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ABSTRACT

While large-scale text-to-image diffusion models have demonstrated impressive
image-generation capabilities, there are significant concerns about their potential
misuse for generating unsafe content, violating copyright, and perpetuating societal
biases. Recently, the text-to-image generation community has begun addressing
these concerns by editing or unlearning undesired concepts from pre-trained models.
However, these methods often involve data-intensive and inefficient fine-tuning or
utilize various forms of token remapping, rendering them susceptible to adversarial
jailbreaks. In this paper, we present a simple and effective training-free approach,
ConceptPrune, wherein we first identify critical regions within pre-trained models
responsible for generating undesirable concepts, thereby facilitating straightforward
concept unlearning via weight pruning. Experiments across a range of concepts
including artistic styles, nudity, and object erasure demonstrate that target concepts
can be efficiently erased by pruning a tiny fraction, approximately 0.12% of total
weights, enabling multi-concept erasure and robustness against various white-box
and black-box adversarial attacks.

1 INTRODUCTION

In recent years, text-to-image generation has witnessed significant advances driven by the development
and adoption of diffusion models (DMs) [Ho et al., 2020; Rombach et al., 2021; Ruiz et al., 2022;
Saharia et al., 2022; Nichol et al., 2021; Zhang et al., 2023c; Luo et al., 2023; Podell et al., 2023]
across industries and real-world scenarios. However, this swift advancement presents a substantial
risk. Diffusion models can threaten artists’ livelihoods through style replication [et al v. Stability
AI Ltd. et al., 2023], generate convincing deepfakes and NSFW content [Review, 2023; Forensics,
2024], and perpetuate societal biases [Luccioni et al., 2023]. The risks associated with large-scale
text-to-image models arise from billion-sized web-scraped datasets used in training, comprising
public datasets like LAION [Schuhmann et al., 2022], COYO [Byeon et al., 2022], and CC12M
[Changpinyo et al., 2021], that often lack human-level quality assurance. A simplistic and naive
solution to mitigate these risks involves fine-tuning the model on datasets without this undesired
content; however, this approach can prove to be highly compute-expensive.

Several efforts addressing the risks of diffusion models have been made from the perspective of
Concept Editing [Kumari et al., 2023; Gandikota et al., 2023a;b; Zhang et al., 2023a; Orgad et al.,
2023] and Model Unlearning (MU) [Heng & Soh, 2023; Zhao et al., 2024; Liu et al., 2024; Wu et al.,
2024; Fan et al., 2023], both aimed at eliminating undesired prompts, albeit with differing objectives.
Concept editing methods seek to eliminate undesired prompts by aligning latent representations of the
target concept with a concept to be retained, via methods such as maximizing similarity [Kumari et al.,
2023; Gandikota et al., 2023a] and token remapping [Zhang et al., 2023a; Gandikota et al., 2023b].
Conversely, Model Unlearning formulates an objective that penalizes forgetting desired concepts
while promoting the elimination of undesired ones, but this requires expensive computations and
fine-tuning. Moreover, as most concept editing approaches rely on some form of token blacklisting or
resteering [Zhang et al., 2023a], adversarial attacks based on textual inversion [Zhang et al., 2023d;
Pham et al., 2023; Yang et al., 2023; Tsai et al., 2024] have demonstrated the ability to circumvent
concept erasure methods [Gandikota et al., 2023a;b; Zhang et al., 2023a] that were previously believed
to be robust with a near-perfect success rate.
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In this paper, we introduce ConceptPrune, an entirely training-free method for concept editing
that, for the first time, tackles knowledge editing in diffusion models through the lens of pruning.
Leveraging recently introduced pruning heuristics [Sun et al., 2024], we identify regions or neurons in
feed-forward layers of diffusion models that strongly activate in the presence of a concept, and denote
them as skilled neurons. Subsequently, concept removal can be achieved by simply pruning or zeroing
out these skilled regions. We demonstrate that ConceptPrune provides a rapid, efficient, and unified
solution for erasing undesired concepts, including various artist styles, nudity, undesired objects, and
gender biases. Notably, it maintains the outstanding image-generation prowess of pre-trained models
while remaining resilient to adversarial attacks.

2 RELATED WORK

Concept Erasure in Diffusion Models: Concept erasure has gained significant attention and has
rapidly emerged as a pivotal area of research in diffusion models. Recent concept erasure methods
can be broadly categorized into two main areas: Model Unlearning and Concept Editing.

Model Unlearning methods [Heng & Soh, 2023; Wu & Harandi, 2024; Fan et al., 2023; Zhang
et al., 2024] typically require extensive training to forget a target concept while preserving unrelated
ones. While these methods have shown remarkable efficacy in unlearning multiple concepts, they are
usually computationally expensive, especially for large-scale models.

Concept Editing [Gandikota et al., 2023a;b; Kumari et al., 2023; Zhang et al., 2023a; Huang et al.,
2023; Lu et al., 2024; Lyu et al., 2023] focuses on modifications to specific parts of the model. These
edits ensure that the denoised output for the target concept aligns with clean, desired concepts. The
training costs associated with Concept Editing can be mitigated by strategies such as tuning only
cross-attention weights [Gandikota et al., 2023a; Kumari et al., 2023; Zhang et al., 2023a; Huang
et al., 2023; Lu et al., 2024], solving closed-form objectives to update attention parameters[Gandikota
et al., 2023b; Lu et al., 2024; Orgad et al., 2023], or parameter-efficient adaptation like LORA [Hu
et al., 2022] to edit the model [Lu et al., 2024; Lyu et al., 2023].

While the aforementioned methods are highly effective, deploying current state-of-the-art concept
erasure techniques in real-world scenarios poses significant challenges, particularly in online envi-
ronments with computational constraints where harmful concepts can emerge dynamically. This is
because these methods struggle to meet the following requirements for real-world applications: (1)
training-free concept erasure, eliminating concepts without the need for backpropagation through the
entire model, or (2) lightweight or fast concept erasure, allowing concepts to be removed quickly and
efficiently with minimal compute.

Most concept-erasure methods rely on extensive fine-tuning and are therefore not training-free,
however some training-based approaches like UCE [Gandikota et al., 2023b], SPM [Lyu et al., 2023],
MACE [Lyu et al., 2023], and FMN [Zhang et al., 2023a] are notably lightweight and suitable for the
real-world setting. For instance, FMN erases concepts in 30 seconds and UCE in about 2 minutes,
while the rapid fine-tuning of LoRA parameters makes SPM and MACE ideal for real-time online
erasure. In Table 1, we present a comprehensive summary of related works, categorizing them based
on whether they are training-free and lightweight for an online setting.

Our proposed solution, ConceptPrune, excels on both fronts by introducing a training-free, pruning-
based approach that eliminates harmful concepts without updating any parameters. Instead, it
identifies and targets the neurons responsible for generating these concepts enabling efficient concept
erasure with significantly reduced computational requirements.

Language model skilled neuron identification: Previous works [Wang et al., 2022; Suau et al.,
2020; Durrani et al., 2023; Dalvi et al., 2018; Durrani et al., 2020; Antverg & Belinkov, 2022] present
strong evidence that activation of specific neurons in feed-forward networks in transformers show
high correlation with task labels, with perturbations to these neurons impacting task performance.
Modular components within pre-trained transformers were identified by leveraging the inherent
sparsity in neurons, as shown in [Zhang et al., 2022]. Further, [Zhang et al., 2023e] demonstrates
that these modules are specialized in distinct functions. In this work, we aim to identify neurons
accountable for generating undesired concepts in diffusion models — a pursuit hitherto unexplored in
this domain. Unlike language models, identifying neurons in diffusion models is complicated due to
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Method Training-free Parameters Trained Lightweight Erasure
CA [Kumari et al., 2023] × Full denoiser ×
SA [Heng & Soh, 2023] × Full denoiser ×
SH [Wu & Harandi, 2024] × Full denoiser ×
AdvUnlearn [Zhang et al., 2024] × Full denoiser ×
SalUn [Fan et al., 2023] × Full denoiser ×
ESD [Gandikota et al., 2023a] × Cross Attention ×
Receler [Huang et al., 2023] × Cross Attention ✓
FMN [Zhang et al., 2023a] × Cross Attention ✓
SPM [Lyu et al., 2023] × LORA ✓
MACE [Lu et al., 2024] × Cross Attention + LORA ✓
UCE [Gandikota et al., 2023b] ✓ Cross Attention ✓
Ours (ConceptPrune) ✓ None ✓

Table 1: Summary of recent Concept Erasure baselines. ConceptPrune is a training-free approach that
enables rapid pruning of the model to eliminate a new target concept without the need for extensive
re-training.

the intricate aggregation of neurons across multiple denoising time steps and the model’s sensitivity
to the output of previous time steps.

Language model pruning: Network pruning [LeCun et al., 1989; Liu et al., 2019; Han et al.,
2015; Frankle & Carbin, 2019; Blalock et al., 2020] aims to reduce model size either by eliminating
parameters and substructures from networks [Li et al., 2017; Frantar & Alistarh, 2023] or by masking
parameters guided by a score function [Frantar & Alistarh, 2023; Frantar et al., 2023; Sun et al.,
2024; Lee et al., 2019]. This study primarily focuses on the latter approach. Exploration of diffusion
model pruning is limited, although one study [Fang et al., 2023] introduces structural pruning by
accumulating gradient-based importance scores across a chosen subset of denoising time steps. A
study [Wei et al., 2024] explores safety-aligned LLMs that inhibit harmful prompts by leveraging
pruning heuristics to identify regions responsible for denying harmful responses. In contrast, we use
pruning heuristics to locate critical weight regions responsible for unsafe behaviors in pre-trained
models and permanently unlearn them through pruning.

3 PRELIMINARIES

(Latent) diffusion models: Diffusion models (DMs) [Ho et al., 2020; Song et al., 2021] are
essentially image denoisers that learn to reverse a forward Markov process in which noise is added
into input images for multiple time steps t ∈ [0, T ]. During training, given a real image x0, a noisy
image xt at time t is obtained by

√
atx0 +

√
1− atϵ, where ϵ ∼ N (0, I) and at is a gradually

decaying parameter. Then, the denoiser learns to predict the noise added for obtaining xt, such that
x0 can be reconstructed back by deducting predicted noise from xt.

Latent diffusion models (LDMs) [Rombach et al., 2022b; Zhang et al., 2023b] are widely used as the
first choice of DMs as they accelerate the above process by operating in a latent space z, of input x.
Thus, a LDM consists of a latent embedding denoiser fθ(.), which is trained to predict the added
noise by stochastically minimizing the objective L(z, p) = Eϵ,x,p,t [∥ϵ− fθ (zt, p, t)∥]. Given a text
prompt p, an encoder which extracts z0 from x0 and a decoder which maps the denoised ẑ0 to the
pixel space. To synthesize an image during inference based on text prompt p, one first samples a noisy
embedding zT which is iteratively denoised for T time steps until ẑ0 for generating the final image is
obtained. Normally, the encoder and decoder are obtained from a frozen pre-trained autoencoder.

4 CONCEPTPRUNE: A TRAINING-FREE CONCEPT EDITING FRAMEWORK

Motivation: Concept editing methods aim to eliminate the undesired concept from a pretrained
DM. Inspired by the observation that concepts can activate specific neurons in a neural network
[Mahendran & Vedaldi, 2015; Wang et al., 2022], we ask the question: Can we remove an undesired
concept from a pre-trained DM by simply finding neurons specific to this concept, and pruning
them? The answer is yes. We show that neurons in LDMs often specialise to specific concepts, and
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that pruning these neurons can be used to permanently eliminate undesired concepts from image
generation.

4.1 FEED FORWARD NETWORKS (FFNS) IN LATENT DIFFUSION MODELS

We focus on a pre-trained LDM, i.e. Stable Diffusion [Rombach et al., 2021], characterized by a UNet
[Ronneberger et al., 2015] denoted as fθ. The UNet architecture incorporates two ResNet blocks that
sandwich two transformer blocks with self-attention between latent representations, cross-attention
for the transfer of information from conditional inputs to latent representations, and a Feed-forward
Network (FFN) with GEGLU activation [Shazeer, 2020]. Prior research in concept editing, such
as [Gandikota et al., 2023a] and [Zhang et al., 2023a], primarily examines cross-attention or self-
attention visualizations to detect concept presence or generation. Diverging from this approach and
drawing inspiration from NLP skill discovery [Suau et al., 2020; Wang et al., 2022; Zhang et al.,
2023e; Durrani et al., 2020; Dalvi et al., 2018], our focus lies on neurons within the Feed-forward
networks.

We begin by denoting the input to the FFN layer l at time step t for text prompt p by zlt(p) ∈ Rd×N ,
where N is the number of latent tokens and corresponding output by zl+1

t (p) ∈ Rd×N . FFN in Stable
Diffusion consists of GEGLU activation [Shazeer, 2020] which operates as shown in Equation 1.

hl
t(p) = σ(Wl,1 · zlt(p)) (1)

zl+1
t (p) = Wl,2 · hl

t(p)

where, Wl,1 ∈ Rd′×d, Wl,2 ∈ Rd×d′
are weight matrices in the first and second linear layers, bias

terms are omitted for simplicity and σ(·) is GEGLU activation [Hendrycks & Gimpel, 2023]. In our
work, we regard Wl,2[i, :] the i-th row and Wl,2[i, j] the element in i-th row and j-th column of
matrix Wl,2.

4.2 PRUNING STRATEGY: WANDA

We start with recapping the pruning method Wanda [Sun et al., 2024] for the large language models
(LLMs), and its adaptation to diffusion models. We denote the weights of linear layer by W ∈
Rdout×din and input X ∈ RB×din , where B is the number of data points, i.e. the number of prompts
in this paper. Unlike magnitude-based pruning, which considers the weights’ magnitude alone, the
concept behind the Wanda score is to estimate the combined effect of weights and the magnitude
of features on neuron activations. Therefore, the importance of each weight is calculated as an
element-wise product of its magnitude and the corresponding input feature-dimension-wise ℓ2 norm
as shown in Equation 2

S(W,X) = |W| ⊙
(
1dout · ∥X∥2

)
∈ Rdout×din . (2)

Here | · | to denote the absolute value operator, ∥X∥2 computes the ℓ2 norm of each column of X and
results in a din dimensional vector, and⊙ represents element-wise matrix multiplication. Specifically,
Eq 2 broadcasts ∥X∥2 across different rows of W for computing the element-wise product in each
row. For each row of W, represented by Wi,: with corresponding Wanda score S(W,X)i,:, the
bottom-k% weights with the lowest scores are zeroed out [Sun et al., 2024]. This process effectively
induces sparsity in each row of the weights W by eliminating the bottom-k% of the weights, as a
row is connected to a single activation in the output of a linear layer as a per-output basis [Sun et al.,
2024]. Elements of the weight matrix W are often referred to as weight neurons, which are different
from neurons corresponding to the output of a layer. After pruning the least important weight neurons
in a layer, subsequent layers in the model receive updated input activations. Wanda does not require
any costly weight update since it solely relies on a calibration set to compute the feature norm matrix,
which can be obtained with just a single forward pass through the model. The following will discuss
how we use Wanda to prune each row’s top-k% weight neurons for eliminating a concept.

4.3 IDENTIFYING SKILLED NEURONS IN LATENT DIFFUSION MODELS

Target and reference concept prompts: We first define two sets of calibration prompts P∗ =
{p∗1, p∗2, ..., p∗M} and P = {p1, p2, ...pM} using M objects that can be generated by the model in
target and reference concepts, respectively. Here, p∗i and pi represent prompts with the target and
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reference concepts, respectively. Objects represent common categories, including ‘cat’, ‘dog’, etc. To
eradicate the target concept, e.g., "Van Gogh" painting style, we formulate a p∗i as ‘a <object>
in Van Gogh style’ and a pi as ‘a <object>’.

Importance score for FFN weights at time t: We begin by collecting the neuron activa-
tions described in Eq 1, corresponding to the sets of target concept and reference prompts, and
shape them into matrices denoted by Hl

t(P∗) = [hl
t(p

∗
1)

T ,hl
t(p

∗
2)

T , ...,hl
t(p

∗
M )T ] and Hl

t(P) =

[hl
t(p1)

T ,hl
t(p2)

T , ...,hl
t(pM )T ] such that Hl

t(P∗),Hl
t(P) ∈ R(M∗N)×d′

. Note that this process
only requires one forward pass for per prompt.

After collecting both sets of neuron activations, we calculate the importance score for the linear
weight Wl,2 in Eq 1 for both target and reference prompts using the methodology described in 4.2
and Eq 2 as

S(Wl,2,Hl
t(P∗)) =

∣∣Wl,2
∣∣⊙ (

1d ·
∥∥Hl

t(P∗)
∥∥
2

)
(3)

S(Wl,2,Hl
t(P)) =

∣∣Wl,2
∣∣⊙ (

1d ·
∥∥Hl

t(P)
∥∥
2

)
For ease of notation, we denote S(Wl,2,Hl

t(P∗)) and S(Wl,2,Hl
t(P)) as Sl

t(P∗) and Sl
t(P) re-

spectively in the subsequent sections. Following this, we identify a skilled neuron by comparing its
importance score for the target concept prompt with that for the reference prompt.

Isolating concept-generating neurons at time t: Similar to Wanda [Sun et al., 2024], we adopt a
per-output comparison group, which considers the importance scores among weights in each row of
the weight matrix, rather than the matrix as a whole. Specifically, for a given sparsity level k%, we
define the top-k% important weight neurons for generating the target concept in row-i denoted by
Wl,2[i, :] as

Ilt(P∗)[i, j] =

{
1 if Sl

t(P∗)[i, j] ∈ top-k% of Sl
t(P∗)[i, :]

0 otherwise,
(4)

where Ilt(P∗) forms a binary mask matrix for the concept prompt set P∗. As P∗ contains additional
undesired target concepts compared with P , Ilt(P∗) thus consists of the set of important neurons that
are responsible for generating both the target and reference concepts. Our next step involves filtering
and disentangling these neurons to isolate them to generate the target concept and the reference
separately. Continuing with comparison on the Wanda score matrices for both target and reference
prompts sets, we now define skilled neurons.

Definition 4.1 For a linear layer characterized by Wl,2, the weight neuron Wl,2[i, j] is defined as
a skilled neuron at time step t if Ilt[i, j](P∗) == 1 and Sl

t(P∗)[i, j] > Sl
t(P)[i, j].

In essence, if a weight neuron ranks within the top-k% Wanda scores among other neurons in a row of
Wl,2 for the target prompts P∗, it contributes to generating either the undesired target concept or the
reference concept. However, if its Wanda score surpasses that of a reference concept, it predominantly
influences the target concept.

Subsequently, we form a time-dependent binary mask Ml
t over weight matrix Wl,2 such that

Ml
t[i, j] =

{
1 if weight neuron Wl,2[i, j] is skilled4.1
0 otherwise,

(5)

where Ml
t is a subset of Ilt as only neurons that are highly activated by the target concept are retained.

Removing aggregated skilled neurons over timesteps: While we previously described time-
dependent skilled neurons, DiffPrune [Fang et al., 2023] demonstrates that weights can be pruned
by aggregating a pruning metric over a selected subset of timesteps based on relative importance
scores. However, in our study, we discovered that simply aggregating the binary mask over the
first t̂ denoising iterations suffices to eliminate a concept while preserving the underlying object.
Consequently, we define pruned weight matrix Ŵl,2 as

Ŵl,2 = Wl,2 ⊙ (¬(∨t=T,T−1,...,T−t̂M
l
t)) (6)

where ∨ and ¬ denote the logical OR and NOT operators. All the weights of the pre-trained diffusion
model fθ remain unchanged as only Wl,2 is substituted with pruned weights obtained from Equation
6. We then perform experiments with the pruned model to evaluate the effectiveness of concept
removal, i.e. subsequently, we only use Ŵl,2 for image sampling.
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5 EXPERIMENTS

5.1 EXPERIMENT DETAILS

We work with Stable Diffusion v1.5 (SD), which includes 16 FFN layers that serve as candidates for
skilled neuron discovery and pruning. We begin by formulating the calibration sets P∗ and P that are
used to obtain the matrices Hl

t(P∗) and Hl
t(P) for calculating the score in Equation 3. The list of

prompts and the exact structure of the sentences for different concepts is provided in Table 9 in the
Appendix.

Pruning candidates: The selection of FFN second layer for pruning was informed by an ablation
study we conducted across various layers within the UNet, aimed at identifying the most effective
pruning targets. Specifically, we analyzed the first layer of the FFNs, along with the query, key, and
value weight matrices in all cross-attention layers. In Appendix A.2, we present the concept erasure
performance for pruning within these layers, as well as an analysis of neuron activation patterns.
The results clearly indicate that the second layer of the FFNs proves to be a more effective pruning
candidate compared to other layers. This observation aligns with findings in the LLM literature,
where these layers have also been identified as prime candidates for skill discovery and pruning
[Zhang et al., 2023e; Suau et al., 2020; Wang et al., 2022]. Finally, to calculate neuron activations,
we run the model for 50 denoising iterations and fix the seed before every forward pass to ensure the
same initializations for both reference and target concept prompts.

Hyper-parameter selection: As discussed in Section 4.1, we select two key hyperparame-
ters—sparsity level k% and t̂—for aggregating skilled neurons across time steps. For each concept,
we vary the sparsity parameter k% between 0.5% and 5%, choosing the value that achieves the
best trade-off between concept erasure and the retention of unrelated concepts. More details on this
hyperparameter selection process can be found in Section A.3 of the appendix. The optimal sparsity
levels k% and the corresponding t̂ values for each concept are outlined in Table 10 in the appendix.
Interestingly, our experiments reveal that t̂ = 10 is typically sufficient for erasing concepts while
preserving objects, suggesting that low-level features such as style and objects are formed early in
the denoising process, with fine-grained details being added later.

Baselines: We identify the following concept editing methods as our closest competitors due to
their lightweight approach: UCE[Gandikota et al., 2023b], Forget-Me-Not (FMN) [Zhang et al.,
2023a], MACE [Lu et al., 2024], Receler [Huang et al., 2023], and SPM [Lyu et al., 2023]. These
works are considered direct competitors as they share a similar emphasis on computational efficiency.
Additionally, we include training-intensive methods such as Concept Ablation (CA) [Kumari et al.,
2023], ESD [Gandikota et al., 2023a], Selective Amnesia (SA)[Heng & Soh, 2023], Scissorhands
(SH)[Wu & Harandi, 2024], and AdvUnlearn [Zhang et al., 2024] in our comparison. However, we
categorize these as indirect competitors, as their reliance on extensive fine-tuning contrasts with
ConceptPrune’s training-free regime. We include a baseline only if their method has been evaluated
for that concept and is reproducible from their source code.1

5.2 ERASING ARTISTIC STYLES

We consider five artists — Van Gogh, Claude Monet, Pablo Picasso, Leonardo Da Vinci, and Salvador
Dali. To measure the efficacy of concept removal, we created a dataset of 50 prompts for each artist
using ChatGPT, consisting of the names of their paintings followed by the name of the artist. To
measure the efficacy of concept removal, we report two metrics: the CLIP Similarity, which measures
the similarity between the generated image and the prompt, and a stricter CLIP score that penalizes a
model when the similarity between the image generated by the concept-editing and the prompt is
greater than the similarity between the image generated by the pre-trained SD and prompt. Lower
values of CLIP Similarity and higher values of CLIP Score indicate better concept removal. We also
evaluate the fidelity of general purpose image generation by measuring FID and CLIP Similarity
on the COCO30k dataset. From the quantitative results presented in Table 2, we demonstrate that
our method outperforms other baselines in artist style removal while effectively retaining unrelated
concepts, as indicated by the low FID score. In Figure 1, we present some qualitative examples
that demonstrate the strong erasing capabilities of ConceptPrune with high-quality realistic output

1We reproduced CA to remove nudity and object classes from ImageNette but performance was very poor.
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Figure 1: Qualitative results of artist erasure. Con-
ceptPrune demonstrates stronger erasing while gen-
erating high-quality, realistic-looking images.

Table 2: Quantitative results of Artist style
removal, average over 5 artist styles. CLIP
Similarity and CLIP Accuracy measure art
style removal. FID and CLIP Similarity on
COCO30k measure fidelity for unrelated re-
tained concepts. The full split of the results
for different art styles is reported in the ap-
pendix in Table 11. Our ConceptPrune can
effectively erase artist styles without com-
promising the model’s performance on unre-
lated concepts.

Light- Artist erasure COCO
weight Similarity ↓ Score ↑ FID ↓ Similarity ↑

Original SD 42.1 23.0 14.5 31.3

×
ESD 34.1 49.2 15.9 30.7
CA 32.4 65.2 17.5 31.3
SA 27.1 86.9 14.7 31.3

AdvUnlearn 27.2 82.0 16.9 29.7

✓

UCE 32.8 44.0 15.7 31.3
FMN 28.4 82.4 20.9 29.8

MACE 28.2 85.4 15.1 31.0
Receler 28.4 82.0 16.7 29.1

✓ Ours 26.9 94.0 16.9 29.9

images. More qualitative results are presented in Section A.4 in the appendix. While we demonstrate
strong retention of unrelated concepts in COCO30k in Table 2, Section A.4 in the appendix further
provides evidence that using ConceptPrune to erase an artist’s style results in minimal degradation
when generating other similar artist styles.

5.3 ERASING EXPLICIT CONTENT

We quantitatively evaluate our proposed method for moderating Not-Safe-for-Work (NSFW) concepts
like nudity by comparing it against the concept-erasing baselines ESD, UCE, and FMN. In addition,
we also compare with variants of Stable Diffusion, such as Safe Latent Diffusion (SLD) [Schramowski
et al., 2023] and Stable Diffusion 2.0 [Rombach et al., 2022a], which have been fine-tuned on a
filtered subset of LAION without explicit images. We use the Inappropriate Prompts Dataset (I2P)
[Schramowski et al., 2023], which consists of 4703 prompts featuring various inappropriate concepts.
Nudity detectors [Bedapudi, 2022] indicate that, out of these 4703 prompts, the pre-trained Stable
Diffusion model generates nudity for 796 prompts. In Figure 2, we report the percentage reduction
in the number of generated images with nudity compared to the pre-trained Stable Diffusion model.
ConceptPrune generates nudity in merely 47 prompts within 4703 prompts in the I2P dataset,
implying a 94.1% decrease compared to 88% in ESD and 85.6% in UCE, demonstrating a significant
improvement over other baselines in content moderation. We present more qualitative results on the
I2P dataset in Figure 13 in the appendix.

5.4 ERASING OBJECTS

Single-object erasing: We showcase the effectiveness of our method in removing objects from
the learned concepts of diffusion models. We conducted experiments targeting ImageNette classes
[Howard & Gugger, 2020], a subset of ImageNet [Deng et al., 2009] comprising 10 classes. Similar
to UCE and ESD, we generated 500 images per class and evaluated the top-1 classification accuracy
using a pre-trained ResNet-50 [He et al., 2015]. Table 4 shows that ConceptPrune has superior erasure
performance on average while effectively minimizing interference on non-targeted classes. 2 More
results of object erasure are provided in Figure 14 in the appendix.

2We copied the numbers from their original papers based on SD 1.4 and therefore, we repeated our experi-
ments with SD 1.4 for consistency.
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Figure 2: Explicit Content Erasure. The per-
centage reduction in nudity content from I2P
prompts, compared to the original SD model
ConceptPrune (SD1.5) decreases the number
of explicit images by 94.1%, outperforming
competitors as well as SD2.0.

Table 3: ConceptPrune demonstrates robustness to
adversarial attacks. Unlearning methods evaluated
against three adversarial attacks. Black-box (Ring-A-
Bell[Tsai et al., 2024], and MMA[Yang et al., 2023])
performance is quantified by percentage reduction in
nude samples compared to SD. White-box UnlearnDif-
fAtk [Zhang et al., 2023d] performance measures the
attack success rate (ASR).

Light- Method Ring-A-Bell ↑ MMA ↑ UnlearnDiffAtk ↓
weight

– SLD 2.8 25.5 82.4
SDv2 1.8 26.8 73.8

×
ESD 52.8 87.3 76.1
SA 84.3 94.3 11.3
SH 86.1 94.3 22.3

AdvUnlearn 85.8 93.7 21.1

✓

UCE 67.6 63.3 93.2
Receler 67.9 65.7 92.1
MACE 56.4 57.9 89.3
FMN 5.6 53.6 97.9
SPM 34.5 78.4 91.6

✓ Ours 85.2 95.6 64.8

Table 4: Concept Erasure: Top-1 classification accuracy of erased and preserved class samples,
using a pre-trained ResNet-50. Our ConceptPrune effectively erases objects from pre-trained models
without impacting the accuracy for other object classes.

Classes Accuracy of Erased Classes ↓ Accuracy of Preserved Classes ↑
ESD UCE FMN ConceptPrune ESD UCE FMN ConceptPrune

Church 54.2 8.4 2.0 6.0 80.2 77.5 57.8 82.8
English Springer 6.2 0.2 1.9 0.0 62.6 78.9 73.5 80.1
Golf ball 5.8 0.8 13.7 0.0 65.6 79.0 82.8 87.8
Gas Pump 8.6 0.0 7.9 0.0 66.5 80.7 79.0 83.0
Tench 9.6 0.0 5.7 0.0 66.6 79.3 78.4 85.0
Parachute 23.8 1.4 8.3 7.0 65.4 77.4 98.2 80.6
Cassette Player 0.6 0.0 1.0 1.0 64.5 90.3 68.7 94.3
Chain Saw 6.0 0.0 0.1 0.0 71.6 80.2 78.4 91.5
French Horn 0.4 3.0 0.0 3.0 77.0 80.1 78.3 88.2
Garbage Truck 10.4 14.8 0.1 0.0 51.5 78.7 74.9 85.8
Average 12.5 2.7 4.1 1.7 66.9 80.2 77.5 85.9

Multi-object erasing: In addition to single-object erasing, we also evaluate ConceptPrune on
removing multiple objects from the model simultaneously. Although our pruning strategy generates
a pruning mask for concepts individually, it provides a straightforward baseline for multi-object
erasing by taking the union of skilled neurons across different concepts. We direct the reader to
Appendix A.5 for more details. We compare our method with UCE and report the accuracy on
erased classes along with FID and CLIP similarity on COCO30k. Table 6 shows that ConceptPrune
demonstrates comparable erasing performance while excelling at retaining unrelated concepts.

5.5 ADVERSARIAL DEFENSE ON CONCEPT ERASURE ATTACKS

White-box attacks: Recent research has recognized the limitations of the concept editing base-
lines considered in this paper, namely UCE, ESD, FMN, and CA. Model-based adversarial attacks
like UnlearnDiffAtk [Zhang et al., 2023d] and Concept Inversion (CI) [Pham et al., 2023] have
demonstrated that subtle perturbations to text prompts can circumvent the unlearning mechanisms,
compelling concept-editing baselines to generate harmful images with undesired concepts once again.
Furthermore, these studies show a near-perfect Attack Success Rate (ASR) for FMN and UCE which
jeopardizes the safety and effectiveness of these baselines in real-world settings.
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Table 5: ConceptPrune is substantially more robust to adversarial attacks aimed at eliciting erased
concepts. (Top): Attack Success Ratio (ASR %, ↓) of UnlearnDiffAtk [Zhang et al., 2023d]
adversarial prompts for Van Gogh’s painting style and 4 classes of the Imagenette dataset.

Artist Style Object erasing

Light- Vincent Van Gogh Parachute Tench Garbage Truck Church
weight Top-1 ASR Top-3 ASR ASR ASR ASR ASR

×

ESD 32.0 76.0 54.0 36.0 24.0 60.0
CA 77.0 92.0 – – – –
SH – – 24.0 8.0 2.0 6.0

SalUn – – 74.0 14.0 42.0 62.0
AdvUnlearn 2.0 24.6 14.0 4.0 8.0 6.0

✓
UCE 94.0 100.0 43.0 22.0 38.0 68.0
FMN 56.0 90.0 100.0 100.0 98.0 96.0
SPM – – 96.0 90.0 82.0 94.0

✓ ConceptPrune (Ours) 2.4 24.4 34.0 16.1 0.0 21.7

Table 6: Quantitative results for multi-object erasure. We report Accuracy on erased classes and
FID on COCO30k, CLIP similarity on COCO30k, and ASR of UnlearnDiffAtk. ConceptPrune is
comparable to UCE at erasing multiple objects and outperforms UCE in retaining image generation
capabilities along with being significantly robust to white-box adversaries.

COCO FID CLIP score Accuracy on erased classes ASR

UCE 17.7 31.0 4% 22%
ConceptPrune 17.5 29.9 7% 6%

We evaluate ConceptPrune under these recently introduced white-box attacks - UnlearnDiffAtk
[Zhang et al., 2023d] and Concept Inversion (CI) [Pham et al., 2023]. For UnlearnDiffAtk, we
evaluate for Van Gogh style, ImageNette objects, and nudity. We compare ConceptPrune with
baselines UCE, ESD, and FMN across all concepts, and for nudity, we include comparisons with
presumably safe models such as Safe Latent Diffusion (SLD) and SDv2. Following [Zhang et al.,
2023d], we report the top-1 and top-3 ASR for Van Gogh style, which indicates whether the generated
image is classified as the top-1 prediction or within the top-3 predictions for Van Gogh’s painting
style when evaluated by the post-generation image classifier. For object erasure and NSFW attacks,
we report ASR based on a pre-trained ResNet50 model and NudeNet detector respectively [Bedapudi,
2022]. Table 5 (top) illustrates that for artist style and object erasure, ConceptPrune renders the
UnlearnDiffAtk unsuccessful, achieving a 0% ASR in two instances, in contrast to the perfect success
rates seen for baselines like UCE and FMN. Table 3 shows that UCE, ESD, and FMN fail to defend
against the NSFW attack, ConceptPrune demonstrates an ASR of 64.8%, significantly lower than
that the models that are trained for safety (SDv2 and SLD).

Following the evaluation protocol of Concept Inversion (CI), we generated 500 images per class
and evaluated the top-1 classification accuracy. Similar to CI, we also compare the performance
of ConceptPrune against negative prompting (Neg-Prompt) [Yuanhao et al., 2024] and Safe Latent
Diffusion (SLD-Med) [Schramowski et al., 2023]. In Table 13 in the Appendix, we observe that the
accuracy of 3 out of 4 erased classes is notably lower compared to other baselines. This demonstrates
that ConceptPrune offers significantly greater adversarial robustness against various white-box attack
variants. We present more qualitative analysis in Figure 11 in the appendix.

Black-box attacks: To prevent the generation of NSFW imagery, SD models incorporate preventive
measures such as prompt filters and post-synthesis safety checks by default. In a black-box setting
such as a web service, these defenses are considered impossible to override. Therefore, we also
evaluate black-box robustness. Recent research MMA-Diffusion [Yang et al., 2023] released a set of
1000 adversarial prompts for SDv1.5 that circumvent safety filters on the text and image level. In
addition, Ring-A-Bell [Tsai et al., 2024] directly challenges our competitors ESD, UCE, and FMN
and attacks their erasing strength with their set of adversarial prompts. Inspired by these works,
we evaluate ConceptPrune along with competitors on adversarial prompts released by [Yang et al.,
2023; Tsai et al., 2024] and report the percentage reduction in number of images for which nudity is

9
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Figure 3: Left: ConceptPrune effectively disentangles skilled neurons responsible for specific concepts
from general object-generating neurons. E.g., removing "Van Gogh" skilled neurons erases the "Van
Gogh" style while removing unskilled neurons eliminates the object. Right: Skilled neurons are
localized to a very compact subspace, between 1% to 3% of FFN parameters.

generated as compared to pre-trained SD. Results in Table 3 show that ConceptPrune offers a stark
increase in adversarial robustness with a 95.6% decrease in the generation of nudity under MMA.
This underscores its potential as a reliable and safe choice over our competitors. We present more
qualitative analysis in Figure 11 in the appendix.

5.6 FURTHER ANALYSIS

Analysing the density of skilled neurons: We evaluate the density of skilled neurons, defined as the
percentage of non-zero elements in the pruning mask in Equation 5. Our analysis in Figure 3 (right)
reveals that concept-generating neurons span less than 3% of the FFN weights matrix considered for
pruning. This suggests that concept generation can be attributed to a very tiny subspace, potentially
constituting less than 0.12% of the total model parameters in diffusion models.

Are concept-generating skilled neurons disentangled from object-generating neurons? In Section
5, we demonstrated that ConceptPrune exhibits strong concept erasure skills for a diverse range of
concepts by discovering and pruning a compact subspace of skilled neurons. Conversely, removing
unskilled neurons, i.e neurons that satisfy the opposite of the second condition in Definition 4.1 and
follow Sl

t(P∗)[i, j] < Sl
t(P)[i, j] instead are hypothesised to distort the reference concept while

retaining the target concept. Figure 3 (left) offers qualitative examples that confirm our hypothesis,
illustrating our ability to isolate a distinct set of neurons solely responsible for generating concepts,
demonstrating their disentanglement from neurons responsible for generating general utilities. We
present an interesting study on gender-specific neurons in diffusion models in Section A.7.

Can ConceptPrune generalize to other architectures? We demonstrate that ConceptPrune can be
seamlessly applied to Stable Diffusion v2.0 and SD-XL. We erased the artist styles listed in Table 2
and compared the results with UCE on SD-v2.0 and SD-XL. As shown in Table 14 in the appendix,
ConceptPrune not only generalizes well to different architectures but also delivers superior erasure
performance across models.

6 CONCLUSIONS

This paper revisited the important challenge of concept editing in pre-trained diffusion models from
the perspective of skilled neuron identification and pruning. We showed that concepts related to object
categories, art styles, gender, and nudity can be identified and pruned – leading to effective erasure
while maintaining overall generation quality. Our ConceptPrune approach is fast, training-free, and
permanent – exhibiting strong robustness to adversarial attacks that break prior concept erasure
methods. Without relying on token-rewriting, pruned models could be distributed without the risk
of adversaries simply removing rewriting safeguards. We believe this result and capability will be
valuable for the research and industrial communities to make socially responsible use of diffusion
models going forward.
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A APPENDIX

A.1 LIMITATIONS

While erasing specific objects, such as the "English Springer," we noticed that a few related dog
breeds were also inadvertently removed. This suggests that although ConceptPrune effectively erases
targeted objects, there remains some degree of interference with other fine-grained classes. Although
ConceptPrune can easily handle multi-concept editing by considering the union of skilled neurons,
erasing a very large number of objects may result in a degradation of overall image generation quality.

A.2 SELECTION OF PRUNING CANDIDATES

In this section, we conduct an ablation study on various candidate layers within the UNet to determine
the most effective pruning targets. Specifically, we examined the first layer of the FFN (FFN-1),
second layer of the FFN (FFN-2), the Key weight matrix in the Cross Attention layer (CA-Key), the
Value weight matrix in the Cross Attention layer (CA-Value), and the second layer of the FFNs in the
text encoder (CLIP). CA-Key and CA-Value were considered because these weight matrices operate
on text tokens, while the noised latent tokens are used as queries. We then apply ConceptPrune for
pruning different parameters within these layers and report the concept erasure performance in Tables
7 and 8. Firstly, we visually observed that pruning CA-Key degrades image quality by distorting
objects and textures. Therefore, we have decided not to report the erasure performance associated
with pruning CA-Key. From Tables 7 and 8, we empirically observed that FFN-2 is the best choice
for pruning.

Additionally, we analyzed neuron activation patterns of different layers to understand which layers
consist of neurons that are indicative of the presence of a particular concept. For a given layer, we
calculate the norm of activations for input neurons over reference and target prompts, averaging over
denoising time steps. The top 1% of neurons in UNet are then identified and their distribution is
plotted in 4 (b, c, d). We observed a significant difference in distributions’ means in the 2nd FFN
layer, indicating distinct activations for reference and target prompts. This distinction is absent in
other layers. From these results, it is evident that FFN-2 is a better and sensible pruning candidate
than others.

Table 7: Accuracy of erased classes (↓) and preserved classes (↑) for object erasure across different
pruning candidates. FFN-2 is a better pruning target.

Pruning candidate FFN-2(in the paper) FFN-1 CA-Value CLIP
Erased Preserved Erased Preserved Erased Preserved Erased Preserved

Parachute 6.9 72.8 21.0 62.2 32.0 69.2 38.0 47.8
English springer 0.0 93.7 46.2 90.0 32.8 89.2 1.0 42.3

French horn 1.9 74.5 17.0 74.8 31.4 79.2 18.0 72.4
Tench 0.0 90.1 47.0 87.1 21.2 73.4 39.0 89.2

Table 8: Erasure performance for artist style removal (first 5 rows, CLIP similarity between the
generated image and prompt (↓)) and Nudity (last row, % nudity reduction (↑)) across different
pruning candidates. The sparsity level used for pruning is 2%. FFN-2 is a better pruning candidate.

Pruning candidate Van Gogh Monet Leonardo Da Vinci Pablo Picasso Salvador Dali Nudity
FFN-2 (in the paper) (2%) 29.2 23.6 26.5 25.3 29.8 94.1

FFN-1 (2%) 32.7 30.6 29.0 26.5 30.7 67.8
CA-Value (2%) 32.7 30.3 28.6 27.7 27.7 46.2

CLIP (2%) 33.2 32.6 29.4 28.7 31.7 9.1

A.3 DETAILS ON PROMPTS AND HYPER-PARAMETERS

Selecting optimal sparsity ratio - To understand the effect of sparsity level (k%), we vary it from
0.5% to 5% and plot erasure vs. retention performance. Erasure performance is measured by the
CLIP similarity between the generated image and the input prompt, with lower values indicating
better erasure. Retention is evaluated using a subset of COCO dataset prompts, measuring CLIP
similarity between the generated image and the input prompt. From Figure 4(a), we observed that
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Figure 4: (a): Erasing vs Retention Performance with varying sparsity thresholds. Concept - Van
Gogh. (b, c, d): Density of neuron activations for reference and target prompts in second layer of
FFNs (pruned in paper), first layer of FFNs and Value layer in cross-attentions respectively. FFN-2
has the most distinct activation distribution.

Figure 5: We present qualitative results by varying t̂ from 1 to 15 and visualizing the images after
concept erasure. Extending beyond 10 timesteps results in a noticeable degradation of image quality.

a sparsity level of k = 2.5% or k = 2% offers a good balance of improved erasure with a minimal
retention loss (main experiments used 2%).

Selecting optimal t̂ - As noted in Section 4, our work draws inspiration from the study in DiffPrune
[Fang et al., 2023], which utilizes Taylor expansion at pruned timesteps to estimate weight importance.
Their findings reveal that earlier timesteps focus on local features like edges and colors, while later
timesteps shift attention to broader content, such as objects and shapes. Similar to [Fang et al.,
2023], [Georgiev et al., 2023] also shows that properties such as background color, object shape,
etc generated in the earlier timesteps are carried forward to later in the denoising trajectory. Since
our work primarily addresses local properties such as style, color, and object shape, we focus on
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removing concept-generating neurons in the earlier timesteps, which contribute the most to salient
properties in the image.

To determine t̂ in Equation 5, we performed a straightforward grid search over timesteps t = 1
to t = 15, examining erased images to identify the timestep at which the concept was effectively
removed from the majority of images. We present qualitative results in Figure 5 by varying t̂ from 1 to
15 and visualizing the images after concept erasure. The ablation study is conducted on two distinct
concepts: the Van Gogh artist style and the object parachute. The prompts used for this analysis are
"A painting in the style of Van Gogh" for the artist’s style and "A parachute in a park" for the object.
By varying t̂, we visualize the resulting images to evaluate the effectiveness of concept removal at
different timesteps. Our findings demonstrate that focusing exclusively on neurons too early in the
denoising trajectory fails to capture all the neurons responsible for generating the target concept. On
the other hand, extending beyond 10 timesteps results in a noticeable degradation of image content
and quality, striking a delicate balance between effective concept removal and preserving the overall
integrity of the image. Therefore, t̂ = 10 is an optimal point for concept erasure and good retention.

Table 9: Details on calibration set formulation for different concepts. We categorize all the concepts
considered in the paper into global concepts like art styles, nudity, object erasure, and gender change
and provide the sentence structure of the concept prompts P∗ and reference prompts P .

Global Concept Concept (<concept>) Concept prompt Reference prompt List

Art Styles

Van Gogh a <object> in the style of <concept> a <object> <object> ∈ [cat, dog, mouse, bear,
Monet car, chair, bag, ball,

Leonardo Da Vinci door, rabbit, flower, bowl,
Salvador Dali bat, horse, bird, wall, bottle,
Pablo Picasso building, chicken, duck]

Nudity naked a photo of a naked <person> a photo of a <person> <person> ∈ A list of person related words3

Object Erasure

parachute, gas pump a <concept> in a <scene> a <scene> a <scene> ∈ [road, garden, beach
golf ball, cassette player room, park, table
english springer, tench bag, tree, forest
chain saw, french horn street, shelter, chair]

Object Erasure church, garbage truck a <concept> near a <place> a <place> <place> ∈ road, park, beach, street
house, tree, forest, statue, car]

Gender change Male to Female a photo of a <male> a photo of a <female> <male> ∈ [man, boy, person, guy
father, son, husband, uncle]

Female to Male a photo of a <female> a photo of a <male> <female> ∈ [woman, girl, female, lady
mother, daughter, wife, aunt]

A.4 ARTIST STYLE ERASURE

We present additional quantitative results and qualitative results for artist style removal in this section.
Please see Figure 6, 7, 8, 9, and 10 and Table 11.

Cross-artist erasure: Ideally, erasing an artist’s style should not impact the generation of other artist
styles. However, concept erasure baselines like CA [Kumari et al., 2023] and UCE [Gandikota et al.,
2023b] have reported slight degradation in generating paintings of other artists when a similar style is
removed. For instance, [Kumari et al., 2023] demonstrates that removing ’Van Gogh’ style results
in the removal of the ’Claude Monet’ style. To assess this quantitatively, we used CA, UCE, and
ConceptPrune to erase the ’Van Gogh’ style and evaluated the performance over the remaining four
artist styles in Table 11. We measure the CLIP similarity between the generated image and the input
prompt, where a higher CLIP similarity indicates better preservation of the artist’s style. Table 12
demonstrates that while ConceptPrune performs comparably to other baselines in preserving related
artist styles, it outperforms them in maintaining the model’s overall image generation capabilities
(Table 2).

A.5 MULTI-OBJECT ERASING

We outline our approach to multi-object erasing, where we take the union of skilled neurons across
all targeted objects and prune them collectively. Let the binary mask representing skilled neurons for
a concept c in Equation 6 be Mt,l

c . For erasing a set of multiple concepts C = {c1, c2, ..., cm}, we
take the union of skilled neurons for each time step and concept ∨c∈CM

t,l
c , and formulate the pruned

matrix Ŵ2
l as W2

l ⊙
(
¬(∨t=T,T−1,...,T−t̂ ∨c∈C Mt,l

c

)
, where ∨ and ¬ denote the logical OR and

NOT operators.
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Figure 6: Qualitative results for erasing artist - Van Gogh. ConceptPrune(Ours) generates high-quality
realistic-looking images without the artist’s style.
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Figure 7: Qualitative results for erasing artist - Monet. ConceptPrune(Ours) generates high-quality
realistic-looking images without the artist’s style.
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Figure 8: Qualitative results for erasing artist - Pablo Picasso. ConceptPrune(Ours) generates high-
quality realistic-looking images without the artist’s style.
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Figure 9: Qualitative results for erasing artist - Leonardo da Vinci. ConceptPrune(Ours) generates
high-quality realistic-looking images without the artist’s style.
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Table 10: Details on hyper-parameters, sparsity level and t̂ for concepts considered in our experiments.

Global Concept Concept Sparsity Level k% t̂

Art Styles

Van Gogh 2.0 10
Monet 2.0 10

Leonardo Da Vinci 2.0 10
Salvador Dali 2.0 10
Pablo Picasso 2.0 10

Nudity naked 1.0 9
Object Erasure ImageNette classes 2.0 10

Gender change Male to Female 5.0 20
Female to Male 5.0 20

Table 11: Extension of Table 2 for Artist Style removal in the main paper. We report CLIP Similarity
and CLIP Accuracy for 5 artists.

Artist Metric ESD UCE FMN CA SA MACE Receler AdvUnlearn ConceptPrune

Van Gogh CLIP Similarity 33.1 34.3 26.6 32.9 24.5 27.8 30.1 28.5 29.2
CLIP Accuracy (%) 39.0 36.0 96.0 58.0 96.0 82.5 79.8 69.0 84.0

Claude Monet
CLIP Similarity 32.9 33.6 23.2 33.1 25.6 24.5 23.9 25.0 23.6

CLIP Accuracy (%) 57.0 56.0 98.0 68.0 94.9 95.7 98.2 97.6 100

Pablo Picasso
CLIP Similarity 33.5 32.9 33.0 31.3 30.9 28.9 29.3 26.1 25.3

CLIP Accuracy (%) 58.0 56.0 58.0 78.0 72.0 75.6 78.4 82.7 100

Leonardo Da Vinci
CLIP Similarity 30.8 31.5 25.1 31.6 24.5 27.1 25.7 26.3 26.5

CLIP Accuracy (%) 66.0 64.0 62.0 56.0 87.6 88.1 73.2 65.3 94.0

Salvador Dali
CLIP Similarity 39.9 31.6 33.6 32.8 30.1 32.7 33.1 29.9 29.8

CLIP Accuracy (%) 26.0 8.0 98.0 66.0 83.9 85.2 80.3 95.2 92.0

A.6 CONCEPT INVERSION

We present the results of baselines considered in the paper in Table 13, which shows that ConceptPrune
offers significantly greater adversarial robustness against CI.

A.7 ARE THERE SPECIFIC NEURONS RESPONSIBLE FOR GENERATING GENDER?

It is widely acknowledged that image-generation models harbor societal and gender biases [Luccioni
et al., 2023]. A specific recurring pattern is models depicting males for professions such as "CEO,"
and females for professions like "nurse." Concept editing methods like UCE [Gandikota et al., 2023b]
and MEMIT [Orgad et al., 2023] have addressed these issues by debiasing models to ensure an equal
representation of males and females across all professions. However, Gemini [et al, 2024] recently
faced criticism for controversies stemming from over-debiasing models, resulting in the generation
of factually or historically incorrect information4. This occurs because while debiasing may show
a range of people for some cases, it fails to appropriately handle cases where such variation is not
applicable.

To address this, we believe that gender choice in diffusion models should be precisely controllable,
e.g., under the guidance of expert ethics committees. To explore, this we illustrate controlled Gender

4Our intention is not to defame. We only use this incident to motivate controlled gender reversal.

Model Monet Salvador Dali Pablo Picasso Da Vinci Average

UCE 32.4 30.3 28.8 29.8 30.3
AC 31.6 28.9 26.7 28.4 28.9

ConceptPrune (Ours) 30.9 31.2 29.9 28.7 30.2

Table 12: We erase ’Van Gogh’ style from the model and report CLIP similarity (↑) on surrounding
artist styles. Higher CLIP similarities indicate better preservation of surrounding artist styles.
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Figure 10: Qualitative results for erasing artist - Salavdor Dali. ConceptPrune(Ours) generates
high-quality realistic-looking images without the artist’s style.

ESD FMN UCE CA Neg-Prompt SLD-Med ConceptPrune (Ours)

Tench 59.7 60.6 20.6 29.4 72.6 75.4 0.0
Church 87.4 0.0 82.2 72.6 78.4 72.0 11.0

Parachute 94.2 93.4 94.2 92.4 77.2 95.8 0.0
Garbage Truck 57.0 69.6 89.6 79.4 84.6 94.8 6.8

Average 74.5 55.9 71.7 68.5 78.2 84.5 4.5

Table 13: Top-1 classification accuracy (↓) under CI [Pham et al., 2024] for 4 Imagenette classes.
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Figure 11: Qualitative results of the failure cases of adversarial attacks demonstrating the robustness
of ConceptPrune to both white-box and black-box adversaries. Left: Top, middle, and bottom rows
correspond to images generated by original SD, ConceptPrune without attack, and ConceptPrune
under white-box UnlearnDiffAtk attack respectively. Right: Qualitative results of black-box attacks
MMA[Yang et al., 2023] and Ring-A-Bell [Tsai et al., 2024] along with quantitative results in 3 show
that ConceptPrune maintains its content moderation abilities even under attacks.

SD 2.0 Van Gogh Monet Salvador Dali Pablo Picasso Da Vinci

UCE 32.5 25.6 31.8 25.8 26.9
ConceptPrune 30.2 23.7 28.8 24.1 25.7

SD-XL Van Gogh Monet Salvador Dali Pablo Picasso Da Vinci

UCE 31.4 29.3 28.4 27.8 27.6
ConceptPrune 29.4 27.8 29.0 24.7 26.7

Table 14: CLIP similarity (↓) for artist erasure experiments with SD-v2.0 (left) and SD-XL (right).
Our ConceptPrune can effectively erase artist styles.

Reversal5. We discover a set of “male” neurons via concept prompts P∗ like {a man, a boy},
vs reference prompts P like {a woman, a girl } and vice-versa. Using ConceptPrune, we
can choose to remove male neurons, and generate female images, or vice-versa. This allows direct
control of gender for any future prompt, via simple choice of mask. We evaluate our model across 35
professions in the Winobias dataset [Zhao et al., 2018] and report the success rate at which the gender
of the individual as classified by CLIP was reversed by ConceptPrune as compared to pre-trained SD.
Qualitative results for controlled gender reversal are presented in Figure 3 (Left). We observed that
our model has a success rate of 87 ± 12% with more failure cases like erasing the person from the
image arising from highly male or female-biased professions like Carpenter, Secretary, etc. In this
paper, we do not propose ConceptPrune as a practical solution for mitigating gender bias. Instead,
our primary objective is to emphasize the compelling discovery of a distinct set of gender-specific
neurons within the model.

5We exclude non-binary genders to ensure a clear evaluation of gender reversal success rates.
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Figure 13: Qualitative results for Nudity Erasure. We omit the prompts for safety. Images marked
as "Original" correspond to images generated by pre-trained Stable Diffusion. Sensitive parts have
been blacked out by the authors for the purpose of publication. We observe that ConceptPrune erases
nudity while preserving other details and quality of the image.
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Analyst (M -> F) Attendant (M -> F) Ceo (M -> F)

Baker (M -> F) Clerk (M -> F) Nurse (F -> M)

Teacher (F -> M) Secretary (F -> M) Receptionist (F -> M)

Figure 12: Qualitative visualizations of controlled Gender Reversal using ConceptPrune. M→F and
F←M indicate the removal of “male” generating and “female” generating neurons respectively. In
most cases ConceptPrune succeeds in reversing the gender of the individual.

Figure 14: Qualitative results for Object Erasure
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