokenizer vocabulary of the VLM (e.g., LLaVa-v1.6 uses a vocabulary of 32,000 tokens).

270 **Logit-based.** Prior work shows that using cross-entropy loss in MI can lead to gradient vanishing  
 271 (Yuan et al., 2023) or sub-optimal results (Nguyen et al., 2023b). To address this, Yuan et al. (2023)  
 272 and Nguyen et al. (2023b) propose optimizing losses directly over logits of a target class. We adopt  
 273 two such logit-based losses for VLMs: the Max-Margin Loss  $\mathcal{L}_{MML}$  (Yuan et al., 2023) and the  
 274 Logit-Maximization Loss  $\mathcal{L}_{LOM}$  (Nguyen et al., 2023b) for a target token  $y_i$ :

$$\mathcal{L}_{MML}(M(\mathbf{t}, G(w), y_{<i}), y_i) = -l_{y_i}(\mathbf{t}, G(w), y_{<i}) + \max_{k \neq y_i} l_k(\mathbf{t}, G(w), y_{<i}) \quad (7)$$

$$\mathcal{L}_{LOM}(M(\mathbf{t}, G(w), y_{<i}), y_i) = -l_{y_i}(\mathbf{t}, G(w), y_{<i}) + \lambda \|f_{y_i} - f_{reg}\|_2^2 \quad (8)$$

275 Here,  $l_{y_i}$  is the logit corresponding to the target token  $y_i$ ,  $\lambda$  is a hyperparameter,  $f_{y_i} =$   
 276  $M^{pen}(\mathbf{t}, G(w), y_{<i})$  where  $M^{pen}()$  denotes the function that extracts the penultimate layer rep-  
 277 resentations for a given input, and  $f_{reg}$  is a sample activation from the penultimate layer  $M^{pen}()$   
 278 computed using public images from  $\mathcal{D}_{pub}$ . Following (Nguyen et al., 2023b), the distribution of  $f_{reg}$   
 279 is estimated over 2000 input pairs  $(\mathbf{t}, \mathbf{x}_{pub})$ , where  $\mathbf{x}_{pub} \in \mathcal{D}_{pub}$ .  $\mathcal{L}_{MML}$  maximizes the logit of the  
 280 correct token  $y_i$  while penalizing the highest incorrect logit to mitigate gradient vanishing. On the  
 281 other hand,  $\mathcal{L}_{LOM}$  also maximizes the correct token’s logit to avoid sub-optimality, while addition-  
 282 ally penalizing deviations in the penultimate activations to prevent unbounded logits problem.  
 283

## 284 4 EXPERIMENTS

285 In this section, we evaluate the effectiveness of our 4 proposed model inversion attacks on 3 VLMs  
 286 (i.e., LLaVA-v1.6, Qwen2.5-VL and MiniGPT-v2), 3 private datasets, 2 public datasets with an  
 287 extensive evaluation spanning 5 metrics including the human evaluation.

### 288 4.1 EXPERIMENTAL SETTING

289 **Dataset.** Following standard model inversion (MI) setups (Zhang et al., 2020; Chen et al., 2021;  
 290 Struppek et al., 2022; An et al., 2022; Nguyen et al., 2023b; Yuan et al., 2023; Struppek et al., 2024;  
 291 Qiu et al., 2024; Ho et al., 2024; Koh et al., 2024), we use facial and fine-grained classification  
 292 datasets to evaluate our approach. Specifically, we conduct experiments on three datasets: FaceScrub  
 293 (Ng & Winkler, 2014), CelebA (Liu et al., 2015), and Stanford Dogs (Dataset, 2011). The FaceScrub  
 294 dataset contains 106,836 images across 530 identities. For CelebA, we select the top 1,000 identities  
 295 with the most samples from the full set of 10,177 identities. Stanford Dogs comprises images from  
 296 120 dog breeds, serving as a representative fine-grained visual dataset.

297 To train the target VLMs, we construct VQA-style datasets including VQA-FaceScrub, VQA-  
 298 CelebA, and VQA-Stanford Dogs. For the facial datasets, each image  $x$  is paired with a prompt  
 299  $t = \text{"Who is the person in the image?"}$ , and the expected textual response  $y$  is the individual’s name  
 300 (e.g.,  $y = \text{"Candace Cameron Bure"}$ ). Since the CelebA dataset does not contain identity names, we  
 301 randomly generate 1,000 unique English names, each comprising a distinct first and last name with  
 302 no repetitions, and assign one to each identity in the selected CelebA subset. For VQA-Stanford  
 303 Dogs, each image  $x$  is paired with a prompt  $t = \text{"What breed is this dog?"}$ , and the target answer  $y$   
 304 corresponds to the ground-truth breed label (e.g., “black-and-tan coonhound”).

305 **Public Dataset and Image Generator.** For facial image reconstruction, we use FFHQ (Karras  
 306 et al., 2019) as the public dataset  $\mathcal{D}_{pub}$  and a pre-trained StyleGAN2 (Karras et al., 2020) trained  
 307 on FFHQ. Following conventional MI (Struppek et al., 2022), we optimize in the latent space  $w$  of  
 308 StyleGAN2 to recover images  $x = G(w)$ . For Stanford Dogs experiments, we adopt AFHQ-Dogs  
 309 (Choi et al., 2020) as  $\mathcal{D}_{pub}$  to train the dog image generator.

310 **VLMs.** We fine-tune LLaVA-v1.6-7B (Liu et al., 2024), Qwen2.5VL-7B (Bai et al., 2025), and  
 311 MiniGPT-v2 (Chen et al., 2023) using VQA-Facescrub, VQA-CelebA, and VQA-StanfordDogs.

312 **Evaluation Metrics.** To assess the quality of the inversion results, we adopt five metrics:

313 • **Attack accuracy.** We compute the attack accuracy using three frameworks as described  
 314 below. We strictly follow the evaluation frameworks in their original works (detailed setups  
 315 in the Supp). Higher accuracy indicates a more effective inversion attack.

324                   – **Attack accuracy evaluated by conventional evaluation framework**  $\mathcal{F}_{DNN}$   
 325                   ( $AttAcc_D \uparrow$ ) (Zhang et al., 2020; Chen et al., 2021; Struppek et al., 2022; Nguyen  
 326                   et al., 2023b; Qiu et al., 2024). This is a conventional framework, where the evalua-  
 327                   tion models are standard DNNs trained on private dataset. Following (Struppek et al.,  
 328                   2022; 2024), we use InceptionNet-v3 (Szegedy et al., 2016) as the evaluation model  
 329                   to classify reconstructed images, and compute the  $Top1$  and  $Top5$  based on whether  
 330                   the predicted label match the target label.

331                   – **Attack accuracy evaluated by MLLM-based evaluation framework**  $\mathcal{F}_{MLLM}$   
 332                   ( $AttAcc_M \uparrow$ ). (Ho et al., 2025) demonstrate that  $\mathcal{F}_{MLLM}$  can achieve better align-  
 333                   ment with human evaluation. Unlike the conventional framework  $\mathcal{F}_{DNN}$ , which re-  
 334                   lies on the classification predictions of standard DNNs trained on private datasets,  
 335                   this metric leverages powerful MLLMs to evaluate the success of MI-reconstructed  
 336                   by referencing the corresponding private images.

337                   – **Attack accuracy evaluated by human**  $\mathcal{F}_{Human}$  ( $AttAcc_H \uparrow$ ). Following existing  
 338                   studies (An et al., 2022; Nguyen et al., 2023b), we conduct the user study on Amazon  
 339                   Mechanical Turk. Participants are asked to evaluate the success of MI-reconstructed  
 340                   by referencing the corresponding private images (Details in the Supp).

341                   • **Feature distance.** We compute the  $l_2$  distance between the feature representations of the  
 342                   reconstructed and the private training images (Struppek et al., 2022). Lower values indicate  
 343                   higher similarity and better inversion quality.

344                   –  $\delta_{eval}$ . Features are extracted by the evaluation model in  $\mathcal{F}_{DNN}$ .

345                   –  $\delta_{face}$ . Features are extracted by a pre-trained FaceNet model (Schroff et al., 2015).

347                   4.2 RESULTS

349                   We report attack results on the FaceScrub dataset in Table 1, evaluating four MI strategies under three  
 350                   inversion losses using LLaVa-1.6-7B. The results show that sequence-based mode inversion methods  
 351                   consistently outperform token-level MI approaches across all evaluation metrics. Among them,  
 352                   SMI-AW, when combined with the  $\mathcal{L}_{LOM}$ , achieves the highest performance. This highlights the  
 353                   advantage of employing adaptive token-wise weights that are dynamically updated at each inversion  
 354                   step. Using this method, we achieve an attack accuracy of 59.25% under  $\mathcal{F}_{MLLM}$  while other  
 355                   distance metrics such as  $\delta_{face}$  and  $\delta_{eval}$  are the lowest (where lower is better).

356                   Results on additional datasets, including CelebA and Stanford Dogs, are shown in Table 2 using the  
 357                   logit maximization loss. We achieve high attack success rates, with attack accuracies of 66.91% on  
 358                   CelebA and 77.40% on Stanford Dogs. These findings are consistent with results on the FaceScrub  
 359                   dataset, where SMI-AW consistently achieves the highest attack performance across all metrics.

360                   We further evaluate our proposed method on Qwen2.5-VL-7B and MiniGPT-v2, using the Face-  
 361                   Scrub dataset (see Table 3). The results reinforce the generalizability of our findings, demonstrating  
 362                   that VLMs are broadly vulnerable to model inversion attacks. These results underscore the severity  
 363                   of this vulnerability and raise a significant alarm about the susceptibility of VLMs to inversion-based  
 364                   privacy breaches.

366                   4.3 ANALYSIS

368                   To better understand why token-based MI methods underperform compared to sequence-based ap-  
 369                   proaches, we analyze the match rate between the final reconstructed images  $M(t, G(w^*))$  and the  
 370                   corresponding target textual answers  $y$ . Specifically, we define the match rate as the percentage of  
 371                   reconstructed images for which the target answer  $y$  appears as a substring of the predicted text asso-  
 372                   ciated with the image. In other words, it reflects the proportion of reconstructions whose generated  
 373                   text aligns with the target textual answer at the end of the inversion process.

374                   The results, shown in Figure 2, reveal a clear distinction between the two types of methods. Token-  
 375                   based MIs exhibit poor convergence behavior, with match rates ranging from 60% to 79% for TMI,  
 376                   and dropping below 30% for TMI-C. In contrast, sequence-based methods such as SMI and SMI-  
 377                   AW achieve match rates exceeding 95%, indicating more reliable alignment between reconstructed  
 378                   images and their textual targets. It is important to note that a high match rate does not necessarily

378 imply a successful attack, as the optimization may overfit or converge to a poor local minimum. Nevertheless, a higher match rate generally correlates with a greater likelihood of a successful identity  
 379 inversion attack.  
 380

382 Table 1: Comparison of performance metrics  
 383 across four inversion strategies using LLaVa-  
 384 1.6-7B fine-tuned on the FaceScrub dataset,  
 385 evaluated with three identity losses. We high-  
 386 light the best results in bold.  
 387

| $\mathcal{L}_{inv}$ | $AttAcc_M \uparrow$ | $AttAcc_D \uparrow$ |               | $\delta_{face} \downarrow$ | $\delta_{eval} \downarrow$ |
|---------------------|---------------------|---------------------|---------------|----------------------------|----------------------------|
|                     |                     | $Top1$              | $Top5$        |                            |                            |
| <b>TMI</b>          |                     |                     |               |                            |                            |
| $\mathcal{L}_{CE}$  | 37.78%              | 17.71%              | 39.79%        | 0.8939                     | 147.35                     |
| $\mathcal{L}_{MML}$ | 39.98%              | 17.31%              | 38.51%        | 0.9065                     | 193.14                     |
| $\mathcal{L}_{LOM}$ | 44.34%              | 21.77%              | 44.69%        | 0.8488                     | 141.87                     |
| <b>TMI-C</b>        |                     |                     |               |                            |                            |
| $\mathcal{L}_{CE}$  | 21.77%              | 6.39%               | 18.58%        | 1.0911                     | 636.50                     |
| $\mathcal{L}_{MML}$ | 25.99%              | 6.51%               | 18.82%        | 1.0659                     | 205.71                     |
| $\mathcal{L}_{LOM}$ | 31.16%              | 9.32%               | 24.22%        | 1.0221                     | 457.49                     |
| <b>SMI</b>          |                     |                     |               |                            |                            |
| $\mathcal{L}_{CE}$  | 40.97%              | 18.25%              | 41.11%        | 0.8682                     | 144.53                     |
| $\mathcal{L}_{MML}$ | 55.52%              | 32.83%              | 60.12%        | 0.7569                     | 137.43                     |
| $\mathcal{L}_{LOM}$ | 59.17%              | 33.47%              | 61.89%        | 0.7465                     | 140.83                     |
| <b>SMI-AW</b>       |                     |                     |               |                            |                            |
| $\mathcal{L}_{CE}$  | 44.17%              | 22.33%              | 46.63%        | 0.8464                     | 145.29                     |
| $\mathcal{L}_{MML}$ | 57.15%              | 34.91%              | 61.84%        | 0.7444                     | 138.24                     |
| $\mathcal{L}_{LOM}$ | <b>59.25%</b>       | <b>36.98%</b>       | <b>64.69%</b> | <b>0.7286</b>              | <b>135.90</b>              |



413 Figure 2: The match rate between the output text of  
 414 the reconstructed image and the target output text  $y$ .  
 415

#### 4.4 QUALITATIVE RESULTS

419 Figure 3 shows qualitative results demonstrating the effectiveness of our method. Using SMI-AW  
 420 with  $\mathcal{L}_{LOM}$ , the reconstructed images from the LLaVA-v1.6-7B model (second row) closely  
 421 resemble the corresponding identities in  $\mathcal{D}_{priv}$  (first row). This strong visual similarity highlights the  
 422 ability of our model inversion approach to recover identifiable features from the training data. **More  
 423 reconstructed images of other models and datasets can be found in Supp.**

#### 4.5 HUMAN EVALUATION

427 We further conduct human evaluation on reconstructed images using two datasets Facescrub and  
 428 CelebA. Each user study involves 4,240 participants for the FaceScrub dataset and 8,000 participants  
 429 for the CelebA dataset. The results show that 57.74% to 75.31% of the reconstructed samples are  
 430 deemed successful attacks, i.e., human annotators recognize the generated images as depicting the  
 431 same identity as those in the private image set (see Table 4). This highlights the alarming potential  
 of such inversion attacks to compromise sensitive identity information.

Table 2: We report the results on the CelebA and Stanford Dogs dataset across four inversion strategies with  $\mathcal{L}_{LOM}$ .

| Method                       | $AttAcc_M \uparrow$ | $AttAcc_D \uparrow$ |               | $\delta_{face} \downarrow$ | $\delta_{eval} \downarrow$ |
|------------------------------|---------------------|---------------------|---------------|----------------------------|----------------------------|
|                              |                     | $Top1$              | $Top5$        |                            |                            |
| <b>CelebA dataset</b>        |                     |                     |               |                            |                            |
| TMI                          | 39.74%              | 15.31%              | 33.14%        | 1.0195                     | 428.66                     |
| TMI-C                        | 18.73%              | 3.63%               | 10.29%        | 1.2370                     | 446.90                     |
| SMI                          | 64.93%              | 38.30%              | 63.69%        | 0.8294                     | 416.34                     |
| SMI-AW                       | <b>66.91%</b>       | <b>40.83%</b>       | <b>65.84%</b> | <b>0.8133</b>              | <b>415.25</b>              |
| <b>Stanford Dogs dataset</b> |                     |                     |               |                            |                            |
| TMI                          | 61.46%              | 40.31%              | 70.21%        | -                          | 102.40                     |
| TMI-C                        | 48.54%              | 29.69%              | 59.79%        | -                          | 102.23                     |
| SMI                          | 75.94%              | 53.65%              | 82.19%        | -                          | <b>76.98</b>               |
| SMI-AW                       | <b>77.40%</b>       | <b>58.33%</b>       | <b>86.04%</b> | -                          | 78.61                      |

Table 3: We report the results of Qwen2.5-VL-7B and MiniGPT-v2 on the Facescub dataset. Here we use SMI-AW with  $\mathcal{L}_{LOM}$ .

| $M$     | $AttAcc_M \uparrow$ | $AttAcc_D \uparrow$ |        | $\delta_{face} \downarrow$ | $\delta_{eval} \downarrow$ |
|---------|---------------------|---------------------|--------|----------------------------|----------------------------|
|         |                     | $Top1$              | $Top5$ |                            |                            |
| MiniGPT | 50.80%              | 15.26%              | 34.69% | 0.8909                     | 161.35                     |
| Qwen2.5 | 36.42%              | 14.91%              | 31.37% | 1.0115                     | 144.92                     |

Table 4: Human evaluation results. We evaluate our SMI-AW method using  $\mathcal{L}_{LOM}$ , the private datasets  $\mathcal{D}_{priv}$  are FaceScrub and CelebA.

| VLM           | $\mathcal{D}_{priv}$ | $AttAcc_H \uparrow$ |
|---------------|----------------------|---------------------|
| LLaVA-v1.6-7B |                      | 75.31%              |
| MiniGPT-v2    | Facescrub            | 61.84%              |
| Qwen2.5-VL    |                      | 57.74%              |
| LLaVA-v1.6-7B | CelebA               | 61.95%              |



Figure 3: Qualitative results on the Facescrub dataset using the SMI-AW and  $\mathcal{L}_{LOM}$ . The first row shows images from the private training dataset, while the second row presents the reconstructed images corresponding to each individual in the first row. The visual similarity between the original and reconstructed images demonstrates the effectiveness of our inversion method in recovering private training data. **More reconstructed images can be found in Supp.**

#### 4.6 EVALUATION WITH PUBLICLY RELEASED VLM

In the experiments above, we fine-tuned the target model using a private training dataset following prior MI work on conventional DNNs (Chen et al., 2021; Nguyen et al., 2023b; Struppek et al., 2022; Qiu et al., 2024). In this section, we extend our analysis to the publicly available LLaVA-v1.6-7B model, aiming to reconstruct potential training images directly from it.

Figure 4 shows the results of our best setup of MI attack, SMI-AW using the logit maximization loss. The target is to reconstruct images of some identities that appear in the training dataset of the LLaVA-v1.6-7B model. We present two image pairs: in each pair, the left image is a training sample of an identity, while the right image shows the corresponding reconstruction generated by the publicly available model. The visual similarity between the pairs indicates that the pre-trained VLM may reveal identifiable information from its training data, exposing a vulnerability to model inversion attacks. **More results can be found in Supp.**



Figure 4: We reconstruct images of (a) Donald Trump and (b) Beyoncé from the pre-trained LLaVA-v1.6-7B model. We use SMI-AW with  $\mathcal{L}_{LOM}$  to reconstruct images. For each pair, the left image shows a training image of Donald Trump or Beyoncé, while the right image presents the reconstruction obtained via our model inversion attack. This result illustrates that the pre-trained VLM is vulnerable to training data leakage through model inversion. **More results can be found in Supp.**

## 5 CONCLUSION

This study pioneers the investigation of model inversion attacks on Vision-Language Models, demonstrating for the first time their susceptibility to leaking private visual training data. Our novel token-based and sequence-based inversion strategies reveal significant privacy risks across state-of-the-art and publicly available VLMs. Particularly, our proposed Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW) achieve an attack accuracy of 75.31%. These findings underscore the urgent need for robust privacy safeguards as VLMs become more prevalent in real-world applications. **Additional analysis, limitation and broader impact are included in Supp.**

486 REPRODUCIBILITY STATEMENT  
487

488 In accordance with ICLR policy, our code, pretrained models, and reconstructed images are made  
489 anonymously available for review in Openreview’s discussion forums. To further ensure repro-  
490 ducibility, we will release the code and pretrained models publicly upon publication. Compre-  
491 hensive details of our model architecture, experimental setup, and hyperparameters are included in the  
492 main paper and elaborated in Section A of the Supplementary Material.

494 REFERENCES  
495

496 Shengwei An, Guanhong Tao, Qiuling Xu, Yingqi Liu, Guangyu Shen, Yuan Yao, Jingwei Xu,  
497 and Xiangyu Zhang. Mirror: Model inversion for deep learning network with high fidelity. In  
498 *Proceedings of the 29th Network and Distributed System Security Symposium*, 2022.

499 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.  
500 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

502 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
503 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,  
504 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,  
505 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*  
506 preprint *arXiv:2502.13923*, 2025.

507 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechu Liu, Pengchuan Zhang, Raghuraman Kr-  
508 ishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large  
509 language model as a unified interface for vision-language multi-task learning. *arXiv preprint*  
510 *arXiv:2310.09478*, 2023.

511 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.  
512 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-  
513 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024.

515 Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. Knowledge-enriched distributional model  
516 inversion attacks. In *Proceedings of the IEEE/CVF international conference on computer vision*,  
517 pp. 16178–16187, 2021.

518 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis  
519 for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
520 *recognition*, pp. 8188–8197, 2020.

522 E Dataset. Novel datasets for fine-grained image categorization. In *First Workshop on Fine Grained*  
523 *Visual Categorization, CVPR*. Citeseer. Citeseer, 2011.

524 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-  
525 dence information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC confer-*  
526 *ence on computer and communications security*, pp. 1322–1333, 2015.

527 Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Ristenpart.  
528 Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In *23rd*  
529 *{USENIX} Security Symposium ({USENIX} Security 14)*, pp. 17–32, 2014.

531 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
532 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*  
533 *processing systems*, 27, 2014.

534 Gyojin Han, Jaehyun Choi, Haeil Lee, and Junmo Kim. Reinforcement learning-based black-box  
535 model inversion attacks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
536 *Pattern Recognition*, pp. 20504–20513, 2023.

538 Sy-Tuyen Ho, Koh Jun Hao, Keshigeyan Chandrasegaran, Ngoc-Bao Nguyen, and Ngai-Man Che-  
539 ung. Model inversion robustness: Can transfer learning help? In *Proceedings of the IEEE/CVF*  
540 *Conference on Computer Vision and Pattern Recognition*, pp. 12183–12193, 2024.

540 Sy-Tuyen Ho, Koh Jun Hao, Ngoc-Bao Nguyen, Alexander Binder, and Ngai-Man Cheung. Revisit-  
 541 ing model inversion evaluation: From misleading standards to reliable privacy assessment, 2025.  
 542 URL <https://arxiv.org/abs/2505.03519>.

543

544 Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via  
 545 boundary repulsion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 546 Recognition*, pp. 15045–15053, 2022.

547 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative  
 548 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern  
 549 recognition*, pp. 4401–4410, 2019.

550

551 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-  
 552 ing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on  
 553 computer vision and pattern recognition*, pp. 8110–8119, 2020.

554 Jun Hao Koh, Sy-Tuyen Ho, Ngoc-Bao Nguyen, and Ngai-man Cheung. On the vulnerability of  
 555 skip connections to model inversion attacks. In *European Conference on Computer Vision*, 2024.

556

557 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.  
 558 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

559

560 ZhenTing Liu and ShangTse Chen. Trap-mid: Trapdoor-based defense against model inversion  
 561 attacks. *Advances in Neural Information Processing Systems*, 37:88486–88526, 2024.

562

563 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.  
 564 In *Proceedings of the IEEE international conference on computer vision*, pp. 3730–3738, 2015.

565

566 Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In *2014  
 567 IEEE international conference on image processing (ICIP)*, pp. 343–347. IEEE, 2014.

568

569 Bao-Ngoc Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Man Che-  
 570 ung. Label-only model inversion attacks via knowledge transfer. *Advances in neural information  
 processing systems*, 36:68895–68907, 2023a.

571

572 Ngoc-Bao Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Cheung. Re-  
 573 thinking model inversion attacks against deep neural networks. In *Proceedings of the IEEE/CVF  
 574 Conference on Computer Vision and Pattern Recognition*, pp. 16384–16393, 2023b.

575

576 Xiong Peng, Feng Liu, Jingfeng Zhang, Long Lan, Junjie Ye, Tongliang Liu, and Bo Han. Bilateral  
 577 dependency optimization: Defending against model-inversion attacks. In *Proceedings of the 28th  
 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1358–1367, 2022.

578

579 Xiong Peng, Bo Han, Feng Liu, Tongliang Liu, and Mingyuan Zhou. Pseudo-private data guided  
 580 model inversion attacks. *Advances in Neural Information Processing Systems*, 37:33338–33375,  
 2024.

581

582 Yixiang Qiu, Hao Fang, Hongyao Yu, Bin Chen, MeiKang Qiu, and Shu-Tao Xia. A closer look at  
 583 gan priors: Exploiting intermediate features for enhanced model inversion attacks. *Proceedings  
 584 of European Conference on Computer Vision*, 2024.

585

586 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face  
 587 recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern  
 588 recognition*, pp. 815–823, 2015.

589

590 Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correira, Antonia Adler, and Kristian  
 591 Kersting. Plug & play attacks: Towards robust and flexible model inversion attacks. In *Inter-  
 592 national Conference on Machine Learning*, pp. 20522–20545. PMLR, 2022.

593

594 Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Be careful what you smooth for:  
 595 Label smoothing can be a privacy shield but also a catalyst for model inversion attacks. In *The  
 596 Twelfth International Conference on Learning Representations*, 2024.

594 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-  
595 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*  
596 *computer vision and pattern recognition*, pp. 2818–2826, 2016.

597

598 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya  
599 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open  
600 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

601 Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, and Alireza Makhzani. Variational  
602 model inversion attacks. *Advances in Neural Information Processing Systems*, 34:9706–9719,  
603 2021a.

604 Tianhao Wang, Yuheng Zhang, and Ruoxi Jia. Improving robustness to model inversion attacks via  
605 mutual information regularization. In *Proceedings of the AAAI Conference on Artificial Intelli-  
606 gence*, volume 35, pp. 11666–11673, 2021b.

607

608 Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adver-  
609 sarial setting via background knowledge alignment. In *Proceedings of the 2019 ACM SIGSAC  
610 Conference on Computer and Communications Security*, pp. 225–240, 2019.

611 Xiaojian Yuan, Kejiang Chen, Jie Zhang, Weiming Zhang, Nenghai Yu, and Yang Zhang. Pseudo  
612 label-guided model inversion attack via conditional generative adversarial network. *AAAI 2023*,  
613 2023.

614

615 Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret re-  
616 vealer: Generative model-inversion attacks against deep neural networks. In *Proceedings of the  
617 IEEE/CVF conference on computer vision and pattern recognition*, pp. 253–261, 2020.

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

## 648      **Supplementary material**

649  
 650      In this supplementary material, we provide additional experiments, analysis, ablation study, and  
 651      details that are required to reproduce our results. These are not included in the main paper due to  
 652      space limitations.

## 653      CONTENTS

|                                                                                         |           |
|-----------------------------------------------------------------------------------------|-----------|
| 656 <b>A Research Reproducibility Details</b>                                           | <b>14</b> |
| 657         A.1 Hyperparameters . . . . .                                               | 14        |
| 658         A.2 Computational Resources . . . . .                                       | 14        |
| 661 <b>B Additional results</b>                                                         | <b>14</b> |
| 662         B.1 Extended Evaluation on Publicly Released VLM . . . . .                  | 14        |
| 664         B.2 Additional Qualitative Results . . . . .                                | 14        |
| 666 <b>C Visual Attention Efficiency Analysis for SMI-AW</b>                            | <b>16</b> |
| 667         C.1 Measuring Visual Attention Efficiency . . . . .                         | 16        |
| 669         C.2 Low-confidence Tokens have Higher Visual Attention Efficiency . . . . . | 16        |
| 671 <b>D Ablation Study</b>                                                             | <b>17</b> |
| 673         D.1 Ablation Study on $p_{thres}$ . . . . .                                 | 17        |
| 674         D.2 Error Bar . . . . .                                                     | 17        |
| 676 <b>E Experimental setting</b>                                                       | <b>17</b> |
| 678         E.1 Evaluation metrics . . . . .                                            | 17        |
| 679         E.2 Initial Candidate Selection . . . . .                                   | 18        |
| 681         E.3 Final Selection . . . . .                                               | 18        |
| 683 <b>F Related Work</b>                                                               | <b>18</b> |
| 685 <b>G Discussion</b>                                                                 | <b>19</b> |
| 687         G.1 Broader Impacts . . . . .                                               | 19        |
| 688         G.2 Limitations . . . . .                                                   | 20        |
| 690 <b>H The Use of LLMs</b>                                                            | <b>20</b> |

691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

702 A RESEARCH REPRODUCIBILITY DETAILS  
703704 In accordance with ICLR policy, our code, pretrained models, and reconstructed images are made  
705 anonymously available for review in the discussion forums.  
706707 A.1 HYPERPARAMETERS  
708709 To fine-tune the VLMs, we follow the standard hyperparameters provided in the official imple-  
710 mentations of LLaVA-v1.6-Vicuna-7B<sup>1</sup> (Liu et al., 2024), Qwen2.5-VL-7B<sup>2</sup> (Bai et al., 2025), and  
711 MiniGPT-v2<sup>3</sup> (Chen et al., 2023). Fine-tuning is conducted on the VQA-FaceScrub, VQA-CelebA,  
712 and VQA-StanfordDogs datasets.713 For the attacks, we use  $N = 70$  inversion steps for experiments on the LLaVA-v1.6-7B model, and  
714  $N = 100$  for MiniGPT-v2 and Qwen2.5-VL-7B. The inversion update rate  $\beta = 0.05$ . We set the  
715 confidence threshold  $p_{thres} = 0.999$  for all experiments using the logit maximization loss  $\mathcal{L}_{LOM}$ .  
716 Additional results with varying values of  $p_{thres}$  are provided in the ablation study section (Supp).717 To compute the regularization term  $f_{reg}$  in Eqn. (8), we follow (Nguyen et al., 2023b) by using  
718 2,000 images from a public dataset  $\mathcal{D}_{pub}$  to estimate the mean and variance of the penultimate layer  
719 activations of the VLMs.  
720721 A.2 COMPUTATIONAL RESOURCES  
722723 All experiments were conducted on NVIDIA RTX A6000 Ada GPUs running Ubuntu 20.04.2 LTS,  
724 equipped with AMD Ryzen Threadripper PRO 5975WX 32-core processors. The environment setup  
725 for each model is provided in the official implementations of the VLMs, including: LLaVA-v1.6-  
726 Vicuna-7B (Liu et al., 2024), Qwen2.5-VL-7B (Bai et al., 2025), and MiniGPT-v2 (Chen et al.,  
727 2023).728 To evaluate  $AttAcc_M$ , we strictly follow the protocol in (Ho et al., 2025), using the Gemini 2.0  
729 Flash API. In total, we evaluate 95,200 MI-reconstructed images for our main experiments (main  
730 paper).  
731732 B ADDITIONAL RESULTS  
733734 B.1 EXTENDED EVALUATION ON PUBLICLY RELEASED VLM  
735736 In this section, we extend our analysis to the publicly available LLaVA-v1.6-7B model (Liu et al.,  
737 2024), aiming to reconstruct training images from accessing the model only.  
738739 Figure S.1 shows the results of our best setup of MI attack, SMI-AW using the logit maximization  
740 loss  $\mathcal{L}_{LOM}$ . The target is to reconstruct images of celebrities that appear in the training dataset of  
741 the LLaVA-v1.6-7B model. To reconstructed images from the model, we use the textual input  $t =$   
742 “Identify the person in the image and return only their name?” and the target textual answer is a  
743 celebrity’s name, i.e  $y =$  “Beyoncé”.  
744744 We visualize image pairs: in each pair, the right image is the reconstruction generated from the  
745 publicly available model, and the left image is a training image of an individual. We emphasize that  
746 the training dataset is fully unknown and inaccessible for the inversion attack. The visual similarity  
747 between the pairs indicates that the pre-trained VLM may reveal identifiable information from its  
748 training data, exposing a vulnerability to model inversion attacks.  
749750 B.2 ADDITIONAL QUALITATIVE RESULTS  
751752 Reconstructed images from the FaceScrub dataset using three VLMs, LLaVA-v1.6-7B, MiniGPT-  
753 v2, and Qwen2.5-VL, are shown in Figure S.2, Figure S.3, and Figure S.4, respectively. For the  
754<sup>1</sup><https://github.com/haotian-liu/LLaVA><sup>2</sup><https://github.com/QwenLM/Qwen2.5-VL><sup>3</sup><https://github.com/Vision-CAIR/MinigPT-4>

756  
757  
758  
759  
760  
761  
762  
763  
764  
765

$\mathcal{D}_{priv}$



$x_{recon}$



(a) Donald Trump

766  
767  
768  
769  
770  
771  
772  
773  
774

A close-up portrait of Ed Sheeran, showing his face and hair. He has his signature curly red hair and is looking directly at the camera with a slight smile.



(b) Ed Sheeran

775  
776  
777  
778  
779  
780  
781  
782

A close-up, color photograph of actress Kristen Stewart's face. She has dark brown hair and is looking directly at the camera with a neutral expression. The lighting is soft, highlighting her features.



(c) Kristen Stewart

784  
785  
786  
787  
788  
789  
790  
791



(d) Barack Obama

794  
795  
796  
797  
798

Figure S.1: Reconstructed images using our SMI-AW with  $\mathcal{L}_{LOM}$  on the publicly available LLaVA-v1.6-7B model. Each pair consists of a reconstructed image (right) and a corresponding training image (left) in the training dataset of LLaVA-v1.6-7B model. We emphasize that the training dataset is fully unknown and inaccessible for the inversion attack. The strong similarity suggests the pre-trained VLM may leak identifiable training data, exposing it to model inversion attacks.

798  
799  
800  
801  
802  
803  
804

CelebA and Stanford Dogs datasets, reconstructed images using LLaVA-v1.6-7B are presented in Figure S.5 and Figure S.6. All reconstructions are generated using SMI-AW with the logit maximization loss  $\mathcal{L}_{LOM}$ .

807  
808  
809

For each pair, the left column shows images from the private training dataset, while the right column presents the reconstructed images corresponding to each individual in the left column. Qualitative results demonstrate the effectiveness of our method. This strong visual similarity highlights the ability of our model inversion approach to recover identifiable features from the training data.

810 C VISUAL ATTENTION EFFICIENCY ANALYSIS FOR SMI-AW  
811812 In this section, we further validate our SMI-AW via visual attention efficiency analysis.  
813814 Given a target description, the inversion process produces a sequence of output tokens. Some tokens  
815 are predicted with high confidence early on, while others remain low-confidence and are often mis-  
816 predicted. In this section, we demonstrate that these low-confidence tokens play a critical role: they  
817 provide essential feedback signals that guide the search toward a reconstructed image that better  
818 aligns with the target description. When uniform averaging is applied across all tokens, however,  
819 these informative signals are diluted, weakening the inversion gradients and slowing convergence.  
820821 C.1 MEASURING VISUAL ATTENTION EFFICIENCY  
822823 During inversion, we collect the attention score distributions of each output token  $y_i$  across all layers  
824 and aggregate the scores corresponding to image tokens (visual attentions) (Chen et al., 2024). We  
825 define the visual attention efficiency of an output token  $y_i$  as:  
826

827 
$$\epsilon^i = \sum_{j=0}^N \frac{\alpha_{\text{img}}^{i,j}}{|\text{img}|}, \quad (9)$$
  
828

829 where  $N$  is the number of layers, and  $\alpha_{\text{img}}^{i,j}$  denotes the visual attention scores assigned to image  
830 tokens when predicting  $y_i$  at layer  $j$ .  
831832 During inversion, the reconstructed image is iteratively refined through gradient feedback by align-  
833 ing the predicted output tokens with the target tokens. The gradients propagate through the image  
834 tokens encoded by the vision encoder of the target VLM. Therefore, *an output token with a higher*  
835 *visual attention score indicates that the VLM regards the corresponding image tokens as more rel-*  
836 *evant for predicting  $y_i$ .* Such tokens can provide essential feedback signals that guide the inversion  
837 process toward reconstructing an image more faithfully aligned with the target description.  
838839 C.2 LOW-CONFIDENCE TOKENS HAVE HIGHER VISUAL ATTENTION EFFICIENCY  
840841 Our objective is to analyze the *visual attention efficiency* of output tokens, i.e, how strongly the  
842 image tokens contribute to predicting each output token.  
843844 We categorize output tokens into **low-confidence** and **high-confidence** groups. For each token  
845  $y_i$ , we compute its confidence with respect to the ground-truth token. A token is considered *low-*  
846 *confidence* if  $\mathbb{P}(y_i) < p_{\text{thres}}$  and *high-confidence* otherwise. In addition, we measure the visual  
847 attention score  $\epsilon^i$  for each token  $y_i$ . A score is classified as *inefficient* if it falls below the mean  
848 attention score across all  $M$  output tokens, and as *efficient* otherwise.  
849850 We evaluate this analysis on 530 identities from the FaceScrub dataset, setting the confidence thresh-  
851 old to  $p_{\text{thres}} = 0.999$ . Figure S.7 compares the visual attention maps of low- versus high-confidence  
852 tokens. The results reveal that low-confidence tokens consistently exhibit stronger visual attention  
853 than high-confidence tokens. For a quantitative perspective, Table S.1 summarizes the relationship  
854 between attention efficiency and confidence. A clear pattern emerges: high-confidence tokens gener-  
855 ally align with inefficient visual attention, while low-confidence tokens are more strongly associated  
856 with efficient visual attention.  
857858 This finding further validates our adaptive weighting strategy (SMI-AW). **Because low-confidence**  
859 **tokens correlate with efficient visual attention, they provide stronger gradient signals.** By as-  
860 signing greater weight to low-confidence tokens, we guide the inversion process toward reconstruc-  
861 tions that more faithfully capture the target description. In particular, we compare the percentage  
862 of efficient visual attention tokens contributing to the reconstruction of the inverted image between  
863 SMI and SMI-AW (see Figure S.8). In SMI, all tokens are used to update the image, resulting in  
864 only around 38% of them have efficient visual attention. By contrast, SMI-AW employs adaptive  
865 token weighting to focus more on tokens with efficient visual attention, ranging from 75% to 92%  
866 of the tokens used to optimize the inverted images, which provide stronger gradient signals for the  
867 inversion process.  
868

864 Table S.1: We summarize the relationship between the predicted confidence of output tokens and the  
 865 attention efficiency of image tokens. Our observations show that high-confidence tokens typically  
 866 correspond to low attention efficiency, whereas low-confidence tokens tend to correspond to high  
 867 attention efficiency.

|                              | Low-confidence | High-confidence |
|------------------------------|----------------|-----------------|
| Inefficient Visual Attention | 18.19 %        | <b>49.06 %</b>  |
| Efficient Visual Attention   | <b>31.38 %</b> | 1.37 %          |

## D ABLATION STUDY

### D.1 ABLATION STUDY ON $p_{thres}$

We conduct an ablation study to investigate the effect of setting  $p_{thres}$  in SMI-AW. Here, we use  $M = \text{LLaVA-v1.6-7B}$ ,  $\mathcal{D}_{priv} = \text{Facescrub}$ ,  $\mathcal{L}_{inv} = \mathcal{L}_{LOM}$ . As shown in Table S.2, using a higher threshold to focus on tokens with low confidence scores consistently improves attack performance across all evaluation metrics. For all experiments in main paper, we use  $p = 0.999$ .

Table S.2: Ablation study on  $p_{thres}$  for adaptive token weights in SMI-AW. Here, we use  $M = \text{LLaVA-v1.6-7B}$ ,  $\mathcal{D}_{priv} = \text{Facescrub}$ ,  $\mathcal{L}_{inv} = \mathcal{L}_{LOM}$ . Using a higher threshold to focus on tokens with low confidence scores consistently improves attack performance across all evaluation metrics.

| $p_{thres}$ | $AttAcc_M \uparrow$ | $AttAcc_D \uparrow$ |               | $\delta_{face} \downarrow$ | $\delta_{eval} \downarrow$ |
|-------------|---------------------|---------------------|---------------|----------------------------|----------------------------|
|             |                     | $Top1$              | $Top5$        |                            |                            |
| 0.999       | <b>59.83%</b>       | <b>37.17%</b>       | <b>65.31%</b> | <b>0.7349</b>              | <b>135.81</b>              |
| 0.98        | 57.05%              | 34.32%              | 61.23%        | 0.7486                     | 137.27                     |
| 0.95        | 56.96%              | 33.21%              | 61.86%        | 0.7495                     | 136.71                     |

### D.2 ERROR BAR

We repeat each experiment three times using different random seeds and report the results in Table S.3. Specifically, we use  $M = \text{LLaVA-v1.6-7B}$ ,  $\mathcal{D}_{priv} = \text{Facescrub}$ , and  $p_{thres} = 0.999$ . The results demonstrate that our attacks have low standard deviation.

Table S.3: Error bars for our two model inversion strategies SMI and SMI-AW. Each experiment was repeated 3 times, and we report the mean and standard deviation of the attack performance. Here, we use  $M = \text{LLaVA-v1.6-7B}$ ,  $\mathcal{D}_{priv} = \text{Facescrub}$ ,  $p_{thres} = 0.999$ . All inversion strategies are combined with logit maximization loss  $\mathcal{L}_{LOM}$ .

| Method | $AttAcc_M \uparrow$ | $AttAcc_D \uparrow$ |                    | $\delta_{face} \downarrow$ | $\delta_{eval} \downarrow$ |
|--------|---------------------|---------------------|--------------------|----------------------------|----------------------------|
|        |                     | $Top1$              | $Top5$             |                            |                            |
| SMI    | $57.83 \pm 1.18\%$  | $33.50 \pm 0.19\%$  | $61.56 \pm 0.30\%$ | $0.7473 \pm 0.0006$        | $137.89 \pm 2.62$          |
| SMI-AW | $59.39 \pm 0.39\%$  | $37.00 \pm 0.17\%$  | $65.01 \pm 0.31\%$ | $0.7318 \pm 0.0031$        | $135.84 \pm 0.05$          |

## E EXPERIMENTAL SETTING

### E.1 EVALUATION METRICS

In this section, we provide a detailed implementation for five metrics used in our work to access MI attacks.

- **Attack accuracy.** Attack accuracy measures the success rates of MI attacks. Following existing literature, we compute attack accuracy via three frameworks:

918           – **Attack accuracy evaluated by conventional evaluation framework**  $\mathcal{F}_{DNN}$   
 919           ( $AttAcc_D \uparrow$ ) (Zhang et al., 2020; Chen et al., 2021; Struppek et al., 2022; Nguyen  
 920           et al., 2023b; Qiu et al., 2024). Following (Struppek et al., 2022; 2024), we use  
 921           InceptionNet-v3 (Szegedy et al., 2016) as the evaluation model. For a fair compar-  
 922           ison, we use the identical checkpoints of InceptionNet-v3 for Facescrubs, CelebA and  
 923           Stanford Dogs from (Struppek et al., 2022) for evaluation of each dataset. We report  
 924           *Top-1* and *Top-5* Accuracy.  
 925           – **Attack accuracy evaluated by MLLM-based evaluation framework**  $\mathcal{F}_{MLLM}$   
 926           ( $AttAcc_M \uparrow$ ). (Ho et al., 2025) demonstrate that  $\mathcal{F}_{MLLM}$  can achieve better align-  
 927           ment with human evaluation than  $\mathcal{F}_{DNN}$  ( $AttAcc_D \uparrow$  by mitigating Type-I adversarial  
 928           transferability. The evaluation involves presenting a reconstructed image (image A)  
 929           and a set of private reference images (set B) to an MLLM (e.g., Gemini 2.0 Flash),  
 930           and prompting it with the question: “Does image A depict the same individual as im-  
 931           ages in set B?” If the model responds “Yes”, the attack is considered successful. An  
 932           example query is shown in Fig. S.9.  
 933           – **Attack accuracy evaluated by human**  $\mathcal{F}_{Human}$  ( $AttAcc_H \uparrow$ ). Following existing  
 934           studies (An et al., 2022; Nguyen et al., 2023b), we conduct the user study on Amazon  
 935           Mechanical Turk. Participants are asked to evaluate the success of MI-reconstructed  
 936           by referencing the corresponding private images. Similar to  $\mathcal{F}_{MLLM}$ , it involves pre-  
 937           senting an image A and a set of images B. They are asked to answer “Yes” or “No” to  
 938           indicate whether image A depicts the same identity as images in set B (see Fig. S.9).  
 939           Each image pair is shown in a randomized order and displayed for up to 60 seconds.  
 940           Each user study involves 4,240 participants for the FaceScrub dataset and 8,000 par-  
 941           ticipants for the CelebA dataset.  
 942           • **Feature distance.** We compute the  $l_2$  distance between the feature representations of the  
 943           reconstructed and the private training images (Struppek et al., 2022). Lower values indicate  
 944           higher similarity and better inversion quality.  
 945           –  $\delta_{eval}$ . Features are extracted by the evaluation model as used in  $\mathcal{F}_{DNN}$ .  
 946           –  $\delta_{face}$ . Features are extracted by a pre-trained FaceNet model (Schroff et al., 2015).

## 947 E.2 INITIAL CANDIDATE SELECTION

948           Following the method from (Struppek et al., 2022), we perform an initial selection to iden-  
 949           tify promising candidates for inversion. We begin by sampling 2000 latent vectors, denoted as  
 950            $\{w\}_{i=1}^2 000$ , from the prior distribution. For each  $w$ , we evaluate the target VLMs loss. We then  
 951           select the top  $n$  vectors with the lowest loss to serve as our initialization candidates. In our experi-  
 952           ments, we set  $n = 16$  to create 16 candidates for attacks.  
 953

## 954 E.3 FINAL SELECTION

956           To select the final reconstructed image, we perform a final selection step, also following the method  
 957           from (Struppek et al., 2022). This step aims to identify the reconstructed images that have the highest  
 958           confidence. For each of the  $n$  initialization candidates, we apply 10 random data augmentations and  
 959           re-evaluate the target VLMs loss. We calculate the average loss for each candidate across these  
 960           augmentations and select the  $n/2$  candidates with the lowest average loss as the final attack outputs.  
 961

## 962 F RELATED WORK

964           **Model Inversion.** Model Inversion (MI) seeks to recover information about a model’s private train-  
 965           ing data via pretrained model. Given a target model  $M$  trained on a private dataset  $\mathcal{D}_{priv}$ , the ad-  
 966           versary aims to infer sensitive information about the data in  $\mathcal{D}_{priv}$ , despite it being inaccessible after  
 967           training. MI attacks are commonly framed as the task of reconstructing an input  $x_y^r$  that the model  
 968            $M$  would classify as belonging to a particular label  $y$ . The foundational MI method is introduced in  
 969           (Fredrikson et al., 2014), demonstrating that machine learning models could be exploited to recover  
 970           patients’ genomic and demographic data.

971           **Model Inversion in Unimodal Vision Models.** Model Inversion (MI) has been extensively studied  
 972           to reconstruct private training images in unimodal vision models. For example, in the context of

972 face recognition, MI attacks attempt to recover facial images that the model would likely associate  
 973 with a specific individual.

974 Building on the foundational work of (Fredrikson et al., 2014), early MI attacks targeting facial  
 975 recognition are proposed in (Fredrikson et al., 2015; Yang et al., 2019), demonstrating the feasibility  
 976 of reconstructing recognizable facial images from the outputs of pretrained models. However,  
 977 performing direct optimization in the high-dimensional image space is challenging due to the large  
 978 search space. To address this, recent advanced generative-based MI attacks have shifted the search  
 979 to the latent space of deep generative models (Zhang et al., 2020; Wang et al., 2021a; Chen et al.,  
 980 2021; Yang et al., 2019; Yuan et al., 2023; Nguyen et al., 2023b; Struppek et al., 2022; Qiu et al.,  
 981 2024).

982 Specifically, GMI (Zhang et al., 2020) and PPA (Struppek et al., 2022) employ WGAN (Arjovsky  
 983 et al., 2017) and StyleGAN (Karras et al., 2019), respectively, trained on an auxiliary public dataset  
 984  $\mathcal{D}_{\text{pub}}$  that similar to the private dataset  $\mathcal{D}_{\text{priv}}$ . The pretrained GAN is served as prior knowledge for the  
 985 inversion process. To improve this prior knowledge, KEDMI (Chen et al., 2021) trains inversion-  
 986 specific GANs using knowledge extracted from the target model  $M$ . PLGMI (Yuan et al., 2023)  
 987 introduces pseudo-labels to enhance conditional GAN training. IF-GMI (Qiu et al., 2024) utilizes  
 988 intermediate feature representations from pretrained GAN blocks. Most recently, PPDG-MI (Peng  
 989 et al., 2024) improves the generative prior by fine-tuning GANs on high-quality pseudo-private data,  
 990 thereby increasing the likelihood of sampling reconstructions close to true private data. Beyond  
 991 improving GAN-based priors, several studies focus on improving the MI objective including max-  
 992 margin loss (Yuan et al., 2023) and logit loss (Nguyen et al., 2023b) to better guide the inversion  
 993 process. Additionally, LOMMA (Nguyen et al., 2023b) introduces the concept of augmented models  
 994 to improve the generalizability of MI attacks.

995 Unlike MI attacks, MI defenses aim to reduce the leakage of private training data while maintaining  
 996 strong predictive performance. Several approaches have been proposed to defend against MI attacks.  
 997 MID (Wang et al., 2021b) and BiDO (Peng et al., 2022) introduce regularization-based defenses that  
 998 include the term of regularization in the training objective. The crucial drawback of these approaches  
 999 is that the regularizers often conflict with the training objective resulting in a significant degrada-  
 1000 tion in model’s utility. Beyond regularization-based strategies, TL-DMI (Ho et al., 2024) leverages  
 1001 transfer learning to improve MI robustness, and LS (Struppek et al., 2024) applies Negative Label  
 1002 Smoothing to mitigate inversion risks. Architectural approaches to improve MI robustness have also  
 1003 been explored in (Koh et al., 2024). More recently, Trap-MID (Liu & Chen, 2024) introduces a  
 1004 novel defense by embedding trapdoor signals into  $M$ . These signals act as decoys that mislead MI  
 1005 attacks into reconstructing trapdoor triggers instead of actual private data.

1006 **Model Inversion in Multimodal Large Vision-Language Models.** Large Vision-Language Mod-  
 1007 els (VLMs) are increasingly deployed in many real-world applications across diverse domains, in-  
 1008 cluding sensitive areas. Unlike unimodal vision models, VLMs are designed to process both image  
 1009 and text inputs and generate text responses. A typical VLM architecture includes a text tokenizer to  
 1010 encode textual inputs into text tokens, a vision encoder to extract image features as image tokens,  
 1011 and a lightweight projection layer that maps image tokens into the text token space. These tokens  
 1012 are then concatenated and passed through a LLM to produce the final response. This multimodal  
 1013 processing pipeline fundamentally distinguishes VLMs from traditional unimodal vision models.

1014 As VLMs are being adopted more widely, including in privacy-sensitive scenarios, understanding  
 1015 their potential vulnerability to data leakage via MI attacks becomes critical. **However, while MI**  
 1016 **attacks have been extensively studied in unimodal vision models, to the best of our knowledge,**  
 1017 **there has been no prior work investigating MI attacks on multimodal VLMs. To fill this gap,**  
 1018 ***we conduct the first study on MI attacks targeting VLMs and propose a novel MI attack framework***  
 1019 ***specifically tailored to the multimodal setting of VLMs.***

## 1020 G DISCUSSION

### 1021 G.1 BROADER IMPACTS

1022 Our work reveals, for the first time, that VLMs are vulnerable to MI attacks. As VLMs are increas-  
 1023 ingly deployed in many applications including sensitive domains, this poses serious privacy risks.

1026 Although our work focuses on developing a new MI attack for VLMs, we also provide a fundamental  
1027 understanding for the development of MI defenses in multimodal systems. We hope this  
1028 work encourages the community to incorporate privacy audits in VLM deployment and to pursue  
1029 principled model design that mitigates data leakage.

1030 Our methods are intended solely for research and defense development. We strongly discourage  
1031 misuse and emphasize responsible disclosure when evaluating model vulnerabilities.  
1032

1033 **G.2 LIMITATIONS**

1035 While following conventional MI attacks to focus on facial images and dog breeds, a more diverse  
1036 domain scenarios, such as natural scenes or medical images, remain an important direction for future  
1037 research. Moreover, evaluations on a broader range of models are needed to further comprehend our  
1038 study on MI for VLMs.

1039 **H THE USE OF LLMs**

1040 This manuscript was edited using LLMs for language polishing and writing improvements. The  
1041 authors retain full responsibility for the research content, including the concepts, analyses, and con-  
1042 clusions.

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

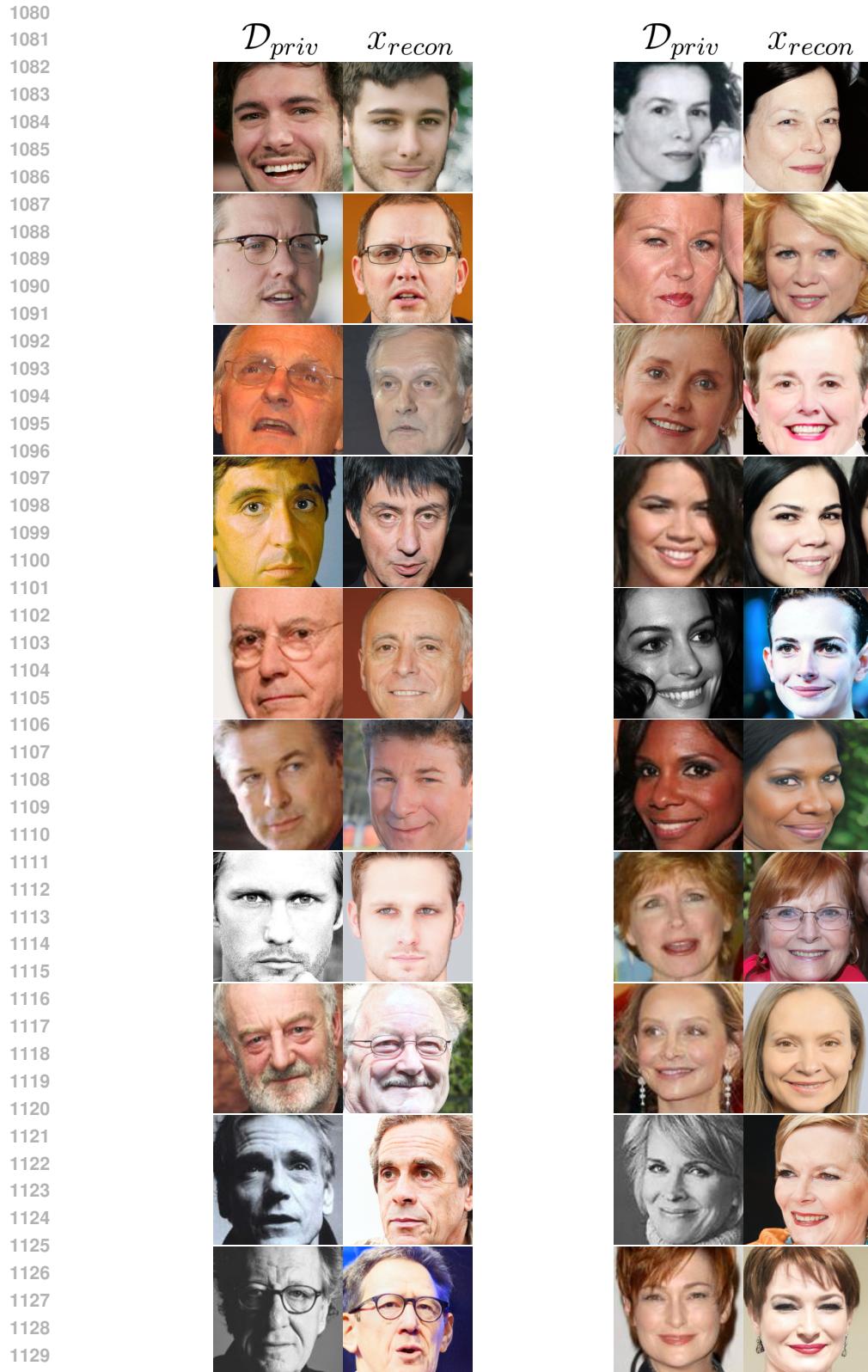
1075

1076

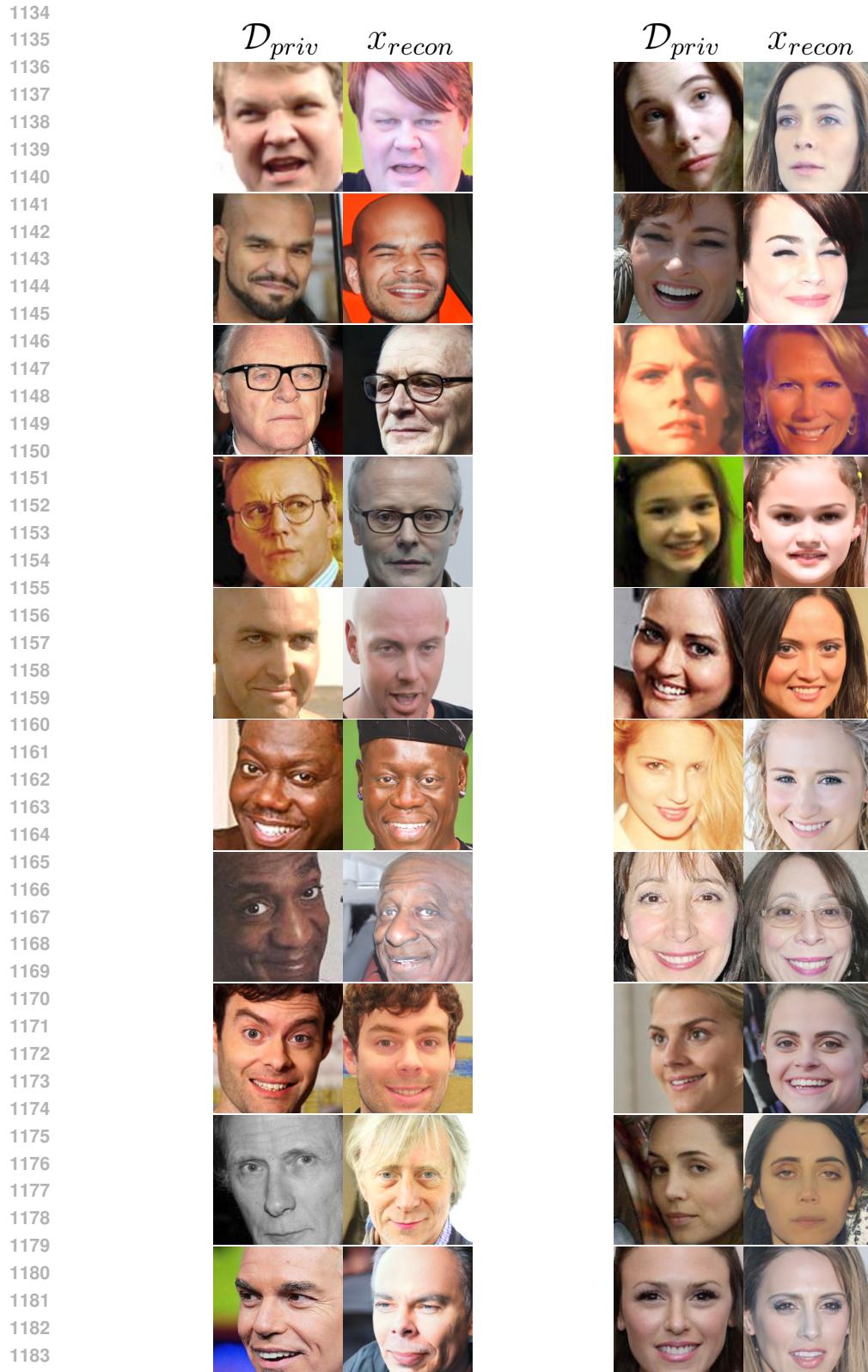
1077

1078

1079



1131 Figure S.2: Qualitative results on Facescrub dataset using the SMI-AW and  $\mathcal{L}_{LOM}$ ,  $M = \text{LLaVA-}$   
 1132 v1.6-7B. For each pair, the left column shows images from the private training dataset, while the  
 1133 right column presents the reconstructed images corresponding to each individual in the left column.

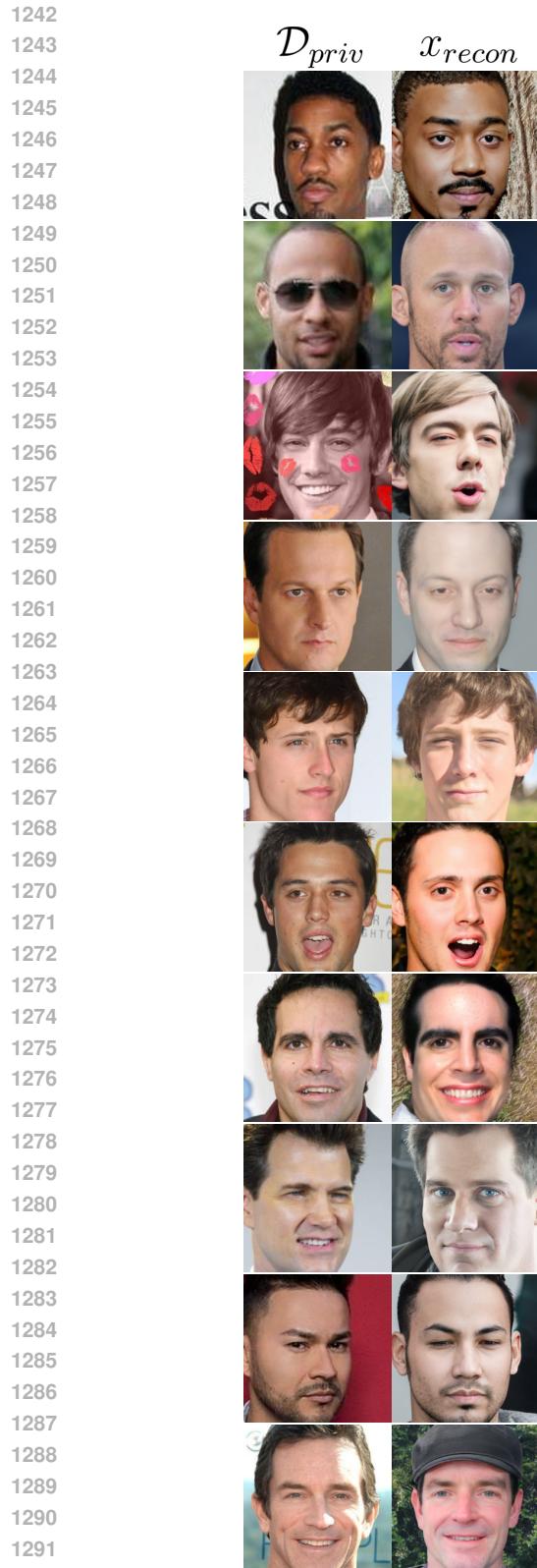


1185  
 1186  
 1187  
 1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199  
 1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206  
 1207  
 1208  
 1209  
 1210  
 1211  
 1212  
 1213  
 1214  
 1215  
 1216  
 1217  
 1218  
 1219  
 1220  
 1221  
 1222  
 1223  
 1224  
 1225  
 1226  
 1227  
 1228  
 1229  
 1230  
 1231  
 1232  
 1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241  
 1242  
 1243  
 1244  
 1245  
 1246  
 1247  
 1248  
 1249  
 1250  
 1251  
 1252  
 1253  
 1254  
 1255  
 1256  
 1257  
 1258  
 1259  
 1260  
 1261  
 1262  
 1263  
 1264  
 1265  
 1266  
 1267  
 1268  
 1269  
 1270  
 1271  
 1272  
 1273  
 1274  
 1275  
 1276  
 1277  
 1278  
 1279  
 1280  
 1281  
 1282  
 1283  
 1284  
 1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295  
 1296  
 1297  
 1298  
 1299  
 1300  
 1301  
 1302  
 1303  
 1304  
 1305  
 1306  
 1307  
 1308  
 1309  
 1310  
 1311  
 1312  
 1313  
 1314  
 1315  
 1316  
 1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349  
 1350  
 1351  
 1352  
 1353  
 1354  
 1355  
 1356  
 1357  
 1358  
 1359  
 1360  
 1361  
 1362  
 1363  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370  
 1371  
 1372  
 1373  
 1374  
 1375  
 1376  
 1377  
 1378  
 1379  
 1380  
 1381  
 1382  
 1383  
 1384

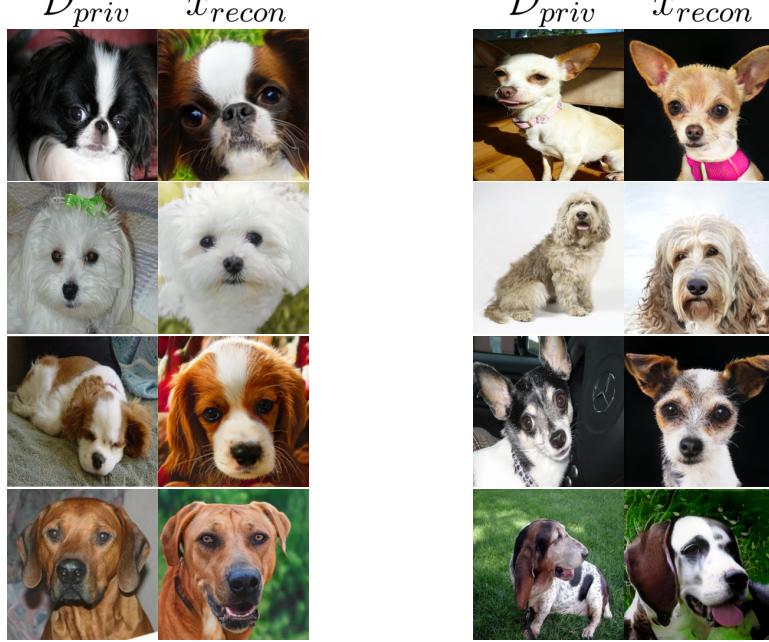
Figure S.3: Qualitative results on Facescrub dataset using the SMI-AW and  $\mathcal{L}_{LOM}$ ,  $M$  = MiniGPT-v2. For each pair, the left column shows images from the private training dataset, while the right column presents the reconstructed images corresponding to each individual in the left column.



1239 Figure S.4: Qualitative results on Facescrub dataset using the SMI-AW and  $\mathcal{L}_{LOM}$ ,  $M = \text{Qwen2.5-VL}$ . For each pair, the left column shows images from the private training dataset, while the right column presents the reconstructed images corresponding to each individual in the left column.  
 1240  
 1241

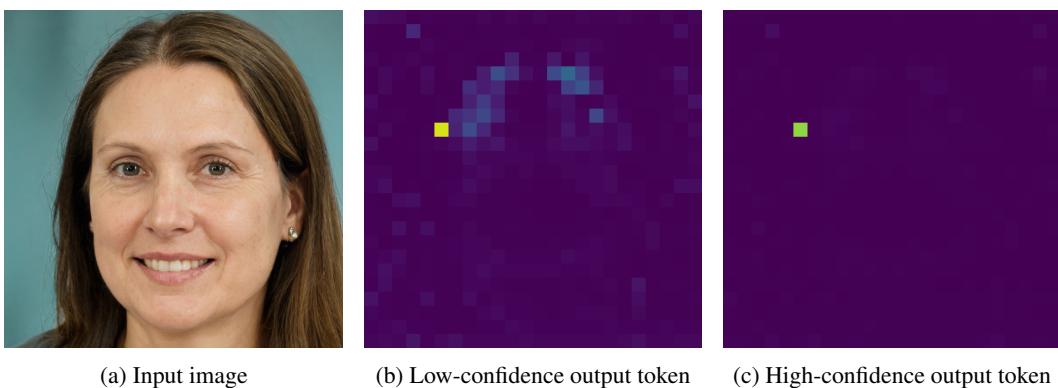


1296  
1297  
1298  
1299  
1300  $\mathcal{D}_{priv}$   $x_{recon}$   
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320



1321 Figure S.6: Qualitative results on the Stanford Dogs dataset using the SMI-AW and  $\mathcal{L}_{LOM}$ ,  $M$   
1322 = LLaVA-v1.6-7B. For each pair, the left column shows images from the private training dataset,  
1323 while the right column presents the reconstructed images corresponding to each dog breed in the left  
1324 column.

1325  
1326  
1327  
1328  
1329  
1330  
1331



1343 Figure S.7: An illustration of attention maps of low-confidence ( $\mathbb{P}(y_i) = 0.1854$ ) and high-  
1344 confidence ( $\mathbb{P}(y_i) = 0.9999$ ) output tokens

1345  
1346  
1347  
1348  
1349

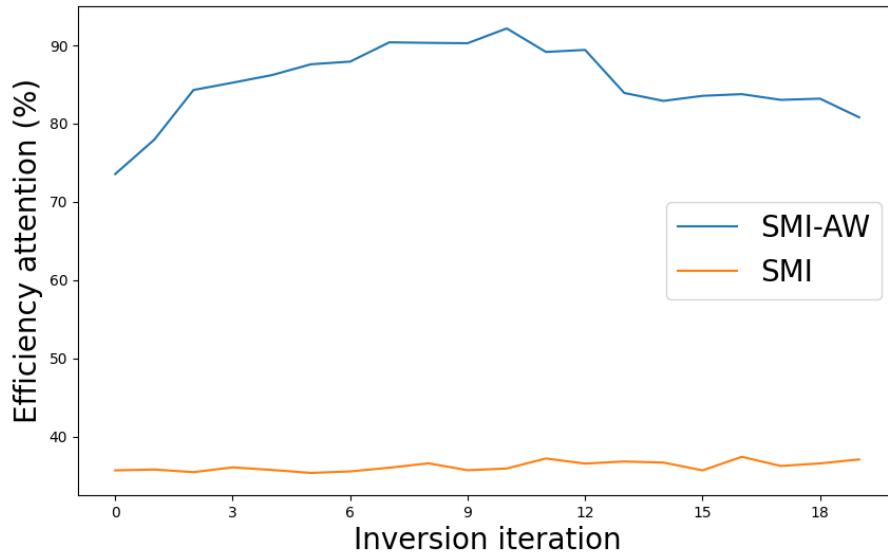


Figure S.8: Percentage of efficient visual attention tokens among all tokens used during inversion for SMI and SMI-AW. With the adaptive weighting, SMI-AW effectively increasing the percentage of efficient visual attention tokens used during inversion. This strategy significantly improves attack accuracy, achieving stronger results across multiple metrics and datasets (Section 4.2).

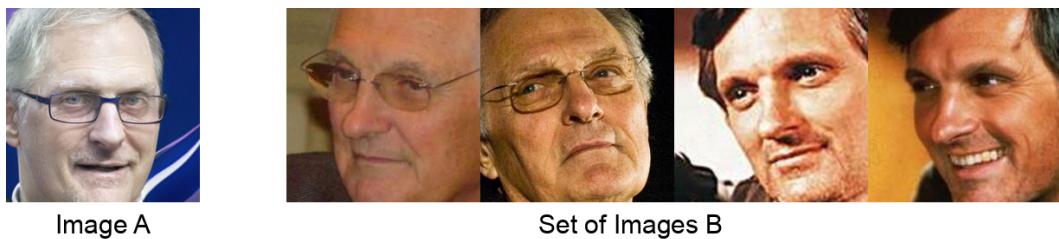


Image A

Set of Images B

Does Image A depict the same individual as the images in Set B?

Figure S.9: An example evaluation query in  $\mathcal{F}_{MLLM}$  and human evaluation involves determining whether “Image A” depicts the same individual as those in “Image B.” “Image A” is a reconstructed image of a target textual answer  $y$ , while “Image B” contains four real images of the same target textual answer  $y$ . Gemini or human evaluators respond with “Yes” or “No” to indicate whether “Image A” matches the identity shown in “Image B.”