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Abstract

Large language model (LLM)-based applica-
tions have increasingly leveraged retrieval-
augmented generation (RAG) techniques to
provide reliable responses, particularly for
queries demanding knowledge of private do-
mains. Practical constraints, such as data
sovereignty regulations, can hinder the central-
ized aggregation of private knowledge. This
can create challenges in situations where (1)
a user comes with a question but has no idea
which applications have the related knowledge
to answer, or (2) the question requires cross-
domain knowledge to answer.

In this work, we abstract each RAG applica-
tion with private knowledge as an RAG-based
agent. We propose RIRS, a framework with
an efficient and accurate routing mechanism
and an iterative refining-solving mechanism to
orchestrate multiple RAG-based agents with
private knowledge bases. The server routes
queries to the most relevant agents by identi-
fying the most related knowledge clusters by
similarities in a vector space. For complicated
questions, the server can iteratively aggregate
responses to derive intermediate results and re-
fine the question to bridge the gap toward a
comprehensive answer. Extensive experiments
demonstrate the effectiveness of RIRS, includ-
ing how our routing algorithm precisely selects
the agents and provides accurate responses to
single-hop queries and how an iterative strat-
egy achieves accurate, multi-step resolutions
for complex queries.

1 Introduction

Large language models (LLMs) have revolu-
tionized natural language processing (NLP) by
demonstrating superior performance in question-
answering (QA) tasks, often surpassing traditional
systems in both accuracy and contextual under-
standing. Based on LLMs, retrieval-augmented
generation (RAG) is a technique to integrate exter-
nal knowledge sources, extracting the most relevant

information for any input query to enable LLMs
to answer questions beyond their training data and
reduce their hallucination (Wu et al., 2024; Asai
et al., 2023a; Lewis et al., 2020; Jiang et al., 2023;
Izacard and Grave, 2020; Mallen et al., 2022; Kasai
et al., 2024; Xiong et al., 2024). To further improve
retrieval and response quality, many RAG appli-
cations are built in the form of agents (referred to
as RAG-based agents in this paper) (Weng, 2023;
Roucher, 2024; Joshi et al., 2024). However, be-
cause RAG-based agents’ reliability is limited to
the domain of their knowledge sources, there are
two major inconveniences when serving users. (1)
The domain and the boundary of the knowledge
source are difficult to clearly define and usually
unknown to users, so manual attempts with dif-
ferent agents may be required to obtain reliable
answers. (2) Answering some questions may re-
quire cross-domain knowledge from different RAG-
based agents.

One straightforward solution to overcome the
inconveniences is to build a unified, large-scale
knowledge repository by collecting all knowledge
from worldwide existing RAG-based agents, as il-
lustrated in Figure 1a. A unified RAG-based agent
could be built with the repository to handle queries
spanning multiple domains by pooling all avail-
able information. However, it is confronted with
two critical limitations. Firstly, the computational
complexity and scalability issues inherent in man-
aging such a vast and diverse knowledge base could
undermine the system’s overall performance and re-
sponsiveness (Fan et al., 2024; Asai et al., 2023a).
Secondly, it is impractical or even infeasible to
invade knowledge sovereignty and construct a cen-
tralized knowledge repository, especially when the
knowledge is intellectually protected or sensitive.
For example, due to privacy concerns, ophthalmol-
ogy hospital data derived from internal medical
records is unavailable for merging.

An alternative is to deploy a distributed multi-



(a) Knowledge Base Collection from All Agents

(b) Message Collection from All Agents

(c) Message Collection from Selected Agents

Figure 1: Collaboration Strategies of Multi-agent System for QA.

agent system, as illustrated in Figure 1b, which con-
sists of a central server and multiple RAG-based
agents. The server forwards a user’s query to all
available RAG-based agents and subsequently ag-
gregates their responses. In this framework, each
agent retains its local, domain-specific knowledge
base, ensuring that its knowledge sovereignty is
well protected and that its data are not merged into
a centralized repository. This approach eliminates
the need for a massive, unified knowledge base.
However, routing every query to all agents incurs
redundant computational overhead and cost, as not
every agent is equipped to address every query,
Consequently, it is worth considering building a
distributed multi-agent system with a routing mech-
anism that selects the most appropriate agents in
response to a query, as illustrated in Figure 1c.

In this work, we propose RIRS, a framework
with a Routing and Iterative Refining-Solving
mechanism designed to effectively reconcile mul-
tiple RAG-based agents. For the routing mecha-
nism, each agent partitions its local knowledge base
into disjoint clusters, and the central server collects
these clustered knowledge representations. When a
user query arrives, the server computes its similar-
ity to the collected clusters and forwards the query
only to those agents whose knowledge clusters are
most relevant. This training-free mechanism does
not require additional training and is inherently
privacy-preserving, and raw knowledge remains
confined within the individual agents. Moreover,
our method employs an iterative refining-solving
strategy to handle complex queries that involve
multiple reasoning steps or span across different do-
mains. Specifically, the server sequentially routes
a query to the appropriate agents and, after each
response, simplifies the query by removing the ad-
dressed portion.

Contributions. The major contributions of this
work are listed as follows:

* To the best of our knowledge, this is the first work

that considers knowledge sovereignty issues un-
der multi-agent, enabling efficient collaboration
across various specialized agents without collect-
ing unnecessary information.

* We introduce RIRS, a training-free iterative rout-
ing mechanism that selects the most proper agents
and collaborates on complex user queries.

* Our experimental results demonstrate the effec-
tiveness of RIRS in handling various queries: The
routing mechanism enables precise agent selec-
tions, while the iterative refining-solving mecha-
nism achieves accurate, multi-step resolutions for
complex queries.

2 Related Works

Retrieval Augmented Generation (RAG). RAG
has gained substantial interest in academic re-
search as a robust framework that integrates exter-
nal knowledge sources into large language models
to enhance the quality and reliability of generated
responses (Lewis et al., 2020; Jiang et al., 2023;
Chen et al., 2017; Guu et al., 2020; Karpukhin
et al., 2020; Izacard and Grave, 2020; Borgeaud
et al., 2022; Yu, 2022; Shi et al., 2023; Yan et al.,
2024; Asai et al., 2023b; Li et al., 2023b; Press
et al., 2022; Chan et al., 2024; Su et al., 2024).
Notable recent contributions in this domain in-
clude RankRAG (Yu et al., 2024), which reranks
the selected knowledge pieces and generates a re-
sponse with genuinely important ones; Efficien-
tRAG (Zhuang et al., 2024), an approach that it-
eratively generates new queries by sorting out the
portion addressed by retrieved knowledge until a
multi-hop question can be well-addressed; Plan-
RAG (Verma et al., 2024), which decomposes com-
plex queries into interrelated atomic sub-queries by
formulating a reasoning plan as a directed acyclic
graph (DAG). While these methods primarily fo-
cus on single-agent retrieval frameworks, our work
differentiates itself by addressing the challenge of
coordinating knowledge retrieval across multiple



agents, thereby enabling a more comprehensive
handling of diverse and cross-domain queries.

Routing Mechanism in Multi-agent System.
LLM-based multi-agent systems leverage the col-
lective intelligence and specialized capabilities of
multiple expert agents to collaboratively tackle
complex problems, a research direction that has
garnered significant interests (Hong et al., 2023; Li
et al., 2023a; Wu et al., 2023; Chen et al., 2023a,b;
Zhao et al., 2023; Guo et al., 2024; Chen et al.,
2024b). In such systems, a robust routing mecha-
nism is essential to direct each query to the most
appropriate agent based on its unique expertise
(Shnitzer et al., 2023; Lu et al., 2023; Zhao et al.,
2024; Srivatsa et al., 2024; Li et al., 2024; Lu et al.,
2024; Chen et al., 2024a; Addison et al., 2024).

Recent works in this area include Chameleon
(Lu et al., 2024), which requires a comprehensive
textual description of each agent’s capabilities such
that a well-trained LLM can select the most appro-
priate agents to address an input query; RouterDC
(Chen et al., 2024a), which trains a lightweight
model to dynamically route queries to the most suit-
able agent within a predefined set; and C-FedRAG
(Addison et al., 2024), which forwards queries to
randomly selected agents to retrieve relevant doc-
uments such that a central entity can collect these
documents to generate a final answer.

In contrast, our approach accurately character-
izes each agent’s knowledge capacity based on
their own data, thereby eliminating the need for
exhaustive textual descriptions and labor-intensive
dataset labeling. Moreover, our effective rout-
ing mechanism ensures that queries are directed
only to agents capable of providing comprehen-
sive answers, with each agent summarizing its re-
sponse based solely on local knowledge, thereby
preserving data privacy and protecting knowledge
sovereignty.

3 Multi-agent Framework

Preliminary: RAG-based Agent. An RAG-
based agent is an advanced application that inte-
grates retrieval mechanisms with LLMs to deliver
accurate and contextually rich responses. Specifi-
cally, an RAG-based agent processes a question
through three steps: (i) Knowledge Retrieval:
It extracts relevant knowledge pieces using both
sparse and dense retrievers from external sources
(Robertson et al., 2004; Izacard et al., 2021; Xu
et al., 2023); (ii) Reranking: It filters out unhelp-

ful or misleading information, allowing the genera-
tion model to focus on the most pertinent content
(Yu et al., 2024); (iii) Response Generation: It
combines the question and the pertinent external
knowledge to produce an informed response with
its backbone LLM.

Motivations and Problem Statement. To pro-
tect knowledge sovereignty and harness domain-
specialized expertise, we propose a distributed
multi-agent framework. In this framework, each
RAG-based agent holds its own specialized knowl-
edge base, while a central server coordinates query
processing. Upon receiving an input query, the
server routes it to all agents and aggregates their re-
sponses into a final answer, as described in Figure
1b. However, this standard operating procedure for
QA tasks faces two major challenges:

o (i) Irrelevant Agent Involvement: When a query
falls outside an agent’s domain expertise, its partic-
ipation not only introduces unnecessary computa-
tional and communication overhead but may also
generate misleading information.

o (ii) Incomplete Knowledge Fusion: Queries that
span multiple domains require seamless integration
of responses from various agents and likely from
multiple reasoning steps, and, without effective
coordination, the final answer can be fragmented
or partial.

These challenges highlight the need for an intelli-
gent routing mechanism that strategically directs
queries to the most relevant agents and aggregates
their responses wisely by filtering out irrelevant
knowledge. Such a mechanism is critical to reduc-
ing redundant processing, enhancing scalability,
ensuring accurate, holistic query resolution, and
maintaining data privacy in a decentralized setting.

4 RIRS

To address the challenges, we propose an intelligent
routing mechanism to deal with both single-hop
and multi-hop questions. Section 4.1 outlines the
design of a query routing algorithm, where the
server routes a query to a subset of agents according
to their knowledge coverage represented in a vector
space. Section 4.2 extends our design to address
more challenging queries that require multi-round
or cross-agent knowledge.

4.1 Routing Algorithm

The primary objectives of our routing algorithm
are twofold: high quality of the final answer and
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Figure 2: Routing Mechanism

high efficiency in terms of both minimum addi-
tional latency of routing and minimum token con-
sumption. To accomplish these objectives, an ideal
server must possess three key abilities: (i) accu-
rately assessing each agent’s knowledge capabil-
ities, (ii) selecting a necessary and sufficient sub-
set of agents to reduce computational and commu-
nication costs, and (iii) verifying the validity of
each response, encompassing both the analysis and
the final answer. Notably, the second capability is
closely linked to the server’s understanding of the
knowledge boundaries inherent to each agent.

To satisfy the requirements, we design a routing
mechanism as shown in Figure 2, which consists
of two primary stages: (a) knowledge clustering
and (b) the query forwarding workflow. In the
knowledge clustering stage (Figure 2a), each agent
encodes its local knowledge (e.g., text chunks) into
vectors using an identical embedding model, then
partitions the knowledge into disjoint clusters and
generates a representation for each cluster with the
embeddings. The central server then collects these
clustered knowledge representations and uses them
to determine which agents are most relevant to an
incoming query. As shown in Figure 2b, the server
forwards the query to those agents whose clusters
exhibit the highest similarity to the query. The se-
lected RAG-based agents subsequently process the
query based on their own knowledge, and the server
aggregates and evaluates their responses. Finally,
the server synthesizes the final response to the user.
More details are as follows.

Knowledge Clustering. Suppose an RAG-based
agent contains m distinct knowledge pieces, rep-
resented as ej,...,e, in a vector space. To
evaluate the agent’s knowledgeability, we parti-
tion the knowledge pieces into n disjoint clusters,
c1,-..,Cn. The goal is to minimize the maximum

intra-cluster similarity, which can be formulated
as:

max
Cly--5Cn €q,epECE
ciU-Ucp={e1,...em tk€{l,....,n},ea#ep

sim(eq, €p)

ey

Here, sim(e,, €5) denotes the cosine similarity be-
tween two knowledge pieces e, and e;. By min-
imizing the maximum similarity within clusters,
we ensure that knowledge pieces within the same
cluster are as similar as possible, leading to more
informative cluster representations.

The RAG-based agent follows a four-step pro-
cess to solve this clustering objective and report its
knowledgeability to the server:

o Step 1: Compute Embeddings. An RAG-based
agent computes the embeddings for their own
knowledge, which can be reused later in the knowl-
edge retrieval of a dense method to an input query
(Izacard and Grave, 2020).

e Step 2: Knowledge Clustering. Using maxi-
mum hierarchical clustering, the agent partitions
the m knowledge pieces into n disjoint clusters.
The distance between any two knowledge pieces is
measured by their embeddings’ cosine similarity.
o Step 3: Calculate Cluster Representations. For
each cluster, the agent calculates a centroid by av-
eraging the embeddings of all knowledge pieces
within that cluster. This centroid serves as a repre-
sentative summary of the cluster.

e Step 4: Push Representations to Server. The
agent sends the centroids of all clusters to the server
who uses this information to make routing deci-
sions.

Choice on the number of clusters. Since different
RAG-based agents hold varying amounts of knowl-
edge, the number of clusters n should not be con-
stant across agents. Intuitively, agents with more
knowledge pieces may have overlapping or redun-



dant knowledge, while agents with fewer pieces
might specialize in sparse, distinct knowledge do-
mains. To account for this, we set n = |/m],
aligning with the hypothesis that a larger number
of knowledge pieces should correspond to more
clusters while maintaining manageable granularity.
In fact, the choice of n has proved its effectiveness
in the field of inverse file indexing in practice.

Query Forwarding. Once the server has gath-
ered the knowledgeability of all RAG-based agents,
it must effectively coordinate the agents to handle
user queries. This involves selecting the most suit-
able agents based on the similarity between the
query and the centroids provided by each agent.

Let us define Ey) as the j-th centroid of RAG-
based agent ¢, and define a function f(-) such that

J
corresponding agent. Suppose there are M RAG-

based agents in the multi-agent system. For each
agenti € {1,..., M}, there are n; centroids, de-

noted by the set {Eg-i) }m . Let x be the embedding

f (E(.i)) = 4. This function maps a centroid to the

of a query. The goal is to identify k clusters whose
centroids have the highest similarity scores with
the query embedding. This can be formulated as:

Topk

{e¥ho = arg sim(z,8) (2)

The agents corresponding to the centroids in the set
{f (Ej)};‘?:l are then invited to answer the query.
Therefore, we define a routing-then-answer func-
tion RTANS(QUERY), which the server calls to
proceed through the following steps to generate the
final response and ensure the response is accurate
and well-supported to the input query:
o Step 1: Agent Selection. The server selects the
most relevant agents based on the similarity be-
tween the query and the centroids, as described.
e Step 2: Response Generation. The selected
RAG-based agents generate responses that include
both evidence and an answer. The evidence pro-
vides evidence, such as a supporting text passage,
to justify the answer.
e Step 3: Evaluation of Responses. The server
collects the responses and evaluates them based on
the quality of the analysis provided. It categorizes
the answers as "Addressed" or "Not Addressed."
o Step 4: Final Answer Curation. The server
utilizes the "Addressed" answers and finalizes the
response to the user.

What administrative territorial entity includes the
place that KTRP is licensed to broadcast to?

erver adds Agent 1 to the chat and initiates an internal chat

| learned that KTRP is licensed to serve the

community of Notus, Idaho, United States. However, |
don't see any information about the administrative
territorial entity that includes Notus, Idaho.

What is the exact administrative territorial entity that
includes Notus, Idaho, United States?

P}
S

Server adds Agent 2 and Agent 3 to the chat

1

Idaho is mentioned in the Arctic Ocean context as
part of the list of states in the Region 10, which is
responsible within the states of Alaska, Idaho,
Oregon, and Washington. However, | cannot provide
information about Notus, Idaho, specifically.

8,

| learned that Notus, Idaho is a small rural city in
Canyon County, Idaho, which is part of the Boise
metropolitan area.
erver dismisses the chat and returns to user as the final answer reaches
i
@) - canyon County, Idaho.

Figure 3: An example of Answering a Multi-hop Query

4.2 TIterative Refining-solving

A multihop question is one that inherently requires
multiple reasoning steps, with each step draw-
ing on distinct pieces of supporting knowledge
(Kwiatkowski et al., 2019; Ho et al., 2020; Trivedi
et al., 2022b; Tang and Yang, 2024; Welbl et al.,
2018). In our setting, such queries are especially
challenging because the required information can
be distributed among different agents. The single-
step routing process, which relies solely on an ini-
tial similarity match to select agents, may be in-
adequate for handling multihop questions because
it cannot effectively identify or integrate the se-
quential pieces of evidence required for a complete
answer. Thus, a more robust solution is needed to
address complex and often cross-domain queries.

Iterative Routing. Previous works (Zhuang
et al., 2024; Yang et al., 2024b; Press et al., 2022;
Trivedi et al., 2022a; Ma et al., 2023; Shao et al.,
2023; Jiang et al., 2023) introduce a simple yet
effective solution to handle a multi-hop question
by repeatedly generating new queries based on the
extracted knowledge. Inspired by that, we propose
an iterative routing process to manage multi-hop
questions, as depicted in Figure 3. In this approach,
the server iteratively invokes a routing-then-answer
function, RTANS(QUERY), which progressively re-
fines the query and synthesizes supporting evidence
until a comprehensive answer is reached.

Advantages. This proposed method appears to
have twofold advantages from the perspective of ef-
ficiency and adaptiveness. For multi-hop questions



that require sequential reasoning, our approach dy-
namically refines the query based on the acquired
knowledge from agents. Compared to those ques-
tion decomposition methods (Zhou et al., 2022;
Verma et al., 2024; Chan et al., 2024), the proposed
RIRS reduces unnecessary query rounds and al-
lows an agent to address multiple reasoning steps
within its expertise. For those questions requir-
ing parallel reasoning, particularly across diverse
domains, the server enables multiple specialized
agents to work concurrently, each leveraging its
smaller, more efficient knowledge base, which sig-
nificantly accelerates the overall inference process.

5 Experiments

5.1 Experimental Setup

Datasets. Our experiments cover both single-hop
and multi-hop open-ended QA tasks within a uni-
fied evaluation framework. We employ the Nat-
ural Questions (NQ) dataset (Kwiatkowski et al.,
2019) for single-hop QA to emphasize the effec-
tiveness of the routing mechanism. In the multi-
hop QA setting, we assess performance on four
benchmark datasets: HotpotQA (Yang et al., 2018),
2WikiMQA (Ho et al., 2020), MusiQue (Trivedi
et al., 2022b), and Multi-Hop RAG (MHR) Bench-
mark (Tang and Yang, 2024) to show the perfor-
mance of the complete RIRS.

Models. Our experimental setup employs a suite
of models to support both retrieval and generation
tasks. Specifically, we use text-embedding-v2
(Zhang et al., 2024) as our embedding model to
generate dense representations for effective text
retrieval. The agents are powered by two large
language models, i.e., 11ama-3.1-8b-instruct
(Touvron et al., 2023a,b; Dubey et al., 2024) and
gwen-plus-2024-12-20 (Bai et al., 2023; Yang
et al., 2024a). To evaluate the open-ended QA
tasks, we make use of both qwen-max-0125 and
gpt-40-2024-08-06 (Achiam et al.,, 2023) by
comparing the generated responses against desig-
nated groundtruth answers.

Baselines. Throughout the experiments, we com-
pare the proposed RIRS with the following base-
lines. RankRAG and EfficientRAG operate in a
single RAG-based agent scenario, where all knowl-
edge is managed within one agent. In contrast,
Chameleon, RouterDC, and GoldRouter focus on
the multi-agent setting, serving as alternative rout-
ing strategies. The detailed descriptions of each

baseline are deferred to Appendix B.2.

® RankRAG (Yu et al., 2024): This method retrieves
documents using dense and sparse retrievers, then
ranks them based on helpfulness before generating
aresponse. If no relevant documents are found, a
LLM is used to answer independently.

o EfficientRAG (Zhuang et al., 2024): This method
iteratively simplifies the query by removing re-
solved components, enabling a more targeted re-
trieval process.

e Chameleon (Lu et al., 2024): This method acts as
a routing mechanism by means of an LLM to select
relevant agents based on their specialized topics
and the given query.

e RouterDC (Chen et al., 2024a): This method
selects agents by computing similarity between
query embeddings and precomputed agent repre-
sentations. We adapt it using historical queries to
approximate each agent’s knowledge capacity.

e GoldRouter: This method serves as an upper
bound by eliminating routing uncertainty. The
router has prior knowledge of the optimal agent(s)
for each query, ensuring the most appropriate se-
lection without error.

Multi-Agent Settings. Chameleon, RouterDC,
and RIRS are in multi-agent setting. To simulate
the practical knowledge domain segmentation, we
construct the two groups of RAG-base agents for
different datasets as follows.

o WikiAgents for NQ, HotpotQA, 2WikiMQA and
MusiQue: WikiAgents group is built upon a cor-
pus of over 121K Wikipedia pages, dumped as of
November 1, 2023, and made publicly available via
the HuggingFace dataset. The system comprises
exactly 64 RAG-based agents. This specific num-
ber is derived from the inherent limitation of the
ORES legacy service, which can only classify a
Wikipedia page into 64 predefined categories. Con-
sequently, each RAG-based agent is designated to
handle one of these 64 categories, ensuring that the
categorization of pages is consistent and aligned
with the predefined taxonomy established by the
ORES service. However, these agents cannot cover
all required documents, and once the question can-
not be answered, a knowledgeable agent will be
called to answer the question because the existing
LLMs have been pretrained with Wikipedia corpus.
e NewsAgents for MHR: NewsAgents group is
constructed on a corpus of 609 news articles from
49 distinct news media and spanning six domains
(Tang and Yang, 2024). To analyze the effects of



Natural Questions HotpotQA 2WikiMultiHopQA MuSiQue
Methods Models . - " "
EM Acc. Time | EM Acc. Rounds Time | EM Acc. Rounds Time | EM Acc. Rounds Time
Without RAG
CoT Qwen-Plus 6590 80.51 3.17 | 3441 59.12 1.0 2.99 | 23.09 49.85 1.0 3.10 | 22.13 35.12 1.0 3.00
o
LLaMA-3.1-8B | 61.17 74.87 0.89 | 43.18 53.17 1.0 0.88 | 47.51 35.71 1.0 0.86 | 17.23 30.70 1.0 0.87
Single RAG-based Agent
RankRAG Qwen-Plus 67.52 88.01 12.96 | 4323 61.69 1.0 13.28 | 47.51 53.61 1.0 13.31 | 24.08 43.07 1.0 13.19
an
LLaMA-3.1-8B | 61.80 78.62 7.00 |43.12 61.27 1.0 9.31 | 37.51 44.17 1.0 9.77 | 19.30 35.65 1.0 10.44
. Qwen-Plus 67.52 88.01 12.96 | 55.72 72.79 1.45 19.48 | 5893 64.79 142 21.30 | 27.09 45.89 1.82  23.89
EfficientRAG

LLaMA-3.1-8B | 61.80 78.62 7.00 | 4498 63.32 1.68

17.01 | 46.64 56.52 1.66 16.64 | 21.68 37.67  2.01 17.39

Multiple RAG-based Agents

GoldRouter! Qwen-Plus 51.29 86.78 17.46 | 57.78 77.48 124 2553 | 70.71 76.33 136 25.16 | 29.76  46.96 1.48  31.89
LLaMA-3.1-8B | 55.04 76.57 5.50 | 48.39 62.23 1.54 10.57 | 50.05 52.49 1.58 12.24 | 20.12  43.01 1.84 14.42
Chameleon Qwen-Plus 50.47 8126 17.37 | 50.70 70.78 1.47 2795 | 60.69 65.93 1.70  31.57 | 23.90 39.38 172 36.69
LLaMA-3.1-8B | 38.01 75.00 7.38 | 39.96 5434 1.8l 23.68 | 41.61 46.45 190 2458 | 1424 3375 2,01 27.45
RouterDC Qwen-Plus 49.62 80.53 1291 | 44.02 62.38 173 33.62 | 49.64 5720 1.69 3558 | 21.06 35.31 1.69  33.59
LLaMA-3.1-8B | 36.10 75.32 8.79 | 36.37 44.31 1.78 17.38 | 35.60 34.49 1.70 18.13 | 14.63 20.05 1.94  20.24
Qwen-Plus 54.61 8156 11.88 | 5346 74.62 146 2893 | 6242 6680 1.70  31.25 | 24.86 4348 1.71 28.03
RIRS LLaMA-3.1-8B | 44.62 75.57 829 | 47.83 60.75 2.14 18.40 | 46.20 47.06 226 2045 | 21.65 4046 236  22.20
Mixed? 53.10 80.15 10.89 | 52.04 74.14 1.84 24.74 | 53.92 65.01 192 3091 | 2346 4320 2.06 2450

! The inference is completely based on the selected agents.
2 The RAG-based agents use LLaMA-3.1-8B, while other modules in the server use

Qwen-Plus.

Table 1: Performance comparison of different methods under various datasets and the knowledge of WikiAgents.

source and domain characteristics, we further split
NewsAgent into two variants: NewsAgent-Source
and NewsAgent-Domain, corresponding to parti-
tions based on news media and domain categories,
respectively.

5.2 Quantative Analysis with WikiAgents

Table 1 presents the performance of our pro-
posed RIRS alongside various baselines on four
Wikipedia-related QA tasks using the knowledge
from the WikiAgents. Below, we highlight key
comparisons and insights based on the acquired
experimental results.

Comparison with GoldRouter. In the Gol-
dRouter, the system benefits from comprehensive
prior knowledge about which agents are best suited
for different aspects of a question, effectively serv-
ing as an upper bound for multi-agent methods.
While GoldRouter can accurately route queries
to the optimal agents, our approach (RIRS) occa-
sionally encounters routing errors, which lead to
additional query rounds and minor performance
degradation compared to this ideal scenario. These
routing errors highlight the challenges in dynami-
cally estimating each agent’s expertise on-the-fly,
yet the overall performance remains competitive
even with these extra iterations.

Comparison with the scenario of Single RAG-
based agent. Single RAG-based methods, such
as RankRAG and EfficientRAG, consolidate all
knowledge into one unified base, allowing them
to review a comprehensive document set for each
query. In expectation, RankRAG should perform

best under a single-hop QA task (i.e., Natural Ques-
tions), while EfficientRAG can generate the most
accurate responses to multihop queries. However,
we observe that both methods sometimes under-
perform compared to multi-agent approaches like
RIRS. The reason is that partitioning the knowl-
edge into domain-specific agents can limit irrel-
evant or distracting content during retrieval, en-
abling each agent to focus on a smaller, more rel-
evant subset of documents. Additionally, the de-
centralized nature of our approach allows for the
review of more knowledge chunks without being
restricted by input token limits, thereby improving
inference focus and overall performance.

Comparison with other routing methods.
When compared to other routing strategies such as
RouterDC and Chameleon, RIRS achieves higher
accuracy by providing a more reliable outline
of each agent’s knowledge capacity. RouterDC,
which relies on caching 100 historical questions per
agent, often falls short in representing the full spec-
trum of an agent’s expertise, while Chameleon’s
reliance on static textual descriptions can lead to
misrouting. In contrast, our iterative routing mecha-
nism dynamically refines query assignments based
on actual performance feedback, resulting in more
precise and robust routing that better aligns with
the agents’ strengths.

Comparison with various LLMs. Focusing on
our methods, we observe that larger LLM mod-
els like Qwen-Plus consistently achieve better per-
formance than smaller models such as LLaMA-



Methods Models NewsAgent-Source NewsAgent-Domain
Acc. Hall.! Rounds | Acc. Hall.! Rounds
Single RAG-based Agent *
RankRAG Qwen-Plus 78.52 337 1.0
LLaMA-3.1-8B | 65.77 8.71 1.0
-Plus . . .
EfficientRAG Qwen-Plus 81.80 1.19 1.57
LLaMA-3.1-8B | 66.80 6.05 1.32
Multiple RAG-based Agents
-P1 89.32 - 1.06 | 90.31 - 1.12
GoldRouter Qwen-Plus
LLaMA-3.1-8B | 79.53 - 1.08 | 80.16 - 1.18
RIRS Qwen-Plus 8475 0.93 1.65 88.78 1.07 1.66
LLaMA-3.1-8B | 7191 491 1.37 | 7512 473 1.39

! Hall. means a hallucination rate that misclassifies a null query as answerable, which
should be the lower, the better.

2 Both NewsAgent-Source and NewsAgent-Domain share the same knowledge reposi-
tory for the single RAG-based agent, thus producing identical results. We therefore
report these single-agent outcomes under NewsAgent-Source only, leaving the corre-
sponding entries for NewsAgent-Domain blank to avoid duplication.

Table 2: Performance comparison of different methods
using NewsAgent-Source and NewsAgent-Domain.

3.1-8B. Notably, when the server is equipped
with Qwen-Plus while the agents operate with
lightweight models, the overall performance is
nearly on par with a scenario where all agents use
Qwen-Plus. This gap underscores the limitations of
LLaMA-3.1-8B in following complex instructions,
but also highlights a practical advantage: agents
can run lightweight models locally to preserve ef-
ficiency and knowledge sovereignty, while a more
powerful central model can manage complex rea-
soning tasks without exposing sensitive informa-
tion to third-party providers.

5.3 Quantitative Analysis for Multi-hop RAG

In this section, we analyze the performance of
our proposed method, RIRS, on the MHR bench-
mark under two NewsAgents settings: NewsAgent-
Source (with 49 agents) and NewsAgent-Domain
(with six agents). As shown in Table 2 and Fig-
ure 4, we focus on two key perspectives: (i) com-
paring RIRS with single RAG-based agents, and
(i) discussing the effect of varying the number of
RAG-based agents.

Comparison with Single RAG-based Agent. In
the single-agent scenario, all knowledge is con-
solidated into a single agent (e.g., RankRAG and
EfficientRAG). While this setup can sometimes
simplify retrieval by reviewing a comprehensive
document pool, it also risks introducing irrelevant
or distracting information. By contrast, RIRS parti-
tions knowledge across multiple specialized agents
and iteratively refines query routing, thereby re-
ducing the likelihood of retrieving spurious con-
tent. As Table 2 indicates, RIRS achieves not only
higher accuracy but also a notably lower halluci-
nation rate compared to the single-agent methods.
In particular, when dealing with multi-hop queries,

Accuracy

Average Query Rounds

‘temporal comparison null

inference
Query Types

(b) LLaMA-3.1-8B

temporal comparison inference  null
Query Types

(a) Qwen-Plus

Figure 4: Performance Comparison of Different Models
for MHR Benchmarks under Different Query Types.
(Zoom in for the best view)

the smaller domain-specific knowledge bases (or
source-specific segments) mitigate confusion and
enhance the reliability of retrieved evidence, help-
ing RIRS avoid erroneous or fabricated answers.

Discussion of Different Numbers of RAG-based
Agents. From Table 2 and Figure 4, we observe
that having a large number of agents (49) can offer
very fine-grained coverage but may incur additional
query rounds due to routing overhead; in contrast,
having fewer agents reduces the routing complexity,
sometimes resulting in fewer rounds while main-
taining high accuracy. Notably, the domain-based
approach (6 agents) appears to strike a more bal-
anced trade-off between specialized coverage and
routing overhead, often leading to efficient query
resolution for multi-hop questions.

These findings suggest that there exists an opti-
mal number of agents for a given knowledge base:
too many agents risk increased routing complexity
and query overhead, whereas too few agents risk
merging domains too broadly, which can reintro-
duce the problem of irrelevant knowledge retrieval.
Thus, system designers must weigh the benefits of
granular specialization against the costs of addi-
tional query rounds when determining the appro-
priate level of knowledge partitioning.

6 Conclusion

In this work, we introduce RIRS, a novel frame-
work that coordinates multiple RAG-based agents
in response to a query while preserving their knowl-
edge sovereignty. Specifically, this framework
consists of two mechanisms: the routing mech-
anism directs a user query to the most appropriate
agents, and the iterative refining-solving mecha-
nism enhances the system’s ability to tackle com-
plex, multi-hop queries by progressively synthe-
sizing intermediate responses into a comprehen-
sive final answer. Extensive experiments using
Wikipedia-related and News-related corpus and
datasets demonstrate the effectiveness of the pro-
posed method, regardless of the complexities of the
given questions.



Limitations

Despite the promising results, RIRS has two lim-
itations that warrant further investigation. First,
the effectiveness of the routing mechanism heavily
relies on the quality of the knowledge boundary
representations derived from embedding clusters;
in cases where knowledge domains overlap signifi-
cantly, or embeddings are less distinct, the router
may misidentify relevant agents. Second, this work
is unable to handle a multimodality scenario, where
the provided corpus contains a modality other than
texts.
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A Key Modules on the Server

The proposed RIRS is comprised of two key components: multiple RAG-based agents, each specialized
in a domain of expertise, and a central server that coordinates their collaborative efforts. The server
serves as the nexus of our framework by orchestrating the interaction between agents through a series of
specialized roles designed to ensure that user queries are addressed with both logical rigor and relevant
supporting evidence. Below, we detail the primary agents managed by the server and their corresponding
responsibilities.

A.1 Question Evaluator

The Question Evaluator is the first checkpoint in the server’s processing pipeline. Given that the server
itself lacks domain-specific background knowledge, the evaluator assesses agent responses using a
common-sense, logic-based approach. Its primary tasks are:

* Logical Assessment: Evaluating whether the provided response is coherent and free from logical
fallacies.

» Evidence Verification: Confirming that necessary citations and supporting evidence are included in
the response.

* Response Classification: Determining if the response is "addressed" or "not addressed." A response
is marked "not addressed" if it fails to provide sufficient evidence, contains logical deficiencies, or is
entirely irrelevant to the user query.

* Granular Evaluation for Multihop Questions: For multistep queries, even a response classified as
"addressed" is further divided into "fully addressed" or "partially addressed." When a response is rated
as "partially addressed," the unaddressed part is expected to be answered by other agents and/or in the
further reasoning steps.

This preliminary evaluation ensures that only logically sound and evidence-backed responses are propa-
gated in the subsequent stages.

A.2 Response Summarizer

Following the evaluation stage, the Response Summarizer plays a crucial role in consolidating agent
responses. Depending on the evaluator’s results, two variants of the summarizer are deployed:

e Fully Addressed Summarizer: This variant consolidates one or more responses that have been
deemed to fully address the query. It integrates the responses into a comprehensive answer which is
then forwarded directly to the user.

* Partially Addressed Summarizer: When none of the responses can fully address the query, the
partially addressed summarizer steps in to compile a more complete solution based on the available
partial responses. Once consolidated, it re-evaluates the answer. If the unified response is deemed fully
addressed, it is returned to the user; otherwise, further action is initiated.

Notably, although the partially addressed summarizer can directly consolidate the information from all
responses, the overall performance of response summarizing benefits from the initial filtering conducted
by the Question Evaluator and fine-granularity of the standard collaboration flow.

A.3 Question Simplifier

When the query remains insufficiently addressed, as rated by the partially addressed summarizer, the
Question Simplifier intervenes to decompose the problem into more manageable sub-questions. This
agent performs the following tasks:

* Identification of Addressed Components: It examines the existing responses to isolate the aspects of
the query that have already been effectively addressed.
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* Generation of a New Question: By removing the resolved parts, the simplifier formulates a new query
targeting the unresolved components.

* On-the-Fly Decomposition: This dynamic simplification enables the server to continue resolving the
query in an iterative, step-by-step manner without the need for prior, rigid question planning.

This adaptive approach leverages already acquired knowledge, ensuring that subsequent agent interactions
are focused on the remaining aspects of the problem, thereby reducing the need for redundant multistep
reasoning in later stages.

A.4 Discussion: Unhandleable Queries

In some instances, the server may fail to obtain any reliable ("addressed") responses. This scenario may
arise due to several factors:

* Query Outside the System’s Domain: The user may pose a question that falls outside the scope
of all RAG-based agents’ expertise. For instance, in a medical suggestion QA system, a travel
recommendation query would not align with the agents’ specialized knowledge, resulting in no suitable
answer.

* Ambiguous or Incomplete Queries: A query that is vague, under-specified, or contains numerous
typographical errors can hinder the server’s ability to correctly map the question to the appropriate
agents. For example, in a medical context, ambiguous terminology or poorly structured queries
may impede the identification of a clear problem statement, leading to an inability to retrieve a fully
addressed response.

» Rapidly Evolving Information Domains: In areas where information is rapidly changing, some
RAG-based agents may not have the most current data or guidelines. This lag can result in responses
that are either outdated or insufficient, prompting the system to classify the query as out-of-scope.

In such cases, the system will inform the user that the question cannot be answered based on the current
scope of the available agents. However, if the server integrates a knowledgeable agent with broader
capabilities, this agent may be employed to attempt an answer. For multihop questions, the knowledgeable
agent is provided with a simplified version of the query, since evidence suggests that large language
models perform better when fewer reasoning steps are required (Zhuang et al., 2024).

B Implementations and Baselines

B.1 Implementation Details

Our implementation builds upon the open-source AgentScope project (Gao et al., 2024), and each agent’s
knowledge base is processed by LLaMAlIndex (Liu, 2022) and stored in ElasticSearch. We leverage
ElasticSearch’s Mixed Retrieval for knowledge retrieval, where each agent extracts 20 chunks and selects
the best five for answer generation. Without special annotations, five agents are chosen per query round.
The entire system is deployed within a pseudo-distributed environment that utilizes multi-threading to
enhance scalability and efficiency. Our code and the setup of multiagent systems (including corpus) will
be released upon acceptance. Due to the limited space, more experimental setups (e.g., prompts, metrics,
and baseline implementations) and some experiential results are deferred to the appendix.

B.2 Baselines

In order to comprehensively evaluate our proposed system, we have reproduced several baselines inspired
by existing works. These baselines are implemented manually to fit within our experimental framework.
Notably, our study focuses on an off-the-shelf scenario, which does not fine-tune or train any models
and instead leverages the capabilities of existing LLMs to achieve desired effects. Toward the goal, the
implementation details of the baselines are given as follows:
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Single-agent Scenarios. In the single-agent scenario, the knowledge contained within all RAG-based
agents is merged into a single agent. This is a unified setup for conventional RAG-based methods. In this
setting, baseline methods can review all documents and retrieve the most relevant ones within the system.
Although the single-agent setup does not fully align with the scenario we aim to examine, we include it to
demonstrate the challenges associated with managing a large knowledge base, i.e., longer retrieval times
and potential distractions from plausible yet irrelevant information. Ideally, if the retrieved knowledge
were perfectly clean, the single-agent setup could serve as an upper bound of the multi-agent setup in
terms of accuracy when comparing the generated results against the ground truth.

* RankRAG: This method retrieves some documents from the knowledge base using both dense and
sparse retrievers. Next, a pretrained model is introduced to evaluate the helpfulness of each retrieved
document and select the most appropriate document(s) to answer the given query. Based on the retrieved
document(s), the LLM is asked to generate a response. If the provided document(s) are irrelevant to
the question, the LLM is supposed to generate the answer on its own ability. Therefore, this method
maintains a single query round for all types of questions. This baseline method covers a number of the
existing works (Yu et al., 2024; Glass et al., 2022; Song et al., 2024; Ram et al., 2023; Ma et al., 2023;
Nogueira et al., 2020), which focuses on using reranking to enhance LLM content generation, while
they use different ways to train the ranking model.

» EfficientRAG: This approach iteratively simplifies the query by retrieving query-related documents
from the knowledge base until it can be fully addressed. The simplification process depends entirely on
the LLM’s ability to remove portions of the query that have already been resolved. In cases where the
remaining question cannot be further simplified or adequately answered using the provided context,
a knowledgeable agent is used to generate the final answer. This baseline follows the EfficientRAG
framework (Zhuang et al., 2024), which generates training data from an LLM to train a compact model
for question simplification, and is further inspired by related works such as Self-ASK (Press et al.,
2022), SelfRAG (Asai et al., 2023b), and IM-RAG (Yang et al., 2024b). This approach has proven
effective for multi-hop questions due to its adoption of multiple reasoning steps to converge on a final
answer.

Multi-agent Scenarios. In this scenario, we implement two routing strategies for comparison with
our proposed routing mechanism, RIRS, while keeping the other server modules unchanged and still
employing iterative routing. These two methods are derived from settings that involve multiple LLMs
and use a router to identify the best LLM for handling a given task. Inspired by these approaches, we
extend their ideas to our scenario to construct an effective routing mechanism. In our experiments, these
two routing strategy are used to handle Wikipedia-related QA tasks, i.e., Natural Questions, HotpotQA,
2WikiMultiHopQA, and MuSiQue.

* Chameleon: This method (Lu et al., 2024) leverages a collection of tools, including LLMs and off-the-
shelf vision models, to accomplish complex reasoning tasks step by step, selecting the best tool for
each step. The router, which is based on a well-trained LLM, decomposes a complex task into multiple
steps and identifies the most suitable tool for each. In our adaptation, each WikiAgent is dedicated to a
specific topic from Wikipedia. By providing the router with a description of each agent’s specialized
topic, it can select up to five agents whose expertise best aligns with the given query.

* RouterDC: This method (Chen et al., 2024a) utilizes several LLMs by training a representation vector
for each model based on a collection of questions and the optimal candidate from a pool of models.
During inference, the router determines the best agents by computing the similarity between the query
embedding and the stored representation vectors.

Inspired by this approach, we calculate the similarity between the query embedding and the representa-
tion vectors of our RAG-based agents. However, obtaining these vectors typically requires additional
training, which is not compatible with our training-free setting. Instead, we leverage insights from
recent works (Lampinen et al., 2022; Mishra et al., 2021) and cache 100 historical questions for each
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agent to represent their knowledge capacity. For a new question, the router computes the average
similarity between the query and the cached questions for each agent, then selects the five agents with
the highest similarity scores to generate an answer.

B.3 Evaluation Metrics

In this section, we provide the details of the most common evaluation metrics as follows:

* Lexical Match: This metric measures the percentage of questions where the groundtruth answer
appears within the generated response. Since the LLM-generated answers may be longer than the
groundtruth, we focus on whether the groundtruth is included in the predicted answer rather than
requiring an exact match.

* GPT Evaluation: We adopt gpr-40-2024-08-06 (Achiam et al., 2023) to evaluate the correctness of
the generated responses. This metric captures cases where the generated response conveys the same
meaning as the groundtruth, even if the wording is different.

* Cost: We calculate the total token consumption for each query across all agents, measuring the
computational cost associated with each query.

* Time: We compute the wall-clock time from the question that appears to be a valid response. It is
noted that the time may not be accurately measured because of the existence of network or threading
congestion, especially if an API call is required.

B.4 Data Distributions for Multi-hop Question

In this section, we show the data distribution for MuSiQue, 2WikiMultiHopQA (or 2WikiMQA), and
HotpotQA across the minimum number of required agents. In our experiments, we sample our dataset to
speed up our inference progress, while ensuring at most 3% error within 95% confidence interval.
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Figure 5: Data distribution v.s. Minimum required agents under different datasets

B.5 More Experimental Results
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C Prompts

System Prompts for Chain-of-Thought (CoT) Agent ]

You’re a knowledgeable assistant. You are provided with a question, and you should answer the question in the following two
steps. FIRST, you should utilize your knowledge and analyze the question step by step. SECOND, you should finalize an
answer based on your analysis with no more than 30 words.

Your output should be in the json format:

json

{
"analysis"”: "<a paragraph with no more than six sentences>",
"answer": "<a response within 30 words>"

3

Figure 7: Prompt Templates for the CoT Agents.

System Prompts of Wikipedia Agents for A Single Question ]

You are provided with one question and a collection of knowledge. Based on the given knowledge, you should try to analyze
and tackle the question as thoroughly as possible, even if you cannot fully answer the question. Unless the given context is
unrelated to the question, you must directly quote the evidence (i.e., sentences) without being altered to support your analysis,
enclosing it in double asterisks (**). You should not state any arguments that are not explicitly mentioned or implied from
the pieces of evidence or without quoting them. The analysis should be in one paragraph with no more than ten sentences.
Moreover, the analysis should start with "[" and not mention that the analysis is generated based on the given knowledge,
documents, or information.

Your output should be in the json format:
TTTjson

{

"analysis"”: "<one paragraph of up to ten sentences, directly quoting supporting evidence from
the provided knowledge>"

Figure 8: Prompt Templates for the Wikipedia Agents.
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System Prompts of News Agents for A Single Question ]

You are given one question and a collection of news articles. Each article contains content along with its source information,
including the title, news source, author, and published time. Your task is to analyze and address the question as thoroughly
as possible based on the provided news articles, even if you cannot fully answer the question. Unless the given context
is unrelated to the question, you must directly quote the evidence (i.e., sentences) without being altered to support your
analysis. You should enclose quoted evidence (sentences) in double asterisks (**), followed by the source in brackets,
including the title, news source, author, and published time, separated by semicolons (;). You should not state any arguments
that are not explicitly mentioned or implied from the pieces of evidence or without quoting them. Your analysis to
each question should be concise, limited to one paragraph per question, with no more than ten sentences. The analy-
sis must begin with "I" and should not mention that the analysis is based on provided news articles, knowledge, or information.

Your output should be in the json format:
“TTjson

"analysis"”: "<one paragraph of up to ten sentences, directly quoting supporting evidence from
the provided knowledge>"

Figure 9: Prompt Templates for the News Agents.

System Prompts of Evaluator for "Fully/Partially/Not Addressed" for A Question and A Response ]

You are provided with a question and a response. Your task is to evaluate the response according to the following steps:
1. Assess the response against three criteria:

- Relevance: Does the response help answer the question, even if the response does not fully resolve it?

- Evidence-Based Support: Are statements supported by explicitly mentioned evidence enclosed in double asterisks (**)?
- Logical Coherence: Is it well-structured, logically reasoned, and free from logical fallacies or contradictions?

2. Assign one of the following ratings:

- Fully addressed: The response meets all criteria and completely answer the question.

- Partially addressed: The response meets all criteria but not fully resolve the question.

- Not addressed: The response fails to meet one or more of the criteria.

Your output should be in the json format:

json
{
"evaluation”: {
"relevance”: <a sentence within 30 words>,
"evidence_support”: <a sentence within 30 words>,
"logical_coherence”: <a sentence within 30 words>
}'
"rating”: <"Fully addressed” or "Partially addressed” or "Not addressed”>
3

Figure 10: Prompt Templates for the evaluator.
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System Prompts of Summarizing Fully-addressed Responses ]

You are given a question, and one or more responses that fully resolve the question. Your task is to produce a final answer by
following these steps:

1. Analysis: Incorporate all relevant information from the given responses, quoting any supporting evidence word-for-word
in double asterisks (*%*).

2. Answer: Provide a concise conclusion in no more than 30 words that summarizes the analysis.

Your output should be in the json format:

json

{
"analysis”: "<a paragraph that directly quotes relevant evidence in *xdouble asterisks*x>",
"answer": "<a concise final answer within 30 words>"

3

System Prompts of Summarizing Partially-addressed Responses ]

You are given a question and several partially addressed responses. Your task is to combine these responses to create a
comprehensive solution, then evaluate its completeness. Follow these steps:

1. Solution Synthesis:

- Incorporate all relevant information from the provided responses to form a solution that addresses the question as thoroughly
as possible.

- Directly quote supporting evidence (word-for-word) using double asterisks (**).

2. Evaluation and Justification:

- Determine whether this combined solution fully addresses the question.

- Provide a clear explanation of why it does or does not fully address the question.

3. Answerability Determination:

- Based on your evaluation, decide if the solution makes the question answerable.

- Respond with either "yes" (if the solution fully addresses the question) or "no" (if it does not).

- Most importantly, if the solution explicitly states that the question cannot be fully addressed or identifies missing aspects or
necessary additional information, you must answer "no".

4. Final Answer:

- If the solution is deemed answerable ("yes"), provide a concise conclusion in no more than 30 words that summarizes the
solution.

- If the solution is not answerable ("no"), return "None" as the final answer.

Your output should be in the json format:
“TTjson

"solution”: "<a paragraph that integrates responses with direct quotes in **double asterisks

*x>" ,

"evaluation and justification”: "<a paragraph explaining whether and why the solution fully
addresses the question>",

"answerable”: <"yes"” or "no">,

"answer"”: "<a final answer within 30 words if ’answerable’ is ’yes’, or ’None’ if ’answerable’
is ’no’>"

Figure 11: Prompt Templates for the Summarizer.
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System Prompts of Question Simplifier ]

You are given a question and a piece of knowledge that partially addresses the question. Your task is to simplify or refactor
the original question so that answering the simplified question will yield the same final answer as answering the original one.
Follow the steps below:

1. Map Known Information:

- Identify Answered Parts: Examine the original question and determine which parts have been explicitly answered by the
provided solution. Extract the relevant words or phrases from the question.

- Map to Solution: For each identified part, find the corresponding words or phrases in the provided solution and include
supporting evidence by directly quoting the exact sentences, enclosed in double asterisks.

- Note: If the provided knowledge does not address any aspect of the original question (i.e., you cannot identify the answered
parts from the question), return "None" for the mapping.

2. Identify Unresolved Aspects:

- Determine Gaps: Identify the parts of the question that remain unanswered or unclear after considering the provided
solution.

- List Unresolved Points: Clearly list these unresolved aspects. They must be retained in the simplified question to ensure that
no essential detail is lost.

3. Generate a Simplified/Refactored Question:

- Remove Redundancies: Remove from the original question any words or phrases that have been fully addressed by the
solution (as determined in Step 1).

- Incorporate Mapped Knowledge: Replace the removed parts with their corresponding mapped words or phrases from the
solution, ensuring to preserve the supporting evidence.

- Retain Unresolved Aspects: Ensure that any unresolved aspects identified in Step 2 are still present in the final simplified
question.

- Ensure Consistency: The new question must be clear, concise, and structured so that answering it will yield the same final
answer as if the original question were fully addressed.

- Note: If the mapping is "None" (as indicated in Step 1), keep the simplified/refactored question identical to the original
question.

Your output should be in the json format:

json
{

"question_knowledge_mapping”: <a list of tuples in the format (words from given question,
words from provided knowledge, supporting evidence) or "None">,

"unresolved_aspects”: <a list of aspects that remain unanswered>,

"new_question”: <the simplified/refactored question; remove all "words from given question”
found in the mapping and include the corresponding "words from provided knowledge” to
replace them, ensuring all unresolved aspects are retained. If mapping is "None"”, use the
original question>

3

Figure 12: System Prompt for Question Simplifier.
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User Input

who is darrell brother in the walking dead

[ Expected Answer ]
L Merle Dixon

[ Assistant: Culture. Visual arts.Comics and Anime ]

The provided documents do not contain any information about Darrell’s brother in The Walking Dead. The documents
mainly discuss the comic book series, its publication history, and various adaptations, but do not provide details about specific
characters like Darrell and his brother.

.

[ Assistant: Culture.Media.Media* |-

The provided documents contain information about Daryl Dixon, a character from the television series The Walking Dead.
According to the document, Daryl has an older brother named Merle Dixon, who is described as "The racist and volatile
older brother of Daryl Dixon." The document also mentions that "After Merle’s disappearance, Daryl lets his guard down and
starts to bond with the group.”

\

[ Assistant: History and Society.Politics and government },

The provided documents do not contain any information about a character named Darrell or his brother in the context of "The
Walking Dead." The documents discuss various topics unrelated to the TV show or comic series, including Australian rules
football families, Charles Darwin, the phrase "Dead Man Walking," and the TV show "Neighbours."

C

[ Assistant: Culture.Media.Television ]—

The document mentions Daryl’s brother, Merle, and their relationship: "Daryl had significant periods of time alone and,
throughout these lonely periods, learned to fend for himself and adopted a hard-boiled survivalist mindset. When the outbreak
occurs he and Merle fend for themselves and drift around, avoiding walkers." It also states, "The character was introduced in
the first season as a southerner, expert tracker, living in the shadow of his older brother, Merle." These quotes indicate that
Darrell’s brother in The Walking Dead is Merle Dixon.

[ Assistant: Culture.Biography.Biography* L

The provided documents do not contain any information about a character named Darrell or Darrell’s brother in the context
of "The Walking Dead."

| Server: Evaluation |-

Evaluation:

- Response 1 and 3 are unreliable because they claim there is no information, which is incorrect.
- Response 2 and 4 are reliable as they correctly identify Merle Dixon as Daryl’s brother.

- Response 5 is unreliable because it incorrectly claims there is no information.

Analysis: Responses 2 and 4 provide accurate information about Daryl Dixon having an older brother named
Merle Dixon in The Walking Dead series.

Answer: Daryl’s brother in The Walking Dead is Merle Dixon.

! Response

Daryl’s brother in The Walking Dead is Merle Dixon.

Figure 13: A example of single-hop QA task
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User Input

Where was the director of film Rough Going born?

[ Expected Answer ]
[ New Hyde Park, New York

[ Assistant: Culture.Media.Films ]

I found that **Rough Going is a 1925 American silent Western film directed by Wally Van**. However, the provided
information does not specify where the director, Wally Van, was born.

[ Assistant: Culture.Media.Media* ]—

I learned that **Richard Rush (April 15, 1929 — April 8, 2021) was an American film director, scriptwriter, and producer.**
This indicates that Richard Rush, the director of Rough Going, was born in the United States. However, the specific place of
his birth is not mentioned in the provided context.

[ Server: Evaluation ]

"response_1": {
"relevance’: ’Identifies the director of Rough Going but does not provide his place of
birth.’,
’evidence_support’: ’Provides relevant information about the film and its director, Wally
Van, with evidence.’,
’logical_coherence’: ’The response is logically structured and coherent, though it
acknowledges incomplete information.’,
’rating’: ’Partially addressed’
}’
"response_2’: {
’relevance’: ’Incorrectly identifies Richard Rush as the director of Rough Going, making it
irrelevant to the question asked.’,
’evidence_support’: "Offers evidence about Richard Rush’s lifespan and profession, but this
does not relate to the query.”,
’logical_coherence’: ’Logically coherent for statements about Richard Rush, but fails to
address the actual question.’,
’rating’: ’Not addressed’

[ Server: PartiallySummarizer },

’solution’: ’The film x*Rough Going is a 1925 American silent Western film directed by Wally
Vanxx. However, the provided information does not specify where the director, Wally Van,
was born. This indicates a gap in the available data regarding the birthplace of Wally Van

’evaluation and justification’: ’The solution identifies the director of the film Rough Going
as Wally Van but acknowledges that there is no information provided about his place of
birth. Since the question specifically asks for the birthplace of the director and this
detail is missing, the solution does not fully address the question.’,

’answerable’: ’no’,

“answer’: ’None’
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[ Server: QuestionSimplifier ],

{
’question_knowledge_mapping’: [
[’the director of film Rough Going’, ’Wally Van’, ’#*xRough Going is a 1925 American silent
Western film directed by Wally Van*x.’]
]:
’unresolved_aspects’: [’The birthplace of Wally Van’],
"new_question’: "Where was Wally Van born?”
3

J

[ Assistant: Culture.Biography.Biography* ]_

I learned that **Van was born Charles Wallace Van Nostrand on September 27, 1880, in New Hyde Park, New York.** This

explicitly answers the question about where Wally Van was born, which is New Hyde Park, New York.

[ Assistant: Culture.Linguistics ],

I found that **Wally Williams (water polo) (1921-2009), New Zealand water polo player** is listed, indicating a Wally
Williams who was born in 1921 and was from New Zealand. However, there is no specific mention of where exactly he was
born within New Zealand.

C

[ Server: Evaluation ]—

{
"response_1": {
‘relevance’: "Directly answers the question by specifying Wally Van’s birthplace as New
Hyde Park, New York.",
’evidence_support’: ’Provides explicit evidence enclosed in double asterisks about Wally
Van’s birth details.’,
’logical_coherence’: ’The response is logically coherent and clearly structured without
contradictions.’,
’rating’: ’Fully addressed’
}!
"response_2’: {
"relevance’: ’Partially relevant as it discusses a person named Wally but not the specific
Wally Van in question.’,
’evidence_support’: ’Provides evidence about Wally Williams but does not link this
information to Wally Van.’,
’logical_coherence’: "Coherent statement but fails to address the specific query about
Wally Van’s birthplace.”,
’rating’: ’Not addressed’
}
}
[ Server: FullySummarizer L
{
’analysis’: "The response provides explicit information about Wally Van’s birthplace: **Van
was born Charles Wallace Van Nostrand on September 27, 1880, in New Hyde Park, New York
*x%"
’answer’: ’Wally Van was born in New Hyde Park, New York.’
3

Response

Wally Van was born in New Hyde Park, New York.

Figure 14: A example of a multihop QA task using the proposed RIRS
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