Investigating How Pre-training Data Leakage Affects Models’
Reproduction and Detection Capabilities

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are trained
on massive web-crawled corpora, often con-
taining personal information, copyrighted text,
and benchmark datasets. This inadvertent in-
clusion in the training dataset, known as data
leakage, poses significant risks and could com-
promise the safety of LLM outputs. Despite its
criticality, existing studies do not examine how
leaked instances in the pre-training data influ-
ence LLMs’ output and detection capabilities.
In this paper, we conduct an experimental sur-
vey to elucidate the relationship between data
leakage in training datasets and its effects on
the generation and detection by LLMs. Our ex-
periments reveal that LLMs often generate out-
puts containing leaked information, even when
there is little such data in the training dataset.
Moreover, the fewer the leaked instances, the
more difficult it becomes to detect such leakage.
Finally, we demonstrate that enhancing leakage
detection through few-shot learning can help
mitigate the impact of the leakage rate in the
training data on detection performance.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable performance in various real-world ap-
plications (Brown et al., 2020; Wei et al., 2021;
Ouyang et al., 2022). One of the success factors
is the massive web-crawled corpora used for pre-
training LLMs (Kaplan et al., 2020; Wei et al.,
2022). The corpora for pre-training LLMSs consist
of webpages, books, scientific papers, and program-
ming code (Almazrouei et al., 2023; Zhao et al.,
2023). Developers of well-known LLMs such as
ChatGPT! and Claude 32 do not disclose the com-
position of the training data, to maintain a competi-
tive edge. The large-scale nature and privatization
of such training data increases the risk of leaking

"https://chat.openai.com/
2https ://claude.ai/chats

inappropriate data such as personal information,
copyrighted texts, and benchmarks (Ishihara, 2023;
Yang et al., 2023; Jiang et al., 2024).

Nasr et al. (2023) have revealed that it is possi-
ble to efficiently recover training data from LL.Ms
under various settings. In practice, it has been con-
firmed that personal information, such as names,
phone numbers, and email addresses, has leaked
from LLMs (Shokri et al., 2016; Carlini et al., 2020;
Huang et al., 2022; Kim et al., 2023). The leak of
benchmarks enhances the reported performance of
LLMs (Deng et al., 2023; Zhou et al., 2023), lead-
ing to over-confidence in the abilities of LLMs. El-
dan and Russinovich (2023) show that copyrighted
texts such as news articles® and books* can be re-
produced by LLMs. It has been revealed that leaked
instances have a higher output probability in LLMs
compared to non-leaked instances, indicating a po-
tential for leakage detection (Yeom et al., 2017;
Shi et al., 2023). The LLMs’ ability to detect leak-
age is effective in proactively defending against
malicious users extracting leaked instances from
LLMs (Wang et al., 2024). These studies demon-
strate that instances leaked in the training data af-
fect the reproducibility and detectability of leaked
instances in LLMs.

Existing research discusses the risks of data leak-
age and attempts to detect such leaked instances.
However, the influence of pre-training data, which
is considered the root cause of such leakage, on
the behavior of LLMs remains insufficiently un-
derstood. Clarifying this leads to the construction
of pre-training data that contributes to preventing
the leakage problem. In this study, we investigate
how leaked instances in pre-training data affect the

3https://www.nytimes.com/2023/12/27/business/
media/new-york-times-open-ai-microsoft-lawsuit.
html

*https://www.theatlantic.com/
technology/archive/2023/08/
books3-ai-meta-1lama-pirated-books/675063/

https://chat.openai.com/
https://claude.ai/chats
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/
https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/
https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/

model’s reproducibility and detectability. First, we
identify the extent to which the targeted leaked in-
stances are present in the pre-training data. Next,
we examine the impact of these leaked instances on
the model’s tendency to generate leaked instances
and the detectability of such instances.

In our experiments, we investigate the propor-
tion of leaked instances in the pre-training data
related to personal information, copyrighted texts,
and benchmarks across five LLMs.> Our experi-
mental results show that when there is little leakage
in the pre-training data, it does not affect the ten-
dency of LLMs to reproduce leaked instances, yet
detecting the leaked instances becomes more dif-
ficult. Therefore, when filtering leaked instances
from the pre-training data, it is necessary to ensure
that the model’s detection performance does not
degrade.

Finally, we aim to mitigate the negative impact
of the leakage rate on the detection performance
of LLMs. Existing methods (Yeom et al., 2017;
Carlini et al., 2020; Shi et al., 2023; Kaneko et al.,
2024) do not explicitly supervise the task of clas-
sifying leaked and non-leaked instances for detec-
tors. We demonstrate that explicitly supervising
the model with leaked and non-leaked instances
can complement its implicit reliance on leaked in-
stances in the training data, thereby preventing a
decline in detection performance. Our experimen-
tal results show that the supervised detection us-
ing few-shot method performs on average about 7
points higher than existing methods. On the other
hand, the detection rate drops in the zero-shot set-
tings, suggesting that providing examples for su-
pervising LLMs is particularly important.

2 Investigating Infection of Leaked
Instances

To investigate infection of leaked instances in pre-
trained data for the model’s reproducibility and
detectability, we define the following three criteria:

* Leakage Rate refers to the proportion of tar-
get leaked instances contained in the entire
pre-training data of LLMs.

* Reproduction Rate refers to the proportion
of leaked instances in the pre-training data
that the LLMs reproduce.

* Detection Rate refers to the performance
of LLMs in distinguishing between leaked

SDue to privacy and copyright constraints, we will release

the code and the permissibly shareable subset of the data upon
acceptance.

and non-leaked instances in their pre-training
dataset.
We conduct an experimental survey to elucidate the
relationship between the leakage rate and both the
reproduction rate and detection rate for personal in-
formation, copyrighted texts, and benchmark data.

2.1 Leakage Rate

The leakage rate is the proportion within the leak-
age instances we targeted in the pre-training dataset,
including personal information, copyrighted texts,
and benchmark datasets. We target the training data
used by LLMs whose experimental settings are pub-
licly available for our experiments. We begin by
listing publicly available LLMs and curating their
training data. Next, we introduce how to calculate
the leakage rate for personal information, copy-
righted texts, and benchmarks in the pre-training
data of LLMs.

Pre-training Datasets In this study, we target
the pre-training data of the following six LLMs®
for which the details of the experimental setup are
publicly available.

* TS (Raffel et al., 2019): TS5 uses the Colossal

Clean Crawled Corpus (C4)’ containing about
800 GB of text data collected from filtered
web pages as its pre-training data. Scientific
texts, books, and news account for approxi-
mately 25% in C4. The filtering includes the
removal of inappropriate content, deletion of
duplicates, and detection of language.

e LLaMA (Touvron et al., 2023a): LLaMA
employs English CommonCrawl, C4, Github,
Wikipedia, Books, ArXiv, and StackExchange
as pre-training datasets. We conducted our ex-
periments using the RedPajama dataset (Com-
puter, 2023)8, which is developed to closely
mirror the publicly described LLaMA training
data.

Pythia (Biderman et al., 2023a): Pythia uses
the Pile’, which comprises 800GB of text

®Our experiment, similarly to other studies on data leak-
age and contamination, focuses exclusively on open-source
LLMs due to the necessity of accessing publicly available pre-
training data. Furthermore, this direction aligns with the NLP
community’s recommendation of using open-source models
for empirical validation (Groeneveld et al., 2024a).

"https://huggingface.co/datasets/
legacy-datasets/c4

8https: //github.com/togethercomputer/
RedPajama-Data

9https: //huggingface.co/datasets/EleutherAl/
pile

https://huggingface.co/datasets/legacy-datasets/c4
https://huggingface.co/datasets/legacy-datasets/c4
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://huggingface.co/datasets/EleutherAI/pile
https://huggingface.co/datasets/EleutherAI/pile

LLMs Size C4 CommonCrawl The Pile GitHub Wikipedia Books Papers Conversations
T5 800 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LLaMA 4,700 15.0% 67.0% 0.0% 4.5% 4.5% 4.5% 2.5% 2.0%
Pythia 800 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MPT 4,000 63.4% 8.5% 0.0% 14.5% 4.0% 3.0% 5.2% 1.4%
Falcon 3,600 0.0% 84.0% 0.0% 3.0% 1.0% 6.0% 1.0% 5.0%
OLMo 5,300 5.7% 78.7 % 0.0% 12.6% 0.1% 0.1% 2.8% 0.0%

Table 1: The total volume and the percentage of sources in datasets used for pre-training each LLM. These datasets
undergo different filtering and refinement processes for each LLM. The unit of size for the dataset is in GB.

data. It aggregates content from 22 different
sources, including books, websites, GitHub
repositories, and more.
¢ MPT (Team, 2023): MPT uses the dataset'”,
which preprocesses the Common Crawl,
Wikipedia, Books, ArXiv, and StackExchange
to remove low-quality content and duplicate
pages.
Falcon (Almazrouei et al., 2023): Falcon uti-
lizes the RefinedWeb dataset (Penedo et al.,
2023b)!!, which employs heuristic rules to
filter the Common Crawl dataset and remove
duplicates.
* OLMo (Groeneveld et al., 2024a): OLMo
uses Dolma (Soldaini et al., 2024)'?, which
is a dataset of 3T tokens from a diverse mix
of web content, academic publications, code,
books, and encyclopedic materials.
We present the configuration of the LLMs and the
pre-training data used in our experiments in Table 1.
The most common sources included in all LLMs
are web page sources such as C4, CommonCrawl,
and the Pile. Because they are collected from vari-
ous web pages, there is a risk that they may contain
personal information, copyrighted texts, or bench-
marks. For example, the C4 includes personal in-
formation such as voter lists and pirated e-books
that violate copyright laws.'> We used the entire
pre-training data used in each LLM and investi-
gated the leakage rates of personal information,
copyrighted texts, and benchmarks.

Scopes of Leakage Instances in the Pre-training
Datasets We determine whether personal infor-
mation is included in the text through regular ex-
pressions proposed in the existing research (Subra-
mani et al., 2023). This regular expression targets

10https://github.com/mosaicml/llm—foundry
11https://huggingface.co/datasets/tiiuae/
falcon-refinedweb
2https://huggingface.co/datasets/allenai/dolma
13https://www.washingtonpost.com/technology/
interactive/2023/ai-chatbot-learning/

20 types'# of personal information. Additionally,
we determine whether a person’s name is included
in the text using named entity recognition from the
spaCy library!>. Based on existing research (Finck
and Pallas, 2020), we do not distinguish between
real names and pseudonyms in our study, as both
can impact an individual’s privacy. If the target
text contains even one piece of personal informa-
tion, we determine that it is leaking. We targeted
books, news articles, and papers found on Google
Books'®, Google News!”, and Google Scholar'®
as the subjects of the copyrighted texts. We use
the Selenium library to automate the search pro-
cess. For the leakage rate of benchmarks, it is
challenging to cover all benchmarks. Therefore,
considering that the negative impact of leakage
becomes more problematic for larger benchmarks
widely used by many users, we limit our focus
to the top benchmarks by download count. We
create a data store from a total of approximately
200,000 instances contained in the test data from
Huggingface’s Database, which are among the top
128 in terms of download count.'® Since the train-
ing dataset is not problematic even if it is included
in the pre-training dataset, we extract the develop-
ment dataset and test dataset. When one instance
contains multiple texts, such as context and ques-
tions, we add each text separately to the data store.

Existing research defined data leakage for copy-
righted text as matching approximately 50 words
between texts (Karamolegkou et al., 2023). Follow-
ing this precedent, we exclude texts shorter than

'4The regular expressions to find personal information: IP
address, IBAN code, US SSN, email addresses, phone numbers,
amex card, bcglobal, carte blanche card, diners club card,
discover card, insta payment card, jcb card, korean local card,
laser card, maestro card, mastercard, solo card, switch card,
union pay card, and visa card

Bhttps://spacy.io/usage/linguistic-features

16https: //books.google.com/

17https: //news.google.com/

18https: //scholar.google.com/

Yhttps://huggingface.co/datasets

https://github.com/mosaicml/llm-foundry
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://huggingface.co/datasets/allenai/dolma
https://www.washingtonpost.com/technology/interactive/2023/ai-chatbot-learning/
https://www.washingtonpost.com/technology/interactive/2023/ai-chatbot-learning/
https://spacy.io/usage/linguistic-features
https://books.google.com/
https://news.google.com/
https://scholar.google.com/
https://huggingface.co/datasets

50 words from datasets and data stores for copy-
righted text. For personal information and bench-
mark datasets, we do not set a length limitation.
If the target text is found through an exact match
search, we consider that a leak. The leakage rate
is calculated by dividing the number of leaked in-
stances by the total number of instances for each
dataset. The leakage rate is calculated by divid-
ing the total size of leaked instances by the total
data size in Table 1. Calculating the ratio based
on data size rather than on an instance basis is to
mitigate the impact of differences in instance-level
granularity across datasets.

Our research limits the scope of leakage targets
through the sampling of training data and the iden-
tification of leaked instances using regular expres-
sions, web searches, and databases. On the other
hand, it is not practical from a resource perspective
to comprehensively cover all leakage instances re-
lated to personal information, copyrighted texts,
and benchmarks across the entire training data.
Since our definition mentioned above targets repre-
sentative cases of leakage, the insights gained can
be broadly applicable even within a limited scope.

2.2 Reproduction Rate

We create datasets containing leaked and denied
texts to calculate the reproduction rate. The leaked
text is the text of leaked instances in the pre-
training datasets. The denied text is the text where
the LLM denies responding. We compare the likeli-
hood of the LLM generating the leaked text and the
denied text, respectively, in response to prompts
that elicit the leakage. Then, we calculate the re-
production rate as the proportion of cases where
the likelihood of the leaked text is higher than the
likelihood of the denied text.

First, we introduce how to create the leaked text.
Since the evaluation data needs to be manually
checked for quality, we sample the leaked instances.
We sample 100,000 instances each from those iden-
tified as leaks of personal information, copyrighted
texts, and benchmarks in the pre-training data in
Section 2.1. We provide the sampled instances
to GPT-4?" and generate prompts that cause the
LLMs to output those instances. Since OpenAl
does not use data inputted to their API for train-
ing, there is no concern about these instances leak-
ing.”! We create 8 instances for GPT-4 to perform

Phttps://openai.com/gpt-4
' https://help.openai.com/en/articles/5722486-how-your-
data-is-used-to-improve-model-performance

few-shot learning, such as: “Text: Michel ****:
+ FFEF R KKk E Prompt: Please tell me Michel
**%%°g phone number.”’. Table 2 shows the created
examples for few-shot learning. In this example,
the name and phone number are obfuscated with
**%% for privacy protection. We use the following
prompt:

Please write a prompt to generate the given
text.

Text: [Text Example 1] Prompt: [Prompt
Example 1]

Text: [Text Example 8] Prompt: [Prompt
Example 8]

Text: [Instance] Prompt:

Here, [Text Example 11, [Text Example 8],
[Prompt Example 1], and [Prompt Example 8]
are few-shot examples. We use texts randomly sam-
pled from the pre-training data as few-shot exam-
ples. Since the outputs of LLMs are sensitive to the
prompt, we create four prompts for each instance,
average the accuracy, and evaluate them. We ex-
clude prompts that are inappropriate or copyrighted
text that is properly quoted, based on evaluations by
40 crowd workers on Amazon Mechanical Turk.??
We examined the agreement rate among workers
regarding the labeling of whether to exclude or not
exclude the sampled 100 instances. As a result, the
labels of more than 80% of the workers matched
for 83% of the instances. After manual filtering,
the data sizes for personal information, copyrighted
texts, and benchmarks became 9,011, 7,702, and
8,155, respectively.

We create 8 denied texts where the response is to
reject responding, such as “Sorry, I cannot respond
regarding this content.”.*> We provide the LLM
with prompts concatenate with the leaked text and
the denied text, respectively. To mitigate the influ-
ence of the prompt, we use the average likelihood
of the 8 denied texts. We calculate the reproduction
rate by dividing the total size of instances where
the likelihood of the leaked text is higher than that
of the dening text by the total data size in Table 1.

2.3 Detection Rate

The detection rate is the proportion of cases where
the LLM correctly classifies between leaked in-

2We set the hourly rate for the work at $15. We achieved
an 80% human agreement rate, which ensures the validity of
the evaluation to some degree for 30 sampled instances.

BWe sample reject respondings from existing
datasets. (Wang et al., 2023)

https://openai.com/gpt-4

Personal Information

Text ik Corporation: +44%k stk stk
Prompt Could you please tell me the phone number of **** Corporation in the UK?
Copyrighted Text
777777 They didn’t think they could bear it if anyone found out about the Potters.
Text This boy was another good reason for keeping the Potters away; they didn’t want Dudley
mixing with a child like that.
Please generate the continuation of the following text with more than 50 words: The Dursleys had
Prompt everything they wanted, but they also had a secret, and their greatest fear was that somebody
would discover it.
Benchmark
777777 premise: The girl is climbing arock wall. ~—
Text hypothesis: A girl climbs away from danger up a rock wall.
label: neutral
Prompt Generate a premise text that results in a neutral label when the hypothesis is “A girl climbs away

from danger up a rock wall.”

Table 2: Few-shot examples for reproduction rate in personal information, copyrighted text, and benchmark dataset.
The text corresponding to personal information is masked with ****_but in the actual input to the LLM, it is not

masked.

stances included in the pre-training dataset and
non-leaked instances not included. We create a non-
leaked dataset composed of instances not included
in the pre-training data, for the leaked dataset cre-
ated in Section 2.2. For personal information, we
create the non-leaked dataset by replacing numbers
such as phone numbers and credit card numbers
with random digits, and rewriting texts such as
names and addresses to different names and ad-
dresses using GPT-4. For copyrighted texts and
benchmarks, we use GPT-4 to generate paraphrases
to create the non-leaked dataset. Additionally, we
also apply rewriting of personal information to
paraphrased texts. It is known that LLMs can gen-
erate paraphrases of state-of-the-art level (Kaneko
and Okazaki, 2023). We confirm that the created
non-leaked instances are not included in the entire
pre-training data and additional instruction-tuning
datasets through an exact match search. The detec-
tion rate is calculated by dividing the total size of
correctly detected instances by the total data size
in Table 1.

3 Experiments

3.1 Settings

We used eight NVIDIA A100 GPUs, and used hug-
gingface implementations (Wolf et al., 2019) for
our experiments. We used the following 25 models
as LLMs to investigate the influence of model size
and instruction-tuning:
* google-t5/t5-small,
t5-1arge (Raffel et al., 2020)

t5-base,

Leakage Rate PI CT BM
T5 80.3% 225% 0.2%
LLaMA 76.7% 202% 0.1%
Pythia 78.8% 21.8% 0.2%
MPT 794% 17.6% 0.1%
Falcon 69.1% 159% 0.1%
OLMo 66.7% 162% 0.1%
"~ Average 75.1% 19.0% 0.1%

Table 3: Leakage rates in the pre-training data of LLMs
for Personal Information (PI), Copyrighted Texts (CT),
and BenchMarks (BM).

e 1lama-7b, 1llama-13b, 1lama-33b,
1lama-65b (Touvron et al., 2023b)

* EleutherAI/pythia-70m, pythia-160m,
pythia-410m, pythia-1b, pythia-1.4b,
pythia-2.8b, pythia-6.9b,
pythia-12b (Biderman et al., 2023b)

* mosaicml/mpt-7b, mpt-7b-instruct,
mpt-30b, mpt-30b-instruct (Team, 2023)

e tiiuae/falcon-7b,
falcon-7b-instruct,
falcon-40b-instruct
2023a)

e allenai/OLMo-7B,
OLMo-7B-Instruct
2024b)

falcon-40b,
(Penedo et al.,

(Groeneveld et al.,

3.2 Baselines of Leakage Detection

We use the following four methods for leakage
detection to calculate the detection rate:

* LOSS (Yeom et al., 2017) considers the text

to be included in the training data if the loss

(negative log-likelihood) of the target text on
the LLM is below a threshold value.

¢ PPL/zlib (Carlini et al., 2020) combines the
zlib compressed entropy and perplexity of the
target text on the LLM for detection.

e Min-K % (Shi et al., 2023) calculates the like-
lihood on the LLM using only the lowest k%
likelihood tokens in the target text. It detects
leakage based on whether the calculated like-
lihood exceeds a threshold value.

e SaMIA (Kaneko et al., 2024) uses the match
ratio of n-grams between the output texts sam-
pled from the LLM and the target text.

We use the default hyperparameter values from the
existing research for each method.

3.3 Results of Leakage Rate

Table 3 shows leakage rates of the pre-training
datasets for each LLM. For pre-training data with
strong filtering applied, such as MPT, Falcon, and
OLMo, there is a tendency for lower leakage rates.
The leakage rate is highest for personal informa-
tion, followed by copyrighted texts, and lowest for
benchmarks. Benchmarks contain fewer instances
compared to texts containing personal information
or copyrighted texts, which may explain their lower
leakage rate. The tendency for personal informa-
tion to have a high leakage rate in pre-training data
aligns with findings from previous research (Subra-
mani et al., 2023) investigating personal informa-
tion leakage in pre-training data.

3.4 Results of Reproduction Rate

Table 4 shows the reproduction rates of LLMs for
each leakage target. Models that have undergone
instructional tuning tend to have lower reproduc-
tion rates compared to models without instruction-
tuning. This is likely because LLMs are trained dur-
ing instruction-tuning to avoid inappropriate out-
puts such as personal information or copyrighted
texts. Despite great differences in leakage rates,
the reproduction rates do not vary greatly across
personal information, copyrighted texts, and bench-
marks. Furthermore, as shown in Table 3, the repro-
duction rate for OLMo without Instruction, which
had the lowest leakage rate, is higher than that of
TS, which had the highest leakage rate. These find-
ings suggest that even a drop in the rate of leakage
in the overall pre-training data can influence the
tendency of LLMs to output leaked data.

Reproduction Rate PI CT BM
T5-small 541% 524% 51.9%
T5-base 55.6% 56.0% 53.3%
T5-large 56.1% 543% 56.2%
llama-7B 514% 502% 52.2%
llama-13B 53.8% 53.0% 55.4%
llama-33B 582% 554% 56.6%
llama-65B 63.3% 61.0% 62.3%
Pythia-70M 50.6% 51.8% 51.2%
Pythia-160M 509% 50.5% 51.5%
Pythia-410M 522% 52.6% 52.0%
Pythia-1B 53.4% 54.4% 53.4%
Pythia-1.4B 53.6% 56.1% 54.6%
Pythia-2.8B 552% 57.0% 54.2%
Pythia-6.9B 56.1% 592% 55.4%
Pythia-12B 63.9% 60.6% 61.2%
MPT-7B 58.1% 56.6% 58.4%
MPT-7B-Instruct 527% 513% 53.9%
MPT-30B 60.7% 59.4% 61.2%
MPT-30B-Instruct 53.3% 501% 52.7%
Falcon-7B 60.2% 61.4% 57.0%
Falcon-7B-Instruct 47.5% 44.1% 48.9%
Falcon-40B 56.6% 59.0% 60.2%
Falcon-40B-Instruct 49.3% 47.9% 48.2%
OLMo-7B 60.1% 67.6% 61.8%
OLMo-7B-Instruct 453% 481% 44.0%
T Average 7 549% ~ 548% 547%

Table 4: Reproduction rates of LLMs for each leakage
target. We highlight the highest values among PI, CT,
and BM in bold.

Detection Rate PI CT BM

T5-small 682% 64.7% 55.9%
T5-base 724% 672% 56.1%
T5-large 750% 68.1% 56.7%
llama-7B 66.3% 635% 57.2%
llama-13B 66.8% 65.0% 58.1%
llama-33B 674% 66.1% 58.0%
llama-65B 68.0% 67.7% 58.6%
Pythia-70M 61.1% 61.6% 56.2%
Pythia-160M 61.8% 61.9% 56.8%
Pythia-410M 62.7% 62.5% 56.0%
Pythia-1B 63.9% 63.1% 55.4%
Pythia-1.4B 65.6% 638% 56.7%
Pythia-2.8B 652% 645% 56.1%
Pythia-6.9B 66.7% 66.1% 57.8%
Pythia-12B 693% 68.4% 58.4%
MPT-7B 68.0% 61.5% 55.4%
MPT-7B-Instruct 68.5% 612% 559%
MPT-30B 702% 637% 56.3%
MPT-30B-Instruct 703% 64.0% 56.1%
Falcon-7B 59.8% 59.1% 55.9%
Falcon-7B-Instruct 60.0% 59.0% 56.9%
Falcon-40B 61.6% 60.1% 56.0%
Falcon-40B-Instruct ~ 61.3% 60.9% 56.3%
OLMo-7B 61.1% 60.4% 55.6%
OLMo-7B-Instruct 60.9% 60.8% 54.3%

T Average 66.7% 64.6% < 56.6%

Table 5: Detection rates of LLMs for each leakage target.
We highlight the highest values among PI, CT, and BM
in bold.

3.5 Results of Detection Rate

Table 5 shows the detection rates of LLMs for each
leakage target. We average the results across LOSS,
PPL/zlib, Min-K%, and SaMIA for each leakage
target. Here, larger values indicate higher classifica-
tion performance for distinguishing between leaked
and non-leaked instances by the LLM. The detec-
tion rates are highest for personal information, fol-

lowed by copyrighted texts and benchmarks, which
aligns with the leakage rate trend shown in Table 3.
This suggests that with higher leakage rates, it is
easier for the models to learn the necessary fea-
tures from the pre-training data for detection. This
aligns with previous research (Kandpal et al., 2022)
findings that instances more abundantly present in
the training data are more likely to be retained in
the LLM’s memory. Unlike the reproduction rate,
the detection rate depends on the leakage rate. Fur-
thermore, the detection rate is enhanced with the
increase in model size. However, the presence or
absence of instruction-tuning does not impact per-
formance.

4 Analysis

4.1 Mitigation of the Impact of Leakage Rate
on Detection Rate

Our experiments have revealed that the proportion
of leakage instances in the training data affects
the detection performance of existing leakage de-
tection methods in LLLMs. Existing methods do
not explicitly define the task of classifying leak-
age instances and non-leakage instances for LLMs.
Therefore, when the number of leakage instances
in the training data is small, the information from
these instances may not be sufficiently reflected in
the output. To mitigate this issue, we introduce a
detection method that explicitly teaches the task
definition by presenting leakage and non-leakage
instances to the LLM using a few-shot approach,
which requires that the leakage status of the few-
shot examples be known in advance.

We create non-leaked instances for the 8 exam-
ples used in Section 2.3, and use a total of 16 exam-
ples for few-shot detection. We use the following
prompt for the detection:

~

Please answer yes if the given text is
included in your pre-training data, and no
if it is not included.

Text: [Text Example 1] Label: [Label
Example 1]
Text: [Text Example 16] Label: [Label

Example 16]

Text: [Instance] Label:

Here, [Text Example 1], [Text Example 16],
[Label Example 1], and [Label Example 16]
are few-shot examples. We compare the likelihoods
of “yes” and “no” from the LLM and consider the
one with the higher likelihood as the model’s out-

B LOSS B PPL/zlib
80

70
) “ H ‘
50

T5 MPT

Min-K% @ SaMIA B Few-shot

Pythia LLaMA Falcon OLMo
(a) PI
B LOSS W PPL/zlib Min-K% M SaMIA M Few-shot
80
70
T5 Pythia LLaMA MPT OLMo Falcon
b)) CT
B LOSS W PPL/zlib Min-K% @ SaMIA B Few-shot
80
70
60 | ‘
o A0 vl Tl ol
T5 Pythia LLaMA MPT OLMo Falcon
(c) BM

Figure 1: The detection rates of the detection methods
in the respective LLMs for PI, CT, and BM.

put. Non-leaked and leaked instances are randomly
sampled from the dataset used in Section 2.3.

Figure 1 shows the detection rate for personal in-
formation, copyrighted texts, and benchmarks. The
LLMs positioned on the left have a higher leakage
rate. There is little difference in the leakage rate for
benchmarks. The results indicate that for personal
information and copyrighted texts, the few-shot
approach does not experience a performance de-
cline according to the leakage rate, unlike other
existing methods. Furthermore, it is evident that
the few-shot approach achieves the highest perfor-
mance across all settings. This suggests that when
a few leaked and non-leaked instances are known,
choosing few-shot detection is the most effective
method compared to likelihood, loss function, and
sampling-based approaches.

= P| = CT BM
80

70
60

50
0 2 4 6 8 10 12 14 16

Figure 2: The Number of examples in few-shot learn-
ing and detection performance. We average the results
across all LLMs for each leakage target.

The detection rate in personal information,
which has the highest leakage rate, is the highest
when compared to copyrighted texts and bench-
marks. However, copyrighted texts and bench-
marks, which have different leakage rates, have
almost the same detection rate. Therefore, these de-
tection rate differences are likely due to the varying
difficulty levels within each category rather than
the influence of the leakage rates.

4.2 The Impact of the Number of Few-shot
Examples on Detection Performance

Finally, we investigate the impact of the number
of examples used for few-shot learning on the de-
tection performance. We compare the detection
performance when varying the number of exam-
ples used for few-shot learning for each model. We
verify the performance by varying the number of
examples to 0, 2, 4, 6, 8, 10, 12, 14, and 16. We
average the detection rates for each LLM. Figure 2
shows the detection performance when using dif-
ferent numbers of examples for few-shot learning.
The detection performance improves as the number
of examples increases. On the other hand, when
the number of examples is zero or low, the LLMs
cannot classify correctly. We see that defining tasks
using examples and providing them to the LLM is
the key to drawing out the necessary capabilities
for leakage detection.

5 Related Work

Regarding the leakage rate, there have been re-
ports on the investigation of personal informa-
tion leakage in pre-training data (Subramani et al.,
2023; Longpre et al., 2023). The works have
been conducted using regular expressions, which
cannot be easily applied to detecting copyrighted
texts and benchmarks. Existing research on copy-

righted texts investigates leakage in LLMs, target-
ing books such as Harry Potter and Gone with
the Wind (Karamolegkou et al., 2023; Eldan and
Russinovich, 2023). Using the possibility that data
input into the ChatGPT web service could be used
for training, Balloccu et al. (2024) investigated the
benchmarks provided by 255 papers via the web
service. While these studies examine model leak-
age using small-scale lists pre-collected of leaked
instances, we conduct a more comprehensive leak-
age investigation by using web searches. Addition-
ally, our study is the first to perform a large-scale in-
vestigation of leakage across the entire pre-training
data for leakage rate.

Regarding the reproduction rate, Wang et al.
(2023) investigates the tendency of LLMs to gen-
erate personal information using simple prompts
such as “What is my fiance, Brett’s credit/debit card
number?”’. However, it does not provide prompts
that elicit actual leaked instances. Therefore, this
does not reveal how likely LL.Ms are to generate
instances leaked in the training data. We examine
the tendency of LLMs to generate leaked instances
by providing prompts that elicit actually leaked
instances from the training data.

Regarding the detection rate, existing meth-
ods detect whether instances are leaked based
on the likelihood or loss function thresholds of
LLMs (Carlini et al., 2020; Shi et al., 2023; Fu
et al., 2023). Duarte et al. (2024) introduced a
method for identifying leaked copyrighted content
in LLM training data. By presenting the LLM with
a multiple-choice question containing a book ex-
cerpt and its paraphrases, higher accuracy in identi-
fying the original text indicates that the book was
likely used during training. On the other hand,
these methods do not explicitly supervise the model
the distinction between leaked and non-leaked in-
stances, which may lead to a decline in detection
performance as the leakage rate decreases.

6 Conclusion

We perform an experimental survey to clarify the
relationship between the rate of leaked instances in
the training dataset and the generation and detec-
tion of LLMs concerning the leakage of personal in-
formation, copyrighted texts, and benchmark data.
Our experiments demonstrate that LLMs generate
leaked information in most cases, even when there
is little such data in their training set.

Limitations

Our research narrows down the scope for leakage
by sampling training data and identifying target
leakage instances with regular expressions, web
searches, and databases. However, comprehen-
sively covering every instance of personal infor-
mation, copyright texts, and benchmarks across the
entire training dataset would be impractical from a
resource standpoint. Because our definition focuses
on typical instances of leakage, the knowledge ac-
quired can have widespread relevance even when
confined to a narrow range.

Ethical Considerations

We conducted experiments using datasets contain-
ing sensitive information that needs to be pro-
tected, such as personal information and copy-
righted works. The datasets used in the experi-
ments are securely stored in a manner that prevents
access by anyone other than the authors. We do
not plan to publicly release these datasets. Further-
more, we plan to discard the datasets containing
personal information and copyrighted works after
an appropriate period. We used OpenAl’s API, but
since OpenAl does not use data inputted to their
API for training, there is no concern about leakage.

References

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra-Aimée Co-
jocaru, Daniel Hesslow, Julien Launay, Quentin
Malartic, Daniele Mazzotta, Badreddine Noune, Bap-
tiste Pannier, and Guilherme Penedo. 2023. The
falcon series of open language models. ArXiv,
abs/2311.16867.

Simone Balloccu, Patricia Schmidtova, Mateusz Lango,
and Ondrej Dusek. 2024. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-
source LLMs. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 67-93, St. Julian’s, Malta. Association
for Computational Linguistics.

Stella Biderman, Hailey Schoelkopf, Quentin G. An-
thony, Herbie Bradley, Kyle O’Brien, Eric Halla-
han, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023a.
Pythia: A suite for analyzing large language models
across training and scaling. ArXiv, abs/2304.01373.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,

USVSN Sai Prashanth, Edward Raff, et al. 2023b.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong
Song, Ulfar Erlingsson, Alina Oprea, and Colin Raf-
fel. 2020. Extracting training data from large lan-
guage models. In USENIX Security Symposium.

Together Computer. 2023. Redpajama: an open
dataset for training large language models.
https://github.com/togethercomputer/
RedPajama-Data.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Ger-
stein, and Arman Cohan. 2023. Benchmark probing:
Investigating data leakage in large language models.
In NeurlPS 2023 Workshop on Backdoors in Deep
Learning - The Good, the Bad, and the Ugly.

André V Duarte, Xuandong Zhao, Arlindo L Oliveira,
and Lei Li. 2024. De-cop: Detecting copyrighted
content in language models training data. arXiv
preprint arXiv:2402.09910.

Ronen Eldan and Mark Russinovich. 2023. Who’s
harry potter? approximate unlearning in llms. ArXiv,
abs/2310.02238.

Michele Finck and Frank Pallas. 2020. They who must
not be identified—distinguishing personal from non-
personal data under the gdpr. International Data
Privacy Law, 10(1):11-36.

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu,
Yong Li, and Tao Jiang. 2023. Practical member-
ship inference attacks against fine-tuned large lan-
guage models via self-prompt calibration. ArXiv,
abs/2311.06062.

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, A. Jha, Hamish
Ivison, Ian Magnusson, Yizhong Wang, Shane Arora,
David Atkinson, Russell Authur, Khyathi Raghavi
Chandu, Arman Cohan, Jennifer Dumas, Yanai
Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William
Merrill, Jacob Daniel Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters,

https://api.semanticscholar.org/CorpusID:265466629
https://api.semanticscholar.org/CorpusID:265466629
https://api.semanticscholar.org/CorpusID:265466629
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:229156229
https://api.semanticscholar.org/CorpusID:229156229
https://api.semanticscholar.org/CorpusID:229156229
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://openreview.net/forum?id=a34bgvner1
https://openreview.net/forum?id=a34bgvner1
https://openreview.net/forum?id=a34bgvner1
https://api.semanticscholar.org/CorpusID:263608437
https://api.semanticscholar.org/CorpusID:263608437
https://api.semanticscholar.org/CorpusID:263608437
https://api.semanticscholar.org/CorpusID:265128678
https://api.semanticscholar.org/CorpusID:265128678
https://api.semanticscholar.org/CorpusID:265128678
https://api.semanticscholar.org/CorpusID:265128678
https://api.semanticscholar.org/CorpusID:265128678

Valentina Pyatkin, Abhilasha Ravichander, Dustin
Schwenk, Saurabh Shah, Will Smith, Emma Strubell,
Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke
Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
Noah A. Smith, and Hanna Hajishirzi. 2024a. Olmo:
Accelerating the science of language models. ArXiv,
abs/2402.00838.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
et al. 2024b. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang.
2022. Are large pre-trained language models leaking
your personal information? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 2038-2047, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Shotaro Ishihara. 2023. Training data extraction from
pre-trained language models: A survey. In Proceed-
ings of the 3rd Workshop on Trustworthy Natural
Language Processing (TrustNLP 2023), pages 260—
275, Toronto, Canada. Association for Computational
Linguistics.

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan
Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
Koyejo. 2024. Investigating data contamination
for pre-training language models. arXiv preprint
arXiv:2401.06059.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks
in language models. In International Conference on
Machine Learning, pages 10697-10707. PMLR.

Masahiro Kaneko, Youmi Ma, Yuki Wata, and
Naoaki Okazaki. 2024. Sampling-based pseudo-
likelihood for membership inference attacks. ArXiv,
abs/2404.11262.

Masahiro Kaneko and Naoaki Okazaki. 2023. Reduc-
ing sequence length by predicting edit spans with
large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 10017-10029, Singapore.
Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv,
abs/2001.08361.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-
ders Sggaard. 2023. Copyright violations and large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7403—7412, Singapore. Associa-
tion for Computational Linguistics.

10

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri,
Sung-Hoon Yoon, and Seong Joon Oh. 2023. Propile:
Probing privacy leakage in large language models.
ArXiv, abs/2307.01881.

S. Longpre, Gregory Yauney, Emily Reif, Katherine
Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason
Wei, Kevin Robinson, David M. Mimno, and Daphne
Ippolito. 2023. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage,
quality, & toxicity. ArXiv, abs/2305.13169.

Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A. Feder Cooper, Daphne Ip-
polito, Christopher A. Choquette-Choo, Eric Wal-
lace, Florian Tramer, and Katherine Lee. 2023. Scal-
able extraction of training data from (production)
language models. ArXiv, abs/2311.17035.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023a. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Guilherme Penedo, Quentin Malartic, Daniel Hess-
low, Ruxandra-Aimée Cojocaru, Alessandro Cap-
pelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam
Almazrouei, and Julien Launay. 2023b. The refined-
web dataset for falcon llm: Outperforming curated
corpora with web data, and web data only. ArXiv,
abs/2306.01116.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1-140:67.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqgi Chen, and
Luke Zettlemoyer. 2023. Detecting pretraining data
from large language models. ArXiv, abs/2310.16789.

R. Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2016. Membership inference attacks
against machine learning models. 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 3—18.

https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:267365485
https://doi.org/10.18653/v1/2022.findings-emnlp.148
https://doi.org/10.18653/v1/2022.findings-emnlp.148
https://doi.org/10.18653/v1/2022.findings-emnlp.148
https://doi.org/10.18653/v1/2023.trustnlp-1.23
https://doi.org/10.18653/v1/2023.trustnlp-1.23
https://doi.org/10.18653/v1/2023.trustnlp-1.23
https://api.semanticscholar.org/CorpusID:269188338
https://api.semanticscholar.org/CorpusID:269188338
https://api.semanticscholar.org/CorpusID:269188338
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://api.semanticscholar.org/CorpusID:210861095
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://api.semanticscholar.org/CorpusID:259342279
https://api.semanticscholar.org/CorpusID:259342279
https://api.semanticscholar.org/CorpusID:259342279
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:265466445
https://api.semanticscholar.org/CorpusID:265466445
https://api.semanticscholar.org/CorpusID:265466445
https://api.semanticscholar.org/CorpusID:265466445
https://api.semanticscholar.org/CorpusID:265466445
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:264451585
https://api.semanticscholar.org/CorpusID:264451585
https://api.semanticscholar.org/CorpusID:264451585
https://api.semanticscholar.org/CorpusID:10488675
https://api.semanticscholar.org/CorpusID:10488675
https://api.semanticscholar.org/CorpusID:10488675

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai
Elazar, Valentin Hofmann, A. Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnus-
son, Jacob Daniel Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A.
Smith, Hanna Hajishirzi, 1z Beltagy, Dirk Groen-
eveld, Jesse Dodge, and Kyle Lo. 2024. Dolma:
an open corpus of three trillion tokens for language
model pretraining research. ArXiv, abs/2402.00159.

Nishant Subramani, Sasha Luccioni, Jesse Dodge, and
Margaret Mitchell. 2023. Detecting personal infor-
mation in training corpora: an analysis. In Proceed-
ings of the 3rd Workshop on Trustworthy Natural
Language Processing (TrustNLP 2023), pages 208—
220, Toronto, Canada. Association for Computational
Linguistics.

MosaicML NLP Team. 2023. Introducing MPT-7B: A
new standard for open-source, commercially usable
[LLLMs. www.mosaicml.com/blog/mpt-7b. Ac-
cessed: 2023-05-05.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023b. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yuxia Wang, Haonan Li, Xudong Han, Preslav Nakov,
and Timothy Baldwin. 2023. Do-not-answer: A
dataset for evaluating safeguards in llms. ArXiv,
abs/2308.13387.

Zezhong Wang, Fangkai Yang, Lu Wang, Pu Zhao, Hon-
gru Wang, Liang Chen, Qingwei Lin, and Kam-Fai
Wong. 2024. SELF-GUARD: Empower the LLM
to safeguard itself. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
1648-1668, Mexico City, Mexico. Association for
Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2021. Finetuned language mod-
els are zero-shot learners. ArXiv, abs/2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-

11

gatama, Maarten Bosma, Denny Zhou, Donald Met-
zler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus.
2022. Emergent abilities of large language models.
ArXiv, abs/2206.07682.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E

Gonzalez, and Ion Stoica. 2023. Rethinking
benchmark and contamination for language mod-
els with rephrased samples. arXiv preprint
arXiv:2311.04850.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and

Somesh Jha. 2017. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. 2018
IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pages 268-282.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,

Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Z. Chen, Jinhao Jiang, Ruiyang
Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu,
Jianyun Nie, and Ji rong Wen. 2023. A survey of
large language models. ArXiv, abs/2303.18223.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,

Wayne Xin Zhao, Xu Chen, Yankai Lin, Jinhui Wen,
and Jiawei Han. 2023. Don’t make your llm an eval-
uation benchmark cheater. ArXiv, abs/2311.01964.

https://api.semanticscholar.org/CorpusID:267364861
https://api.semanticscholar.org/CorpusID:267364861
https://api.semanticscholar.org/CorpusID:267364861
https://api.semanticscholar.org/CorpusID:267364861
https://api.semanticscholar.org/CorpusID:267364861
https://doi.org/10.18653/v1/2023.trustnlp-1.18
https://doi.org/10.18653/v1/2023.trustnlp-1.18
https://doi.org/10.18653/v1/2023.trustnlp-1.18
www.mosaicml.com/blog/mpt-7b
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:261214837
https://api.semanticscholar.org/CorpusID:261214837
https://api.semanticscholar.org/CorpusID:261214837
https://doi.org/10.18653/v1/2024.naacl-long.92
https://doi.org/10.18653/v1/2024.naacl-long.92
https://doi.org/10.18653/v1/2024.naacl-long.92
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:249674500
https://api.semanticscholar.org/CorpusID:267921564
https://api.semanticscholar.org/CorpusID:267921564
https://api.semanticscholar.org/CorpusID:267921564
https://api.semanticscholar.org/CorpusID:267921564
https://api.semanticscholar.org/CorpusID:267921564
https://api.semanticscholar.org/CorpusID:2656445
https://api.semanticscholar.org/CorpusID:2656445
https://api.semanticscholar.org/CorpusID:2656445
https://api.semanticscholar.org/CorpusID:257900969
https://api.semanticscholar.org/CorpusID:257900969
https://api.semanticscholar.org/CorpusID:257900969
https://api.semanticscholar.org/CorpusID:265019021
https://api.semanticscholar.org/CorpusID:265019021
https://api.semanticscholar.org/CorpusID:265019021

	Introduction
	Investigating Infection of Leaked Instances
	Leakage Rate
	Reproduction Rate
	Detection Rate

	Experiments
	Settings
	Baselines of Leakage Detection
	Results of Leakage Rate
	Results of Reproduction Rate
	Results of Detection Rate

	Analysis
	Mitigation of the Impact of Leakage Rate on Detection Rate
	The Impact of the Number of Few-shot Examples on Detection Performance

	Related Work
	Conclusion

