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Abstract

Defocus blur is one kind of blur effects often seen in images, which is challenging
to remove due to its spatially variant amount. This paper presents an end-to-end
deep learning approach for removing defocus blur from a single image, so as to
have an all-in-focus image for consequent vision tasks. First, a pixel-wise Gaussian
kernel mixture (GKM) model is proposed for representing spatially variant defocus
blur kernels in an efficient linear parametric form, with higher accuracy than
existing models. Then, a deep neural network called GKMNet is developed by
unrolling a fixed-point iteration of the GKM-based deblurring. The GKMNet is
built on a lightweight scale-recurrent architecture, with a scale-recurrent attention
module for estimating the mixing coefficients in GKM for defocus deblurring.
Extensive experiments show that the GKMNet not only noticeably outperforms
existing defocus deblurring methods, but also has its advantages in terms of model
complexity and computational efficiency.

1 Introduction

The appearance sharpness of an object in an image taken by a camera is determined by the scene
distance of the object to the focal plane of the camera. An object will have the sharpest appearance
when it is on the focal plane, i.e., the object is in focus. The area around the focal plane where objects
appear to be in focus is called the depth of field (DoF). When an object is away from the DoF, it
will appear blurry. The further is an object away from the DoF, the more blurry it appears. Such a
phenomenon is called defocus blur or out-of-focus blur. Defocus blur effects will be prominent in
an image with a shallow DoF, e.g. images captured with a large aperture. This paper concerns the
problem of single image defocus deblurring (SIDD) which is about reconstructing an all-in-focus
image from a defocused image (i.e. an image with defocused regions). SIDD is of practical values to
many applications in machine vision, e.g., photo refocusing, object recognition, and many others [1].

Consider a defocused image y, which relates to its all-in-focus counterpart x by

y = B ◦ x+ ε, (1)

where ε denotes the measurement noise, andB is a linear operator defined by

(B ◦ x)[m,n] :=
∑
i

∑
j

bm,n[i, j]x[m− i, n− j]. (2)

Each pixel at location [m,n] is associated with a defocus kernel bm,n, also referred to as point spread
function (PSF), which is determined by the distance to the focal plane. Often, these pixel-wise PSFs
are approximated by Gaussian kernels [2, 3, 4, 5, 6] or disk kernels [7, 8]. Without supplementary
information on the scene depth, these pixel-wise PSFs are unknown. Therefore, SIDD is a challenging
nonlinear inverse problem which needs to estimate bothB and x from (1).
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1.1 Discussion on Existing Work

Most existing methods (e.g. [2, 7, 4, 8, 5, 6, 9]) take a two-stage approach which (i) estimates a
dense defocus map to derive the operator B and then (ii) recovers the image x by using nonblind
image deconvolution to solve (1) with the estimatedB. Generally, such a two-stage approach has a
long pipeline with many modules, and the estimation error in one module will be magnified in the
consequent modules. For instance, the defocus amount only can be estimated on a subset of image
pixels such as edge points. Then a dense defocus map needs to be constructed by propagating these
few estimations to all pixels. It can be seen that any error in the sparse defocus map will result in
erroneous PSFs, and unfortunately deconvolution is very sensitive to the errors in PSFs [10, 11]. As a
result, the two-stage approach does not perform well in practice. Also, the computational cost in the
second stage is high for a non-uniform blurring operator B, as the inversion process regrading B,
which is often called many times in nonblind image deconvolution, cannot be efficiently computed
via fast Fourier transform (FFT).

Deep learning has become one prominent tool for solving a wide range of image restoration problems.
In comparison to the rapid progress of DNNs for spatially-varying motion deblurring (e.g. [12, 13, 14,
15, 16, 17]), there have been few works on studying DNN-based approaches to defocus deblurring.
One might directly adapt an existing motion deblurring DNN for SIDD. However, the kernels of
defocus blur are very different from those of motion blur, e.g., roughly isotropic support vs highly
curvy support. Also, the spatial variation in defocus blur differs much from that in motion blur, e.g.,
transparency effects of moving objects in motion blur do not exist for out-of-focus objects in defocus
blur. As a result, it is sub-optimal to directly call a motion deblurring method for SIDD.

Another straightforward implementation of introducing deep learning to SIDD is to replace the
defocus map estimator in a traditional two-stage approach by a DNN-based method (e.g. [6]). Such an
implementation still suffers from the issues existing in traditional methods, i.e. inaccurate estimation
of B from a non-perfect defocus map and high computational cost for deblurring with a spatially-
variant blurring operator. To fully exploit the potential of deep learning for SIDD, one needs to
specifically design an end-to-end DNN that directly predicts the all-in-focus image from the defocused
one. Recently, Abuolaim and Brown [18] developed an end-to-end DNN for constructing an all-in-
focus image from a pair of images containing two sub-aperture views of the same scene. They also
adapted their DNN to SIDD, but saw a significant performance decrease.

1.2 Main Idea

This paper aims at developing an end-to-end DNN for SIDD with better performance than existing
methods, which is based on the following two derivations.

GKM-based model for defocus blurring Since defocus PSFs show strong isotropy and smooth-
ness, we propose to model the kernels {bm,n}m,n by Gaussian kernel mixture (GKM):

bm,n =

K∑
k=1

βk[m,n]g(σk), (3)

where g(σ) denotes the 2D Gaussian kernel of variance σ2, and βk denotes the matrix of mixing
coefficients for the k-th Gaussian kernel in the GKM. As the GKM can fit well most isotropic kernels,
Eq. (3) is a more accurate model for real defocus PSFs than the often-used single Gaussian/disk form;
see supplementary materials for a demonstration.
Remark 1. The GKM degenerates to the single Gaussian form when only one mixing coefficient is 1
and the others are 0 for every location [m,n]. In general cases, the weighted summation of Gaussian
kernels can represent non-Gaussian kernels, and thus the GKM can express a wider family of defocus
PSFs than the single Gaussian form. There is also another work [9] that models defocus PSFs beyond
single Gaussian kernels. It uses the generalized Gaussian function [9] where the parameters to be
estimated are wrapped in a complex nonlinear function. In comparison, our GKM model is linear
with pre-defined {σk}k, which facilitates the estimation on its parameter {βk}k.

We can rewrite (1) as

y =
∑
m,n

δm,n � (bm,n ⊗ x) =
∑
m,n

K∑
k=1

δm,n � ((βk[m,n]g(σk))⊗ x) =

K∑
k=1

βk � (g(σk)⊗ x),
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where δm,n denotes the Dirac delta centered at location [m,n], and ⊗,� denote the operations of 2D
convolution and entry-wise multiplication, respectively. Then we have the GKM-based model for
defocus blurring:

B : x→
K∑

k=1

βk � (g(σk)⊗ x). (4)

Fixed-point iteration unrolling Recall that the blurring operator B is about keeping the low-
frequency components and attenuating high-frequency ones of an image. Let I denote the identity
mapping. The mapping I −B is then about attenuating the low-frequency components and keeping
the high-frequency ones. Neglecting the noise ε and rewriting (1) by

x = y + (I −B) ◦ x, (5)

we have then a fixed-point iteration for solving defocus deblurring, which is given by

x(t+1) = f(x(t)) = y+x(t)−B◦x(t) = y+x(t)−
K∑

k=1

βk�(g(σk)⊗x(t)), for t = 1, 2, . . . . (6)

Note that the fixed-point iteration above will be convergent if I −B is a contractive mapping, or
equivalently the eigenvalues ofB fall in (0, 1), which holds true when the defocus blurring is uniform
with a normalized Gaussian kernel, i.e., the scene depths are constant in the view.

Define σ1 = 0 and g(σ1) = δ, so that clear regions can be modeled by setting β1 = 1 and zeroing
βk for k > 1. Let γ1 = 1− β1 and γk = −βk for k > 1. The iteration (6) can be expressed as

x(t+1) = y(t) +

K∑
k=1

γk � (g(σk)⊗ x(t)), for t = 1, 2, . . . . (7)

In short, based on the GKM model of defocus PSFs, we can unroll a fixed-point iteration to solve (1)
with learnable coefficient matrices γ1, · · · ,γK . The motivation of unrolling a fixed-point iteration,
instead of other iterative schemes such as gradient descent [19] and half quadratic splitting (HQS) [20],
is to involve the forward operator B only, without introducing the transpose B> and the pseudo-
inverseB†.
Remark 2. Our approach is sort of in the category of optimization unrolling, a widely-used method-
ology of designing DNNs for solving inverse problems. The key is to choose an appropriate iteration
scheme that fits the problem well. Most existing optimization unrolling based image deblurring
methods (e.g. [22, 23, 20, 24, 25, 26, 21, 27]) consider uniform blurring, where the matrix B can
be represented by a convolution. The iterative schemes they adopt such as HQS, usually involve an
inversion process forB, which can be efficiently computed using FFT whenB is a convolution oper-
ator. In our case,B is a spatially-varying blurring operator which does not have a computationally
efficient inversion process. The proposed fixed-point iteration unrolling enables us to avoid such an
inversion process in the DNN and use the forward operator only.

The matrices γ1, · · · ,γK of mixing coefficients can be intezpreted as the attention maps associated
to the feature maps generated by different Gaussian kernels. Thus, we construct a DNN with attention
modules and long skip connections to utilize (7) for SIDD. In addition, we take a multi-scale scheme
to implement the unrolling: at each iteration the DNN predicts the all-in-focus image at current scale
and up-samples it for the calculation of the next iteration, with weight sharing used across scales.
This leads to a scale-recurrent attentive DNN with a lightweight implementation.

1.3 Main Contributions

In comparison to existing two-stage or dual-view-based methods, this paper is among the first ones to
present an end-to-end DNN for SIDD. See below for the summary of our technical contributions:

• A new and efficient parametric model based on GKM for defocus blur kernels, which fits
real-world data better than existing models and thus leads to better performance in SIDD;

• A new formulation of the deblurring process derived from a fixed-point iteration so as
to have a simple and efficient parameterization of defocus deblurring, which inspires an
effective DNN for SIDD with low model complexity and high computational efficiency;
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• A scale-recurrent attention mechanism which combines the coarse-to-fine progressive esti-
mation and the unrolled deblurring process for better performance.

The experiments show that the proposed DNN brings noticeable improvement over existing ap-
proaches to SIDD, in terms of recovery quality, model complexity and computational efficiency.

2 Related Work

Two-stage SIDD Most studies of two-stage methods for SIDD are concentrated on the first stage,
i.e. defocus map estimation, while the second stage is often done by calling existing non-blind
deconvolution methods (e.g. [28, 29, 11]). Defocus map estimation itself is a challenging task. There
are several non-learning-based methods [2, 3, 5, 8] available for sparse defocus map estimation on
edge points or regions. The dense defocus map is then constructed via some propagation method
(e.g. Poisson matting [30]). Recently, deep learning has been extensively studied for defocus map
estimation; see e.g. [7, 4, 6, 31]. As discussed in Section 1.1, the two-stage methods suffer from the
sensitivity to estimation errors and high computational costs. In comparison, the proposed end-to-end
DNN does not involve the defocus map estimation and thus does not suffer from these issues.

End-to-end learning for defocus deblurring There are few works on learning an end-to-end
DNN for defocus deblurring. Abuolaim and Brown [18] proposed to train an end-to-end U-Net
for predicting an all-in-focus image from two view images captured by a dual-pixel sensor, and
contributed a dataset of quadruples: a defocus blurred image, its all-in-focus counterpart, and two
dual-pixel view images. Such a dual-pixel-based DNN showed impressive performance. However, its
performance significantly decreases when being used for SIDD where only a single image is available
for input. The prerequisite on dual-view inputs also limits the wider applicability of this method. In
contrast, the proposed DNN is grounded by the defocus blurring model and only assumes a single
image as input, thus being applicable to commodity cameras. Very recently, one parallel work to ours
on end-to-end learning of SIDD was done by Lee et al. [32]. They proposed a DNN that predicts the
pixel-wise filters for deblurring the deep defocused features of an image. In comparison, our DNN
predicts the blurring filters for deblurring the image in an unrolled fixed-point iteration framework.

DNNs for spatially-varying motion deblurring There have been many studies on deep learn-
ing for spatially-variant motion deblurring, especially on dynamic scenes with moving objects;
see e.g. [12, 14, 13, 16, 15, 33, 34, 35, 36, 37, 17]. The methods using optical flow (e.g. [36]) or
temporal cues of moving objects (e.g. [37]) for training are not applicable to SIDD. Many of these
methods also adopt multi-scale structures (e.g. [13]) or attention mechanisms (e.g. [17]), but with
generic designs which cannot effectively exploit the inherent characteristics of defocus blurring,
e.g. strong isotropy and high correlation of the shapes of pixel-wise defocus PSFs. In comparison,
our DNN is specifically designed for defocus deblurring and thus enjoys better performance in SIDD.

Unrolling-based deep learning for image deblurring Unrolling-based DNNs have been exten-
sively studied for non-blind image deblurring where the PSF is given as an input; see e.g. [20, 24, 21].
There are also some works [22, 23, 25, 27] on unrolling-based blind image deblurring where the PSF
is unknown. However, these methods are restricted to the case of uniform blurring. The proposed
unrolling-based DNN is the first one that can handle spatially-varying defocus blurring without given
the PSFs, thanks to the proposed GKM-based defocus blurring model.

3 Network Architecture

The DNN we construct for SIDD, named as GKMNet (Gaussian Kernel Mixture Network), is based
on the fix-point iteration (7) with a multi-scale recurrent fashion. See Figure 1 for the outline.

Given an input image y, we generate its multi-scale versions y1, · · · ,yT via bi-linear downsampling
with factors 2T−1, · · · , 20, respectively. Let x1 = y1 and let ↑2 denote the upsampling operation by
factor 2. We consider the following multi-scale extension of (7):

xt+1 = yt +

K∑
k=1

γt,k � (g(σk)⊗ xt↑2), for t = 1, · · · , T, (8)
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The GKMNet employs T recurrent blocks to implement (8). The t-th block takes yt and xt↑2 as
input and outputs xt+1. There are two modules in each block: a Gaussian convolution module (GCM)
and a scale-recurrent attention module (SRAM). The GCM performs the Gaussian filtering in (8) to
provide K feature maps, denoted by {zt,1, . . . ,zt,K}, for the t-th block. The SRAM generates the
corresponding coefficient maps {γt,1, . . . ,γt,K} from yt. The output of the t-th block is given by

xt = yt +

K∑
k=1

ωt,k(γt,k � zt,k), (9)

where the weights {ωt,k}t,k are for scaling the mixing coefficients {γt,k}t,k predicted by the SRAM
within a certain range. The weighted summation with {ωt,k}t,k is implemented by 1× 1 convolution.
The output of the T -th block, i.e. xT , is used as the final deblurring result. Note that the GKMNet
relates the scales not only by passing the output from one scale to the next, but also by the recurrence
mechanism built in the SRAM. Let xgt

t denotes the downsampled ground truth of the same size as xt.
The training loss is defined by the supervision at all scales:

L :=

T∑
t=1

C(xt,x
gt
t ), for some cost function C(·, ·), (10)

where we assign equal weights to the losses at different scales for simplicity.
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Figure 1: Diagram of proposed GKMNet for SIDD with T = 3.

Gaussian Convolution Module The GCM is a simple group convolutional layer defined by a
series of pre-designed 2D Gaussian kernels applied to the R, G, B channels, respectively. The kernel
sizes are set to 1× 1, 3× 3, 5× 5, · · · ,M ×M . For a kernel size m×m with m > 1, we generate
two Gaussian kernels with σ set to 1

4 (m− 2) and 1
4 (m− 1) respectively. The Gaussian kernel of size

1× 1 is the Dirac delta kernel. As a result, there are totally M different kernels. Their parameters
are fixed across all scales. The convolution kernels in GCM are not learned for two reasons: (i) it
reduces the model complexity and leads to faster training; and (ii) the learned convolution kernels do
not benefit the performance as empirically observed. Note that in addition to xt, we also input yt in
parallel for feeding more information to the next stage.

Scale-Recurrent Attention Module The SRAM maps an input image yt to the coefficient maps
{γt,k}Kk=1. The coefficient maps can be viewed as the spatial-channel attention maps associated to
the feature maps generated by different Gaussian kernels. We thus draw inspirations from existing
attention modules (e.g. [13, 41, 17]) to have a lightweight design on SRAM. As illustrated in Figure 2,
the SRAM consists of (i) an attentive encoder-decoder backbone [38] for feature extraction; and (ii) an
attention prediction unit (APU) based on Conv-LSTM (convolutional long short-term memory) [39].

The attentive encoder-decoder backbone sequentially connects a convolutional layer, two encoder
blocks, and two decoder blocks. Each encoder/decoder block contains one convolutional layer with
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downsampling/upsampling, two convolutional layers with residual connections, and a triplet attention
block [40]. The triplet attention is used to improve the NN’s spatial and channel adaptivity for better
prediction, which can be viewed as an attention-in-attention mechanism in the SRAM. Given a feature
tensor X ∈ RC×H×W defined in the channel-height-width space, the triplet attention block generates
three parallel attention maps aW ∈ RC×H , aH ∈ RC×W , aC ∈ RH×W from the channel-height,
channel-width and height-width slices of X respectively, and then applies them for re-calibrating X
so as to encode spatial-channel dependencies into the features.

The APU contains two paths. The first path mainly contains a Conv-LSTM and applies downsam-
pling/upsampling before/after it for inducing local smoothness on the predicted coefficient maps. The
second path contains two convolutional layers, but without downsampling/upsampling for preserving
detailed information for the prediction. Let γ̄1, γ̄2 denote the predictions from these two paths. Then
the final coefficient map is predicted by γ = tanh(γ̄1 � γ̄2 + γ̄1). Such a design is motivated from
the Squeeze-and-Attention [41]. The Conv-LSTM at the first path in the APU is used for capturing
the dependencies among the blur amount at different scales. The hidden states in the Conv-LSTM
can capture useful information from different scales and benefit the restoration across scales. This
enables the SRAM to progressively improve the estimation on the coefficient maps.

1
2
8
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Figure 2: Diagram of SRAM. All convolutional kernels are of size 3× 3.

Remark 3. Unlike many existing unrolling-based DNNs (e.g. [23, 20, 24, 25, 26, 21, 27]) for image
deblurring, the GKMNet does not have any explicit artifact removal block. However, it still performs
well empirically, as shown in the experiments. The reasons may be as follows. First, the inversion
process implemented by the GCM and SRAM is not the classic non-learnable estimator in existing
unrolling-based DNNs, but the one containing learnable blocks. Thus, the GKMNet can be viewed as
some forms of the inversion process with implicit built-in artifact removal. For instance, in the GKM
model, the learned combination of Gaussian kernels not only can express the defocus kernels, but
also may encode a component to suppress the artifacts. Second, there is probably a regularization
effect due to the fact that the fixed point iterations do not necessarily converge to a fixed point (similar
to early stopping), as well as a regularization effect due to the relaxation of the fixed-point iteration
to the multi-scale iteration. While the exact nature of the regularizations and built-in artifact removal
is unknown, it does not necessarily prevent the GKMNet from working, since the parameters are
end-to-end learned in a supervised manner.

4 Experiments

There are few datasets available for benchmarking defocus deblurring. The most well-known one
is the DPD dataset [18]. It provides 500 pairs of images with defocus blur and their corresponding
all-in-focus images, as well as the two associated sub-aperture views called dual-pixel images, all
in 16-bit color. The training/validation/test splits in the dataset consist of 350/74/76 samples. Our
GKMNet is trained and tested on the DPD dataset without using the dual-pixel images. In addition,
we test GKMNet on the RTF test set [7] as well as the images from CUHK-BD dataset [42].

Three image quality metrics are used for quantitative evaluation, including two standard metrics:
PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index Measure) [43], and the
LPIPS (Learned Perceptual Image Patch Similarity) [44] for perceptual quality (also used in [18]).
The GKMNet is also compared to other DNNs in terms of model complexity and computational
efficiency. The model complexity is measured by three metrics: number of parameters, number
of FLOPs (floating-point operations per second), and model size. The computational efficiency
is measured by the average inference time on an image of 1680 × 1120 pixels, tested on an Intel
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i5-9600KF CPU and on an NVIDIA GTX 1080Ti GPU, respectively. For non-DNN-based methods,
only the inference time on CPU is reported.

Through all experiments, the maximum size of Gaussian kernels in GCM is set to M = 21. The
number of scales is set to T = 3. The learnable parameters in SRAM are initialized by Xavier [45].
The Adam optimizer [46] is used for training with 3000 epochs and batch size 4. The learning rate is
fixed at 10−4 in the first 2000 epochs and decayed to 10−5 in the last 1000 epochs. The cost function
in (10) is set to the squared `2 loss in the first 1000 iterations, and alternatively set to the SSIM loss
and squared `2 loss every 500 epochs afterwards. Data augmentation is done by random cropping to
256× 256 pixels. The code of GKMNet is available at https://github.com/csZcWu/GKMNet.

4.1 Evaluation on DPD Dataset

The methods for comparison include JNB [2], EBDB [5], DMENet [6] and DPDNet [18]. The
DPDNet [18] has two versions: DPDNet-D taking two dual-pixel images as input and DPDNet-S
only taking a single image as input. Both versions are included for comparison whose results are
reproduced by the pre-trained models from their authors. The JNB, EDBD and DMENet are all
two-stage methods focusing on defocus map estimation, with results quoted from [18]. In addition,
we also include two DNNs of dynamic scene deblurring: SRN [13] and AttNet [17]. These two
DNNs also adopt a multi-scale architecture. Both DNNs are retrained using the same data as ours.

See Table 1 for the quantitative comparison on deblurring performance. Our GKMNet outperforms
all other compared methods. The performance of EBDB, DMENet and JNB is much worse than
that of GKMNet. This is probably because the errors in their defocus maps are magnified in the
consequent deconvolution process. It indicates the advantage of the end-to-end learning of GKMNet
which does not require defocus map estimation. The GKMNet also outperforms DPDNet-S by a
large margin. This is not surprising as DPDNet-S is originally designed for defocus deblurring on
two view images, not a single one. Also unsurprisingly, GKMNet outperforms SRN and AttNet,
two DNNs designed for dynamic scene deblurring rather than SIDD. Surprisingly, our GKMNet
with a single-image input even outperforms DPDNet-D which takes dual-pixel images as input. All
these results have clearly demonstrated the effectiveness of the proposed GKMNet on SIDD. See
supplementary materials for the visualization of coefficient maps generated by the SRAM.

Table 1 also lists the results on model complexity and computational efficiency. In terms of all three
metrics, GKMNet’s complexity is much lower than that of other deep models. For instance, around
1/23 of DPDNet and 1/7 of SRN for number of parameters, and around 1/62 of DPDNet for model
size. Such low complexity comes from the compact architecture of GKMNet. Regarding the running
time, GKMNet is also much faster than the JNB, EBDB and DEMNet, as these methods need to call
an iterative deconvolution post-process which is slow. GKMNet is about ten time faster than DPDNet,
and its speed is comparable to SRN and AttNet. It is noted that GKMNet has a much less training
time due to its low complexity. Its training on the DPD dataset takes less than 32 hours, while SRN
and AttNet take nearly three days, on an NVDIA GTX 1080Ti GPU.

Table 1: Quantitative comparison of different methods on DPD test set.

Model PSNR SSIM LPIPS #Parameters #FLOPs Model Size Time (Seconds)

(dB) (Million) (Billion) (MegaBytes) CPU GPU

JNB [2] 23.84 0.715 0.315 - - - 843.1 -
EBDB [5] 23.45 0.683 0.336 - - - 929.7 -

DMENet [6] 23.41 0.714 0.349 26.94 - - 613.7 -
DPDNet-S [18] 24.34 0.747 0.277 32.25 4042.5 355.3 56.6 0.41
DPDNet-D [18] 25.12 0.786 0.223 32.25 4048.6 355.3 56.6 0.41

SRN [13] 24.61 0.612 0.265 10.25 3117.6 32.0 58.3 0.032
AttNet [17] 25.22 0.781 0.219 6.91 3450.4 39.5 62.8 0.041

GKMNet [Ours] 25.47 0.789 0.219 1.41 603.5 5.7 43.9 0.040

As mentioned in Remark 3, without any explicit artifact/noise removal block in the GKMNet, the
robustness of GKMNet is one concern. Thus, we evaluate the robustness to image noise using the
DPD dataset with additional corruption by additive Gaussian white noise with standard deviation
σ̂ = 1, 3, 5 respectively. The DPDNet-D, SRN and AttNet are selected for comparison. Both the
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models trained on the original DPD training set and those retrained on the noisier DPD training set
are included. The later ones are marked with a "+". See Table 2 for the results. In the presence of
additional noise, our GKMNet still outperforms other models for both versions of training data.

Table 2: Quantitative comparison of different methods on noisier DPD test set.

Noise DPDNet-D SRN AttNet GKMNet
σ̂ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

1 25.08 0.788 0.220 24.58 0.692 0.315 25.18 0.783 0.221 25.43 0.784 0.225
3 24.73 0.746 0.248 24.48 0.668 0.366 24.77 0.749 0.261 25.02 0.758 0.246
5 24.07 0.665 0.441 24.30 0.628 0.411 24.36 0.660 0.347 24.61 0.712 0.299

Noise DPDNet-D+ SRN+ AttNet+ GKMNet+
σ̂ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

1 25.09 0.788 0.220 24.61 0.697 0.316 25.18 0.783 0.221 25.48 0.789 0.221
3 24.76 0.748 0.248 24.53 0.672 0.360 24.85 0.753 0.255 25.12 0.760 0.247
5 24.37 0.710 0.379 24.34 0.632 0.399 24.48 0.681 0.332 24.92 0.742 0.273

4.2 Evaluation on RTF Dataset and CUHK-BD Sample Images

The RTF dataset [7] contains 22 pairs of defocused and all-in-focus images. Following [7], in
addition to the original images, two noisier versions are generated by adding Gaussian white noise
with standard deviation σ̂ = 1 and 2.55 respectively. The DPDNet-S, SRN and AttNet are selected
for comparison. Note that the training set of RTF is not available. Thus, we directly apply the models
that are respectively trained on the original DPD dataset and the noisier DPD dataset. See Table 3 for
the results. The GKMNet again outperforms other DNNs. Since the models art trained and tested
with different datasets, such results also demonstrate the generalizability of our GKMNet.

Table 3: Quantitative comparison of different methods on RTF test set.

Noise DPDNet-S SRN AttNet GKMNet
σ̂ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

0 23.61 0.597 0.296 23.71 0.617 0.324 25.45 0.802 0.219 25.72 0.811 0.211
1 23.58 0.592 0.332 23.68 0.611 0.311 24.99 0.797 0.243 25.56 0.798 0.207

2.55 23.44 0.576 0.344 23.50 0.591 0.276 23.83 0.727 0.257 25.01 0.761 0.205

Noise DPDNet-S+ SRN+ AttNet+ GKMNet+
σ̂ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

0 23.65 0.605 0.290 23.70 0.617 0.325 25.40 0.792 0.225 25.69 0.808 0.212
1 23.59 0.594 0.329 23.65 0.605 0.313 25.06 0.800 0.236 25.60 0.802 0.206

2.55 23.49 0.581 0.341 23.54 0.597 0.281 24.33 0.749 0.250 25.21 0.787 0.210

The CUHK-BD dataset [42] contains 704 defocused images without ground truths. We select some of
its images for test. See Figure 3 for the visual inspection on the results. Our GKMNet can successfully
restore fine details with less visual artifacts, in comparison to DPDNet-S, SRN and AttNet. More
visual comparison can be found in supplementary materials. It is worth mentioning that the defocus
PSFs of the image synthesized from dual-pixel images are slightly different from the ones in real
images [47, 48, 49]. However, our GKMNet still generalizes well.

4.3 Ablation Study

To evaluate the performance contribution of each component in GKMNet, we implement the following
baselines from GKMNet for comparison, which are trained in the same way as the original GKMNet.
(a) GKMNet(1): Use only the original image scale in GKMNet with T = 1. (b) w/o Conv-LSTM:
Replace the Conv-LSTM block at the APU by a convolutional layer with the same kernel size, and
share its weights across scales for relating different scales; (c) SRAM*: Use the SRAM as a whole
DNN for SIDD, with an 1× 1 convolutional layer with Sigmoid activation attached for outputting an
image; (d) Learned GCM (GKM): The kernels in GCM are initialized by the predefined Gaussian
kernels and learned with the DNN. (e) Learned GCM (Rand): The kernels in GCM are randomly
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Input DPDNet-S SRN AttNet Ours

Figure 3: Visual comparison of SIDD results of different methods on CUHK-BD sample images.

initialized by Xavier [45] and learned with the DNN. Note that weight sharing is adopted for GCM
across scales in (d) and (e) because it leads to performance improvement.

See Table 4 for the results of the baselines, from which we have the following observations. (a) The
multi-scale estimation scheme in SRAM leads to significant improvement over the single-scale one,
with only a few additional model parameters introduced. (b) The improvement from the Conv-LSTM
over simple cross-scale weight-sharing convolutions is significant, which implies that the Conv-LSTM
can effectively exploit the features learned from different scales to guide the deblurring process.
(c) Directly using the SRAM as an end-to-end DNN for SIDD leads to much worse results, which
justifies the effectiveness of our specific DNN design. (d) Learning the GCM with Gaussian kernel
initialization leads to a very minor improvement over using fixed Gaussian kernels in GCM. (e)
Learning the GCM with a random initialization even yields slightly worse results. Both (d) and (e)
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indicate the effectiveness of our GKM model for defocus PSFs. See also Figure 4 for the kernels w/o
and w/ learning in GCM. The kernels learned with (d) are very close to original predefined ones.

Table 4: Quantitative comparison of GKMNet and its baselines.

Model PSNR SSIM LPIPS #Parameters #FLOPs Model Size Time
(dB) (Million) (Billion) (MegaBytes) (Seconds)

SRAM* 21.98 0.724 0.251 1.41 606.1 5.30 0.040
ASGMNet(1) 23.63 0.723 0.248 1.41 459.7 5.70 0.036

w/o Conv-LSTM 25.00 0.774 0.231 1.11 418.7 4.33 0.036
Learned GCM (Rand) 25.35 0.787 0.223 1.41 603.5 5.70 0.040
Learned GCM (GKM) 25.49 0.790 0.217 1.41 603.5 5.70 0.040

GKMNet 25.46 0.789 0.219 1.41 603.5 5.70 0.040

Predefined Gaussian kernels (fixed in learning) Learned kernels (initialized by Gaussian kernels)

2nd 4th 9th 21th 2nd 4th 9th 21th

Figure 4: Visualization of predefined kernels and learned kernels in GCM.

Recall that the fixed point iteration (7) is applied to multiple iterations at the same scale, while our
actual architecture also simultaneously increases the scale. We could further write our architecture as
S scales and R iterations per scale, where we use S = 3, R = 1 in the GKMNet. To further verify the
effectiveness of the multi-scale estimation in GKMNet, Table 5 lists the results using different values
of S and R. It shows that using single or fewer scales with multiple iterations noticeably decreases
the performance and increases the inference time. Using an additional iteration with S = 3 only
brings a minor improvement but nearly doubles the complexity and time. Thus, our coarse-to-fine
estimation scheme is a better implementation for high performance and low computational cost.

Table 5: Quantitative comparison of extended GKMNet models using different values of S and R.

Model PSNR SSIM LPIPS Parameters FLOPs Model Size Time
(dB) (Million) (Billion) (MegaBytes) (Seconds)

S=1, R=3 25.11 0.773 0.237 1.41 1384.2 5.7 0.069
S=2, R=3 25.13 0.789 0.205 4.22 1730.3 17.1 0.122
S=3, R=2 25.53 0.773 0.201 2.81 1211.2 11.3 0.081
S=3, R=1 25.47 0.789 0.219 1.41 603.5 5.7 0.04

5 Conclusion

Defocus blur often occurs in images and has its own characteristics from motion blur. This paper
proposed a DNN for SIDD with strong motivations from unrolling a fixed-point iteration derived from
a GKM-based model of defocus blurring process. Together with a scale-recurrent implementation,
we developed a lightweight DNN with state-of-the-art performance. In future, we will study the
extension to other image deblurring problems such as dynamic scene deblurring.

While our approach achieved state-of-the-art results on existing datasets, its implicit regularizations
and built-in artifact removal mechanisms are not very clear. In addition, its performance on severely
blurred regions is not that satisfactory, with much room for improvement. These issues will also be
studied in our further work.
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