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Abstract

We consider a semi-supervised Reinforcement Learning (RL) approach that takes
inputs from a perception model. Performance of such an approach can be signifi-
cantly limited by the quality of the perception model in the low labeled data regime.
We propose a novel iterative framework that simultaneously couples and improves
the training of both RL and the perception model. The perception model takes
pseudo labels generated from the trajectories of a trained RL agent believing that
the decision-model can correct errors made by the perception model. We apply
the framework to cryo-electron microscopy (cryo-EM) data collection, whose goal
is to find as many high-quality micrographs taken by cryo-electron microscopy
as possible by navigating at different magnification levels. Our proposed method
significantly outperforms various baseline methods in terms of both RL rewards
and the accuracy of the perception model. We further provide some theoretical
insights into the benefits of coupling the decision model and the perception model
by showing that RL-generated pseudo labels are biased towards localization which
aligns with the underlying data generating mechanism. Our iterative framework
that couples both sides of the semi-supervised RL can be applied to a wide range
of sequential decision-making tasks when the labeled data is limited.

1 Introduction

Decoupling representation learning or perception learning from Reinforcement Learning (RL) is
commonly used to improve performance in RL applications (Stooke et al., 2021). For example, the
idea of state abstraction for RL concerns learning a low dimensional state representation to deal
with a large state space (Jong and Stone, 2005; Abel et al., 2016; Raffin et al., 2018; Ho, 2019).
The success of decoupling perception learning from RL depends on the quality of the perception
model, which often requires a large amount of labeled data for training. In many realistic scenarios,
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acquiring fully labeled datasets is nevertheless costly and sometimes infeasible, while acquisition of
unlabeled data is relatively inexpensive. Such situations render semi-supervised learning (SSL) (Zhu,
2005) a natural choice for obtaining good perception representations with limited annotations for RL.
However, a naive application of SSL to perception models may not necessarily lead to promising
results for RL because a) the improvement of SSL in the case of a small number of labeled data can
be too subtle to facilitate RL; and b) the improved overall accuracy of the perception model may not
be directly relevant to better RL policies.

Interestingly, in many cases, an RL agent can provide useful feedback to the perception model through
the quality of sampled trajectories during learning. We investigate the idea of improving perception
modeling by RL under an SSL setting with limited labeled data and vice versa. We specifically
consider a family of navigation problems with the goal of discovering as many targets of interest
as possible. For example, Scavenger hunt (Yedidsion et al., 2021) trains a robot to search places
with high probability of finding the targets, and Fan et al. (2022) applies RL to optimize microscope
movement for efficient CryoEM data collection. The structure of such navigation problem permits
a straightforward approach to generates pseudo labels directly from current policies’ rollouts and
correct mistakes made by the perception model, as illustrated by the example in Figure 1.

Corrections by 
decision models

Targets

Misclassifications

Figure 1: A toy example of path plan-
ning, where the goal of the agent is to
find as many targets (squares) of inter-
est as possible for a given moving dis-
tance. A pretrained model is used to
separate targets from others (circle). Il-
lustrated is a trajectory planned by the
agent, along which some misclassified
squares (orange) by the model are cor-
rected.

In light of the intuition above, we propose to couple perception modeling and RL in an iterative
framework to mutually enhance each other in scenarios with label shortage issues. Specifically, the
RL agent gives helpful feedback to the perception model by generating pseudo labels through a
learned RL policy. The resulting improved perception representations, which, in turn, provide better
input to RL, lead to more effective RL policies. We alternate perception modeling and policy learning
iteratively to refine them for multiple rounds. Since both perception modeling and RL use labeled
and unlabeled data for training, we dub our approach SSL2-RL (SSL for both RL and perception
learning).

SSL has been applied to improve RL (SSL-RL) where the reward function can only be evaluated
in some settings but not all. For instance, Finn et al. (2016) uses unlabeled trajectories for a
better importance sampling estimator of a particular parameter in the entropy objective function.
Konyushkova et al. (2020) learns a reward function to annotate the trajectories without generating
new unlabeled trajectories to improve the reward function. Fu et al. (2017) learns a discrimination
model to discriminate the RL trajectories from the positive examples in a binary reward setup. The
major difference between our approach and SSL-RL is that SSL-RL studies how to enable better
reward modeling with unlabeled data while our approach focuses on exploring mutual benefits of
combining perception learning and RL for better decision making. To the best of our knowledge, the
latter has not been studied previously.

1.1 Related literature

Label Propagation. Label propagation propagates labels through a dataset along high density areas
defined by unlabeled data. It follows the intuition that close points should have similar labels. Zhu
and Ghahramani (2002) iteratively propagates labels using a linear combination of adjacent nodes
defined on a graph. Su et al. (2015); Vernaza and Chandraker (2017); Jabri et al. (2020) perform label
propagation through random walk. Our method can be seen as a special way of propagating labels
through a decision-making models, which incorporates both context information and the geometric
information. Cai et al. (2021) proposed to optimize the loss with a regularization on the inconsistency
over samples within the same neighborhood.
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Semi-supervised RL. Semi-supervised RL concerns the problem where the agent must perform
RL when the reward function is known in some settings, but cannot be evaluated in others. For
semi-supervised RL, a wide range of pseudo reward is generated. For example, Finn et al. (2016); Fu
et al. (2018); Singh et al. (2019); Konyushkova et al. (2020) learns a classifier for reward labeling
using a labeled dataset, which is applied to optimize a entropy-regularized objective for an unlabeled
dataset. Yu et al. (2022) states that a zero pseudo reward is sufficient for tasks using sparse reward
functions. Some other pseudo rewards are proposed using task-specific prior knowledge such as
distance to goals in goal-conditioned settings (Andrychowicz et al., 2017). In contrast to others,
some approaches directly imitate expert trajectories to achieve high-levels of performance without
requiring reward labels (Ross and Bagnell, 2012; Ho and Ermon, 2016).

Cryo-EM Data Collection. We have focused this work on addressing the issue of cryo-EM data
collection. Cryo-EM serves as a critical tool for determining the three-dimensional structures of
biological macromolecules. As such, cryo-EM is a powerful tool in the development of vaccines
and therapeutics to combat diseases such as COVID-19. Within weeks of the release of the genomic
sequence of SARS-CoV-2, cryo-EM determined the first SARS-CoV-2 spike protein structure (Wrapp
et al., 2020). Since this original publication, cryo-EM was used to determine additional SARS-CoV-2
structures such as spike protein bound to antibody fragments (Lempp et al., 2021; Scheid et al., 2021),
remdesivir bound to SARS-CoV-2 RNA-dependent RNA polymerase (Bravo et al., 2021; Yin et al.,
2020; Kokic et al., 2021), and reconstructions of intact SARS-CoV-2 virions (Yao et al., 2020; Ke
et al., 2020).

2 Problem formulation

We study the problem of training RL policies for navigation, where there are a large amount of
unlabeled data whereas very few labels are available for learning perception representations for RL.
We start by defining the RL environment, which consists of four major elements, i.e the state space,
action space, transition function and reward function. The state space is a set of tuples, where each
state is denoted by (s, x, y), where s ∈ S encodes the context information that uniquely identifies
each state, y ∈ {0, 1} is a binary label and, x ∈ X is the input feature that can be used to predict
y. Depending on the actual application, the context can be interpreted as the geometric information
that encodes the location of the state on a map. Whenever is clear from the context, we let y(s) be
the true label corresponding to the state s. At the step t the agent is provided with an action set At

and the next reward and state are sampled from the R : S × A 7→ [0, 1] and T : S × A 7→ S. We
consider a deterministic transition function. Throughout the paper, we consider a reward function that
is directly relevant to the labels, i.e., R(s, a) = 1(y(s) = 1) + c(s, T (s, a)), where c : S × S 7→ R
is a cost function. In the context of navigation problem, c prevents the agent from conducting large
movements.

We consider a semi-supervised learning scenario for both the perception model and Reinforcement
Learning. We are given both labeled and unlabeled dataset denoted by L = {si, xi, yi}NL

i=1 and
U = {si, xi}NU

i=1, respectively, where NL and NU are their sizes. The perception model is a mapping
f : X 7→ [0, 1] that predicts the positive label probability with input feature x. Note that we consider
a binary label for easier presentation, but our framework can be extended to the multi-class case.

2.1 Cryo-EM Data Collection

Cryo-EM is a key technique for structural biology that enables 3D structure determination of important
macromolecular complexes and membrane proteins Wrapp et al. (2020). Cryo-EM data collection
involves steering transmission electron microscopes hierarchically at different magnification levels
(as shown in Figure 2) to explore a grid with the goal of identifying and collecting high-quality
micrographs at high magnification. This sequential process includes several mechanical operations to
allow microscope navigation to different regions of a grid, namely grid switching, square switching,
and patch switching. An effective data collection session aims at finding a sequence of holes where
there is a considerable portion of high-quality micrographs. However, it is a highly involved and
time-consuming process that requires expertise and skills to make decisions at different levels of
microscope operations.

To mitigate the inefficiency in cryoEM data collection, Fan et al. (2022) proposed to train an RL agent
to automate this process. Their framework is called cryoRL, which first trains an image classifier.
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Figure 2: (a) (Figure 2 in Fan et al. (2022)) Overview of cryo-EM data collection. A purified sample
is prepared and vitrified on the support grid. The atlas image provides a low magnification overview
by stitching multiple "grid-level" images into a single montage. Next, users will select specific
squares to image at medium magnification. After inspection, the user selects "patch" areas on the
square to inspect holes with higher magnification, using the patch image to decide on holes to collect
for micrographs. The micrographs contain high-resolution images for downstream data processing.
(b) (Adapted from Li et al. (2022)) A trajectory collected by a trained RL policy (only for illustrative
purpose).

The predictions of the image classifier as well as the distributions of labels within each grid, square,
patch are used as features to train a DQN agent. They maximize the total number of high-quality
holes within a fixed budget of time, which cast a requirement on an efficient path that does not need
to steer the microscopes too frequently. A similar practice can also be found in Li et al. (2022).

CTF (contrast transfer function) is used to measure the quality of a hole. As a variable evaluated on
multiple micrographs for each hole, it is infeasible to obtain CTFs for all the holes in a dataset before
navigation. In practice, while a numerous number of samples are generated in daily data collection,
only a small proportion of them can be actually evaluated and labeled, which makes cryo-EM data
collection a perfect example to apply SSL approaches.

To fit cryo-EM data collection into the proposed problem formulation, we let each hole in the cryo-
EM data collection be a state in the problem state. A hole can be represented as {si, xi, yi}, where
si = (gridi, squarei, patchi) represents grid, square and patch indices of the i-th hole. xi is the
hole-level image of the i-th hole and yi represents the true quality of the hole.

3 Proposed method

We first discuss the training of the perception model and the RL model separately, before the iterative
algorithm that integrates the two models are presented.

Perception Model Training. The quality of the perception model determines the overall quality of
the RL agent. We propose to use the semi-supervised learning method, i.e. FixMatch (Sohn et al.,
2020). FixMatch adds an unsupervised loss that regularizes the inconsistency between the strongly
augmented and weakly augmented inputs from the unlabeled dataset. Recall that f : X 7→ [0, 1] is
the perception model. We let Pf : X 7→ [0, 1]2 be the predicted label distribution over {0, 1}. The
unsupervised loss is given by

lU (f) =

NU∑
i=1

1(max{Pf (x
w
i )} ≥ τ)H (Pf (x

w
i ), Pf (x

s
i )) , (1)

where xw
i , x

s
i are the weakly and strongly augmented inputs of the i-th input in unlabeled data, and

H is the entropy function between two distributions.

In the cryo-EM task, we solve a binary image-classification problem, using a CTF threshold 6. As
seen in Table 1b), the performance of a supervised model trained from the fully labeled dataset is
∼ 65% only, indicating the classification task is nontrivial. As shown in Fig. 6 of the Appendix C,
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with a cutoff threshold 6.0, many samples in the hole data lie around the threshold, suggesting that
the training data is quite ambiguous.

RL Policy Training. Since the labeled data can be highly limited and the training of RL is unstable
with a small number of observations, we train RL on both labeled and unlabeled data to utilize the
information from the unlabeled data. As the pretrained classifier can be seen as a prediction on the
reward function (without movement cost), it is natural to follow the commonly used approach that
generates pseudo rewards through predicted reward labels (Finn et al., 2016). Let the reward at step
t be r̃t = yt+11(st+1 ∈ L) + f(xt+1)1(st+1 ∈ U) − c(st, st+1). For instance, in cryo-EM task,
whenever a hole in L is visited, a reward is generated from the true labels. If the hole is unlabeled, a
pseudo reward is given by the predicted probability of being low CTF. Following Fan et al. (2022),
we add to the final rewards an extra cost function that penalizes large movements (See Appendix B).

For cryo-EM task, we define a duration function τ : S × S 7→ R, which measures the amount
of time it takes to move from one state to the other. The duration is directly associated with the
movement cost of the microscopy. We consider a constrained RL, which terminates an episode
whenever the cumulative duration τ(st, st+1) reaches a threshold τmax. With the pseudo rewards, we
train a regular offline DQN on the whole dataset (Van Hasselt et al., 2016) to optimize the following
objective function:

max

nl∑
l=0

r̃l s.t.
nl∑
l=0

τ(st, st+1) ≤ τmax, where nl is the index when terminated.

Pseudo Labels for Perception Models. Since we consider a navigation problem, where a visit on
a trajectory directly indicates the chance of finding a target of interest, we generate pseudo labels
straightly from the visiting orders of trajectories as opposed to other SSL-RL methods (Finn et al.,
2016; Fu et al., 2017). This approach allows us to back-propagate the geometric structural bias
learned by the RL agent to the perception model. Let (S1, . . . , SNU+NL

) be the sequence of states
the policy iterates until all the states are visited. For a given cutoff NC > 0, we label the first NC

states as positive while the rest of states negative. Note although we evaluate on the whole dataset,
we will only use the pseudo labels for unlabeled data. A visualization of the process can be found in
the right panel of Figure 3. As the starting point is chosen in a stochastic way, we evaluate the policy
for M independent times, which gives M pseudo labels for each state for a more robust labeling
process. Let the pseudo labels for the i-th state in the m-th run be Ȳim. Let the pseudo label Ȳi be the
majority of {Ȳi1, . . . , Ȳim}. We let the confidence of each pseudo label be pi =

∑M
m=1 Ȳim/M if

Ȳi = 1 and 1−
∑M

m=1 Ȳim/M if Ȳi = 0.
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Figure 3: An iterative semi-supervised framework for perception and RL models. On the round t,
the framework trains a RL agent πt+1 that takes the perception model ft as input. By evaluating the
agent t+ 1 on the unlabeled data, it generates a pseudo label for each visited state. The perception
model at the next step is trained on both labeled data and unlabeled data with pseudo labels.

Iterative Framework. Our main idea is to integrate RL and perception learning. We propose to
feed the pseudo labels back to the perception model. We fine-tune the pretrained classifier on the
whole dataset using both pseudo labels and true labels available. Each input in the unlabeled data is
sampled with a probability proportional to its confidence. Let CE : [0, 1]2 × {0, 1} 7→ R be the cross
entropy loss. The loss function of fine-tuning the perception model with soft pseudo labels from RL
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trajectories is then given by l(f) = lsup(f) + λlU (f), where

lsup =

NU+NL∑
i=1

pi CE(f(xi), Ȳi)1(si ∈ U) + CE(f(xi), yi)1(si ∈ L).

An overview of our propose method is given in Algorithm 1. The approach may not reach the best
performance in a single round. Thus, we repeat the process multiple times, and select the model with
the best validation performance as the final output.

Algorithm 1 Iterative framework for the joint training of the perception and RL models

Input: Labeled and unlabeled dataset L, U and the number of iterations K
Pretrain teacher classifier f0 on L and U using FixMatch .
for t = 1, . . . K do

Train RL on both L and U with pseudo rewards predicted by classifier ft−1.
Generate pseudo labels Ȳ1, . . . , ȲNL+NU

.
Fine-tune the classifier ft−1 with the pseudo labels which generates ft.

end for

4 Experimental results

In this section, we first introduce some implementation details, and then present the experimental
results on Cryo-EM dataset. Most of our implementations follow the setup in Fan et al. (2022).
We briefly go through some important details, while referring the readers to the Appendix B for a
complete setup.

Dataset. We experiment on a cryo-EM dataset called Y3 with 8653 holes over 9 grids, 58 squares,
and 771 patches. We split the dataset into training and validation datasets with 6489 and 2164
holes respectively. Each hole corresponds to a state in the environment. The feature information for
each state is the hole-level image observation. Note that the ground truth CTFs are valued by the
micrographs, which can not be accessed through hole-level images.

Perception Model. We train a ResNet-18 (He et al., 2016) to classify the hole-level images for the
perception model. Hyperparameters for FixMatch training is given in Appendix B.

Input Features to DQN. Apart from the hole-level predictions from the perception model, we add
the following features to encode the geometric information for RL policy training. For each of the
patch, square and grid, we compute the number of unvisited holes, unvisited low CTFs holes, visited
holes and visited low CTFs holes within the patch, square and grid, respectively. Additionally, we
have three dummy variables encoding whether the agent reaches a new patch, square or grid. During
the training, the features of the past three steps are concatenated as the input of DQN. We terminate
an episode whenever the duration, i.e. the cumulative sum of cost, reaches a certain threshold. Two
thresholds 120 and 480 are considered for RL training. We use a three-layered MLP model with
hidden sizes (128, 256, 128) and ReLU activation function for the Q-network.

4.1 Results

We experiment on 5%, 10% and 20% of the training data and conduct evaluation on the entire valida-
tion set. We compare our proposed approach with 3 baseline methods: a) the cryoRL method proposed
in Fan et al. (2022) based on a supervised classifier (SL); b) cryoRL based on FixMatch (FixMatch );
and c) cryoRL based on Iterative FixMatch that runs the exact same iteration approach as SSL2-
RL except that the pseudo labels are given by the perception model itself instead of RL. We evaluate
our proposed method for duration 120 and 480 minutes (i.e. SSL2-RL 120 and SSL2-RL 480),
respectively. For fairness, cryoRL is trained with both labeled and unlabeled data in all cases and
evaluated at a duration of 480. The RL rewards and the accuracy of the corresponding perception
models are presented in Table 1. For algorithms that do iteration, the best validation RL rewards and
the corresponding accuracy are presented. For reference, when the fully labeled dataset is used, the
classification model achieves an accuracy of 65.24%, and the best RL reward from cryoRL is 69.76.
With 5% of the labeled data, FixMatch improves the classification accuracy by 5% compared with
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supervised learning. By further increasing the labeled data to 10% and 20%, the improvement (∼ 1%)
becomes less obvious. Our proposed approach (SSL2 −RL480) consistently outperforms FixMatch
by ∼ 2% and is on par with the supervised model trained using 100% labeled data (65.24%). As a
comparison, iterative FixMatch performs only slightly better than FixMatch, clearly indicating the
effectiveness of incorporating feedback from RL into perception learning. A similar trend can also be
found in terms of the RL rewards (Table 1b), suggesting that RL benefit from improved classification
as well. Iterative approaches performs in general better than the non-iterative approaches. Never-
theless, SSL2-RL 480 still outperforms FixMatch +iteration. Indeed, we observe that pseudo labels
generated by the RL trajectories tends to have better precision score and general accuracy than the
perception models at the previous round as shown in Figure 4 (c-e).

Table 1: A summary of RL rewards and classification accuracy of compared methods. Table (a)
shows the classification accuracy for the perception model. For the iterative methods, we report the
results that reaches the highest RL reward over 10 independent runs. Table (b) shows the average RL
rewards and their standard deviation. Bold text marks the best RL rewards for each row.

(a) Classification accuracy

% of labels SL FixMatch Iterative FixMatch SSL2-RL 120 SSL2-RL 480
5% 0.5707 0.6229 0.6372 0.6423 0.6451
10% 0.6188 0.6303 0.6377 0.6480 0.6557
20% 0.6299 0.6382 0.6396 0.6502 0.6479
100% 0.6524 - - - -

(b) RL rewards

% of labels SL FixMatch Iterative FixMatch SSL2-RL 120 SSL2-RL 480
5% 59.55 ± 5.4 56.97 ± 3.2 62.33 ± 7.5 62.94 ± 4.6 61.62 ± 7.1
10% 50.96 ± 5.6 58.50 ± 5.5 61.95 ± 3.4 64.28 ± 8.5 65.73 ± 7.0
20% 56.76 ± 7.3 58.98 ± 3.5 65.77 ± 4.2 64.29 ± 8.2 67.28 ± 6.3
100% 69.76 ± 2.1 - - - -

Classification accuracy is not the best metric to reflect the RL performance. We further investigate the
precision score metric. Precision measures the number of true positive out of all the positive samples
predicted by the model. It is more consistent with the RL rewards since an episode is terminated at
duration of 480 minutes, which only allows the agent to visit a small number of holes. In Figure
4 (a), we observe significant increases in the precision score during the iteration, which marks the
overall improvement in the quality of the perception models, while the compared iteration method,
FixMatch +iteration does not show a similar improvement in the precision score during the iteration.
Another metric is to directly compare the number of low-CTF holes found by the trained RL agent.
As shown in Figure 4 (b) SSL-RL has the dominant performance over other methods at different
levels of percentages of labeled data.

5 Discussion and limitations

In this paper, we proposed SSL2-RL , an iterative framework that jointly learns the perception model
and decision-making model. We focus on the navigation problem, which allows us to connect the
learning of RL and that of the perception model by directly generating pseudo labels from trajectories.
The framework demonstrates a significant improvement over a pure RL method Fan et al. (2022)
on the cryo-EM data collection task. We then theoretically showed that RL with a penalty on large
movement induces bias towards localization on the pseudo labels, which may improve the quality of
the pseudo labels. A potential direction is to extend the framework to more general RL problems.
Currently our approach only applies to navigation problem where the orders of visiting in a trajectory
imply the labels for the perception learning. One potential way to generalize is to generate pseudo
labels from the learned Q function.
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Figure 4: (a) Changes in precision score over 10 rounds of iteration for SSL2-RL 480 and FixMatch +it-
eration for 10% of the labeled data. (b) The average number of low CTF holes found by the trained
RL agents within 480 duration for different methods under different percentages of labeled data. (c-e)
The quality of pseudo labels compared to the perception models.
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A Theoretical Understanding

In this section, we provide some theoretical insights into the benefits of our proposed method. A key
to understanding our problem is whether RL could generate better pseudo labels than the classifier
pretrained on the labeled dataset. Recall the pseudo label of the i-th state is denoted by Ȳi. We study
whether

∑NU

i=1 1(Ȳi = yi) ≥
∑NU

i=1 1(f(xi) = yi).

Benefits of RL label propagation. Pseudo labels from RL can be seen as a special way of doing
label propagation. As opposed to label propagation through random walk, RL navigate on the
map under the guide of the pretrained predictor. We understand the benefits of using RL for label
propagation in the following two ways.

First, RL agents are trained with additional geometric information. It is normally not easy for a
classifier to encode geometric information since most classifiers treats data i.i.d. For example, if
the input features are images, popular image classification models does not directly incorporate
dependence among images. Second, the movement costs added to the RL reward function induce bias
towards localization of the true labels, which may align with the true label generating process. To
this end, we use the example in Figure 5 to illustrate. The RL trajectory is able to correctly classify
cluster 4 (on the right panel), because starting from 3 RL tries to avoid large movements.
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Figure 5: An illustration of localization bias
from RL pseudo labels (adapted from Cai et al.
(2021)). The black lines represent the (equiva-
lent) decision boundaries of the pretrained classi-
fication model and RL. The numbers represents
the visiting orders. The equivalent decision func-
tion by RL achieves 100% accuracy due to the
localization.

Localization of RL-based Label Propagation. In this section, we rigorously discuss the localization
property of the train RL policy. To this end, we introduce some extra setups. We assume that the
marginal distribution of (s, x) is L for the labeled dataset and U for the unlabeled dataset. Let the
inconsistency rate between two predictors g1, g2 : S×X 7→ Y be EL(g1, g2) = Es,x∼L1(g1(s, x) ̸=
g1(s, x)).

In the literature, label propagation is given by regularizing the consistency across neighboring points.
Cai et al. (2021) proposes to solve the following optimization problem for a improved classifier f∗:

f∗ = argmin
f :S×X→Y

EL (f, ftc) s.t. RB(g) ≤ µ, for some µ > 0, (2)

where ftc is the pretrained classifier and the regularization is defined by

RB(f) = Ps,x∼ 1
2 (L+U) [∃s′ ∈ B(s) , s.t. f(s′, x) ̸= f (s, x)] ,

and B(s) is the neighboring of s. In practice, one optimizes its empirical version.

Now we define the object of RL training. For a trained policy π, let (S1, Y1, . . . , SNU+NL
, YNU+NL

)
be the trajectory of visited state and labels by evaluating π on the whole dataset. We aim at finding
the policy π that maximizes the regularized cumulative rewards up to step NC :

π∗ = argmaxπ

NU+NL∑
t=1

1(Yt = 1)1(t ≤ NC)− c(St, St+1)
2. (3)

Slightly abusing the notation, we let the equivalent decision boundary of a policy π by fπ : S ×X 7→
{0, 1}, such that fπ(s, x) = 1(t(s, π) ≤ NC), where t(s, π) is the step in which s being visited
by running policy π. We have the following lemma that proves the equivalence between the two
regularization.

2Note that we consider the policy running through the whole dataset even after it is terminated
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Lemma 1. Let {S1 . . . ,SB} be a B-partition of S , i.e. ∪B
b=1Sb = S and let P (s) be the partition s

belongs to. We define the neighbor function by the partitions, i.e. B(s) = {s′ ∈ S : P (s′) = P (s)}.
Then for all policy π, R̂B(fπ) ≤ C1

∑
t c(St, St+1) + C2, for some universal constants C1 and C2.

The equality holds, if π visits each partition at most twice.

Proof. We first rewrite the empirical regularization term:

R̂B(fπ) =

B∑
b=1

nb1(∃s1, s2 ∈ Pb, (π(s1)−NC)× (π(s2)−NC) < 0).

The cumulative penalty term are the total number of switches between partitions. For each partition,
whenever ∃s1, s2 ∈ Pb, (π(s1)−NC)× (π(s2)−NC) < 0, an extra switch is introduced. Thus we
have the first inequality:

NL+NU∑
i=1

c(Si, Si+1) ≥ B +

B∑
b=1

1(∃s1, s2 ∈ Pb, (π(s1)−NC)× (π(s2)−NC) < 0)

≥ B +
1

minb nb
R̂B(π).

The equality can be achieved when π visits the states in a cluster all at once unless some of them
have different labels.

Cai et al. (2021) shows that the improved classifier can achieve arbitrarily small classification error
even if the error rate of the pretrained classifier is high, which shows a potential benefits of regularizing
the inconsistency across samples that are closed. Lemma 1 indicates that the similar improvement
can be expected for RL based label propagation.

B Training Details

B.1 Details on reward function

We assign a positive reward 1.0 to the agent if an action results in a target hole with a CTF value less
than 6.0Å and 0.0 otherwise. The agent also receives a negative reward depending on the operational
cost associated with a hole visit. Let Ps,Qs,Gs be the patch, square and grid index of the hole s. In
the end, all the possible rewards and their corresponding conditions are given by

r (si, ai) =



1.0 if ctf (si+1) < 6.0 & Psi = Psi+1

0.57 if ctf (si+1) < 6.0 & Psi ̸= Psi+1
& Qsi = Qsi+1

0.23 if ctf (si+1) < 6.0 & Qsi ̸= Qsi+1
& Gsi = Gsi+1

0.09 if ctf (si+1) < 6.0 & Gsi ̸= Gsi+1

0.0 otherwise

where si+1 = T (si, ai).

B.2 Hyperparameters

There are three hyperparameters for the training of FixMatch . uratio controls the ratio between the
number of samples from labeled data and the number of samples from unlabeled data in each batch.
ulb_loss_ratio is the coefficient of the unsupervised loss. The two hyperparameters are set to 4 and
5.0 respectively. p_cutoff (τ in 1) controls minimum confidence it requires to be considered for the
unsupervised loss, which is set to 0.8.

The initial classifier is a Resnet 18, trained under learning rate 0.01 with a cosine learning rate
scheduler, dropout rate 0.5, batch size 64 for 200 episodes. The in-loop fine-tuning is trained with a
learning rate of 0.001 for 40 episodes.

The Reinforcement Learning model is trained with learning rate 0.001 and 500 steps per epoch for 10
epochs.
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C Additional Experimental Results

Though our problem is a binary classification problem, the target labels CTF are extremely noisy.
From Figure 6, we can see that many samples lie around the threshold 6, which is used to decide high
and low CTFs in this paper.

C.1 Dataset
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Figure 6: Histogram of the CTF scores over the whole dataset.

C.2 Model selection based on accuracy

In Table 1, we select model for iteration approaches based on their validation RL rewards. In this
section, we compare the model selected by the best accuracy. The results remains the same for most
of the cells.

Table 2: A summary of RL rewards and classification accuracy of compared methods. Table (a)
shows the average RL rewards and their standard deviation for different methods under 5%, 10%,
20% and 100% of labeled training dataset. Bold text marks the best RL rewards for each row. Table
(b) shows the classification accuracy for the perception model. For the iterative methods, we report
the results that reaches the highest RL reward over 10 independent runs.

(a) RL rewards

% of labels SL FixMatch FixMatch +iteration SSL2-RL 120 SSL2-RL 480
5% 59.55 ± 5.4 56.97 ± 3.2 62.33 ± 7.5 61.75 ± 6.9 61.62 ± 7.1
10% 50.96 ± 5.6 58.50 ± 5.5 59.32 ± 2.6 64.28 ± 8.5 65.73 ± 7.0
20% 56.76 ± 7.3 58.98 ± 3.5 65.77 ± 4.2 64.29 ± 8.2 67.28 ± 6.3
100% 69.76 ± 2.1 - - - -

(b) Classification accuracy

% of labels SL FixMatch FixMatch +iteration SSL2-RL 120 SSL2-RL 480
5% 0.5707 0.6229 0.6372 0.646 0.6451
10% 0.6188 0.6303 0.653 0.6480 0.6557
20% 0.6299 0.6382 0.6396 0.6502 0.6479
100% 0.6524 - - - -

C.3 ANOVA test

We run ANOVA test on the reduction of sum of squares of CTF scores at different magnification
levels.
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Table 3: ANOVA test on different magnification levels
Levels Sum of Square Cumulative df p-value
Grid 5393.9 116737 9 1.1e-16
Square 17167.2 111343 58 1.1e-16
Patch 31570.4 94175 771 1.1e-16
Hole 62604 62604 5997 -

C.4 Ablation study

In this section, we conduct experiments to characterize the proposed approach. We investigate
the following components including the choice of termination strategies, the importance of using
semi-supervised learning for RL, the essential of using cost penalty inside the iteration and the
performance of other RL methods.

Termination strategy. In table 1, we compare the results of iteration approaches that terminate when
the RL reward is the highest. One can also terminate when classification accuracy reaches the highest.
The results are given in Appendix C Table 2, which is similar to Table 1.

Without Semi-supervised RL. We use only 10% of the labeled data to train CryoRL policies in a
supervised way. Figure 7 (a) shows the change of RL rewards during a 10-round iteration. There is a
significant gap between semi-supervised RL and supervised RL that trains only on the 10% labeled
data. This strongly suggests that unlabeled data is beneficial for RL.

Without moving cost penalty. Though we will show later that the movement cost introduces a strong
bias towards localization, which may improve the quality of pseudo labels, we empirically investigate
the benefits of adding the movement penalty. We can see that the classification accuracy does not
increase. Figure 7 (b) shows the change of classification accuracy of SSL2-RL 480 for a 10-round
iteration on 10% data. We don’t see a significant increase in classification accuracy. It also performs
worse than the results reported in Table 1.
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Figure 7: (a) RL rewards for 10-rounds SSL2-RL 480 with policies trained by semi-supervised RL
and supervised RL, respectively. (b) Classification accuracy for 10-round SSL2-RL 480 without
movement penalty on 10% of labeled data.

Other RL models. DQN is used for decision-models in Table 1. We replace DQN with other
RL models, e.g. A2C (Rosenstein et al., 2004) and Rainbow (Hessel et al., 2018). Both A2C and
Rainbow are worse than SSL2-RL 480 using DQN, which is consistent with the observations in Fan
et al. (2022).

Table 4: Performances of Rainbow and A2C compared with DQN
Metrics SSL2-RL 120 SSL2-RL 480 Rainbow 480 A2C 480
Accuracy 0.6557 0.6480 0.6400 0.6430
RL rewards 64.28+9.5 65.73+7.0 62.80+3.1 61.80+5.7
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