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ABSTRACT

Most RL-based traffic signal control (TSC) methods rely on features such as vehi-
cle coordinates and waiting times, which are available in simulation but not at real
intersections. We present VisionLight, an RL framework that operates on real-
time video input through two modes: (1) end-to-end processing of raw footage
and (2) image-based feature extraction compatible with existing TSC systems.
To address unpredictable traffic fluctuations (uncertainty), VisionLight introduces
an Entropy Attention & Multi-agent Mechanism tuned for turn-based traffic. It
achieves an average 56.8% improvement over SOTA baselines across three met-
rics, matches feature-driven RL models, and generalizes robustly under extreme
weather without retraining, making it practical for real-world deployment.

1 INTRODUCTION

Figure 1: Illustration of video-based traffic signal control: (Left) A 3D-rendered traffic simulation
environment. (Right) A camera perspective capturing real-time traffic flow for RL-based control.

Background. Traffic congestion at intersections remains a critical issue in urban areas, causing
significant delays and economic losses (Fonseca & Garcia, 2021; Cheng et al., 2023). Efficient
Traffic Signal Control (TSC) is essential, especially as urbanization continues to increase (Wei et al.,
2019). Recent advances in Reinforcement Learning (RL) have shown great promise in improving
TSC systems by dynamically adjusting signal timings in response to real-time traffic conditions,
often outperforming traditional approaches in simulations (Koh et al., 2020; Li et al., 2021; Noaeen
et al., 2022). As a result, RL has become a popular research direction for intersection control, with
a growing body of literature exploring its potential.

GAP & PROBLEM. However, most RL-based TSC research depends on input features such as
vehicle coordinates, queue lengths, or waiting times, which are easily extracted in simulations but
not obtainable at real intersections (Comert & Cetin, 2021). High-precision sensors like LiDAR
could provide such data, but they are costly and rarely deployed, leaving practical and scalable TSC
solutions elusive.

SOLUTION. To address above challenge, our work explores both 1. End-to-End and 2. Image-
based Feature Extraction approaches based on camera input. Unlike previous methods that rely on
pre-processed features, our model directly operates on raw traffic video data (Li et al., 2023b; He
et al., 2023; Wu et al., 2023). Benefiting from training in a highly realistic 3D-rendered simula-
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tion with camera perspectives that mirror real-world conditions, we aim to bridge the gap between
simulation and deployment, making the model suitable for real-world applications.

CONTRIBUTION. In summary, our contributions are as follows:

• We propose an end-to-end solution integrating surveillance camera data with RL for TSC,
leveraging real-time video input instead of relying on pre-processed features.

• We introduce a feature extraction framework that enables video-based traffic signal control
to synchronize with existing research approaches, helping theoretical research transition
into real-world applications.

• We design a robust Entropy Attention Mechanism to assess the uncertainty of dynamic
traffic flow change, enhancing turn-based traffic signal control.

• We conduct extensive simulation efforts in highly realistic 3D-rendered environments, pro-
viding a more accurate reflection of real-world scenarios.

2 RELATED WORK

While RL methods have been effective for optimizing traffic signals (Wei et al., 2021; Xu et al.,
2023), current approaches focus primarily on theoretical simulation without practical consideration
of real-world sensor inputs like surveillance cameras. Our VisionLight model extends multi-agent
RL concepts by incorporating real-time video data, offering more adaptive and practical traffic con-
trol solutions (Huang et al., 2021). Multi-agent RL has demonstrated great promise in improving
urban traffic flow, and video input enhances decision-making capabilities further (Liu et al., 2023).

The integration of video surveillance into traffic management systems has been shown to enhance ve-
hicle detection and traffic flow predictions through deep learning techniques applied to surveillance
images (Dilshad et al., 2020; Hu et al., 2021). Research has focused on detecting vehicle density
from video data for real-time signal optimization (Jamebozorg & Hami, 2024). Additionally, sensor
fusion combining video cameras with LiDAR improves vehicle localization, though the high cost of
LiDAR limits its scalability (Liu et al., 2023). Our research leverages the widespread deployment
of traffic cameras to bridge the gap between theoretical solutions and practical implementation in
signal control (Luo et al., 2018).

Real-time vehicle detection in challenging conditions such as fog or low light has benefited from
models like YOLO, which is widely adopted for traffic applications (Wang et al., 2022; Meng et al.,
2023). Incorporating such deep learning models into traffic systems improves detection accuracy
and signal timing adjustments (Patel & Ganatra, 2023; Meng et al., 2023). Multi-stream temporal
structures have further enhanced congestion detection from video, directly supporting traffic control
strategies (He et al., 2023).

Our research addresses the limitations of existing RL-based traffic control systems, which often lack
real-world applicability, by integrating video data to provide a scalable and intelligent solution for
practical intersection management (He et al., 2023).

3 PRELIMINARIES

3.1 TRAFFIC INTERSECTION DESCRIPTION

At a typical four-legged intersection, each incoming direction has two lanes: one for left turn exclu-
sive and one for straight & right turns (Papageorgiou et al., 2003). These lanes are grouped into lane
sets, which are activated during the same signal phase when there are no conflicting movements.
The incoming and outgoing lanes are defined as:

Lin = {llW , l
s/r
W , llE , l

s/r
E , llN , l

s/r
N , llS , l

s/r
S }, Lout = {l′W , l′E , l

′
N , l′S}

where llW represents the west incoming left-turn lane and l
s/r
W represents the west incoming

straight/right-turn lane. Traffic movements are defined as (ltype
i , l′j), grouping non-conflicting lane

sets for signal timing adjustments. Intersection setting as shown in Figure 2.
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Figure 2: (a) Traffic intersection signal phases and cycling. (b) Camera placement and its perspective
coverage.

3.2 SIGNAL PHASES AND ACTION SPACE

The intersection operates with four distinct signal phases, each controlling traffic from different
directions and movements (Chen et al., 2015):

Phase 0 : W-E left-turn protection Phase 1 : W-E straight/right-turn

Phase 2 : N-S left-turn protection Phase 3 : N-S straight/right-turn

In each phase, non-conflicting lane sets are activated, allowing traffic to flow from specific lanes.
The phase activation is represented as:

pk = {(ltype
i , l′j) | a(l

type
i , l′j) = 1}

where pk is the active phase, and a(ltype
i , l′j) = 1 indicates that the signal is green for the movement

from incoming lane ltype
i to outgoing lane l′j .

For example, during Phase 0, both llW (west left-turn lane) and llE (east left-turn lane) may have
green lights, while opposing movements are stopped to prevent conflicts. Signal phase rotation
shown in Figure 2.

In the simulation, our model makes a decision every 5 seconds, and the ACTION SPACE at each
decision point consists of:

• Retain: Continue with the current phase pk for an additional 5 seconds.

• Switch: Transition to the next phase pk+1, with a 3-second yellow light followed by a
5-second green light.

The action space A is defined as:
A = {aretain, aswitch}

where aretain maintains the current phase, and aswitch initiates the transition to the next phase. This
action definition ensures flexibility while simplifying decision-making. (Salah Bouktif, 2021).

The camera and its perspective coverage have been shown in the Figure 2. The four dots indicate
the camera locations, while the triangles represent their perspective and coverage:

3.3 MARKOV DECISION PROCESS (MDP) FORMULATION

We model the traffic signal control problem as a Markov Decision Process (MDP), consistent with
prior work (Puterman, 1990; Wang et al., 2023). The full MDP specification, including state, action,
transition, and reward definitions, is provided in Appendix A.
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4 METHODOLOGY

4.1 INPUT

Figure 3: Input. Traffic images from four directions (N, S, W, E)
captured at three time steps (t− 30, t− 15, tnow).

The input to our solution con-
sists of images captured at three
time steps: t − 30, t − 15, and
tnow, where tnow denotes the cur-
rent time. At each step, four
directional images are included,
corresponding to the north (N),
south (S), west (W), and east (E)
views of the intersection. Thus,
a total of 12 images are fed into
the model as input, capturing the
real-time and past traffic con-
ditions from surveillance cam-
eras positioned at the intersec-
tion. The input images are visu-
alized in Figure 3.

This temporal sequence of images provides the model with both current and past traffic states, en-
abling it to learn traffic dynamics over time. These inputs, combined with temporal features, are
processed by the model to inform the decision-making process.

4.2 END-TO-END SOLUTION

Figure 4: Overall End-to-End VisionLight Model Structure.

As shown in Figure 4, the End-to-End VisionLight model integrates three main components:

- Image Processing Module: This component extracts high-level semantic features from the input
images, transforming them into a lower-dimensional feature space. The module is designed to be
modular, allowing flexibility to replace it with various image processing techniques as required.

- Feature Space Mapping (Bridge): This part of the model serves as a bridge, aligning and map-
ping the extracted image features with additional traffic metrics, such as vehicle density and queue
lengths, into a unified decision-making space. This mapping forms a trainable latent space that
aligns heterogeneous inputs, enabling reinforcement learning to operate on a unified representation.

- Multi-Decision Agent: Each agent focuses on one lane set (direction), processing its features
through an entropy mechanism. The entropy module incorporates both phase timing (phase timing
distance, i.e., the time until the next or subsequent signal phases) and state uncertainty. The agent
optimizes a policy π(st), balancing rewards such as minimizing queue lengths and reducing vehicle
stopping times.
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This modular and flexible architecture enables the system to make informed, real-time traffic control
decisions based on image data and traffic metrics. The end-to-end solution algorithm is shown in
Figure 5 (left).

Algorithm 1: VisionLight: End-to-End

Input: Image frames from past and current
time; current signal phase
Output: Updated traffic phase

1: Initialize system and signal phase
2: while running every 5 seconds do
3: Capture latest image
4: Prepare input stack with recent frames

and phase
5: Send raw image stack to model for action
6: if switch then
7: Show yellow light, wait, then

change to next green phase
8: else
9: Keep current phase

10: end if
11: Apply phase to simulation
12: Collect current reward
13: Combine with past rewards (weighted)
14: Update image history
15: end while

Algorithm 2: VisionLight: Feature Extraction

Input: Image frames from past and current
time; current signal phase
Output: Updated traffic phase

1: Initialize system and signal phase
2: while running every 5 seconds do
3: Capture latest image
4: Prepare input stack with recent frames

and phase
5: Extract traffic features from image stack
6: Send features to FE model for action
7: if switch then
8: Show yellow light, wait, then

change to next green phase
9: else

10: Keep current phase
11: end if
12: Apply phase to simulation
13: Collect current reward
14: Combine with past rewards (weighted)
15: Update image history
16: end while

Figure 5: VisionLight solution algorithms.

4.3 FEATURE EXTRACTION SOLUTION

We noticed that most traffic signal control (TSC) models utilize input features such as the number of
waiting vehicles, waiting times, or traffic pressure for each lane. To explore the compatibility with
existing TSC reinforcement learning (RL) models, we extract and prepare these features, enabling
fast and seamless deployment in real-world scenarios.

Figure 6: Traffic Pressure Detection System on predefined
lane sets.

With the help of state-of-the-art ob-
ject detection models such as YOLO
(Jocher et al., 2023), and EfficientDet
(Tan & Le, 2020), we build an im-
age preprocessing system that detects
the number of vehicles on each lane
and calculates traffic pressure. These
features are extracted from the time-
series image input described above
(i.e., images at t − 30, t − 15, and
tnow), ensuring that short-term tempo-
ral dynamics are captured during pro-
cessing. The traffic pressure extrac-
tion system is illustrated in Figure 6, which shows how traffic pressure is estimated for use in the
reinforcement learning model.

Additionally, we develop our own feature extraction model VisionLight-FE based on deep Q-
networks (DQN) to further enhance feature representation and adapt to dynamic traffic environ-
ments. This model processes raw image data, extracts meaningful traffic-related features, and re-
fines them for integration with RL-based decision-making systems. The feature extraction solution
algorithm is shown in Figure 5 (right).
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Figure 7: Entropy Attention Mechanism: Integrating phase timing order, entropy, and uncertainty
weight to compute entropy-adjusted weights for each decision.

4.4 IMAGE RECEPTION MODULE

The image reception module processes traffic images captured at three timestamps: t-30s, t-15s, and
tnow, across four directions (N, S, W, E). To extract useful representations from these images, we
explore three neural architectures, corresponding to three VisionLight variants:

VisionLight-R uses a ResNet with spatial-temporal attention; VisionLight-A adopts anchor-based
feature encoding inspired by YOLO; VisionLight-T applies a Transformer-based design for long-
range traffic pattern modeling.

More details are provided in Appendix B.

4.5 BRIDGE LAYER MODULE

The Bridge Layer maps high-dimensional visual features to the RL decision space, enabling com-
munication between perception and control. It combines non-linear projection and cross-attention
to capture spatial-temporal dependencies. Details are in Appendix C.

4.6 MULTI-DECISION MODULE & ENTROPY ATTENTION MECHANISM

The Multi Mini Decision Agent Module consists of four mini-agents (Zhang et al., 2021), each
responsible for one lane set (North-South left, North-South straight/right, West-East left, West-East
straight/right), processing features and output a direction oriented features.

In our framework, four mini-agents generate Q-value features, each prioritizing decisions based on
their focused traffic direction. However, effective decision-making should not only optimize for the
current traffic state but also ensure stability over a future period. Given the rapid fluctuations in
traffic flow, it is crucial to determine which agent’s Q-value output is the most reliable and holds
greater authenticity.

To address this, we propose a trainable Entropy Attention Mechanism that dynamically assesses
uncertainty based on the input features from all four mini-agents. Entropy Attention Structure shown
in figure 7. This mechanism assigns entropy-based weights to each agent’s output, reducing the in-
fluence of decisions derived from highly volatile traffic conditions that are more likely to change. By
emphasizing decisions from more stable directions, our approach ensures that the final aggregated
Q-value remains both robust for the present and adaptive for future traffic conditions, leading
to more reliable long-term signal control.

Each mini-agent calculates an action score Si = σ(WdFi + bd), where σ is the sigmoid function,
Wd and bd are the weight matrix and bias, and Fi represents the feature set for a given lane. The

6
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scores S1, S2, S3, S4 are then normalized into probabilities:

Pi =
Si∑4
j=1 Sj

Shannon entropy (Lin, 1991) H = −
∑4

i=1 Pi log(max(Pi, ϵ)), is used to quantify decision uncer-
tainty and adjust the decay constant k′ = k ·H . The weights wi = e−k′di are then computed based
on phase timing distance di. These integrated weights are multiplied by the positional embedding
(Vaswani et al., 2017; Li et al., 2023c) of the traffic signal phase sequence delay, ensuring that phase
timing is incorporated into the decision-making process for more robustness:

w′
i = wi · αcr(Si)

Finally, the weighted scores are used to compute the Q-values for two possible actions, with the
action corresponding to the larger Q-value being selected:

Qretain, Qswitch = fQ(w
′
i · Si)

The Entropy Attention Mechanism boosts performance, with its effectiveness proven by the ablation
study results.

5 EXPERIMENT

5.1 METRICS

We evaluated the VisionLight model using two key metrics (Kim et al., 2023; Ault & Sharon, 2021):
average stopping time (AST) and average queue length (AQL) (Akçelik, 1980).

AST is defined as:

AST =
1

T

N∑
i=1

tstop(Si), AQL =
1

T

N∑
i=1

q(Si)

where tstop(Si) and q(Si) represent the stopping time and queue length for lane set Si, respectively,
and T is the flow duration in minutes. To maintain balance, the metrics were weighted equally,
considering variations in vehicle spawning probabilities.

5.2 TRAFFIC FLOWS

These metrics were measured over a single run across diverse traffic flow settings to ensure the
model’s robustness. The traffic flow settings, detailed in the Appendix F, provide a comprehensive
view of traffic dynamics under light, heavy, balanced, and unbalanced conditions.

5.3 TRAINING STRATEGY

The training strategy consists of optimizing the model using a dueling network, pre-training the
multi-decision module on SUMO, and finally fine-tuning the entire system on Carla. For a detailed
explanation, see Appendix D.

5.4 BASELINES

Since no direct comparisons exist for our end-to-end video-to-signal control model, we evaluate
against two categories of baselines: (1) fixed-time signal strategies and (2) reinforcement learning
(RL) models that rely on structured feature inputs. All baselines were tested under diverse weather
conditions (sunny, foggy, rainy, and night) to assess generalization without specific training for those
scenarios (Figure 8).

Fixed-Time Methods. Fixed-Time 30 & 40: Pre-defined signal cycles with fixed 30s or 40s dura-
tions, independent of traffic flow.

RL Models with Feature Inputs. We further compare with established RL-based traffic signal
control methods, including MPLight, AttendLight, CoLight (SOTA), and PressLight. Each of these
models is evaluated with two suffixes to denote the input source:

7
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• -SUMO: The model directly consumes simulator-provided features such as vehicle posi-
tions and queue lengths and runs in SUMO environment.

• -FE: The model relies on image-based preprocessing, where features such as vehicle counts
and traffic pressure are extracted from raw camera images.

Detailed descriptions of the models are as follows:

• MPLight-SUMO / MPLight-FE: Utilizes traffic pressure as both input and reward, incorpo-
rating the FRAP network to handle unbalanced traffic conditions.

• AttendLight-SUMO / AttendLight-FE: Integrates an attention mechanism to extract key
features from observations and predict phase transitions, enhancing decision-making ef-
ficiency.

• CoLight-SUMO / CoLight-FE (SOTA): A decentralized RL model using a graph attention
network (GAT) to enable communication between adjacent intersections, improving coor-
dination.

• PressLight-SUMO / PressLight-FE: A DRL model inspired by MaxPressure, optimizing
intersection pressure by strategically managing vehicle flow.

For the model specs and latency see Appendix G.

5.5 RESULTS

Sunny Rainy Foggy Night

Figure 8: Camera shots from different weather conditions.

Table 1: Performance under different weather, Best in bold, Second-best underlined).
METRIC - AR: Average Reward (/min), AST: Average Stopping Time (seconds/min), AQL:

Average Queue Length (vehicles/min).
SUFFIX - SUMO: simulation-provided features; FE: image feature extraction; R, A, T: end-to-end

variant structures.

Models Sunny Rainy Foggy Night
AR ↑ AST ↓ AQL ↓ AR ↑ AST ↓ AQL ↓ AR ↑ AST ↓ AQL ↓ AR ↑ AST ↓ AQL ↓

Traditional Method
Fixed-time 30 -59.03 1790.99 57.82 -63.10 1852.76 62.31 -58.22 1765.80 55.73 -61.41 1820.50 60.11
Fixed-time 40 -93.00 3007.91 73.84 -95.76 3150.33 78.90 -88.53 2920.50 70.12 -91.89 3055.62 75.45

Feature Input Method
MPLight-SUMO -15.31 259.23 29.65 - - - - - - - - -
AttendLight-SUMO -13.43 264.28 26.49 - - - - - - - - -
CoLight-SUMO -12.37 243.81 28.92 - - - - - - - - -
PressLight-SUMO -13.96 235.42 30.35 - - - - - - - - -

Feature Extraction Method
MPLight-FE -29.36 650.79 52.80 -112.65 3230.28 88.04 -108.51 3969.53 76.45 -49.97 1867.26 44.83
AttendLight-FE -28.90 725.68 59.89 -107.94 3469.61 87.23 -115.65 3797.51 82.61 -51.86 1856.13 51.88
PressLight-FE -27.78 645.42 53.67 -108.64 3524.34 77.95 -115.16 4023.66 77.46 -54.86 1554.58 49.18
CoLight-FE(SOTA) -27.15 655.98 51.33 -103.30 3319.79 82.71 -110.67 4083.33 80.97 -45.36 1935.80 48.46
VisionLight-FE(ours) -28.19 633.06 56.74 -104.94 3498.96 83.20 -108.44 3917.51 81.27 -49.42 1727.92 47.51

End-to-End Method
VisionLight-R(ours) -13.76 267.72 27.94 -65.57 2213.90 237.05 -86.74 2776.76 262.08 -38.97 1450.76 117.40
VisionLight-A(ours) -12.46 238.04 25.72 -70.49 2182.21 223.00 -82.97 2784.09 281.73 -40.55 1364.12 115.73
VisionLight-T(ours) -15.23 316.52 34.73 -59.36 2319.12 256.04 -87.03 2636.48 253.94 -43.08 1405.84 105.85

From Table 1 we know:
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SUNNY conditions, all three VisionLight end-to-end variants performed on par with direct feature-
input methods, with VisionLight-A (ours) achieving the highest average score across three met-
rics. In contrast, feature-extraction methods, which rely on object detection for vehicle counts and
traffic pressure estimation, introduced errors that reduced decision-making accuracy. Even with
these errors, all models still outperformed traditional fixed-time control. Notably, our customized
VisionLight-FE matched the best feature-input baselines, confirming its effectiveness.

EXTREME WEATHER (rain, fog, and night), all three VisionLight end-to-end variants remained
competitive, performing only slightly worse than the fixed 30-second signal strategy. VisionLight-A
and VisionLight-T (ours) achieved the second- and third-best average performance, even under re-
duced visibility. In contrast, feature-extraction methods dropped sharply, as blurred inputs impaired
vehicle counts and pressure estimation, leading to incorrect decisions. Interestingly, fixed-time con-
trol outperformed RL methods in this setting, since traffic lights remain visible to drivers regardless
of weather. At night, however, VisionLight’s end-to-end models maintained strong performance,
surpassing fixed-time control and matching the best feature-input baselines. Direct feature-input
methods tested on SUMO were excluded, as SUMO does not simulate weather.

OVERALL, VisionLight scored the highest average performance across all scenarios, demonstrat-
ing strong adaptability with raw video input. It achieved results comparable to direct feature-input
methods while offering a practical solution for real-world traffic signal control. For the cumulative
reward over training epochs, see Figure 11.

5.6 ABLATION STUDY: IMPACT OF ENTROPY ATTENTION MECHANISM

Model With Entropy Without Entropy
VisionLight-FE -28.19 -58.61
VisionLight-R -13.76 -22.59
VisionLight-A -12.46 -26.33
VisionLight-T -15.23 -25.86

Table 2: Average Reward of VisionLight variants
with and without the Entropy Attention mecha-
nism.

To demonstrate the effectiveness of the En-
tropy Attention mechanism in capturing dy-
namic flow changes and stabilizing training, we
evaluate its impact on all VisionLight variants,
as shown in Table 2. Across all four models,
adding entropy consistently improves the final
average reward, with an average gain of 46.2%
over their counterparts without entropy. Models
with entropy also converge faster during train-
ing, indicating improved learning stability. De-
tailed reward progression over training epochs is provided in Appendix E.

6 CONCLUSION

To address gaps in traffic signal control (TSC), where most RL methods rely on simulation-only
features such as vehicle coordinates and waiting times, we presented VisionLight, a video-driven
RL framework for dynamic TSC management. VisionLight achieved the highest average perfor-
mance across all scenarios, surpassing state-of-the-art (SOTA) baselines while remaining practical
for real-world deployment. We also introduced a multi-agent architecture and an Entropy Attention
Mechanism to handle dynamic flow changes and stabilize training. Ablation studies confirmed its
effectiveness, showing a significant reward improvement over models without entropy.

Figure 9: Impact of rush hour, pedestrians, and multi-
intersection.

VisionLight further demonstrated robust-
ness under extreme weather conditions
such as rain, fog, and night, maintaining
strong performance and in several cases
outperforming SOTA approaches without
retraining.

For future work, we will extend Vision-
Light to multi-intersection coordination
and pedestrian-aware integration during
rush hours, further improving the robust-
ness and resilience of video-based TSC
systems (Figure 9).
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APPENDIX

A MARKOV DECISION PROCESS FORMULATION

The traffic signal control problem is modeled as a Markov Decision Process (MDP), defined by the
tuple (S,A, P,R, γ):

State space: st includes vehicle density, queue length, and current signal phase:

st =
(
{x(li), q(li)}i∈{W,E,N,S}, pk

)
Action space: Retaining or switching the signal phase.

Transition function: P (st+1 | st, a) models system dynamics.

Reward function:

R(st, a) = −

(
α
∑
i

tstop(li) + β
∑
i

q(li)

)
where α and β weigh stopping time and queue length.

The objective is to find the optimal policy:

π∗ = argmax
π

E

[ ∞∑
t=0

γtR(st, at)

]

B IMAGE RECEPTION AND FEATURE EXTRACTION

The reception module extracts structured traffic features from a sequence of images taken at t-30s,
t-15s, and tnow across four intersection directions. These features are consumed by the RL decision
module. We implement three backbone architectures for feature extraction, each forming a Vision-
Light variant:

• VisionLight-R (ResNet-based): Applies spatial and temporal attention mechanisms
(Vaswani et al., 2017; He et al., 2016) to enhance a standard ResNet. Spatial attention
emphasizes salient regions:

αsp(p) =
exp(WT

spp+ bsp)∑
p′ exp(WT

spp
′ + bsp)

αtmp(ti) =
exp(UT

tmphti + ctmp)∑
tj
exp(UT

tmphtj + ctmp)

Residual connections R(x) = x+ Attention(x) maintain core information.

• VisionLight-A (Anchor-based): Inspired by the YOLO object detection pipeline (Ao
Wang et al., 2024), this model adapts YOLO’s image encoding layers to extract structured
traffic patterns, such as vehicle count and lane occupancy.

• VisionLight-T (Transformer-based): Based on ViT-Base-Patch16-224 (Wu et al., 2020),
this model uses self-attention to capture long-range spatial and temporal dependencies,
enabling robust understanding of traffic flow dynamics and congestion levels.

These three variants allow VisionLight to flexibly accommodate varying deployment needs, from
lightweight inference to high-capacity vision modeling.
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C BRIDGE LAYER MODULE

The Bridge Layer Module maps the enriched feature space from the Video Reception Module into
actionable inputs for the SUMO pre-trained RL agent (Lopez et al., 2018). The concatenated fea-
ture map F , combining original input and attention-enhanced features, is transformed into a lower-
dimensional space for decision-making via:

F̃ = ϕ(WbF + bb)

where ϕ is a non-linear activation, Wb the weight matrix, and bb the bias vector. The output F̃
captures both spatial and temporal relationships.

A cross-attention mechanism αcr (Cai & Wei, 2020) integrates spatial focus and temporal changes:

αcr(Fsp,i, Ftmp,j) =
exp(WT

c (Fsp,i ⊕ Ftmp,j))∑
k exp(W

T
c (Fsp,i ⊕ Ftmp,k))

where Fsp,i and Ftmp,j represent spatial and temporal features, respectively. This mechanism ensures
effective integration of spatial and temporal dependencies. The final output is sent to the Multi-
Decision Module for traffic signal control.

D TRAINING STRATEGY

D.1 DUELING NETWORK

The decision-making process in the Multi Mini Decision Agent Module uses a Dueling Network
architecture (Wang et al., 2016). The Q-value Q(s, a) is split into the value function V (s), which
estimates the reward of being in a state, and the advantage function A(s, a), which measures the
benefit of an action:

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
This separation improves learning by distinguishing the value of the state from the relative advantage
of each action, stabilizing the decision-making process (Konda & Tsitsiklis, 1999).

The Dueling Network, combined with entropy-based attention and the multi-agent framework, en-
hances the system’s ability to make intelligent, real-time traffic control decisions.

D.2 MULTI MINI DECISION AGENT PRE-TRAINING ON SUMO

The Multi Mini Decision Agent Module was pre-trained in the SUMO traffic simulation environment
using non-image features such as vehicle counts, queue lengths, and cumulative stopping times. The
objective was to establish decision-making capability in traffic signal control before introducing
complex video inputs.

The intersection settings mirrored those in later stages, with 3 timestamps (t− 30, t− 15, and tnow)
per lane set. Each timestamp captured cumulative stopping time tstop(li) and queue length q(li) for
lane set li. This simplified pre-training setup ensures faster convergence and explainability before
integrating video-based inputs.

D.3 CARLA FINE-TUNING

Fine-tuning in the Carla simulation environment involved using real-time image inputs to capture
dynamic traffic flow. Carla offers more realistic vehicle dynamics, making it crucial for testing in
real-world intersection scenarios. The setup and data collection were similar to SUMO, with images
taken at t− 30, t− 15, and tnow.

A key component is the weighted reward function (Li et al., 2023a; Peters et al., 2010):

Rweighted = 0.4 · r1 + 0.3 · r2 + 0.2 · r3 + 0.1 · r4
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This reflects the cumulative impact of decisions, with rewards normalized across light (plight = 0.01)
and heavy (pheavy = 0.04) traffic flows. Stopping time weight α = 0.1 and queue length weight
β = 1 were chosen to balance both metrics based on prior training.

Fine-tuning showed that the VisionLight model can handle complex, real-world scenarios by lever-
aging both image inputs and weighted rewards, optimizing signal control in adaptive and intelligent
ways.

D.4 HYBRID ONLINE-OFFLINE TRAINING STRATEGY

We use a hybrid online-offline strategy to improve training efficiency (Nair et al., 2020). Let E be
the Carla environment and πθ(a|s) the policy parameterized by θ.

1. Data Collection We interact with E to gather experiences D0 = {(st, at, rt, st+1)}, storing
them in a buffer B: B = D0.

2. Offline Training In the offline phase, πθ is updated using mini-batches of size 150 from B. The
policy parameters are adjusted as θ ← θ − η∇θL(θ), where η = 0.0005. We run 5 iterations per
cycle, improving sample efficiency.

3. Periodic Online Updates After each offline cycle, new experiences Dn are collected from E
and added to B, replacing old data: B ← B ∪ Dn. Roughly 10-20% of the buffer is updated.

4. Iteration This process repeats: π(n)
θ

Offline−−−→ π
(n+1)
θ

Online−−−→ Dn+1 → B.

Hyperparameters Key parameters include: buffer size = 2000, γ = 0.97, η = 0.0005, τ = 0.01,
batch size = 150, and ϵ annealing from 1 to 0.1 over 20,250 steps.

E TRAINING CURVES FOR ENTROPY ABLATION

(a) VisionLight-R (b) VisionLight-A

Figure 10: Average reward over training epochs, with and without entropy attention.
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F TRAFFIC FLOW SETTING

Time Period North-South East-West South-North West-East
S & R Left S & R Left S & R Left S & R Left

0-6000s 600 600 600 600 600 600 600 600
250-750s 500 0 0 0 0 500 0 0
1000-1500s 0 0 500 0 0 0 0 500
1750-2250s 0 0 0 0 500 0 0 0
2500-3000s 0 0 0 0 0 0 500 0
3250-3750s 0 0 0 500 0 0 0 0
4000-4500s 0 0 0 0 0 500 0 0
4750-5250s 0 500 0 0 0 0 0 0
5500-6000s 0 0 0 0 0 0 0 0
6000-8000s 480 480 480 480 480 480 480 480

Total Vehicles 1580 1580 1580 1580 1580 1580 1580 1580
Avg Throughput (veh/hr) 360 360 360 360 360 360 360 360

Table 3: Avg. generated vehicles and throughput for each traffic flow.

G VISIONLIGHT MODEL SPECS

Model Parameters (M) GFLOPs Latency (ms)
VisionLight-FE 7.5 12.1 45.6
MPLight-FE 6.8 11.5 42.3
AttendLight-FE 8.2 13.4 47.8
PressLight-FE 7.0 12.0 44.2
CoLight-FE 7.3 12.3 43.7
VisionLight-R 12.5 20.3 35.8
VisionLight-A 10.8 18.2 33.5
VisionLight-T 14.3 24.1 38.6

Table 4: Comparison of models based on parameters, FLOPs, and latency.

H TRAINING REWARD OVER EPOCHS

Figure 11: Cumulative Reward Comparison: VisionLights
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