
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODEL INVERSION ATTACKS ON VISION-LANGUAGE
MODELS: DO THEY LEAK WHAT THEY LEARN?

Anonymous authors
Paper under double-blind review

ABSTRACT

Model inversion (MI) attacks pose significant privacy risks by reconstructing pri-
vate training data from trained neural networks. While prior works have focused
on conventional unimodal DNNs, the vulnerability of vision-language models
(VLMs) remains underexplored. In this paper, we conduct the first study to under-
stand VLMs’ vulnerability in leaking private visual training data. To tailored for
VLMs’ token-based generative nature, we introduce four novel token-based and
sequence-based model inversion strategies. Particularly, we propose Sequence-
based Model Inversion with Adaptive Token Weighting (SMI-AW), based on our
insight that not all tokens are equally informative for inversion. By dynamically
reweighting token-level feedback according to each token’s informativeness for
inversion, SMI-AW achieves consistent improvement in reconstruction quality.
Through extensive experiments and user study on three state-of-the-art VLMs and
multiple datasets, we demonstrate, for the first time, that VLMs are susceptible
to training data leakage. The experiments show that our proposed sequence-based
methods, particularly SMI-AW combined with a logit-maximization loss based on
vocabulary representation, can achieve competitive reconstruction and outperform
token-based methods in attack accuracy and visual similarity. Importantly, human
evaluation of the reconstructed images yields an attack accuracy of 75.31%, un-
derscoring the severity of model inversion threats in VLMs. Notably, we also
demonstrate inversion attacks on the publicly released VLMs. Our study reveals
the privacy vulnerability of VLMs as they become increasingly popular across
many applications such as healthcare and finance. Our code, pretrained models,
and reconstructed images are available in OpenReview’s discussion forum.

1 INTRODUCTION

Model Inversion (MI) attacks aim to reconstruct training data by exploiting information encoded
within a trained model. These attacks pose significant privacy risks to unimodal DNNs (Fredrikson
et al., 2015; Zhang et al., 2020; Chen et al., 2021; An et al., 2022; Struppek et al., 2022; Kahla et al.,
2022; Han et al., 2023; Nguyen et al., 2023b; Yuan et al., 2023; Nguyen et al., 2023a; Qiu et al.,
2024), The goal of MI attack is to reconstruct private training images x associated with a target label
y. These methods typically pose inversion as an optimization problem that maximizes the likelihood
of y under the target model:

max
w

logPMDNN
(y | G(w)) (1)

Here, MDNN is a unimodal DNN trained on private data Dpriv , and G represents a generative
model (Goodfellow et al., 2014; Karras et al., 2019). The optimization is usually accomplished by
performing N inversion update steps to generate a reconstruction x∗ = G(w∗) that approximates
the training sample in Dpriv for a given label y.

Research Gap. With the rapid advancement and widespread deployment of Vision-Language Mod-
els (VLMs) across various applications (Liu et al., 2024; Team et al., 2024; Bai et al., 2025), an
important and timely question arises: Are VLMs similarly vulnerable to Model Inversion attacks
as unimodal DNNs? In this context, we define an MI attack as the task of reconstructing VLM’s
training images by leveraging its textual input and output. Addressing this question is crucial for
understanding and mitigating potential privacy threats in multimodal learning systems.
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Conventional Model Inversion for unimodal DNNs  (a) Token-based Model Inversion Update (TMI)

R
epeat K

 tim
es...

(b) Convergent Token-based Model Inversion Update (TMI-C)

Repeat
K

times

Repeat
K

times

Repeat
K

times

...

(c) Sequence-based Model Inversion Update (SMI)

...

(d) Sequence-based Model Inversion Update with Adaptive Token Weighting
(SMI-AW)

Repeat
N

times

N: The number of inversion steps
m: The number of target tokens 

One update
to

is computed using Eqn.
(4) and dynamically

updated for each
inversion step 

...

Repeat
N

times

Repeat
N

times

Figure 1: Overview of our proposed Model Inversion attacks for VLMs. Conventional MI typi-
cally targets unimodal DNNs, where the adversary seeks to reconstruct a training image x = G(w)
that maximizes the likelihood of a target class label y under the target model MDNN . The maxi-
mization is accomplished by repeating N inversion steps to recover a high-fidelity reconstruction.
In contrast, VLMs MV LM generate a sequence of tokens, and the target output y = (y1, . . . , ym) is
also a sequence of m tokens. To address the unique nature of VLMs, we propose four MI strategies.
(a) Token-based Model Inversion (TMI): We perform one gradient update to the latent variable
w after each generated token. This process continues for all m tokens in the sequence, and the en-
tire sequence-level inversion is repeated K = N/m times. (b) Convergent Token-based Model
Inversion (TMI-C): To ensure correctness of earlier tokens before generating subsequent ones, we
propose updating w for K steps per token yi, conditioning on the previous tokens y<i. (c) Sequence-
based Model Inversion (SMI): We compute one gradient update to w based on the average loss over
all m tokens, providing a global view of the sequence-level gradients. (d) Sequence-based Model
Inversion with Adaptive Token Weighting (SMI-AW): We introduce adaptive token weights αi

for each token yi to dynamically emphasize tokens that could provide more essential feedback sig-
nals, guiding reconstruction toward an image that matches the target description.

Unlike unimodal DNNs, vision-language models MV LM differ in several fundamental ways: they
process multiple modalities (e.g., images and text), often comprise several distinct modules (e.g.,
separate encoders for vision and language, projector, language model), are often trained in multiple
stages, and leverage broad, large-scale datasets. Crucially, a VLM’s output is language, represented
as a sequence of tokens. Consequently, MI attacks on VLMs must contend with unique aspects not
present in unimodal DNNs. Furthermore, in unimodal DNNs, private visual features are directly
embedded in the model parameters, increasing the risk that model inversion attacks can extract
private visual features directly from the model. In contrast, many VLMs keep the vision encoder
frozen during training and primarily update the language model. As a result, inversion attacks on
VLMs rely on private information embedded in the language model’s and projector’s parameters
to guide the image reconstruction, rather than directly extracting visual features from the vision
encoder. These differences highlight a timely and important research gap: the urgent need for novel
Model Inversion tailored to the multimodal VLMs to understand their privacy threats.

In this work, we introduce four novel token-based and sequence-based model inversion strategies
tailored for VLMs (Figure 1). Our token-based attacks leverage token-level gradients to optimize the
reconstructed images. In contrast, our sequence-based attacks utilize gradients aggregated over the
entire sequence, offering a global perspective for image reconstruction. Particularly, we introduce
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Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW), which is based on our
insight that not all tokens are equally informative for inversion. Low-confidence or mistaken tokens,
rather than being noise, provide important feedback that highlights errors in the current reconstruc-
tion and effectively guide the search toward the correct image matching the target description. By
dynamically reweighting token-level feedback at each inversion step to form the sequence-level
feedback signal, SMI-AW achieves improved reconstruction quality.

We conduct experiments on three VLMs across three datasets to demonstrate the effectiveness of
our inversion attacks. Notably, human evaluation of the reconstructed images achieves an attack
accuracy of 75.31%, highlighting the severity of model inversion threats in VLMs. Furthermore, we
validate the generalizability of our approach on publicly available VLMs, reinforcing its practical
applicability and security implications. Our key contributions are as follows:

• We present a pioneering study of model inversion attacks on vision-language models, un-
covering a novel security risk in the multimodal models.

• We introduce a suite of novel inversion strategies tailored for VLMs, including two Token-
based MI (TMI and TMI-C) and two Sequence-based MI attacks (SMI and SMI-AW).

• The extensive experimental validation shows our proposed attacks, especially SMI-AW,
achieve both high attack accuracy and good visual fidelity. Crucially, we showcase suc-
cessful and high-fidelity inversion attacks against publicly available VLMs, underscoring
the immediate and practical privacy risks posed by these models and the urgent need for
robust defense mechanisms.

2 PROBLEM FORMULATION

We present the first comprehensive study of model inversion attacks in VLMs, which are increas-
ingly used in real-world applications.

Threat Model. We consider a threat model where a VLM M is pre-trained on broad data and fine-
tuned on a private VQA dataset Dpriv = {(t,x, y)}, where x is the image, t and y are the textual
input and correct textual answer. For clarity, hereafter we use M to denote a VLM and MDNN to
refer to a unimodal DNNs. Using the tokenizer of M , the textual input t and the textual answer y are
tokenized into sequences t = (t1, t2, . . . , tn) and y = (y1, y2, . . . , ym), respectively. We denote the
full output sequence of M given input (t,x) as M(t,x). The model’s prediction of the i-th token
yi, conditioned on the previous tokens y<i, is denoted by M(t,x, y<i).

Attacker’s Goal. Given a trained VLM M , the goal of a model inversion attack is to reconstruct a
representative image x∗ that reveals sensitive or private visual information from the private training
image x in a data sample (t,x, y) ∈ Dpriv . Specifically, the adversary is given access to the trained
model M , a textual input prompt t, and the corresponding target output y. The target is to synthesize
an image x∗ such that M(t,x∗) = y where t = (t1, t2, . . . , tn) and y = (y1, y2, . . . , ym) are the
output token sequence associated with the input textual t and textual output y. In other words, the
model inversion attack seeks to infer a plausible visual input x∗ that, when paired with the given
input tokens t, produces the high likelihood output sequence y. This reconstructed image x∗ is
intended to approximate or reveal private features of the true image x, thereby compromising the
visual confidentiality of the training data.

Attacker’s Capabilities. We consider a white-box setting (Zhang et al., 2020; Chen et al., 2021;
An et al., 2022; Struppek et al., 2022; Nguyen et al., 2023b; Qiu et al., 2024), where the attacker has
full access to the VLM’s architecture, parameters, output responses (e.g., generated text or logits),
input prompts t, and their corresponding ground-truth answers y. The attacker also has access to an
auxiliary public dataset Dpub from the same domain as Dpriv.

3 MODEL INVERSION STRATEGIES FOR VLMS

Given a VLM M trained on broad data and fine-tuned with a private VQA dataset Dpriv =
{(t,x, y)}. Performing MI attacks directly in the image space is computationally expensive and
often ineffective (Zhang et al., 2020). To reduce the search space of x∗, we follow conventional
MI approaches for DNNs by leveraging a generative model G trained on an auxiliary public dataset

3
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Algorithm 1 Token-based MI (TMI)
1: INPUT: M,G, t,y = (y1, . . . , ym), N, β
2: OUTPUT: G(w)
3: K = N/m
4: for k = 1 to K do
5: for i = 1 to m do
6: L = Linv(M(t, G(w), y<i), yi)

(2)
7: w = w − β ∂L

∂w

Algorithm 2 Convergent Token-based MI
(TMI-C)

1: INPUT: M,G, t,y = (y1, . . . , ym), N, β
2: OUTPUT: G(w)
3: K = N/m
4: for i = 1 to m do
5: for k = 1 to K do
6: Compute L using Eqn. (2).
7: w = w − β ∂L

∂w

Dpub (Zhang et al., 2020; Chen et al., 2021; Struppek et al., 2022; Nguyen et al., 2023b; Qiu et al.,
2024). This allows us to shift the optimization from the high-dimensional image space to the lower-
dimensional latent space of G, i.e., x = G(w), where w is the intermediate latent vector.

In contrast to conventional MI attacks targeting classification models, where the objective is to
reconstruct an input image x that yields a specific class label, VLMs generate token sequences, and
the target output also represented as a sequence of tokens. This requires a reformulation of the
MI objective to account for token generation. Our goal is to reconstruct a representative image
x∗ = G(w∗) by optimizing the latent vector w such that the generated image captures the semantic
content of the private training image x that associates with description y.

In this section, we model introduce four inversion strategies tailored for VLMs. The first two (TMI
and TMI-C) are token-based approaches that leverage token-level gradients to optimize the recon-
structed images. In contrast, the remaining two are sequence-based methods (SMI and SMI-AW)
that aggregate gradients over the entire output sequence, providing a global perspective for inversion.

3.1 TOKEN-BASED MODEL INVERSION (TMI)

A natural approach is to treat the inversion process as a sequential update over individual token
predictions. Given a target token sequence y, we iteratively update the latent code w after each
generated token (see Figure 1 (a)). The details are in Algorithm 1. N is the number of inversion
steps, β is the update rate of MI, y<i denotes the previous tokens. Linv presents the inversion loss,
guiding the generative model G to produce images that induce the token yi. We will discuss the
design of Linv in the next section. The optimization is performed over multiple iterations, typically
up to a update limit of N inversion steps. At each iteration, each token contributes independently to
the optimization process.

3.2 CONVERGENT TOKEN-BASED MODEL INVERSION (TMI-C)

TMI performs a single update per token per iteration. However, VLMs generate each token yi
based on the preceding tokens y<i. To better align with this generative dependency, we propose
Convergent Token-based Model Inversion (TMI-C), which updates the latent vector w multiple times
for each target token before proceeding to the next. Specifically, for each token yi, we perform
K updates to w, thereby encouraging convergence of the token-level inversion subproblem before
advancing to yi+1 (see Figure 1 (b)). The details are presented in Algorithm 2.

3.3 SEQUENCE-BASED MODEL INVERSION (SMI)

Algorithm 3 Sequence-based MI (SMI)
1: INPUT: M,G, t,y = (y1, . . . , ym), N, β
2: OUTPUT: G(w)
3: for k = 1 to N do

4: L =
1

m

m∑
i=1

Linv(M(t, G(w), y<i), yi) (3)

5: w = w − β ∂L
∂w

Token-based model inversion methods
treat each token independently, optimiz-
ing the latent vector w based on indi-
vidual token-level losses. As the out-
put of VLMs is a sequence of tokens,
we propose Sequence-based Model In-
version (SMI), which performs a single
gradient update to w by averaging the loss
across all m tokens in the sequence (see
Figure 1 (c)). By aggregating token-level
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losses into a unified objective, SMI leverages the interdependencies among tokens and provides
more coherent gradients that reflects the structure of the full sequence. This global view encourages
the model to recover a latent representation that is consistent across the entire sequence, rather than
optimizing for each token in isolation. The details are presented in Algorithm 3.

3.4 SEQUENCE-BASED MODEL INVERSION WITH ADAPTIVE TOKEN WEIGHTING
(SMI-AW)

SMI in Eqn. (3) assumes that all tokens contribute equally to the inversion objective. In prac-
tice, however, some tokens are confidently predicted early during inversion, while others remain
low-confident and potentially mispredicted. Importantly, these mistaken tokens provide essential
feedback signals that guide the search toward a correct reconstructed image matching the target
description. When uniform averaging is applied across all tokens, these signals are diluted and
dampened, weakening the inversion gradients and slowing convergence.

To address this, we propose an adaptive token weighting scheme that amplifies the loss contributions
from low-confidence (mispredicted) tokens and suppresses those with high-confidence (see Figure
1 (d)). Specifically, we adaptively reweight the token-wise loss using confidence-aware weights αi.
The weights αi are computed based on the predicted probability P(yi) of token yi under the current
model output. We define a token as low-confidence if P(yi) < pthres, where pthres is a confidence
threshold. Let n be the number of such low-confidence tokens. The weights are then assigned as:

αi =


{

1
n , if P(yi) < pthres,

0, if P(yi) ≥ pthres
, if n > 0,

1
m , if n = 0.

(4)

Algorithm 4 Sequence-based MI with Adaptive Token
Weighting (SMI-AW)

1: INPUT: M,G, t,y = (y1, . . . , ym), N, β, pthres
2: OUTPUT: G(w)
3: for k = 1 to N do
4: n = the number of low-confidence token in ypred.
5: Compute αi for each token yi using Eqn. (4)

6: L =

m∑
i=1

αiLinv(M(t, G(w), y<i), yi) (5)

7: w = w − β ∂L
∂w

This scheme dynamically focuses op-
timization on low-confidence tokens,
amplifying gradient signals where
prediction errors are more prominent.
If there are no low-confidence tokens
(n = 0), we set αi = 1/m, allow-
ing the model to update w with equal
contributions from all tokens. The
method is presented in Algorithm 4.
See Supp Sec C for further justifi-
cation of SMI-AW via visual atten-
tion efficiency.

Remark. To tailored for VLMs’
token-based generative nature, we propose 4 token-based and sequence-based that leverage token-
level and sequence-level gradients for image reconstruction.

3.5 INVERSION LOSS DESIGN FOR VLMS

In this section, we present the adaptation of the inversion loss from conventional unimodal MI
to VLMs. Specifically, the inversion loss in traditional MI typically consists of two components:
Linv = Lid +Lprior, where the identity loss Lid guides the generator G(w) to produce images that
induce the label y from the target model MDNN , and Lprior is a regularization or prior loss. To
extend this to VLMs, we focus on adapting the identity loss Lid. We categorize it into two main
types: cross-entropy-based and logit-based losses.

Cross-entropy-based. This loss is widely used in MI attacks (Zhang et al., 2020; Chen et al., 2021;
Qiu et al., 2024) to optimize w such that the reconstruction has the highest likelihood for the target
class under the model M . For VLMs, we adapt the cross-entropy loss LCE for each target token yi
as follows:

LCE(M(t, G(w), y<i), yi) = − logPM (yi|t, G(w), y<i) (6)

PM (yi|t, G(w), y<i) denotes the predicted probability of token yi, computed over the tokenizer
vocabulary of the VLM (e.g., LLaVa-v1.6 uses a vocabulary of 32,000 tokens).

5
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Logit-based. Prior work shows that using cross-entropy loss in MI can lead to gradient vanishing
(Yuan et al., 2023) or sub-optimal results (Nguyen et al., 2023b). To address this, Yuan et al. (2023)
and Nguyen et al. (2023b) propose optimizing losses directly over logits of a target class. We adopt
two such logit-based losses for VLMs: the Max-Margin Loss LMML (Yuan et al., 2023) and the
Logit-Maximization Loss LLOM (Nguyen et al., 2023b) for a target token yi:

LMML(M(t, G(w), y<i), yi) = −lyi
(t, G(w), y<i) + max

k ̸=yi

lk(t, G(w), y<i) (7)

LLOM (M(t, G(w), y<i), yi) = −lyi
(t, G(w), y<i) + λ∥fyi

− freg∥22 (8)
Here, lyi

is the logit corresponding to the target token yi, λ is a hyperparameter, fyi
=

Mpen(t, G(w), y<i) where Mpen() denotes the function that extracts the penultimate layer rep-
resentations for a given input, and freg is a sample activation from the penultimate layer Mpen()
computed using public images from Dpub. Following (Nguyen et al., 2023b), the distribution of freg
is estimated over 2000 input pairs (t,xpub), where xpub ∈ Dpub. LMML maximizes the logit of the
correct token yi while penalizing the highest incorrect logit to mitigate gradient vanishing. On the
other hand, LLOM also maximizes the correct token’s logit to avoid sub-optimality, while addition-
ally penalizing deviations in the penultimate activations to prevent unbounded logits problem.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our 4 proposed model inversion attacks on 3 VLMs
(i.e., LLaVA-v1.6, Qwen2.5-VL and MiniGPT-v2), 3 private datasets, 2 public datasets with an
extensive evaluation spanning 5 metrics including the human evaluation.

4.1 EXPERIMENTAL SETTING

Dataset. Following standard model inversion (MI) setups(Zhang et al., 2020; Chen et al., 2021;
Struppek et al., 2022; An et al., 2022; Nguyen et al., 2023b; Yuan et al., 2023; Struppek et al., 2024;
Qiu et al., 2024; Ho et al., 2024; Koh et al., 2024), we use facial and fine-grained classification
datasets to evaluate our approach. Specifically, we conduct experiments on three datasets: FaceScrub
(Ng & Winkler, 2014), CelebA (Liu et al., 2015), and Stanford Dogs (Dataset, 2011). The FaceScrub
dataset contains 106,836 images across 530 identities. For CelebA, we select the top 1,000 identities
with the most samples from the full set of 10,177 identities. Stanford Dogs comprises images from
120 dog breeds, serving as a representative fine-grained visual dataset.

To train the target VLMs, we construct VQA-style datasets including VQA-FaceScrub, VQA-
CelebA, and VQA-Stanford Dogs. For the facial datasets, each image x is paired with a prompt
t = “Who is the person in the image?”, and the expected textual response y is the individual’s name
(e.g., y = “Candace Cameron Bure”). Since the CelebA dataset does not contain identity names, we
randomly generate 1,000 unique English names, each comprising a distinct first and last name with
no repetitions, and assign one to each identity in the selected CelebA subset. For VQA-Stanford
Dogs, each image x is paired with a prompt t = “What breed is this dog?”, and the target answer y
corresponds to the ground-truth breed label (e.g., “black-and-tan coonhound”).

Public Dataset and Image Generator. For facial image reconstruction, we use FFHQ (Karras
et al., 2019) as the public dataset Dpub and a pre-trained StyleGAN2 (Karras et al., 2020) trained
on FFHQ. Following conventional MI (Struppek et al., 2022), we optimize in the latent space w of
StyleGAN2 to recover images x = G(w). For Stanford Dogs experiments, we adopt AFHQ-Dogs
(Choi et al., 2020) as Dpub to train the dog image generator.

VLMs. We fine-tune LLaVA-v1.6-7B (Liu et al., 2024), Qwen2.5VL-7B (Bai et al., 2025), and
MiniGPT-v2 (Chen et al., 2023) using VQA-Facescrub, VQA-CelebA, and VQA-StanfordDogs.

Evaluation Metrics. To assess the quality of the inversion results, we adopt five metrics:

• Attack accuracy. We compute the attack accuracy using three frameworks as described
below. We strictly follow the evaluation frameworks in their original works ( detailed setups
in the Supp). Higher accuracy indicates a more effective inversion attack.

6
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– Attack accuracy evaluated by conventional evaluation framework FDNN

(AttAccD ↑) (Zhang et al., 2020; Chen et al., 2021; Struppek et al., 2022; Nguyen
et al., 2023b; Qiu et al., 2024). This is a conventional framework, where the evalua-
tion models are standard DNNs trained on private dataset. Following (Struppek et al.,
2022; 2024), we use InceptionNet-v3 (Szegedy et al., 2016) as the evaluation model
to classify reconstructed images, and compute the Top1 and Top5 based on whether
the predicted label match the target label.

– Attack accuracy evaluated by MLLM-based evaluation framework FMLLM

(AttAccM ↑). (Ho et al., 2025) demonstrate that FMLLM can achieve better align-
ment with human evaluation. Unlike the conventional framework FDNN , which re-
lies on the classification predictions of standard DNNs trained on private datasets,
this metric leverages powerful MLLMs to evaluate the success of MI-reconstructed
by referencing the corresponding private images.

– Attack accuracy evaluated by human FHuman(AttAccH ↑). Following existing
studies (An et al., 2022; Nguyen et al., 2023b), we conduct the user study on Amazon
Mechanical Turk. Participants are asked to evaluate the success of MI-reconstructed
by referencing the corresponding private images (Details in the Supp).

• Feature distance. We compute the l2 distance between the feature representations of the
reconstructed and the private training images (Struppek et al., 2022). Lower values indicate
higher similarity and better inversion quality.

– δeval. Features are extracted by the evaluation model in FDNN .
– δface. Features are extracted by a pre-trained FaceNet model (Schroff et al., 2015).

4.2 RESULTS

We report attack results on the FaceScrub dataset in Table 1, evaluating four MI strategies under three
inversion losses using LLaVa-1.6-7B. The results show that sequence-based mode inversion methods
consistently outperform token-level MI approaches across all evaluation metrics. Among them,
SMI-AW, when combined with the LLOM , achieves the highest performance. This highlights the
advantage of employing adaptive token-wise weights that are dynamically updated at each inversion
step. Using this method, we achieve an attack accuracy of 59.25% under FMLLM while other
distance metrics such as δface and δeval are the lowest (where lower is better).

Results on additional datasets, including CelebA and Stanford Dogs, are shown in Table 2 using the
logit maximization loss. We achieve high attack success rates, with attack accuracies of 66.91% on
CelebA and 77.40% on Stanford Dogs. These findings are consistent with results on the FaceScrub
dataset, where SMI-AW consistently achieves the highest attack performance across all metrics.

We further evaluate our proposed method on Qwen2.5-VL-7B and MiniGPT-v2, using the Face-
Scrub dataset (see Table 3). The results reinforce the generalizability of our findings, demonstrating
that VLMs are broadly vulnerable to model inversion attacks. These results underscore the severity
of this vulnerability and raise a significant alarm about the susceptibility of VLMs to inversion-based
privacy breaches.

4.3 ANALYSIS

To better understand why token-based MI methods underperform compared to sequence-based ap-
proaches, we analyze the match rate between the final reconstructed images M(t, G(w∗)) and the
corresponding target textual answers y. Specifically, we define the match rate as the percentage of
reconstructed images for which the target answer y appears as a substring of the predicted text asso-
ciated with the image. In other words, it reflects the proportion of reconstructions whose generated
text aligns with the target textual answer at the end of the inversion process.

The results, shown in Figure 2, reveal a clear distinction between the two types of methods. Token-
based MIs exhibit poor convergence behavior, with match rates ranging from 60% to 79% for TMI,
and dropping below 30% for TMI-C. In contrast, sequence-based methods such as SMI and SMI-
AW achieve match rates exceeding 95%, indicating more reliable alignment between reconstructed
images and their textual targets. It is important to note that a high match rate does not necessarily
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imply a successful attack, as the optimization may overfit or converge to a poor local minimum. Nev-
ertheless, a higher match rate generally correlates with a greater likelihood of a successful identity
inversion attack.

Table 1: Comparison of performance metrics
across four inversion strategies using LLaVa-
1.6-7B fine-tuned on the FaceScrub dataset,
evaluated with three identity losses. We high-
light the best results in bold.

Linv AttAccM ↑ AttAccD ↑
δface ↓ δeval ↓

Top1 Top5

TMI
LCE 37.78% 17.71% 39.79% 0.8939 147.35
LMML 39.98% 17.31% 38.51% 0.9065 193.14
LLOM 44.34% 21.77% 44.69% 0.8488 141.87

TMI-C
LCE 21.77% 6.39% 18.58% 1.0911 636.50
LMML 25.99% 6.51% 18.82% 1.0659 205.71
LLOM 31.16% 9.32% 24.22% 1.0221 457.49

SMI
LCE 40.97% 18.25% 41.11% 0.8682 144.53
LMML 55.52% 32.83% 60.12% 0.7569 137.43
LLOM 59.17% 33.47% 61.89% 0.7465 140.83

SMI-AW
LCE 44.17% 22.33% 46.63% 0.8464 145.29
LMML 57.15% 34.91% 61.84% 0.7444 138.24
LLOM 59.25% 36.98% 64.69% 0.7286 135.90

Table 2: We report the results on the CelebA
and Stanford Dogs dataset across four inversion
strategies with LLOM .

Method AttAccM ↑ AttAccD ↑
δface ↓ δeval ↓

Top1 Top5

CelebA dataset
TMI 39.74% 15.31% 33.14% 1.0195 428.66
TMI-C 18.73% 3.63% 10.29% 1.2370 446.90
SMI 64.93% 38.30% 63.69% 0.8294 416.34
SMI-AW 66.91% 40.83% 65.84% 0.8133 415.25

Stanford Dogs dataset
TMI 61.46% 40.31% 70.21% - 102.40
TMI-C 48.54% 29.69% 59.79% - 102.23
SMI 75.94% 53.65% 82.19% - 76.98
SMI-AW 77.40% 58.33% 86.04% - 78.61

Table 3: We report the results of Qwen2.5-VL-
7B and MiniGPT-v2 on the Facescub dataset.
Here we use SMI-AW with LLOM .

M AttAccM ↑ AttAccD ↑
δface ↓ δeval ↓

Top1 Top5

MiniGPT 50.80% 15.26% 34.69% 0.8909 161.35
Qwen2.5 36.42% 14.91% 31.37% 1.0115 144.92

Figure 2: The match rate between the output text of
the reconstructed image and the target output text y.

Table 4: Human evaluation results.
We evaluate our SMI-AW method using
LLOM , the private datasets Dpriv are Face-
Scrub and CelebA.

VLM Dpriv AttAccH ↑
LLaVA-v1.6-7B

Facescrub
75.31%

MiniGPT-v2 61.84%
Qwen2.5-VL 57.74%
LLaVA-v1.6-7B CelebA 61.95%

4.4 QUALITATIVE RESULTS

Figure 3 shows qualitative results demonstrating the effectiveness of our method. Using SMI-AW
with LLOM , the reconstructed images from the LLaVA-v1.6-7B model (second row) closely re-
semble the corresponding identities in Dpriv (first row). This strong visual similarity highlights the
ability of our model inversion approach to recover identifiable features from the training data. More
reconstructed images of other models and datasets can be found in Supp.

4.5 HUMAN EVALUATION

We further conduct human evaluation on reconstructed images using two datasets Facescrub and
CelebA. Each user study involves 4,240 participants for the FaceScrub dataset and 8,000 participants
for the CelebA dataset. The results show that 57.74% to 75.31% of the reconstructed samples are
deemed successful attacks, i.e., human annotators recognize the generated images as depicting the
same identity as those in the private image set (see Table 4). This highlights the alarming potential
of such inversion attacks to compromise sensitive identity information.

8
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Figure 3: Qualitative results on the Facescrub dataset using the SMI-AW and LLOM . The first row
shows images from the private training dataset, while the second row presents the reconstructed im-
ages corresponding to each individual in the first row. The visual similarity between the original and
reconstructed images demonstrates the effectiveness of our inversion method in recovering private
training data. More reconstructed images can be found in Supp.

4.6 EVALUATION WITH PUBLICLY RELEASED VLM

In the experiments above, we fine-tuned the target model using a private training dataset following
prior MI work on conventional DNNs (Chen et al., 2021; Nguyen et al., 2023b; Struppek et al., 2022;
Qiu et al., 2024). In this section, we extend our analysis to the publicly available LLaVA-v1.6-7B
model, aiming to reconstruct potential training images directly from it.

Figure 4 shows the results of our best setup of MI attack, SMI-AW using the logit maximization
loss. The target is to reconstruct images of some identities that appear in the training dataset of
the LLaVA-v1.6-7B model. We present two image pairs: in each pair, the left image is a training
sample of an identity, while the right image shows the corresponding reconstruction generated by
the publicly available model. The visual similarity between the pairs indicates that the pre-trained
VLM may reveal identifiable information from its training data, exposing a vulnerability to model
inversion attacks. More results can be found in Supp.

(a) Donald Trump (b) Beyoncé

Figure 4: We reconstruct images of (a) Donald Trump and (b) Beyoncé from the pre-trained LLaVA-
v1.6-7B model. We use SMI-AW with LLOM to reconstruct images. For each pair, the left image
shows a training image of Donald Trump or Beyoncé, while the right image presents the recon-
struction obtained via our model inversion attack. This result illustrates that the pre-trained VLM is
vulnerable to training data leakage through model inversion. More results can be found in Supp.

5 CONCLUSION

This study pioneers the investigation of model inversion attacks on Vision-Language Models,
demonstrating for the first time their susceptibility to leaking private visual training data. Our novel
token-based and sequence-based inversion strategies reveal significant privacy risks across state-of-
the-art and publicly available VLMs. Particularly, our proposed Sequence-based Model Inversion
with Adaptive Token Weighting (SMI-AW) achieve an attack accuracy of 75.31%. These findings
underscore the urgent need for robust privacy safeguards as VLMs become more prevalent in real-
world applications. Additional analysis, limitation and broader impact are included in Supp.

9
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REPRODUCIBILITY STATEMENT

In accordance with ICLR policy, our code, pretrained models, and reconstructed images are made
anonymously available for review in Openreview’s discussion forums. To further ensure repro-
ducibility, we will release the code and pretrained models publicly upon publication. Comprehen-
sive details of our model architecture, experimental setup, and hyperparameters are included in the
main paper and elaborated in Section A of the Supplementary Material.
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Supplementary material
In this supplementary material, we provide additional experiments, analysis, ablation study, and
details that are required to reproduce our results. These are not included in the main paper due to
space limitations.
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A RESEARCH REPRODUCIBILITY DETAILS

In accordance with ICLR policy, our code, pretrained models, and reconstructed images are made
anonymously available for review in the discussion forums.

A.1 HYPERPARAMETERS

To fine-tune the VLMs, we follow the standard hyperparameters provided in the official imple-
mentations of LLaVA-v1.6-Vicuna-7B1 (Liu et al., 2024), Qwen2.5-VL-7B2 (Bai et al., 2025), and
MiniGPT-v23 (Chen et al., 2023). Fine-tuning is conducted on the VQA-FaceScrub, VQA-CelebA,
and VQA-StanfordDogs datasets.

For the attacks, we use N = 70 inversion steps for experiments on the LLaVA-v1.6-7B model, and
N = 100 for MiniGPT-v2 and Qwen2.5-VL-7B. The inversion update rate β = 0.05. We set the
confidence threshold pthres = 0.999 for all experiments using the logit maximization loss LLOM .
Additional results with varying values of pthres are provided in the ablation study section (Supp).

To compute the regularization term freg in Eqn. (8), we follow (Nguyen et al., 2023b) by using
2,000 images from a public dataset Dpub to estimate the mean and variance of the penultimate layer
activations of the VLMs.

A.2 COMPUTATIONAL RESOURCES

All experiments were conducted on NVIDIA RTX A6000 Ada GPUs running Ubuntu 20.04.2 LTS,
equipped with AMD Ryzen Threadripper PRO 5975WX 32-core processors. The environment setup
for each model is provided in the official implementations of the VLMs, including: LLaVA-v1.6-
Vicuna-7B (Liu et al., 2024), Qwen2.5-VL-7B (Bai et al., 2025), and MiniGPT-v2 (Chen et al.,
2023).

To evaluate AttAccM , we strictly follow the protocol in (Ho et al., 2025), using the Gemini 2.0
Flash API. In total, we evaluate 95,200 MI-reconstructed images for our main experiments (main
paper).

B ADDITIONAL RESULTS

B.1 EXTENDED EVALUATION ON PUBLICLY RELEASED VLM

In this section, we extend our analysis to the publicly available LLaVA-v1.6-7B model (Liu et al.,
2024), aiming to reconstruct training images from accessing the model only.

Figure S.1 shows the results of our best setup of MI attack, SMI-AW using the logit maximization
loss LLOM . The target is to reconstruct images of celebrities that appear in the training dataset of
the LLaVA-v1.6-7B model. To reconstructed images from the model, we use the textual input t =
“Identify the person in the image and return only their name?” and the target textual answer is a
celebrity’s name, i.e y = “Beyoncé”.

We visualize image pairs: in each pair, the right image is the reconstruction generated from the
publicly available model, and the left image is a training image of an individual. We emphasize that
the training dataset is fully unknown and inaccessible for the inversion attack. The visual similarity
between the pairs indicates that the pre-trained VLM may reveal identifiable information from its
training data, exposing a vulnerability to model inversion attacks.

B.2 ADDITIONAL QUALITATIVE RESULTS

Reconstructed images from the FaceScrub dataset using three VLMs, LLaVA-v1.6-7B, MiniGPT-
v2, and Qwen2.5-VL, are shown in Figure S.2, Figure S.3, and Figure S.4, respectively. For the

1https://github.com/haotian-liu/LLaVA
2https://github.com/QwenLM/Qwen2.5-VL
3https://github.com/Vision-CAIR/MiniGPT-4
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(a) Donald Trump

(b) Ed Sheeran

(c) Kristen Stewart

(d) Barack Obama

Figure S.1: Reconstructed images using our SMI-AW with LLOM on the publicly available LLaVA-
v1.6-7B model. Each pair consists of a reconstructed image (right) and a corresponding training
image (left) in the training dataset of LLaVA-v1.6-7B model. We emphasize that the training dataset
is fully unknown and inaccessible for the inversion attack. The strong similarity suggests the pre-
trained VLM may leak identifiable training data, exposing it to model inversion attacks.

CelebA and Stanford Dogs datasets, reconstructed images using LLaVA-v1.6-7B are presented in
Figure S.5 and Figure S.6. All reconstructions are generated using SMI-AW with the logit maxi-
mization loss LLOM .

For each pair, the left column shows images from the private training dataset, while the right column
presents the reconstructed images corresponding to each individual in the left column. Qualitative
results demonstrate the effectiveness of our method. This strong visual similarity highlights the
ability of our model inversion approach to recover identifiable features from the training data.
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C VISUAL ATTENTION EFFICIENCY ANALYSIS FOR SMI-AW

In this section, we further validate our SMI-AW via visual attention efficiency analysis.

Given a target description, the inversion process produces a sequence of output tokens. Some tokens
are predicted with high confidence early on, while others remain low-confidence and are often mis-
predicted. In this section, we demonstrate that these low-confidence tokens play a critical role: they
provide essential feedback signals that guide the search toward a reconstructed image that better
aligns with the target description. When uniform averaging is applied across all tokens, however,
these informative signals are diluted, weakening the inversion gradients and slowing convergence.

C.1 MEASURING VISUAL ATTENTION EFFICIENCY

During inversion, we collect the attention score distributions of each output token yi across all layers
and aggregate the scores corresponding to image tokens (visual attentions) (Chen et al., 2024). We
define the visual attention efficiency of an output token yi as:

ϵi =

N∑
j=0

αi,j
img

|img|
, (9)

where N is the number of layers, and αi,j
img denotes the visual attention scores assigned to image

tokens when predicting yi at layer j.

During inversion, the reconstructed image is iteratively refined through gradient feedback by align-
ing the predicted output tokens with the target tokens. The gradients propagate through the image
tokens encoded by the vision encoder of the target VLM. Therefore, an output token with a higher
visual attention score indicates that the VLM regards the corresponding image tokens as more rel-
evant for predicting yi. Such tokens can provide essential feedback signals that guide the inversion
process toward reconstructing an image more faithfully aligned with the target description.

C.2 LOW-CONFIDENCE TOKENS HAVE HIGHER VISUAL ATTENTION EFFICIENCY

Our objective is to analyze the visual attention efficiency of output tokens, i.e, how strongly the
image tokens contribute to predicting each output token.

We categorize output tokens into low-confidence and high-confidence groups. For each token
yi, we compute its confidence with respect to the ground-truth token. A token is considered low-
confidence if P(yi) < pthres and high-confidence otherwise. In addition, we measure the visual
attention score ϵi for each token yi. A score is classified as inefficient if it falls below the mean
attention score across all M output tokens, and as efficient otherwise.

We evaluate this analysis on 530 identities from the FaceScrub dataset, setting the confidence thresh-
old to pthres = 0.999. Figure S.7 compares the visual attention maps of low- versus high-confidence
tokens. The results reveal that low-confidence tokens consistently exhibit stronger visual attention
than high-confidence tokens. For a quantitative perspective, Table S.1 summarizes the relationship
between attention efficiency and confidence. A clear pattern emerges: high-confidence tokens gener-
ally align with inefficient visual attention, while low-confidence tokens are more strongly associated
with efficient visual attention.

This finding further validates our adaptive weighting strategy (SMI-AW). Because low-confidence
tokens correlate with efficient visual attention, they provide stronger gradient signals. By as-
signing greater weight to low-confidence tokens, we guide the inversion process toward reconstruc-
tions that more faithfully capture the target description. In particular, we compare the percentage
of efficient visual attention tokens contributing to the reconstruction of the inverted image between
SMI and SMI-AW (see Figure S.8). In SMI, all tokens are used to update the image, resulting in
only around 38% of them have efficient visual attention. By contrast, SMI-AW employs adaptive
token weighting to focus more on tokens with efficient visual attention, ranging from 75% to 92%
of the tokens used to optimize the inverted images, which provide stronger gradient signals for the
inversion process.
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Table S.1: We summarize the relationship between the predicted confidence of output tokens and the
attention efficiency of image tokens. Our observations show that high-confidence tokens typically
correspond to low attention efficiency, whereas low-confidence tokens tend to correspond to high
attention efficiency.

Low-confidence High-confidence
Inefficient Visual Attention 18.19 % 49.06 %
Efficient Visual Attention 31.38 % 1.37 %

D ABLATION STUDY

D.1 ABLATION STUDY ON pthres

We conduct an ablation study to investigate the effect of setting pthres in SMI-AW. Here, we use
M = LLaVA-v1.6-7B, Dpriv = Facescrub, Linv = LLOM . As shown in Table S.2, using a higher
threshold to focus on tokens with low confidence scores consistently improves attack performance
across all evaluation metrics. For all experiments in main paper, we use p = 0.999.

Table S.2: Ablation study on pthres for adaptive token weights in SMI-AW. Here, we use M =
LLaVA-v1.6-7B, Dpriv = Facescrub, Linv = LLOM . Using a higher threshold to focus on tokens
with low confidence scores consistently improves attack performance across all evaluation metrics.

pthres AttAccM ↑ AttAccD ↑
δface ↓ δeval ↓

Top1 Top5

0.999 59.83% 37.17% 65.31% 0.7349 135.81
0.98 57.05% 34.32% 61.23% 0.7486 137.27
0.95 56.96% 33.21% 61.86% 0.7495 136.71

D.2 ERROR BAR

We repeat each experiment three times using different random seeds and report the results in Ta-
ble S.3. Specifically, we use M = LLaVA-v1.6-7B, Dpriv = Facescrub, and pthres = 0.999. The
results demonstrate that our attacks have low standard deviation.

Table S.3: Error bars for our two model inversion strategies SMI and SMI-AW. Each experiment
was repeated 3 times, and we report the mean and standard deviation of the attack performance.
Here, we use M = LLaVa-v1.6-7B, Dpriv = Facescrub, pthres = 0.999. All inversion strategies
are combined with logit maximization loss LLOM .

Method AttAccM ↑ AttAccD ↑
δface ↓ δeval ↓

Top1 Top5

SMI 57.83 ± 1.18% 33.50 ± 0.19% 61.56 ± 0.30% 0.7473 ± 0.0006 137.89 ± 2.62
SMI-AW 59.39 ± 0.39% 37.00 ± 0.17% 65.01 ± 0.31% 0.7318 ± 0.0031 135.84 ± 0.05

E EXPERIMENTAL SETTING

E.1 EVALUATION METRICS

In this section, we provide a detailed implementation for five metrics used in our work to access MI
attacks.

• Attack accuracy. Attack accuracy measures the success rates of MI attacks. Following
existing literature, we compute attack accuracy via three frameworks:
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– Attack accuracy evaluated by conventional evaluation framework FDNN

(AttAccD ↑) (Zhang et al., 2020; Chen et al., 2021; Struppek et al., 2022; Nguyen
et al., 2023b; Qiu et al., 2024). Following (Struppek et al., 2022; 2024), we use
InceptionNet-v3 (Szegedy et al., 2016) as the evaluation model. For a fair compar-
ison, we use the identical checkpoints of InceptionNet-v3 for Facescrubs, CelebA and
Stanford Dogs from (Struppek et al., 2022) for evaluation of each dataset. We report
Top-1 and Top-5 Accuracy.

– Attack accuracy evaluated by MLLM-based evaluation framework FMLLM

(AttAccM ↑). (Ho et al., 2025) demonstrate that FMLLM can achieve better align-
ment with human evaluation than FDNN (AttAccD ↑ by mitigating Type-I adversarial
transferability. The evaluation involves presenting a reconstructed image (image A)
and a set of private reference images (set B) to an MLLM (e.g., Gemini 2.0 Flash),
and prompting it with the question: “Does image A depict the same individual as im-
ages in set B?” If the model responds “Yes”, the attack is considered successful. An
example query is shown in Fig. S.9.

– Attack accuracy evaluated by human FHuman(AttAccH ↑). Following existing
studies (An et al., 2022; Nguyen et al., 2023b), we conduct the user study on Amazon
Mechanical Turk. Participants are asked to evaluate the success of MI-reconstructed
by referencing the corresponding private images. Similar to FMLLM , it involves pre-
senting an image A and a set of images B. They are asked to answer “Yes” or “No” to
indicate whether image A depicts the same identity as images in set B (see Fig. S.9).
Each image pair is shown in a randomized order and displayed for up to 60 seconds.
Each user study involves 4,240 participants for the FaceScrub dataset and 8,000 par-
ticipants for the CelebA dataset.

• Feature distance. We compute the l2 distance between the feature representations of the
reconstructed and the private training images (Struppek et al., 2022). Lower values indicate
higher similarity and better inversion quality.

– δeval. Features are extracted by the evaluation model as used in FDNN .
– δface. Features are extracted by a pre-trained FaceNet model (Schroff et al., 2015).

E.2 INITIAL CANDIDATE SELECTION

Following the method from (Struppek et al., 2022), we perform an initial selection to iden-
tify promising candidates for inversion. We begin by sampling 2000 latent vectors, denoted as
{w}2i=1000, from the prior distribution. For each w, we evaluate the target VLMs loss. We then
select the top n vectors with the lowest loss to serve as our initialization candidates. In our experi-
ments, we set n = 16 to create 16 candidates for attacks.

E.3 FINAL SELECTION

To select the final reconstructed image, we perform a final selection step, also following the method
from (Struppek et al., 2022). This step aims to identify the reconstructed images that have the highest
confidence. For each of the n initialization candidates, we apply 10 random data augmentations and
re-evaluate the target VLMs loss. We calculate the average loss for each candidate across these
augmentations and select the n/2 candidates with the lowest average loss as the final attack outputs.

F RELATED WORK

Model Inversion. Model Inversion (MI) seeks to recover information about a model’s private train-
ing data via pretrained model. Given a target model M trained on a private dataset Dpriv, the ad-
versary aims to infer sensitive information about the data in Dpriv, despite it being inaccessible after
training. MI attacks are commonly framed as the task of reconstructing an input xr

y that the model
M would classify as belonging to a particular label y. The foundational MI method is introduced in
(Fredrikson et al., 2014), demonstrating that machine learning models could be exploited to recover
patients’ genomic and demographic data.

Model Inversion in Unimodal Vision Models. Model Inversion (MI) has been extensively studied
to reconstruct private training images in unimodal vision models. For example, in the context of
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face recognition, MI attacks attempt to recover facial images that the model would likely associate
with a specific individual.

Building on the foundational work of (Fredrikson et al., 2014), early MI attacks targeting facial
recognition are proposed in (Fredrikson et al., 2015; Yang et al., 2019), demonstrating the feasibil-
ity of reconstructing recognizable facial images from the outputs of pretrained models. However,
performing direct optimization in the high-dimensional image space is challenging due to the large
search space. To address this, recent advanced generative-based MI attacks have shifted the search
to the latent space of deep generative models (Zhang et al., 2020; Wang et al., 2021a; Chen et al.,
2021; Yang et al., 2019; Yuan et al., 2023; Nguyen et al., 2023b; Struppek et al., 2022; Qiu et al.,
2024).

Specifically, GMI (Zhang et al., 2020) and PPA (Struppek et al., 2022) employ WGAN (Arjovsky
et al., 2017) and StyleGAN (Karras et al., 2019), respectively, trained on an auxiliary public dataset
Dpub that similar to the private dataset Dpriv. The pretrained GAN is served as prior knowledge for the
inversion process. To improve this prior knowledge, KEDMI (Chen et al., 2021) trains inversion-
specific GANs using knowledge extracted from the target model M . PLGMI (Yuan et al., 2023)
introduces pseudo-labels to enhance conditional GAN training. IF-GMI (Qiu et al., 2024) utilizes
intermediate feature representations from pretrained GAN blocks. Most recently, PPDG-MI (Peng
et al., 2024) improves the generative prior by fine-tuning GANs on high-quality pseudo-private data,
thereby increasing the likelihood of sampling reconstructions close to true private data. Beyond
improving GAN-based priors, several studies focus on improving the MI objective including max-
margin loss (Yuan et al., 2023) and logit loss (Nguyen et al., 2023b) to better guide the inversion
process. Additionally, LOMMA (Nguyen et al., 2023b) introduces the concept of augmented models
to improve the generalizability of MI attacks.

Unlike MI attacks, MI defenses aim to reduce the leakage of private training data while maintaining
strong predictive performance. Several approaches have been proposed to defend against MI attacks.
MID (Wang et al., 2021b) and BiDO (Peng et al., 2022) introduce regularization-based defenses that
include the term of regularization in the training objective. The crucial drawback of these approaches
is that the regularizers often conflict with the training objective resulting in a significant degrada-
tion in model’s utility. Beyond regularization-based strategies, TL-DMI (Ho et al., 2024) leverages
transfer learning to improve MI robustness, and LS (Struppek et al., 2024) applies Negative Label
Smoothing to mitigate inversion risks. Architectural approaches to improve MI robustness have also
been explored in (Koh et al., 2024). More recently, Trap-MID (Liu & Chen, 2024) introduces a
novel defense by embedding trapdoor signals into M . These signals act as decoys that mislead MI
attacks into reconstructing trapdoor triggers instead of actual private data.

Model Inversion in Multimodal Large Vision-Language Models. Large Vision-Language Mod-
els (VLMs) are increasingly deployed in many real-world applications across diverse domains, in-
cluding sensitive areas. Unlike unimodal vision models, VLMs are designed to process both image
and text inputs and generate text responses. A typical VLM architecture includes a text tokenizer to
encode textual inputs into text tokens, a vision encoder to extract image features as image tokens,
and a lightweight projection layer that maps image tokens into the text token space. These tokens
are then concatenated and passed through a LLM to produce the final response. This multimodal
processing pipeline fundamentally distinguishes VLMs from traditional unimodal vision models.

As VLMs are being adopted more widely, including in privacy-sensitive scenarios, understanding
their potential vulnerability to data leakage via MI attacks becomes critical. However, while MI
attacks have been extensively studied in unimodal vision models, to the best of our knowledge,
there has been no prior work investigating MI attacks on multimodal VLMs. To fill this gap,
we conduct the first study on MI attacks targeting VLMs and propose a novel MI attack framework
specifically tailored to the multimodal setting of VLMs.

G DISCUSSION

G.1 BROADER IMPACTS

Our work reveals, for the first time, that VLMs are vulnerable to MI attacks. As VLMs are increas-
ingly deployed in many applications including sensitive domains, this poses serious privacy risks.
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Although our work focuses on developing a new MI attack for VLMs, we also provide a funda-
mental understanding for the development of MI defenses in multimodal systems. We hope this
work encourages the community to incorporate privacy audits in VLM deployment and to pursue
principled model design that mitigates data leakage.

Our methods are intended solely for research and defense development. We strongly discourage
misuse and emphasize responsible disclosure when evaluating model vulnerabilities.

G.2 LIMITATIONS

While following conventional MI attacks to focus on facial images and dog breeds, a more diverse
domain scenarios, such as natural scenes or medical images, remain an important direction for future
research. Moreover, evaluations on a broader range of models are needed to further comprehend our
study on MI for VLMs.

H THE USE OF LLMS

This manuscript was edited using LLMs for language polishing and writing improvements. The
authors retain full responsibility for the research content, including the concepts, analyses, and con-
clusions.
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Figure S.2: Qualitative results on Facescrub dataset using the SMI-AW and LLOM , M = LLaVA-
v1.6-7B. For each pair, the left column shows images from the private training dataset, while the
right column presents the reconstructed images corresponding to each individual in the left column.
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Figure S.3: Qualitative results on Facescrub dataset using the SMI-AW and LLOM , M = MiniGPT-
v2. For each pair, the left column shows images from the private training dataset, while the right
column presents the reconstructed images corresponding to each individual in the left column.
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Figure S.4: Qualitative results on Facescrub dataset using the SMI-AW and LLOM , M = Qwen2.5-
VL. For each pair, the left column shows images from the private training dataset, while the right
column presents the reconstructed images corresponding to each individual in the left column.
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Figure S.5: Qualitative results on CelebA dataset using the SMI-AW and LLOM , M = LLaVA-v1.6-
7B. For each pair, the left column shows images from the private training dataset, while the right
column presents the reconstructed images corresponding to each individual in the left column.
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Figure S.6: Qualitative results on the Stanford Dogs dataset using the SMI-AW and LLOM , M
= LLaVA-v1.6-7B. For each pair, the left column shows images from the private training dataset,
while the right column presents the reconstructed images corresponding to each dog breed in the left
column.

(a) Input image (b) Low-confidence output token (c) High-confidence output token

Figure S.7: An illustration of attention maps of low-confidence (P(yi) = 0.1854) and high-
confidence (P(yi) = 0.9999) output tokens
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Figure S.8: Percentage of efficient visual attention tokens among all tokens used during inversion
for SMI and SMI-AW. With the adaptive weighting, SMI-AW effectively increasing the percentage
of efficient visual attention tokens used during inversion. This strategy significantly improves attack
accuracy, achieving stronger results across multiple metrics and datasets (Section 4.2).

Figure S.9: An example evaluation query in FMLLM and human evaluation involves determining
whether “Image A” depicts the same individual as those in “Image B.” “Image A” is a reconstructed
image of a target textual answer y, while “Image B” contains four real images of the same target
textual answer y. Gemini or human evaluators respond with “Yes” or “No” to indicate whether
“Image A” matches the identity shown in “Image B.”
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