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Abstract: We present a framework for robots to learn novel visual concepts and
visual tasks via in-situ linguistic interactions with human users. Previous ap-
proaches in computer vision have either used large pre-trained visual models to
infer novel objects zero-shot, or added novel concepts along with their attributes
and representations to a concept hierarchy. We extend the approaches that focus on
learning visual concept hierarchies and take this ability one step further to demon-
strate novel task solving on robots along with the learned visual concepts. To
enable a visual concept learner to solve robotics tasks one-shot, we developed two
distinct techniques. Firstly, we propose a novel approach, Hi-Viscont(HIerarchical
VISual CONcept learner for Task), which augments information of a novel con-
cept, that is being taught, to its parent nodes within a concept hierarchy. This
information propagation allows all concepts in a hierarchy to update as novel con-
cepts are taught in a continual learning setting. Secondly, we represent a visual
task as a scene graph with language annotations, allowing us to create novel per-
mutations of a demonstrated task zero-shot in-situ. We compared Hi-Viscont with
the baseline model (FALCON [1]) on visual question answering(VQA) in three
domains. While being comparable to the baseline model on leaf level concepts,
Hi-Viscont achieves an improvement of over 9% on non-leaf concepts on aver-
age. Additionally, we provide a demonstration where a human user teaches the
robot visual tasks and concepts interactively. With these results we demonstrate
the ability of our model to learn tasks and concepts in a continual learning setting
on the robot.

1 Introduction

Robots in a household will encounter novel objects and tasks all the time. For example, a robot
might need to use a novel vegetable peeler to peel potatoes even though it has never seen, let alone
used such a peeler before. Our work focuses on teaching robots novel concepts and tasks one-
shot via human-robot interactions, which include demonstrations and linguistic explanations. We
then want the robot to generalize to a similar but unseen visual task. A robotic system that can
learn generalizable tasks and concepts from few natural interactions from a human-teacher would
represent a large leap for robotics applications in everyday settings. In this work we aim to take a
step in the direction of generalizable interactive learning as demonstrated Fig. 1.

Previously, large image and language models have been extended to robotics to manipulate novel
objects, and create visual scenes [2, 3]. These methods recognize novel objects by using their under-
lying large language and visual models to extract task-relevant knowledge. However, they are not ca-
pable of learning to create a novel visual scene from an in-situ interaction with a human user. There
is also significant work in few-shot learning of visual concepts in computer vision [1, 4, 5, 6, 7, 8],
albeit without extensions to robotics domains. These approaches focus on learning novel concepts
for image classification, but ignore the fact that the novel concepts also bring new information to
update our understanding of concepts already known to the robot. The reverse path of knowledge
propagation, that is, from novel concepts to previously known concepts is equivalently important
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… I build 
the roof of 
the house 
with the 
yellow curve 
block 
because of 
its sheltering 
property.

(a)

This is the green curve 
block. It is green and has 
the property of sheltering.

(b)

Build the 
house with the 
green roof.

(c)

Figure 1: This figure demonstrates how Hi-Viscont learns from users interactively. (a) First the user
demonstrates a structure, say a “house,” with its sub-components such as its “roof” and the concepts
used to make the “roof” such as a “yellow curve block”. (b) The user then teaches a novel concept
such as a “green curve block” and describes its properties. (c) The user can now ask the robot
to create a new structure (“house with green roof”) zero-shot with the taught component without
explicitly asking for the object of interest.

in performing tasks in the real-life scenarios, especially when the agent has little knowledge of the
world and needs to continually add information to known concepts.

In this work, we propose a novel framework, Hi-Viscont, that enables robots to learn visual tasks and
visual concepts from natural interactions with a human user. We learn the task type and concepts
from users one shot, and then generalize to tasks within the task type zero-shot. We do this by
connecting our insights on one-shot visual concept learning and the use of scene graphs. The robot
learns the structure of a visual task by converting linguistic interactions with a human user into
a contextualized scene graph with language annotations. Moreover, Hi-Viscont updates parental
concepts of the novel concept being taught. Such updates allow us to generalize the use of the novel
concepts in to solve novel tasks.

The contribution of this work is listed as below:

1. We present visual concept results on VQA tasks that are comparable to the state-of-the-
art FALCON model. More specifically, Hi-Viscont improves on FALCON on all non-leaf
concepts across all domains with significance.

2. We enable the robot agent to learn a visual task from in-situ interactions with a scene graph,
allowing zero shot generalization to an unseen task of the same type, as demonstrated in
Fig 1.

2 Related Work

Language conditioned manipulation. Significant work exists in learning concepts and tasks for
robots in interactive settings even with the use of dialog [9, 10]. Our work differs from previous
works as it is attempting to learn visual concepts for manipulation one-shot, while updating other
known concepts to improve generalization. Moreover, our approach is completely differentiable and
can start with zero known concepts, which is important for a continual learning setup. Previous work
has focused on language conditioned manipulation [2, 11, 12, 3]. Shridhar et al. [2] computes a pick
and place location conditioned on linguistic and visual inputs. Liu et al. [11] focuses on semantic
arrangement on unseen objects. Ahn et al. [13], Brohan et al. [12, 3] train on large scale of linguistic
and visual data and can perform real-life robotic task based on language instructions, however our
work is focused on interactive teaching of tasks and concepts and not on emergent behaviors from
large models. Daruna et al. [14] learn a representation of a knowledge graph by predicting directed
relations between objects allowing a robot to predict object locations. To the best of the author’s
knowledge ours is the first paper that learns concepts and tasks one shot to generalize to novel task
scenarios on a robot making our contributions significant compared to other related works.

Visual reasoning and visual concept learning. Our work is related to visual concept learning [1,
15, 16, 17, 18] and visual reasoning [19, 20, 21, 22]. To perform the visual reasoning task, traditional
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Figure 2: We demonstrate the updates to the box embedding space and the parent concepts when a
novel concept is taught to our robot using Hi-Viscont. Existing approaches only edit the leaf nodes
as those represent novel concepts.

methods [19, 20, 21, 22] decompose the visual reasoning task into visual feature extraction and
reasoning by parsing the queries into executable neuro-symbolic programs. On top of that, many
concept learning frameworks [1, 15, 16, 17, 18] learn the representation of concepts by aligning
concepts onto objects in the visual scene. As far as we know, FALCON[1] is the most similar
work to our work in this line of research. However, when introducing a new concept, our work
continually updates the representation of all related concepts, whereas Mei et al. [1] does not, which
makes it ill-suited for continual learning settings. Our work is also related to the area of few-shot
learning [4, 8, 5], which learns to recognize new objects or classes from only a few examples but
does not represent a concept hierarchy which is useful in robotics settings.

Scene graph. Scene graphs are structural representations of all objects and their relationships within
an image. The scene graph representation [23] of images is widely used in the visual domains for
various tasks, such as image retrieval[21], image generation[24], or question answering[25]. This
form of representation has also used in the robotics domains for long-horizon manipulation [26].

3 Methods

We first present the baseline FALCON model and then introduce our Hi-Viscont model. We based
our model on concept learners as they can be taught concepts few shot, and they can reason over the
attributes of chosen (and their parent) concept classes. FALCON is the SOTA concept learner which
learns novel concepts one-shot.

3.1 FALCON

Mei et al. [1] developed FALCON, a meta-learning framework for one-shot concept learning in
visual domains. FALCON learns a new visual concept with one or a few examples, and uses the
learned concept to answer visual reasoning questions on unseen images. There are three components
for the FALCON model: a visual feature extractor that extracts the object-centric features for the
input image, a graph neural network (GNN) based concept learner, and a neuro-symbolic program
executor that executes the input neuro-symbolic program.

Natural language sentences describing objects and their queries are represented as structured neuro-
symbolic programs. FALCON learns novel concepts by interpreting the images presented and the re-
lationships between known concepts and the unknown concept being learned using a neuro-symbolic
program. After learning FALCON performs reasoning over questions, executed as neuro-symbolic
programs to answer questions about images.

FALCON uses a pre-trained ResNet-34 as visual feature extractor. The visual feature extractor
computes a feature for each object in a scene seperately, which can then be used for downstream
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visual reasoning. FALCON uses a box embedding[27] to represent concepts and their object visual
features.

Finally, the concept learning module of FALCON is composed of two separate Graph Neural Net-
works(GNNs), the relational GNN and the Example GNN. To predict a embedding for a novel con-
cept c, FALCON first samples random prior embedding as the representation for c from a Dirichlet
distribution. Then, FALCON updates the embedding of c by computing messages from parent nodes
based on their factor weights or relationship and also computing a message from the visual feature
(represented as a node within the Example GNN) for the concept being learned. This computed
representation for a novel concept c can then be used for VQA tasks.

FALCON has two major issues for interactive task learning on the robot. Firstly, FALCON lacks
scene information to solve tasks. We address this in our work. Secondly, FALCON assumes con-
cepts are learned perfectly and do not need to be updated as the model learns more concepts. For
example, when we teach FALCON the concept of “container” with an image of a “mug,” the repre-
sentation of the “container” will be initialized with the features of the “mug” image and will never
be updated thereafter. Even when we later teach the concept of “bowl” as a child to the “container”
concept, FALCON does not update the representation of the “container” concept with this newly
acquired knowledge and still wrongly assumes that a “container” must have the features of a “mug”,
for example a handle.

3.2 Hi-Viscont

We present our concept net model, Hi-Viscont (HIerarchical VISual CONcept learner for Task),
which actively updates the related known concepts when we introduce the novel concept to improve
upon FALCON’s generalization capabilities. We adopted several modules from the framework of
FALCON, including the visual feature extractor, the neuro-symbolic program executor, the box em-
bedding space, and the novel concept learner. Moreover, we introduce an additional GNN module,
Ancestor Relational GNN (ARGNN), that updates the related known concepts as a novel concept
is introduced. ARGNN predicts a new embedding for the related known ancestor concepts to the
novel concept. To do this update we compute a message from the visual feature of novel concept’s
instance to the embedding of the related nodes using the relations between the parent concepts and
the novel concept.

When a novel concept c is inserted to Hi-Viscont, the extracted visual feature oc of concept c and
its relations with known concepts Rc are fed to Hi-Viscont as input. Each relation rel = (c′, c, r),
where c′ denotes the related concept, and r describes its relationship with c. We compute embedding
ec for novel concept c using the same method as FALCON. Then, using the additional ARGNN, we
predict a new embedding for each related concept c′ by computing a message from the visual feature
oc to the current embedding of the related concept e0c′ using the same relationship rel. The formula
for this update is denoted as follows:

e1c′ = ARGNN(oc, rel, e
0
c′)

The resulted embedding e1c′ will be used as the representation for concept c′ for future task or
updates.

To provide gradient flow to train ARGNN, we extended the concept learning task proposed by
FALCON by adding validation questions for each related concept, that is when a new concept is
added all concepts in the concept net are tested for accuracy over the novel concept. For example,
from our previous discussion the newly inserted “bowl” concept’s object instance is checked with
the “container” parent to see if the presented “bowl” also tests as a “container.” A more detailed
description of our training pipeline and methodology can be found in the appendix.

While FALCON was evaluated solely on the newly inserted concept, we evaluate all concepts (leaf
and parent nodes) of our model on unseen images. Such an evaluation ensures consistency between
parent and child concepts which is a necessity in continual learning settings. This evaluation mech-
anism allows us to evaluate the quality for the embedding of all concepts in the resulted knowledge
graph, which is closer to how these knowledge are used in the real world setting.
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3.3 Learning Visual Task via Scene Graph

To learn a visual task from a single in-situ interaction with human user, we first convert the user’s
demonstration (Fig. 1.a) into an initial scene graph. Each node of the initial scene graph corresponds
to an object that the user placed, and it contains the bounding box information of the object and the
user’s linguistic description of the object. For each node of the initial scene graph, we also store the
positional relations w.r.t. other nodes, to allow for object placements when reconstructing the scene.
We mark a fixed location with black tape on the table, which serves as the origin and is treated as
the zeroth object. All other objects placed by the user will be to the top right of the origin.

Based on the initial scene graph and the user’s linguistic request for the desired variant of the visual
scene, we infer a goal scene graph modelled as a node-wise classification task. Since the variant of
the visual task from the user request share the same structure as the demonstration, the goal scene
graph is to have the same number of nodes as the initial scene graph.We take the user’s description
of the corresponding node of the initial scene graph ti and the user’s linguistic request of the variant
of the structure q as inputs, and perform a two-step inference: First we decide if the node in the goal
graph is different from the one in demonstration; Subsequently if the node is different we decide
which object satisfies the node location with another classification step.

To decide whether the concept of a node within the scene has changed given the user’s description
of the node and the user’s current request q we perform a binary classification at each node. The
result of this classification decides if we are changing a node’s concept or not. We use a pretrained
BERTbase model to encode the context request pair which is then fed into a multi-layer perceptron
(MLP) with a Cross-Entropy loss. The second step of the inference extracts the related concepts
from the context if the node’s concept needs to be changed as per the request. We convert the
concept extraction problem into a classification problem by providing concept candidates as a part
of the input again with BERT model and an MLP with a Cross-Entropy loss. The related concepts
of each node is fed as input for the concept net model to decide the object to pick, and the positional
relations with other nodes are used to compute the placement location. The robot will reconstruct
the scene following the order of the nodes. For each node, the robot picks the object according to
the concept net model. The placement location of each object is at a fixed distance to the direction
indicated by the relation with its closest neighbor that is placed. Pairing the concept net model with
scene graph, the robot is able to learn the placement of a scene in one single demonstration and
perform variants of the scene without demonstration.

3.4 Robotics Setup

We integrate our visual task learning and concept learning model with a Franka Emika Resarch 3
arm(FR3). This pipeline allows us to show the generalizability with which Hi-Viscont learns visual
concepts when compared to FALCON [1] in learning and solving novel tasks. To set this demonstra-
tion up we use a Franka Emika Research 3 arm (FR3), two calibrated realsene D435 depth cameras,
and a mono-colored table to allow for background subtraction. We use the SAM(Segment Anything
Model) [28] to separate the foreground and the background and get individual bounding boxes for
each of the blocks on the table. For pick and place initially, we experimented with Transporter
networks [29] but used a simpler Visuo-Motor Servoing mechanism for reliability. We expected
users to maintain about an inch of space between each object in the scene to allow the robot to pick
objects without collisions and for SAM to segment objects from the background accurately. In the
process of picking and placing if an error is made the robot recovers autonomously. Once the object
is grasped we then place the object into the Task scene, with the position calculated relatively with
respect to the previously placed object nodes or zeroth origin object. This process is done iteratively
until we have completed the whole scene graph.
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(a) CUB dataset (b) House domain (c) Zoo domain

Figure 3: Sample images from the three domains we are targetting in this work.

4 Results

In this section, we present results on concept learning on the visual question answering task on
three different domains. The experiment results demonstrates that our concept net model learns
better representation for concepts than our baseline model, and is more robust for continual learning
across all domains. Additionally, we present a demonstration of a human user teaching our system
visual concepts and visual task through interactions.

4.1 Domains

We first present experimental results on VQA tasks for three domains: the CUB-200-2011 dataset,
a custom house-construction domain with building blocks, and a custom zoo domain with terres-
trial and aquatic animals.

CUB-200-2011 dataset[30] is a standard dataset to demonstrate visual concept learning. It contains
11, 788 images for 200 bird classes. Using the following bird taxonomy[31], we added the hyper-
nyms of the bird classes and expanded the number of concepts to 365. Following the design of the
dense graph propagation [32], the relation of each concept includes all of its ancestors.

The house construction domain includes 31 types of building block objects. Each object has 10
different images. To introduce relations between concepts, we additionally introduced 6 different
concepts and 3 different affordances of objects. The dataset on the house construction domain
includes 310 images and 40 concepts in total.

The zoo domain includes 28 different types of objects. Similar to the house domain, we took 10
images for each object, and introduce 6 general concepts to introduce a hierarchy for the concepts.
The dataset on the zoo domain includes 280 images and 34 concepts in total.

We created the House-Construction and Zoo domains because they allow us to construct arbitrarily
hard tasks with different types of objects that a robot can grasp. Following FALCON’s data creation
protocol, we procedurely generate training and testing examples for each domain. We generate
descriptive sentences and questions based on the ground truth annotations of images and external
knowledge, which is the relationship between concepts. For all the descriptive sentences and the
questions, we also generate the corresponding neural-symbolic programs. We directly compared
our concept net model with FALCON on all three domains.

To demonstrate that Hi-Viscont is better for continual learning, we compare these models with no
pre-trained concepts. Results across the three datasets are obtained from different splits of concepts
and image. Images used for testing are never seen by the model in any phase of training for both
train concepts and test concepts. We present the standard deviation and the pairwise t-test result in
the appendix.

4.2 VQA Tasks
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Method CUB-200-2011 House Construction Zoo

Hi-Viscont 74.39±7.04 86.41±5.28 83.50±8.44
FALCON 73.40±5.77 87.17±4.17 85.12±6.64

Table 1: The average F1 score and standard devi-
ation of Hi-Viscont and FALCON on the test con-
cepts across all the three domains, each on five
different splits of concepts.

We evaluate the question-answer pairs for all
concepts for all the three domains on images
that are not shown in the pre-train or the train
phase. In Table 1, we present the results on
the VQA task for test concepts. Our model,
Hi-Viscont achieves comparable results to the
baseline state-of-the-art FALCON model on
test concepts in all three domains. Given that
in a concept network there are fewer parent concepts than leaf concepts the performance of both
models is comparable in such a general test case. However, when we split the concepts by their
depth in the hierarchy, Hi-Viscont shines and achieves a significantly better performance with the
parental nodes, which will be discussed by each domain separately.

Mtd. Species Genera Family Order Class

HV 87.1±2.0 90.4±0.6 90.7±1.7 92.0±0.8 95.9±8.2
FCN 86.5±1.4 88.2±1.0 84.3±1.4 84.3±3.2 99.3±1.0

Table 2: The average F1 score and standard de-
viation of Hi-Viscont (HV) and FALCON (FCN)
on the test set of the CUB dataset by the depth of
concepts in the hierarchy on five different splits.

CUB dataset: We present our results for con-
cepts by their level in the taxonomy in Ta-
ble 2. Hi-Viscont is better with significance
for concepts in the level of Genera(p < 0.001),
Family(p = 0.001), and Order(p = 0.001) ac-
cording to paired t-tests. Species are the leaf
level concepts where the models again perform
comparably as expected. This is because the
leaf level updates of Hi-Viscont and FALCON
do not differ significantly. As there is only one highest level ancestor for the Class with CUB there
is no negative example for it in the dataset leading to similar performance by both models as the
answer is always True.

Method Object Color Affordance

Hi-Viscont 88.46±1.58 99.24±0.70 89.86±9.12
FALCON 89.28±0.93 87.27±5.83 57.35±9.23

Table 3: The average F1 score and standard devia-
tion of Hi-Viscont and FALCON on the test set of
the our custom dataset of house construction do-
main by type of concepts on five different splits of
concepts.

House construction domain: In this domain,
the Color and Affordance concepts are non-leaf
nodes in the hierarchy, whereas the object con-
cepts are the leaf nodes. Following expecta-
tions, as demonstrated in Table 3, Hi-Viscont
has a comparable performance to FALCON in
the leaf node object concepts, while achiev-
ing significant improvements in both Color
(p = 0.005) and Affordance (non-leaf) con-
cepts (p = 0.002) according to the pairwise t-
tests.

Method Leaf Non-leaf

Hi-Viscont 87.93±3.40 85.84±5.79
FALCON 88.99±3.75 66.15±5.34

Table 4: The average F1 score and standard devi-
ation of Hi-Viscont and FALCON on the test set
of the zoo domain by type of concepts.

Zoo Domain In the zoo domain leaf concepts
are not at equivalent depths from the root node
forcing us to analyze the performance crudely
w.r.t. leaf and non-leaf nodes in Table 4. Again
Hi-Viscont achieves a comparable performance
at leaf level concepts, but becomes significantly
better than FALCON in the non-leaf concepts
(p = 0.001).

4.3 Demo

In addition to the VQA experiment results, we also present a demonstration of a human user teaching
visual tasks and visual concepts to the robot through in-situ interactions. The demonstration can be
found in the associated webpage 1.

1https://sites.google.com/view/ivtl
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5 Limitations

There are three major limitations in our work. Firstly, although that we test Hi-Vicont on a large
VQA dataset, we conducted our robotics demo of visual task learning only on the House domain,
which contains a small number of objects. We would like to increase the task complexity and the
number of objects available in the domain in the future. Secondly, the interaction between users and
the robots is controlled and not completely open and dynamic. Even though a fixed template for
their language is not required we ask the users to interact with the robot in specific ways. Finally,
a thorough human subject study is needed to measure the system’s capability of performing visual
tasks.

6 Conclusion

In conclusion, we present Hi-Viscont, a novel concept learning framework that actively updates the
representations of known concepts which is useful in continual learning settings such as robotics.
Hi-Viscont achieves comparable performance to SOTA FALCON model on VQA task across three
domains in leaf level concepts, and is significantly better on non-leaf concepts. Our model also
enables robots to learn a visual task from in-situ interactions by representing visual tasks with a
scene graph, which allows zero-shot generalization to an unseen task of the same type.
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Figure 4: We demonstrate how our pipeline decide the object to pick for one node in the scene
graph. We feed the node context and the request into a node classifier, which is composed of a
BERT encoder and a MLP layer, to decide which concept to pick up. In this example, the object for
node 5 is ”blue rectangular tile” because it is not mentioned in the request.

A Implementation Details

A.1 Node Classifier

Figure 4 describes the process of how our pipeline choose an object to pick. The inference is a two-
step process, both using a BERTbase model and a MLP layer, and taking the node context ti and he
linguistic request q as inputs. In the first step we use the BERTbase model and a MLP layer to decide
whether the node in the goal graph is different from the corresponding node in the demonstration.
Then we use another BERTbase model and MLP layer to extract the object from ti and q for this node
location.

In the example of Figure 4, we are trying to decide the object that should be placed in position 5.
Based on the node context t5 and the request q, the node classifier decides that node 5 in the goal
graph should remain the same as the demonstration. Then, we use the concept extractor to extract
the object from t5, and we found that the object that should be placed at node 5 is ”blue rectangular
tile”.

A.2 Training Pipeline

We explain our training pipeline in this section. The concepts from the dataset is divided into
three groups: Cpretrain, Ctrain and Ctest, where the pre-train concepts Cpretrain represent the pre-
existing nodes in the knowledge graph. The training of the concept net model is consists of three
stages, the pre-training for the visual feature extractor, the pre-training for the embedding of pre-train
concepts Cpretrain, and the training to update the knowledge graph with train concepts Ctrain.

Pre-training the Visual Feature Extractor. In the first pre-training stag, we generate a VQA
dataset on both the pre-train concepts Cpretrain and the train concepts Ctrain. The purpose of this
stage is to expose the visual feature extractor with a larger variation of visual features. We jointly
pre-train the visual feature extractor and the embedding for the pre-train concepts Cpretrain and the
train concepts Ctrain with the visual question answering task in this stage. After this pre-training
stage, the embeddings of all pre-train concepts and train concepts will be discarded.

Pre-training Pre-train Concepts. The embedding of pre-train concepts Cpretrain is obtained
through gradient descent in this pre-train phase. For this phase, we generate a VQA dataset on
the pre-train concepts Cpretrain only. After we warmup the visual feature extractor in the first
pre-training phase, we jointly train the visual feature extractor and the embedding for the pre-train
concepts in this phase using the same VQA task. This pre-training step is skipped under the setting
where the concept net has zero prior knowledge of the concepts, which is the setting of all of our
experiments.
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Training. After we have pre-trained the visual feature extractor and the embedding for the pre-
train concepts, we train the concept learner module during the training stage. We freeze the weights
of the visual feature extractor at this stage because otherwise the embeddings for the pre-train con-
cept will not be usable. Because we hope to train ARGNN to update the embedding for known
concepts with information from unseen instances, we have to reset the embedding for all the pre-
train concepts and train concepts,Cpretrain and Ctrain, after all the train concepts are inserted to the
network. After inserting all the concepts within the train set in the final round, we do not reset the
embedding for the train concepts and insert the concepts in the test set Ctest.

A.3 Training Configurations

In this section we describe the training configuration of the experiments for all the three domains.
During the training phase, the model completes one round of training if it finishes to insert all the
concepts in the training set once. For simplicity, we unify the steps of training with rounds of
insertion. For all the experiment results we report in this work, we adopted the configuration where
there is no pre-train concepts. As a results, the second phase of pre-training is skipped for all the
three datasets. For all the three domains, we train our model for completing the concept graphs 100
rounds, and the number of concept insertions varies depending on the split of the concepts. We start
the training with a learning rate of 0.001 and decrease the learning rate by a factor of 0.1 in every
25 rounds of completing the knowledge graph in the training stage. For CUB-200-2011 dataset, we
train our model for 50000 iterations with a batch size of 10. We use an Adam optimizer with learning
rate of 0.0001 in the pre-training phase of the visual feature extractor. For the house construction
domain and the zoo domain, we train our model for 5000 iterations with a batch size of 10. We
use an Adam optimizer with learning rate of 0.0001 in the pre-training stage of the visual feature
extractor.

A.4 Robot Setup

In this section, we describe the details for camera calibration. We need to calibrate cameras with
respect to the FR3 base frame. We take multiple pictures in different configurations of the FR3 end-
effector to which an acuro market is attached. This allows us to find a Transformation Matrix which
converts the coordinates from the camera frame to the Robot base frame. The place scene camera is
used to find the length of the object occupying the current node of the scene graph.

In this section, we describe how we compute the plcaement location for each object in detailed. SAM
is used to segment the objects placed in the place scene and find the bounding boxes of each placed
object which are also the nodes of our scene graph. This allows us to calculate the position of the
next object by finding the relative position of the next node with respect to the current object being
placed. , referencing the position of the node of the scene, and calculating the length of the bounding
box of the referenced node. we use a formula of shift = 1/2*max(bounding box of the referenced
node length)+50 pixel space Next node position= Relation to the reference node(Reference node
position,shift). The function relation to the reference node adds a shift to the reference node position
based on its relation to the next node. For example, it adds the shift only to the x coordinate if there
is ”to the top of” relation, or in the case of ”to the right of” relation, it adds only the y coordinate of
the current position. In our scene graph, we are able to identify ”to the top of ”, ”to the bottom of”,”
to the right of”,” to the left of”, ”to the top right of”,” to the top left of”,” to the bottom right of”, and
”to the bottom left of” relations.
The Segment Anything Model is capable of separating the foreground from the background. This
allows us to find the table mask and the segment of each object placed in the camera frame on the
table.
The flow of our pipeline requires us to first demonstrate the visual scene with all the objects placed
in the Task scene to make a structure with linguistic inputs. We have to make sure that the objects
are placed at a distance that allows SAM to create separate segment boxes for the objects. Then we
pass each segmented object to either FALCON or Hi-Viscont classifiers to classify conditioned on
the given language query. The robot then picks the object with simple visuo-motor servoing. by
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the node information of the scene graph. Once we find the object to be picked we then calculate
the center of the bounding box of that object and convert it to the Robot frame with the help of the
transformation matrix. If in the process there is an incomplete or erroneous grasp, we reattempt the
whole classification again autonomously. Once the object is grasped we then place the object into
the Task scene, with the position calculated relatively with respect to the previously placed object
nodes or the ground. This process is iteratively done until we have completed the whole scene graph.

B Detailed Results

In this section, we presents the statistic tests between Hi-Viscont and FALCON for all the three
domains.

CUB-200-2011. Results of paired t-test suggest that Hi-Viscont achieves higher F1 scores with
significance for concepts in Genera(p < 0.001), Family(p < 0.001), and Order(p = 0.005).

House Construction Domain. Results of paired t-test suggests that Hi-Viscont achieves higher
F1 scores with significance for color concepts(p = 0.005) and affordance concepts(p = 0.002).

Zoo Domain. Results of paired t-test suggests that Hi-Viscont achieves higher F1 scores with
significance for non-leaf concepts(p = 0.001).
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