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ABSTRACT

This paper demonstrates how time-constrained multi-robot task allocation (MRTA)
problems can be modeled as a Markov Decision Process (MDP) over graphs,
such that approximate solutions can be modeled as a policy using Reinforcement
Learning (RL) methods. Inspired by emerging approaches for learning to solve
related combinatorial optimization (CO) problems such as multi-traveling salesman
(mTSP) problems, a graph neural architecture is conceived in this paper to model
the MRTA policy. The generalizability and scalability needs of the complex CO
problem presented by MRTA are addressed by innovatively using the concept of
Covariant Compositional Networks (CCN) to learn the local structures of graphs.
The resulting learning architecture is called Covariant Attention-based Mechanism
or CAM, which comprises: 1) an encoder: CCN-based embedding model to
represent the task space as learnable feature vectors, 2) a decoder: an attention-
based model to facilitate sequential decision outputs, and 3) context: to represent
the state of the mission and the robots. To learn the feature vectors, a policy-gradient
method is used. The CAM architecture is found to generally outperform a state-
of-the-art encoder-decoder method that is purely based on Multi-head Attention
(MHA) mechanism in terms of task completion and cost function, when applied
to a class of MRTA problems with time deadlines, robot ferry range constraints,
and multi-tour allowance. CAM also demonstrated significantly better scalability
in terms of cost function over unseen scenarios with larger task/robot spaces than
those used for training. Lastly, evidence regarding the unique potential of learning-
based approaches in delivering highly time-efficient solutions is provided for a
benchmark vehicle routing problem – where solutions are achieved 100-1000
times faster compared to a non-learning baseline, and for a benchmark MRTA
problem with time and capacity constraints – where solutions for larger problems
are achieved 10 times faster compared to non-learning baselines.

1 INTRODUCTION

In multi-robot task allocation (MRTA) problems, we study how to coordinate tasks among a team
of cooperative robotic systems such that the decisions are free of conflict and optimize a quantity
of interest (Gerkey & Matarić, 2004). The potential real-world applications of MRTA are immense,
considering that multi-robotics is one of the most important emerging directions of robotics research
and development, and task allocation is fundamental to most multi-robotic or swarm-robotic opera-
tions. Example applications include disaster response (Ghassemi & Chowdhury, 2018), last-mile
delivery (Aurambout et al., 2019), environment monitoring (Espina et al., 2011), reconnaissance (Ol-
son et al., 2012) and combat Behjat et al. (2021). Although various approaches (e.g., graph-based
methods (Ghassemi et al., 2019), integer-linear programming (ILP) approaches (Nallusamy et al.,
2009; Toth & Vigo, 2014), and auction-based methods (Dias et al., 2006; Schneider et al., 2015)) have
been proposed to solve the combinatorial optimization problem underlying MRTA operations, they
usually do not scale well with number of robots and/or tasks, and do not readily adapt to complex
problem characteristics without tedious hand-crafting of the underlying heuristics. In the recent years,
a rich body of work has emerged on using learning-based techniques to model solutions or intelligent
heuristics for combinatorial optimization (CO) problems over graphs. The existing methods are
mostly limited to classical CO problems, such as multi-traveling salesman (mTSP), vehicle routing
(VRP), and max-cut type of problems. We specifically focus on a class of MRTA problems that falls
into the Single-task Robots, and Single-robot Tasks (SR-ST) class defined in (Gerkey & Matarić,
2004; Nunes et al., 2017). Based on iTax taxonomoy as defined in Gerkey & Matarić (2004), these
problems fall into the In-schedule Dependencies (ID) category. Here, a feasible and conflict-free task
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allocation is defined as assigning any task to only one robot (Ghassemi et al., 2019). For solving these
problems, we propose a new covariant attention-based model (aka CAM), a neural architecture
for learning over graphs to construct the MRTA policies. This architecture builds upon the attention
mechanism concept and innovatively integrates an equivariant embedding of the graph to capture
graph structure while remaining agnostic to node ordering. We implement CAM on an original
MRTA problem, a suite of benchmark MRTA problems and benchmark VRP problems to perform
generalizability, scalability and comparative analyses of the new method. We also perform an analysis
on the impact of the neighborhood size on the performance on the benchmark MRTA problem.

1.1 MULTI-ROBOT TASK ALLOCATION

In recent years, learning approaches based on Graph Neural Networks or GNN are being increasingly
used to solve planning problems with a CO formulation, e.g., TSP, VRP, Max-Cut, Min-Vertex, and
MRTA Kool et al. (2019); Barrett et al. (2019); Khalil et al. (2017); Kaempfer & Wolf (2018); Mittal
et al. (2019); Li et al. (2018); Nowak et al. (2017); Wang & Gombolay (2020); Tolstaya et al. (2020);
Sykora et al. (2020); Dai et al. (2017). Further details on these related learning-based studies can
be found in Appendix A. Some of the conventional ILP, MILP, and INLP based methods for MRTA
have been discussed in Appendix D.1. GNNs provide the advantage of being able to capture both
Euclidean features (e.g., task location), as well as non-Euclidean features such as task capacity, task
deadline and the local structure of task neighborhoods. The latter serves as higher-level meaningful
features that assist in generalized decision-making These existing studies are however limited in
three key aspects: 1) They address simplified problems that often exclude common real-world factors
such as resource and capacity constraints Kool et al. (2019); Kaempfer & Wolf (2018); Khalil et al.
(2017); Tolstaya et al. (2020)). 2) They are mostly focused on smaller sized problems (≤ 100
tasks and 10 robots) Paleja et al. (2020); Strens & Windelinckx (2005); Wang & Gombolay (2020);
Sykora et al. (2020), with their scalability remaining unclear. 3) They rarely provide evidence of
generalizing to problem scenarios that are larger in size than those used for training. This capability
would be particularly critical since real-world MRTA problems often involve simulating episodes
whose costs scale with the number of tasks and robots, making re-training efforts burdensome. To
address these gaps, here we propose a new learning framework that can solve large-sized MRTA
problems (SR-ST) with commonly considered constraints – involving up to 1000+ tasks and 200+
robots – and generalize across even larger problem scenarios without the need to re-train. For most
practical scenarios with larger number of locations, a highly optimal solution is not always desired,
while a good feasible solution is the priority as pointed out by Cappart et al. (2021). Therefore, to
enable scalable policies, we design a novel encoder based on the concept of Covariant Compositional
Networks (CCN) Hy et al. (2018), which is hypothesized to effectively combine local structural
information with permutation invariance. The encoder is followed by a decoder based on a Multi-head
Attention mechanism Kool et al. (2019); Vaswani et al. (2017) which fuses the encoded information
and problem/mission-specific information (Context) using simple matrix multiplication, in order to
enable decentralized sequential decision-making.

1.2 CONTRIBUTIONS OF THIS PAPER

The primary contributions of this paper can thus be stated as follows: 1) We formulate the general
SR-ST class of MRTA problems as a Markov Decision Process or MDP over graphs with the multi-
robot state information embedded as the context portion of the policy model, such that the (task
allocation) policy can be learned using an RL approach. 2) We design the GNN that acts as the policy
network as an encoder-decoder architecture, where the encoder is innovatively based on covariant
compositional networks (CCN), whose embedding capabilities significantly improve generalizability
and scalability to larger task graphs and multi-robot teams. 3) We implement an attention based
decoder (inspired by Kool et al. (2019)) to enable sequential decision-making, and specifically extend
it to a multi-agent combinatorial optimization setting. The proposed CAM architecture is evaluated
on a representative MRTA problem that involves coordinating a team of unmanned aerial vehicles
(UAVs) to time-efficiently deliver flood relief. The results of this case study demonstrate how CAM
clearly outperforms the state-of-the-art attention based method AM (Kool et al., 2019), in terms of
scalabilty and convergence, thereby emphasizing the effectiveness of the new encoder. Further case
studies show that CAM continues to compare favorably to AM over benchmark MRTA problems
(with time and capacity constraints) and CVRP problems. Comparisons to non-learning baselines
for these benchmark problems demonstrate the significant online computation advantages of learnt
policies, with the latter being 10-100 times faster. The remainder of the paper is organized as follows:
Section 2 defines the MRTA problem and its formulation as an MDP over graphs. Section 3 presents
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our proposed new GNN architecture. Section 4 describes simulation settings and different case
studies. Results are discussed in Section 5.

2 MRTA: PROBLEM DEFINITION AND FORMULATIONS

The multi-robot task allocation (MRTA) problem is defined as the allocation of tasks and resources
among several robots that act together without conflict in the same environment to accomplish a
common mission. The optimum solution (decision) of the MRTA problem is a sequence of tasks
for each robot (conflict-free allocation) that maximizes the mission outcome (e.g., fraction of tasks
completed) or minimize the mission cost (e.g., total distance travelled) subject to the robots’ range
constraints. Here, the following assumptions are made: 1) All robots are identical and start/end at the
same depot; 2) There are no environmental uncertainties; 3) The location (xi, yi) of task-i and its
time deadline τi are known to all robots; 4) Each robot can share its state and its world view with
other robots; and 5) There is a depot (Task-0), where each robot starts from and visits if no other tasks
are feasible to be undertaken due to the lack of available range. Each tour is defined as departing from
the depot, undertaking at least one task, and returning to the depot. 6) Motivated by the multi-UAV
relief delivery problem, tasks are considered to be instantaneous, which means that reaching the
waypoint associated with a task completes that task. This MRTA problem is a class of combinatorial
optimization problems, which can be modeled in graph space. In order to learn policies that yield
solutions to this CO problem, we express the MRTA problem as a Markov Decision Process (MDP)
over a graph, described next. The optimization formulation of MRTA is then given in Section 2.2.

2.1 MDP OVER A GRAPH

The MRTA problem involves a set of nodes/vertices (V ) and a set of edges (E) that connect the
vertices to each other, which can be represented as a complete graph G = (V,E). Each node
represents a task, and each edge connects a pair of nodes. Let Ω be a weight matrix where the weight
of the edge (ωij ∈ Ω) represents the cost (e.g., distance) incurred by a robot to take task-j after
achieving task-i. For MRTA with N tasks, the number of vertices and the number of edges are N
and N(N − 1)/2, respectively. Node i is assigned a 3-dimensional feature vector denoting the task
location and time deadline, i.e., di = [xi, yi, τi] where i ∈ [1, N ]. Here, ωij can be computed as
ωij =

√
(xi − xj)2 + (yi − yj)2, where i, j ∈ [1, N ].

The MDP defined in a decentralized manner for each individual robot (to capture its task selection
process) can be expressed as a tuple < S,A,Pa,R >. The components of the MDP can be defined
as: State Space (S): A robot at its decision-making instance uses a state s ∈ S, which contains the
following information: 1) the current mission time, 2) its current location, 3) its remaining ferry-range
(battery state), 4) the planned (allocated) tasks of its peers, 5) the remaining ferry-range of its peers,
and 6) the states of tasks. The states of tasks contain the location, the time deadline, and the task
status – active, completed, and missed (i.e., deadline is passed). Here we assume that each robot can
broadcast its information to its peers without the need for a centralized system for communication,
as aligned with modern communication capabilities Sykora et al. (2020). Action Space (A): The
set of actions is represented as A, where each action a is defined as the index of the selected task,
{0, . . . , N} with the index of the depot as 0. The task 0 (the depot) can be selected by multiple robots,
but the other tasks are allowed to be chosen once if they are active (not completed or missed tasks).
Pa(s′|s, a): A robot by taking action a at state s reaches the next state s′ in a deterministic manner
(i.e., deterministic transition model is defined). Reward (R): The reward function is defined as
−fcost, and is calculated when there is no more active tasks (all tasks has been visited once irrespective
of it being completed or missed). Transition: The transition is an event-based trigger. An event is
defined as the condition that a robot reaches its selected task or visits the depot location.

2.2 MRTA AS OPTIMIZATION PROBLEM

This MRTA problem is adopted from (Ghassemi et al., 2019; Ghassemi & Chowdhury, 2021) with
the following modification – payload constraints are not imposed on the robot. The exact solution of
the MRTA problem can be obtained by formulating it as an integer nonlinear programming problem,
which can be summarily expressed as:

min fcost = r − u(r)e−dr (1)

where r ∈ [0, 1] and u(r) =

{
1 if r = 0

0 otherwise
(2)
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subject to τ f
i < τi (3)
δij ≤ ∆k, k ∈ [1, Nr] i, j ∈ [0, N ] (4)

Here τfi is the time at which task i was completed, ∆k is the available range for robot k at any
point of time, and δij is the distance between nodes i and j. A detailed formulation of the exact
ILP constraints that describe the MRTA problem with range restrictions, multi-tours per robot and
tasks with deadlines, can be found (Ghassemi & Chowdhury, 2021). Note that, here we use a
slightly different objective/cost function to better reflect the generalized setting for the class of MRTA
problems with ferry-range and task-deadline constraints For compactness of representation, only the
main constraints involved in the studied MRTA problem are shown in the above set of equations. We
however consider all of the constraints, except the one related to payload capacity, as defined in the
work by (Ghassemi & Chowdhury, 2021); for detailed formulation of the MRTA problem, please
refer to (Ghassemi & Chowdhury, 2021).

Here, we craft the objective function (Eq. equation 1) such that it emphasises maximizing the
completion rate (i.e., the number of completed tasks divided by the total number of tasks); and if
perfect completion rate (100%) is feasible, then the travelled cost is also considered. The term of
1 − r is defined as task completion rate; i.e., the number of completed tasks (Nsuccess) divided by
the total tasks (N ) or r = (N −Nsuccess) /N . Here, dr is a normalized value of the total distance
travelled by all robots in the team. The term dr is the average travelled distance over all robots (i.e.,
dr =

∑Nr
i=1 d

total
i /(

√
2 N)). The terms Nr and dtotal

i represent respectively the number of robots
and the total traveled distance by robot-i during the entire mission. The above objective function
(Eq. equation 1) gives a positive value if the completion rate is lower than 100%, otherwise it gives a
negative value. Equation 1 ensures that the objective function is bounded in the range (−1, 1].

3 COVARIANT ATTENTION-BASED NEURAL ARCHITECTURE
For learning to work on the MDP defined over graphs in Section 2.1, we need to represent each
node as a continuous vector, preserving its properties as well as the the structural information of the
neighborhood of that node.

Task Graph

State

Greedy 
Policy

CAM: Graph Neural Network

Task Graph

Robot-1

Encoder

Context

Decoder argm
ax(𝑎

𝑖 )

1

2

3

4
Peers

Time

𝑡0

M
H

A

L
in

e
a
r

S
o

ftm
a

x

2

Action:

Selected

Task0.1

0.5

0.3

0.1

Greedy 
Policy

CAM: Graph Neural Network

Robot-2

Encoder

Context

Decoder argm
ax(𝑎

𝑖 )

1

2

3

4
Peers

Time

𝑡1

M
H

A

L
in

e
a
r

S
o

ftm
a

x

4

Action:

Selected 

Task0.3

0

0.2

0.5

(a)

(b)

Output: Prob. Of Selecting Task

State

Figure 1: Deployment of an MRTA policy using CAM archi-
tecture. a) Robot-1 at t0. b) Robot-2 at t1; here, the CAM
output for previously selected task (task 2 in (b)) is set at 0.

Before describing the technical com-
ponents of our proposed Covariant
Attention Mechanism, the so-called
CAM neural architecture, we provide
an illustration and summary descrip-
tion here of how this policy architec-
ture is used by robots or agents dur-
ing an SR-ST operation. The CAM
model for task allocation is called
by/for each robot right when it reaches
its current destination (task location
or depot), in order to decide its next
task or destination. While robots are moving toward their selected task locations, they can check if
their decision is conflicting with another robot based on recent information. If there is conflict, the
robot with the worst time can cancel its current task and select a new task. Since full-observability
is assumed across the multi-robot team and the policy-model execution-time is almost negligible,
the current setup is agnostic to whether the online CAM model is executed centrally off-board or
on-board each robot. As an example, Figure 1 illustrates how robot-1 and robot-2 uses the CAM
policy model to choose a task at two different decision-making instances (t = t0 and t = t1). Here,
the inputs to the CAM model includes 1) the task graph information, i.e., the properties of all the
tasks/nodes di and the computed weight matrix Ω, 2) the current mission time, 3) the state of robot-r,
and 4) the states of robot-r’s peers. The CAM model then generates the probability of selecting
each task as its output. A greedy strategy of choosing the task with the highest probability is used
here, which thus provides the next destination to be visited by that robot. It should be noted that the
probability values for completed tasks and missed tasks (i.e., missed deadline) are set at 0.

Figure 2 shows the detailed architecture of CAM. As shown in this figure, the CAM model consists
of three key components, namely: Context, Encoder, and Decoder. The context includes the current
mission time, the states of robot-r, and the states of robot-r’s peers. The state of a robot consists of
it’s destination x, y coordinates and the available range ρ. The encoder and decoder components are
described below.
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3.1 CCN-INSPIRED NODE ENCODER

Figure 2: CAM architecture with the information flow along the con-
text, encoder & decoder. The node are represented by the colored
circles, where the colors represents the time deadline. The robots are
represented by the pentagon shapes and the robot highlighted (green)
is the robot taking decision.

For learning over graphs,
the performance of the
trained model depends
mostly on the ability of
the Graph Neural Network
(GNN) to transform all the
required node information
into a feature vector or
tensor. For our case, apart
from the node properties,
some of the features that is
essential include a node’s
local neighborhood infor-
mation, and permutation
invariance. Using a node’s
local neighborhood infor-
mation which consists of
its association with its local
neighbors during training is
more beneficial than considering the association with the entire graph, for generalizing to unseen
nodes as demonstrated by frameworks like GraphSAGE (Hamilton et al., 2017), thus enabling the
GNN to generalize for problems with larger number of nodes without the need to re-train. The
encoder represent the properties of each graph node (preserving its structural information) into a
continuous feature vector of dimension dembed, which is fed to the decoder. Each node i, has three
properties which are the x-coordinate (x), y-coordinate (y), and the time deadline (τ ) of the task.
Note that our encoding mechanism can also be extended to a probabilistic scenario, for example
where an estimated deadline τ follows a probability distribution (common in disaster response
type operations). The encoding for each node should include its properties and the its positional
association with its neighboring nodes. We implement a variation of CCN (Hy et al., 2018). We
determine the nearest k neighbors of a node (Nbi) based on the positional coordinates (x and y).
The first step is to compute a feature vector by linear transformation for each node i. To encode the
node properties, we do a linear transformation of di to get a feature vector Fdi for all i ∈ [1, N ], i.e.,
Fdi = W ddTi + bd.

Here W d ε Rdembed×3, bd ε Rdembed×1, di = [xi, yi, τi]. For effective decision making, we also need
to preserve the structural information. Therefore we define a matrix FNbdi

as in equation 5.

FNbdi = Concat(Fdj ), j ∈ Nbi (5)

We compute a matrix FNbi (as shown in Eq. equation 6), which we believe captures the association of
a node with its local neighbours (one-hop neighbors) in terms of the node properties.

FNbi = WNb(FNbdi − Fdi) + bNb (6)

whereWNb εRdembed×dembed , bNb εRdembed×1. FNbi captures the information about how close the node
properties of neighbor nodes of node i is to itself, which shows a representation of how important
node i is to its neighbors. Further explanation regarding this design choice is discussed in Appendix
B and we strongly encourage the reader to go over the section.

We compute the final embedding for each node using Eq. equation 7.

Fi = Aggregate(Wf (Concat(F di , F
Nb
i )) + bf ) (7)

Here,Wf εRdembed×dembed , bf εRdembed×1. Thus finally we get an embedding Fi for each node, where
Fi ε Rdembed×1. W d, bd, WNb, bNb, Wf , and bf are learnable weights and biases. The Aggregate
function is the summation across all the columns of a matrix. This summation along with the relative
difference in node properties, as in Eq. equation 6, preserves permutation-invariance and the structural
properties (cognizance of inter-node distances for example) of the graph. Note that, these operations
make the encoded state w.r.t. a given node insensitive to the order of the neighboring nodes, and thus
the overall state space becomes independent of the indexing of tasks or to graph rotations. Equations
5, 6, and 7 represents a single layer of encoding. Multiple layers of encoding can be performed with
the output of the previous layer being the inputs to equations 5 and 6 in the next layer.
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3.2 ATTENTION-BASED DECODER AND CONTEXT

The main objective of the decoder is to use the information from the encoder and the current state
as context or query, and thereof choose the best task by calculating the probability value of getting
selected for each (task) node. In this case, the first step is to feed the embedding for each node (from
the encoder) as key-values (K, V). The keyK and value V for each node is computed by two separate
linear transformations of the node embedding obtained from the encoder. The next step is to compute
a vector representing the current state, also known as the context (as shown in bottom left of Fig. 2).
The context for the MHA layer in this experiment consist of the following seven features: 1) Current
time; 2) Available range of the robot taking decision; 3) Current location of robot taking decision; 4)
Current destination of other robots; 5) Available range for other robots all concatenated to a single
vector of length hq, which then undergoes a linear transformation to get a vector of length dembed
also called the query Q. Figure 2 illustrates the structure of the decoder.

Now the attention mechanism can be described as mapping the query (Q) to a set of key-value (K,V)
pairs. The inputs, which are the query (Q) is a vector, while K and V are matrices of size dembed×N
(since there are N nodes). The output is a weighted sum of the values V , with the weight vector
computed using the compatibility function expressed as:

Attention(K,V,Q) = softmax(QTK/
√
dembed)VT (8)

Here hl is the dimension of the key of any node i (ki ∈ K). In this work, we implement a multi-head
attention (MHA) layer in order to determine the compatibility of Q with K and V . The MHA
implemented in this work is similar to the decoder implemented in Kool et al. (2019) and Vaswani
et al. (2017). As shown in (Vaswani et al., 2017) the MHA layer can be defined as:

MHA(K,V,Q) = Linear(Concat(head1 . . . headhe)) (9)
Here headi = Attention(K,V,Q) and he (taken as 8 here) is the number of heads. The feed-forward
layer is implemented to further process the mapping that results from the MHA layer, and transform
it to a dimension that is coherent with the number of nodes in the task-graph (N ). The interjecting
batch normalization layers serve to bound values of a specific batch using the mean and variance
of the batch. The final softmax layer outputs the probability values for all the nodes. Here, the
next task to be done is then chosen based on a greedy approach, which means that the node with the
highest probability will be chosen. The nodes which are already visited will be masked (by setting
its probability as 0) so that these nodes are not available for selection in the future time steps of the
simulation of the multi-robot operation.
4 CASE STUDIES

We design and execute a set of numerical experiments described in Appendix D.3, to investigate the
performance of our proposed learning-based algorithm over graph space (CAM) and compare it with
1) an extended version of a state-of-the-art graph learning-based algorithm proposed by (Kool et al.,
2019), so called attention-based mechanism (AM) approach; 2) a recent bipartite graph matching
method BiG-MRTA (Ghassemi & Chowdhury, 2021); 3) a myopic baseline called Feasibility-
preserving Random-Walk (Feas-RND) that takes randomized but feasible actions (avoiding conflicts
and satisfying other problem constraints). Since the BiG-MRTA method has been shown to provide
near-optimal solutions in comparison to ILP (and competitive performance w.r.t. state-of-the-art
online MRTA methods) Ghassemi & Chowdhury (2021), it is used here to comparatively gauge
performance of AM and CAM. The Feas-RND method on the other hand provides a baseline that
AM and CAM should clearly surpass in performance (cost function), in order to demonstrate that
meaningful MRTA policies are being learnt as opposed to simply mapping random feasible actions.
5 RESULTS AND DISCUSSION

5.1 GENERALIZABILITY AND SCALABILITY ANALYSIS OF CAM
The CAM model has been trained on scenarios with 200 tasks and varying robot size (randomly a
robot size between 10 and 50 has been selected). Then, 100 test scenarios have been generated per
robot-task size from the same distribution of training scenarios. In this paper, generalizability refers to
the performance of the trained model on unseen test scenarios that involve the same (or lower) number
of tasks as in the scenarios used for training; and where the test and training scenarios are drawn from
the same probability distribution over task locations and deadlines. In this work, generalizability
was analysed on test scenarios with the number of tasks fixed at 50 and 200, drawn from the same
distribution over a 2D space, and number of robots fixed at 5 and 40. In this paper, scalability refers
to the performance of the trained model over test scenarios with higher (and increasing) numbers of
tasks and robots than that encountered in the scenarios used for training. Here, we analyze scalability
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by evaluating the CAM model on test scenarios with the number of tasks fixed at 500 and 1000,
and the number of robots fixed at 50 and 1000. The task-to-robot ratio is however kept the same
across the generalizability and scalability analysis cases, in order not to introduce another control
factor affecting the numerical experiments. To measure and compare performance, we use two
metrics: 1) Average cost function (Eq. 1): This metric accounts for the completion rate of tasks and
the total travelled distance, averaged over the set of test scenarios; and 2) Average computing time:
This measures how long each method takes to compute the entire solution, averaged over the test set.
The latter is particularly important to note in scalability analysis, since state-of-the-art non-learning
based MRTA methods scale poorly in terms of computing efficiency as numbers of tasks and robots
increases. Table 1: MRTA – Multi-UAV flood response: Generalizability: Task size

(up to 200) and number of robots (up to 40). Average cost function (with
the average computation time in seconds). Lower the better.

# of # of Avg. Cost Function (Avg. Computing Time in seconds)
Tasks Robots BiG-MRTA Feas-RND AM CAM

50 5 -0.27 (0.21) 0.27 (0.5) 0.07 (0.14) -0.03 (0.14)
10 -0.70 (0.20) 0.03 (0.3) -0.20 (0.15) -0.47 (0.16)

100 10 -0.47 (0.80) 0. 31 (1.2) 0.10 (0.33) 0.01 (0.32)
20 -0.72 (1.21) 0.05 (0.8) -0.16 (0.34) -0.50 (0.34)

200 20 -0.66 (4.72) 0.34 (1.9) 0.09 (1.34) 0.04 (1.21)
40 -0.74 (8.37) 0.05 (1.1) -0.07 (1.43) -0.45 (1.40)

Table 1 shows the cost
function (the lower the
better) for the unseen
test scenarios for both
AM and CAM. Note
that the cost function
(as defined by Eq.1)
for MRTA produces a
negative value when
the completion rate is
100%, while a positive value indicates a task completion rate below 100%. As it can be seen from
Table. 1 that the proposed CAM approach outperforms the AM approach in all the test cases by
achieving better mean values of the cost function, respectively. The CAM approach performs signifi-
cantly better than AM in terms of the cost function for the lower task-to-robot ratio (here, 5). Based
on table 1, the proposed CAM approach achieved a perfect completion rate for most of scenarios
with the task-to-robot ratio of 5. The local structure of the graph is not only important for effective
decision-making, but also expected to be shared across various problems settings drawn from the
same distribution, thereby promoting generalizability of policies when adequately captured.

Table 2: MRTA – Multi-UAV flood response: Scalability w.r.t. number of
tasks and robots; showing average cost function (and avg. computation time in
sec). Lower the better.

# of # of Avg. Cost Function (Avg. Computing Time in seconds)
Tasks Robots BiG-MRTA Feas-RND AM CAM

500 50 -0.73 (69.3) 0.34 (4.2) 0.10 (4.23) 0.07 (4.31)
100 -0.77 (135.3) 0.05 (2.6) -0.02 (4.29) -0.37 (4.71)

1000 100 -0.76 (595.4) 0.34 (8.7) 0.09 (19.22) 0.06 (19.05)
200 -0.76 (1420) 0.06 (5.4) 0.02 (20.00) -0.31 (20.03)

To investigate the
scalability of the
learnt model, we
use a new set of
unseen test scenar-
ios with numbers
of tasks and robots
much larger than
those of the scenar-
ios used in training (the latter involved 200 tasks). Table 2 shows the performance of the trained model
of CAM and AM in terms of the cost function (lower the better) for four large case studies, involving
500-tasks-50-robots, 500-tasks-100-robots, 1000-tasks-100-robots, and 1000-tasks-200-robots; for
each case, 100 randomly generated scenarios (i.e., task locations and deadlines randomized) are used.
As shown in Table 2, the proposed CAM method outperforms the AM method in all cases, with a
significant difference in the cost function for the case studies with the task-to-robot ratio of 5. In the
largest case (i.e., 1000-task-200-robot), the learnt model by CAM achieved a perfect completion rate
for most of the scenarios (Appendix E). It can be argued that, for time-critical problems such as MRTA
in disaster response, generating an optimal solution is less of a priority, compared to generating a
feasible near-optimal solution as quickly as possible; this capability of the learnt models in evident
from the results in Table 7 in Appendix E. BiG-MRTA requires a significantly larger computing time
for larger sized problem (see Fig. 5 in Appendix E.1). Comparison with the BiG-MRTA solutions
also indicate remaining scope of improvement for learning methods, in terms of distance travelled.

The comparison with Feas-RND shows how the learning method is markedly better than random
feasible myopic decisions, thereby indicating that meaningful MRTA policies have been learnt here,
as opposed to producing random feasible solution by virtue of the masked policy network design. In
the Feas-RND method, a robot takes a task-selection decision randomly from a feasible set of choices
that abide by all the constraints in the problems, e.g., related to inter-robot conflicts, task deadline
and robot range. As shown in Table 7, CAM achieves more than 92% task completion rate for all
the scenarios, which is found to be a 5%-30% gain in task completion rate over that achieved by

7



Under review as a conference paper at ICLR 2022

Feas-RND across these scenarios. The performance of CAM in terms of the task completion rate is
comparable to that of BiG-MRTA (which is slightly better), with the highest difference being 6.9%
for the 500-tasks-50-robots case. Note that CAM continues to be better than AM is all these cases as
well. Later in Section 5.2, we also compare the performance of CAM, AM, and BiG-MRTA on a
benchmark MRTA problem where the objective is just to maximize the task completion rate (hence
the cost function is not affected by distance travelled), where CAM proves to be highly competitive.

Ablation study: We performed two ablation studies (Appendix E.2) on CAM to understand the
importance of the novel encoder and the decoder (adopted from attention mechanism). In the first
ablation study, the CCN based encoding is replaced with simple feedforward layers (as explained in
Appendix E.2), with the decoder remaining the same. It should be noted that the node embedding
length (dembed), is the same for all the cases. In the second ablation study, the MHA based decoding
was replaced with simple feedforward layers and a softmax layer (as explained in Appendix E.2),
with the encoder remaining the same. As shown by Table 8, in both of the cases (i.e., with the encoder
and decoder respectively ablated), we observe a significant decrease in the performance across all
scenarios, with the maximum dip in the completion rate being 19.8% and 13.4% for the first and the
second study, respectively. Compiling the results from the first ablation study for the encoder and the
comparison of CAM with AM, we posit that the CCN based encoding, which is able to aggregate
local node neighborhoods while remaining agnostic to node ordering, clearly aids in providing better
policies. Similarly, from the second case of the ablation study, we can conclude the MHA based
decoding, which computes a compatibility of the current state information with the node information,
aid in learning better policies.
5.2 COMPARATIVE ANALYSIS ON BENCHMARK MRTA PROBLEMS AND CVRP PROBLEMS

MRTA - Task Allocation Problem with Time and Capacity (TAPTC): The CAM architecture is
implemented and tested on a well-known class of (NP hard) MRTA problems known as Task
Allocation Problem with Time and Capacity constraints or TAPTC, as described in Mitiche et al.
(2019). In TAPTC, each task i has a time deadline (ti) and workload (wi), and each robot has a
work capacity (cj). The time to finish task i by robot j is defined as wi/cj . We compare the results
of CAM on TAPTC with that of AM (Kool et al., 2019) and with those of the three non-learning
baseline methods, namely 1) Iterated Local Search (ILS) (Vansteenwegen et al., 2009), which uses a
meta heuristic approach, 2) Enhanced Iterated Local Search (EILS) (Vansteenwegen et al., 2009),
which has controlled runtime and perturbations (compared to ILS), and 3) Bi-Graph MRTA (BiG-
MRTA) (Ghassemi & Chowdhury, 2021)), which uses a bigraph construction and maximum weighted
matching approach. Further details of the TAPTC benchmark, the baselines used here, and the
changes made to CAM and AM for this case study are discussed in Appendix F. For the results
shown here, the CAM model is implemented such that k = 9 nearest neighbors are considered when
computing the embedding of each node of the task graph. The testing is performed for different
scenarios that are characterized by the number of robots and % of tasks having slack time deadline.
Mitiche et al. (2019) categorized the TAPTC problems into 2 groups based on the value of the high
deadline for the tasks. Table 3 here presents the results for group 2, with the group 1 results given in
Table 10 in Appendix F.4. In these tables, the scenario nomenclature is defined as: R75A5 denotes
R = 75% tasks have a normally-distributed time deadline and a team of A = 5 robots. Results
on the impact of neighborhood size (k) on CAM performance is also discussed in Appendix F.4.
Table 3 shows that for all scenarios with A = {5, 7}, CAM performs better than both AM and the
non-learning baselines in terms of task completion rate; and CAM achieves top performance for 50%
of the scenarios with A = {2, 3}.
Table 3: MRTA - TAPTC Group 2: Performance of CAM, AM and baselines in terms of average
completion rate. Bold style indicate the best value for the scenario. Higher the better.

Avg. Completion Rate
R25A2 R25A3 R25A5 R25A7 R50A2 R50A3 R50A5 R50A7 R75A2 R75A3 R75A5 R75A7 R100A2 R100A3 R100A5 R100A7

ILS 45.00 63.33 95.67 100.00 42.33 61.67 91.67 100.00 40.33 58.33 83.67 100.00 33.33 50.33 76.33 96.33
EILS 45.67 64.00 98.00 100.00 44.00 63.33 94.33 100.00 41.00 59.33 86.33 100.00 35.67 50.67 78.00 98.67
BiG-MRTA 46.00 65.67 90.67 98.33 45.33 63.67 87.33 96.67 42.00 57.00 79.00 95.00 34.33 50.00 73.00 91.67
AM 47.33 65.33 100.00 100.00 29.00 64.67 100.00 100.00 23.67 39.67 100.00 100.00 20.33 36.33 76.67 100.00
CAM(k=9) 53.00 78.67 100.00 100.00 45.67 74.33 100.00 100.00 31.00 55.00 100.00 100.00 29.33 45.33 99.67 100.00

Table 4: MRTA - TAPTC Group 2: Average computation time (in milliseconds) to generate the
entire solution for each scenario.

Avg. Computation Time
R25A2 R25A3 R25A5 R25A7 R50A2 R50A3 R50A5 R50A7 R75A2 R75A3 R75A5 R75A7 R100A2 R100A3 R100A5 R100A7

EILS 1233.33 678.33 1041.67 14.67 920.00 796.67 1010.33 23.33 1008.67 1714.67 2541.67 598.33 168.33 1791.00 1416.00 1005.33
BiG-MRTA 147.71 226.07 392.70 716.49 108.55 211.31 409.40 624.28 109.76 259.32 479.83 753.97 160.10 325.24 581.50 686.86
AM 96.60 93.48 94.15 94.31 93.33 93.67 94.14 94.15 94.39 102.23 93.97 93.46 95.59 114.82 106.12 105.07
CAM(k=9) 114.40 93.01 94.31 94.57 94.79 94.87 96.10 94.39 94.54 105.57 95.90 94.31 94.84 94.33 95.55 95.74
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A comparison of the computation time to generate the entire MRTA solution, shown in Table 4,
demonstrates the advantage of learning based methods over non-learning baselines as the problem size
increases w.r.t. the number of robots and tasks. Capacitated VRP: To demonstrate the versatility of
the proposed CAM architecture, we train and test the CAM and the AM architectures (for comparison)
on a benchmark variation of the Vehicle Routing Problem (VRP), known as the Capacitated VRP
(CVRP). The CVRP benchmark consists of N task locations, where a vehicle is required to visit
the locations and deliver packages in a manner that minimizes a cost function. We also use the Lin-
Kernighan heuristics (LKH3) solver (Helsgaun, 2017) and the Simulated Annealing (SA) algorithm
implementation provided by Google Operations Research (OR) tools as well-regarded non-learning
based baselines for comparing the results obtained by CAM and AM. Further details regarding
the CVRP problem, the baseline method, and settings changes for CAM and AM are presented in
Appendix G.1. Table 5 summarizes the results of all four approaches (i.e., AM, CAM, and Google
OR) on unseen scenarios for varying task size (# of locations) ranging from 50 to 1,000, in terms of
the cumulative computing time and the cost function (both as average values across scenarios of a
given size). LKH3 is a well known state-of-the-art method for solving CVRP problems and also has
the best performance (considering only cost and not run time). As shown in Table 5, the performance
of all methods except LKH3 are comparable for small sized problems (50, 100, and 200 locations or
tasks). As expected, the main advantage of the proposed CAM approach is apparent for the problems
with larger number of tasks (i.e., 500 and 1000 tasks), where the average cost function of the solutions
obtained by the CAM is significantly better (less than half of AM’s and one-third of Google OR’s).
In these larger-sized scenarios, the computing time performance of CAM is slightly better than that
of AM, and together AM and CAM are two orders of magnitude faster than SA (Google OR) and
LKH3 in generating the entire solution (sequence of tasks to be undertaken).

6 CONCLUSION
Table 5: CVRP: Comparison of average cost function (and average time
taken to generate the entire solution). Lower the better.

# OF AVG. COST FUNCTION (AVG. COMPUTING TIME)
TASKS LKH3 GOOGLE OR AM CAM

50 10.53 (46s) 11.3 (2s) 12.3 (0.04s) 12.2 (0.04s)
100 15.58 (60s) 17.6 (5s) 17.4 (0.09s) 17.9 (0.09s)
200 17.69 (86s) 21.3 (20s) 21.6 (0.18s) 21.8 (0.17s)
500 24.87 (123s) 54.5 (20s) 34.0 (0.53s) 29.1 (0.53s)
1000 28.67 (189s) 81.8 (200s) 64.1 (1.51s) 41.6 (1.49s)

In this paper, we
proposed a new GNN
architecture, called
CAM, for a multi-
robot task allocation
problem with a set of
complexities, includ-
ing tasks with time
deadline and robots with constrained range. This new architecture incorporates an encoder based
on covariant node-based embedding and a decoder based on attention mechanism. A simple RL
algorithm has been implemented for learning the features of the encoder and decoder. In addition, to
compare the performance of the proposed CAM method, an attention-based mechanism approach
(aka AM) has been extended to be able to handle a multi-agent CO setting problem, along with a
recent state-of-the-art method BiG-MRTA, and a mypoic baseline method Feas-RND. To evaluate the
performance of the proposed CAM architecture and the extended version of AM, they are trained
with the same settings. All the methods were tested on 100 unseen case studies. Performance
was analyzed in terms of the cost value and the completion rate. Our primary proposition, CAM,
outperformed AM and Feas-RND on test scenarios by achieving better cost function value, and
was also able to achieve high task completion rate (> 92%) for even larger sized problems without
the need to retrain, which is comparable to the near-optimal (but O(101 − 102) more expensively
computed) solutions by BiG-MRTA, thereby demonstrating the favorable scalability of CAM.
The computational cost analysis showed that the proposed CAM model takes a few milliseconds
to compute a decision, thereby providing clear advantage over non-learning based approaches to
MRTA in the context of online (time-sensitive) planning. Moreover, the advantage of using local
neighborhood information for node encoding can be seen in the scalability analysis on the MRTA
and CVRP, where CAM demonstrates superior performance when applied to graphs with larger
number of tasks/nodes. The ablation studies in Appendix E.2 showed the importance of the CCN
based encoding and the MHA based decoding used in CAM. A comparisons over a different suite
of benchmark MRTA problems showed that CAM was competitive w.r.t. standard non-learning
baselines including BiG-MRTA, in terms of task completion rate, while providing substantially
faster solutions compared to the latter. Lastly, a comparative analysis on different CAM models with
varying neighborhood size (while encoding) was performed (appendix F.6) to study the impact of the
neighborhood size k in the encoder. Based on Appendix F.6 (for MRTA-TAPTC), k is a trade off
between accuracy and computation time.
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Ethics statement: The work in this paper does not have any direct negative societal consequences.

Reproducibility statement: The CAM architecture which includes the encoder, decoder and the
context part, can be coded in any programming language by following the equations in section 3
and figure 2. The dataset for training the MRTA-Multi-UAV Flood response problem can be gener-
ated using the information in Appendix D.3. The codes for the AM method can be obtained from
https://github.com/wouterkool/attention-learn-to-route. The AM method
can be modified for solving the MRTA-Multi-UAV Flood Response problem using the information
from Appendix D.5. Both CAM and AM method can be trained using the settings in table 6. The
codes for the BiG-MRTA method and Feas-RND can be obtained from https://github.com/
adamslab-ub/BiG-MRTA. The training data for MRTA-TAPTC can be generated using the
information in Appendix F.5. Both CAM and AM can be modified using the information in Ap-
pendix F.2. Details on running BiG-MRTA for MRTA- TAPTC can be obtained from Ghassemi et al.
(2019) and the corresponding code from https://github.com/adamslab-ub/BiG-MRTA.
The EILS can be coded using the inforation in Mitiche et al. (2019). The test dataset can be ob-
tained from https://tinyurl.com/taptc15in. The CAM architecture can be modified
for CVRP using the information in Appendix G.1.1 and G.1.2. The codes for the AM method
and implementation for LKH3 can be obtained from https://github.com/wouterkool/
attention-learn-to-route. The google OR tools implementation can be done using the ex-
ample in https://developers.google.com/optimization/routing/vrp with the
dataset generated using the information in Appendix G.4.
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A LEARNING OVER GRAPHS

Neural network based methods for learning CO can be broadly classified into: (i) Reinforcement
Learning (RL) methods Kool et al. (2019); Barrett et al. (2019); Khalil et al. (2017); Strens &
Windelinckx (2005); and (ii) Supervised learning (often combined with RL) methods Kaempfer &
Wolf (2018); Mittal et al. (2019); Li et al. (2018); Nowak et al. (2017). The supervised learning
approaches typically address problem scenarios where samples are abundant (e.g., influence maxi-
mization in social networks Mittal et al. (2019)) or inexpensive to evaluate (e.g., TSP Kaempfer &
Wolf (2018)), and are thus unlikely to be readily applicable to solve complex problems over real-world
graphs. RL based techniques to learn on graphs include attention models with REINFORCE Kool
et al. (2019) and deep Q-learning Khalil et al. (2017); Barrett et al. (2019), among others, with some
extending solutions to multi-agent settings Jiang et al. (2020). In this work, we are interested in the
first class of the methods (i.e., RL methods over graph space).

Dai et al. Dai et al. (2017) showed that a combination of graph embedding and RL methods can be
used to approximate optimal solutions for combinatorial optimization problems, as long as the training
and test samples are drawn from the same distribution. Mittal et al. (2019) presented a new framework
to solve a combinatorial optimization problem. In this framework, Graph Convolutional Network
(GCN) performs the graph embedding and Q-Learning learns the policy. The results demonstrated
that the proposed framework can learn to solve unseen test problems that have been drawn from
the same distribution as that of the training data set. More importantly, it has been shown that
using a learned network policy instead of tree search, both methods are using the same embedding
GCN, showed a speedup of 5.5 for a problem size of 20,000 for influence maximization. Similarly,
the effectiveness of learning a network policy using Q-Learning to solve the Max Cut problem (a
combinatorial problem) has been demonstrated by Barrett et al. (2019).

Recently, there has been a growing interest in using sequence-to-sequence models (e.g., pointer
networks and attention mechanism) to encode and learn the combinatorial optimization problems in
graph space Kaempfer & Wolf (2018); Kool et al. (2019). Kool et al. Kool et al. (2019) implemented a
framework using an encoder/decoder based on attention mechanism and REINFORCE algorithm for
solving a wide variety of combinatorial optimization problems as graphs, with the main contribution
being flexibility of the approach on multiple problems with the same hyperparameters. Wang et
al. Wang & Gombolay (2020) showed how learning can lead to generate faster solutions than standard
exact methods for multi-robot scheduling problems. However, the size of the problem that has been
studied in that work and other similar studies Paleja et al. (2020); Sykora et al. (2020) is limited to 5
robots and 100 tasks, and only temporal constraints were considered. In this paper, we study larger
problems (up to 1000 tasks/200 robots) as well as include complexities such as time deadlines for
tasks, robot ferry range constraints, capacity constraints, multiple routes, etc. Graph learning has been
implemented for a multi-robot coverage problem in Tolstaya et al. (2020), which demonstrates good
scalability. However, this work is addressing a multi-robot exploration problem (and not MRTA),
and it is not clear how this proposed method can be applied to an MRTA problem with complexities
such as range constrain, capacity constraints, time extended tasks, multiple routes, etc. Apart from
CO problems, graph learning can also be used to perform path planning as demonstrated in Li et al.
(2020).

In this paper, a new neural architecture is proposed that combines the attention mechanism with
an enhanced encoding network (embedding layers), where the latter is particularly designed to
capture local structural features of the graph in an equivariant manner. The embedding layer is a
variation of Covariant Compositional Networks (CCN), introduced by Hy et al. (2018). CCN was
originally implemented for predicting molecular properties by learning local structural information
of the molecules. This node-based embedding has been chosen since it: i) operates on an undirected
graph; ii) uses receptive field and aggregation functions based on tensor product and contraction
operations (which are equivariant), which leads to a permutation- and rotation-invariant embedding;
and iii) provides an extendable representation (n-th order tensor representation can be useful to
extend the work to multi-level networks, e.g., involving multiple node properties). We found an
exact implementation of the CCN to be computationally burdensome for learning policies in large
MRTA problems, and hence a variation of the CCN is proposed in this work. An attention mechanism
has been successfully implemented for problems with sequential processes, e.g., Natural Language
Processing (NLP) Vaswani et al. (2017). Here we are interested in the attention mechanisms since
they involve simple matrix multiplications, which make them not only computationally inexpensive
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(by utilizing modern GPUs), but also programmatically easy to be implemented. In this work, we
implement an attention-based decoder for CAM as proposed in Kool et al. (2019); Vaswani et al.
(2017).

B EMBEDDING LOCAL STRUCTURAL INFORMATION

Local structural or neighborhood information of a graph node/ task refers to the association of the
node to its neighboring nodes. These information includes how the properties of the neighborhood
nodes differ from that of the node under consideration. It is this information that is being encoded in
the node embedding along with the information of the node properties di. The encoder should be
able to use this local structural information in order to scale to larger-sized problems as pointed out
by (Cappart et al., 2021). Here, we explain how local structural information is being encoded with
the help of two graphs, one which is small and the other is a larger graph but having some nodes
with similar neighborhood as shown in figure 3. Node A in graph G1, and nodes B, and C in graph
G2 have almost similar neighborhood. Here the local neighborhood information encoding of nodes
A, B, and C (which are FNbA , FNbB , and FNbC respectively) will be almost same, irrespective of the
size of the graph. Therefore by equation 6, ((FNbdA

− FdA) ≈ (FNbdB
− FdB ) ≈ (FNbdC

− FdC )) =⇒
(FNbA ≈ FNbB ≈ FNbC ). Even though the actual locations of nodes A, B, and C are different, their
association with it’s neighboring are almost the same, which is being captured by equation 6.

Figure 3: Node A belongs to a smaller sized graph G1, while B and C are nodes of a larger-sized
graph G2. Based on the relative positions of its neighbor nodes (represented by the dashed lines), and
the deadline of neighbor nodes (color of the nodes), A, B, and C has a similar neighborhood.

C LEARNING FRAMEWORK

Both the CCN-inspired encoder and the attention-based decoder consist of learnable weight matrices
as explained in Sections 3.1 and 3.2. In order to learn these weight matrices, both supervised and
unsupervised learning methods can be used. However, supervised learning methods are not tractable
since the computational complexity of the exact I(N)LP solution process required to generate labels.
The complexity of the ILP formulation of the MRTA problem scales with O(n3m2h2), where n, m,
and h represent the number of tasks, the number of robots, and the maximum number of tours per
robot, respectively Therefore, we use a reinforcement learning algorithm to conduct the learning.
Learning Method: In this work we implement a simple policy gradient method (REINFORCE) as
the learning algorithm with greedy rollout baseline, which also enables us to compare the effectiveness
of our method with that of (Kool et al., 2019). For each epoch, two sets of data are used which are
the training set and the validation set. The training data set is used to train the training model (θCAM)
while the validation data set is used to update the baseline model (θBLCAM). The size of the training data
and the validation data used for this paper is mentioned in section D.3. Each sample data from the
training and validation data-set consist of a graph as defined in Section 2.1. The pseudo code of the
training algorithm for our architecture is shown in Alg. 1 in Appendix E. It should be noted that the
policy gradient method requires the evaluation of a cost function, which is defined to be same as in
Eq. equation 1. Policy: We define the policy such that if the robot r does not satisfy the constraints in
Eqs. equation 3, it returns to depot (i.e., a = 0). Otherwise the robot r runs the learnt CAM network
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and chooses the output (task) based on a greedy approach (selects a task with the highest probability
value), as shown in Fig. 1.

Algorithm 1 Training Algorithm
Input: NE: Number of epochs, Nb: Number of batch, B: Batch size, Ntr: Training data size, Nvl: Validation
data size.
1: θCAM-RL - CAM-RL
2: θBL

CAM-RL - Baseline CAM-RL
3: for epoch = 1..Nepoch do
4: Dtr,Dvl ← GenerateScenarios(Ntr, Nvl)
5: Nb ← bNtr/Bc
6: for step = 1..Nb do
7: Dtr,b ← SampleRandom(Dtr,M) {Dtr,b: Batch Training Dataset}
8: aBL, fBL

cost ← CalculateCost(θBL
CAM-RL,Dtr,b)

9: a, fcost ← CalculateCost(θCAM-RL,Dtr,b)

10: ∇L ← 1
B

∑B
i=1(fcost,i − fBL

cost,i) log softmax(ai)
11: θCAM-RL ← ADAM(∇L, θCAM-RL)
12: end for
13: aBL

vl , f
BL
cost,vl ← CalculateCost(θBL

CAM-RL,Dvl)
14: a, fcost ← CalculateCost(θCAM-RL,Dvl)
15: if (

∑Nvl
i=1 f

BL
cost,i >

∑Nvl
i=1 fcost,i) ∧ (T-Test(avl,a

BL
vl ) > ε) then

16: θBL
CAM-RL ← θCAM-RL

17: end if
18: end for
19: CalcuateCost Procedure:
20: for i = 1..|D| do
21: ai, fcost,i ← Simulation(θ,Di)
22: a← a ∪ ai
23: fcost ← fcost ∪ fcost,i
24: end for
25: return a, fcost

C.1 SIMULATION AND FRAMEWORK SETTINGS

The ”Python” 3.7 and the 64-bit distribution of ”Anaconda 2020.02” are used to implement the
MRTA approaches. The environment, training algorithm, and the evaluation of the trained model, are
all implemented in Pytorch-1.5 for CAM and AM. The training, based on Pytorch, is deployed on
two GPUs (NVIDIA Tesla V100) with 16GB RAM.

D MORE DETAILS ON MRTA

D.1 CONVENTIONAL METHODS FOR MRTA

The MRTA problem can be formulated as an Integer Linear Programming (ILP), mixed ILP or
Integer Non-Linear Programming (INLP) problem depending on the application. When tasks are
defined in terms of location, the MRTA problem becomes analogical to the Multi-Traveling Salesmen
Problem (mTSP) (Khamis et al., 2015) and its generalized version, the Vehicle Route Planning
(VRP) problem (Dantzig & Ramser, 1959). Existing solutions to mTSP and VRP problems in the
literature (Bektas, 2006; Braekers et al., 2016) have addressed analogical problem characteristics
of interest to MRTA, albeit in a disparate manner; these characteristics include tasks with time
deadlines, and multiple tours per vehicle, with applications in the operations research and logistics
communities (Azi et al., 2010; Wang et al., 2018). ILP-based mTSP-type formulations and solution
methods have also been extended to task allocation problems in the multi-robotic domain (Jose &
Pratihar, 2016). Although the ILP-based approaches can in theory provide optimal solutions, due
to the NP-hard time complexity of the SR-ST problems (Mazyavkina et al., 2021; Archetti et al.,
2011), they are characterized by exploding computational effort as the number of robots and tasks
increases (Toth & Vigo, 2014; Cattaruzza et al., 2016). For example, for the studied SR-ST problem,
the cost of solving the exact integer programming formulation of the problem scales withO(n3m2h2),
where n, m, and h represent the number of tasks, the number of robots, and the maximum number
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of tours per robot, respectively (Ghassemi et al., 2019). As a result, most practical online MRTA
methods, e.g., auction-based methods (Dias et al., 2006) and bi-graph matching methods (Ghassemi
& Chowdhury, 2018; Ismail & Sun, 2017), use some sort of heuristics, and often report the optimality
gap at least for smaller test cases compared to the exact ILP or INLP solutions (where tractable).

D.2 MORE DETAILS ON ENCODING THE CONTEXT

As discussed in section 3.2, the context portion of while a robot r makes a decision, consists of 1)
Current time t; 2) Available range of the robot taking decision ρr; 3) Current location of robot taking
decision (xr, yr); 4) Current destination of other robots (xp, yp,∀ p ∈ Pr); 5) Available range for
other robots (ρp,∀ p ∈ Pr), where Pr represents the peers of robot r. Here, features 2 and 3 represent
the current state of the robot taking the decision, while features 4 and 4 represents the states of the
peer robots. The context feature vector can be computed as shown in Eq.10.

Q = Linear(Concat(t, Qr, QPr
)) (10)

where,
Qr = Linear([xr, yr, ρr] (11)

and
QPr

= Σp∈Pr
Linear([xp, yp, ρp]) (12)

The dimensions of Qr, and QPr
is dembed, and the length of the final feature vector Q is also

considered dembed. The summation aggregation operation in Eq.12, makes the context vector
agnostic to the number of robots.

D.3 DESIGN OF EXPERIMENTS & LEARNING PROCEDURES

To evaluate the proposed CAM method, we define an MRTA case study with varying number of
UAVs and 200 task (flood victims) locations. A 2D environment with 1 sq. km area is used for this
purpose, with the time deadline of tasks varied from 0.1 to 1 hour. The UAVs are assumed to have a
range of 4 km, and a nominal speed of 10 km/h. We assume instantaneous battery swap is provided
at depot location, which is used when UAVs return to depot since they were running low on battery.
It is important to note that the flood victim application is used here merely for motivation, and the
CAM architecture is in no way restricted to this application, but can rather solve problems in the
broad (important) class of capacity/range-constrained and timed task-constrained SR-ST problems.
Moreover, even the policies learnt here for CAM demonstration on the described case settings can
generalize to related SR-ST problems with up to 1,000 tasks, which represents a fairly large MRTA
problem in reference to the existing literature in the MR domain.

To perform learning and testing of the learned model, we proceed as follows: Learning Phase: We
use a policy gradient reinforcement learning algorithm (REINFORCE with rollout baselines in this
case) for learning the optimal policy. The learnable parameters in this architecture includes all the
weights in the encoder and the decoder. The training is carried out for a total of 100 epochs. Each
epoch consists of 10,000 random training samples, which are evaluated and trained in batches of 100
samples. Testing Phase: In order to provide a statistically insightful evaluation and comparison, the
models are tested for different cases of varying number of tasks and varying number of robots with
each case having 100 random test scenarios from training data distribution. Here, for each task in a
sample scenario, the location of the tasks, time deadline, location of the depot are all generated from
a random uniform distribution. More details on the learning framework is given in Appendix C. The
training and testing settings and the modifications to AM for MRTA are given in Appendix D.

D.4 BASELINES

BiG-MRTA: The BiG-MRTA algorithm Ghassemi & Chowdhury (2021); Ghassemi et al. (2019)
is an online method based on the construction and maximum weighted matching of a bipartite
graph. BiG-MRTA (Ghassemi & Chowdhury, 2021) uses a novel combination of a bipartite graph
construction, an incentive model to assign edge weights in the bigraph, and maximum weighted
matching (based on the Karp algorithm (Karp, 1980)) over the bigraph to allocate tasks to robots. This
method has been developed as an online solver for SR-ST type MRTA problems, where tasks have
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deadlines, new tasks could appear during the mission, and robots are subject to range and payload
constraints.

AM: The number of attention heads for the encoder is 8, with 3 layers of encoding. The node
embedding length is 128.

Feas-RND: In the Feas-RND approach, each robot randomly chooses available tasks that are feasible
to be undertaken by the UAV, satisfying all the constraints in section 2.2. The algorithm used for
Feas-RND can be found in (Ghassemi & Chowdhury, 2021).

D.5 MORE DETAILS ON TRAINING FOR MRTA

Learning Curve : In order to compare the convergence of the proposed CAM method with that of the
AM approach, we run both methods with similar settings and plot their learning curve (convergence
history), as shown in Fig. 4 in appendix D. As seen from this figure, the AM method took 3 epochs to
reach its best cost value and stagnated. On the other hand, the CAM method took 20 epochs to reach
the best cost value of AM and continued to improve up to∼24 epochs, leading to a significantly better
cost function value (f∗cost,CAM = −0.266) compared to AM (f∗cost,AM = −0.009). The stagnation
of AM could be attributed to direct implementation of the transformer network (Vaswani et al.,
2017), which was designed for machine translation and thus consists of multiple layers of Multi-head
attention. In contrast, our CAM model uses simple linear transformations of the node properties and
its relative differences in local neighborhoods to capture structural information.
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Figure 4: MRTA: Learning curve of CAM and AM for 200 tasks.

Modifications to AM: The attention-based mechanism (AM) reported by (Kool et al., 2019) has been
shown to solve a few different classes of single-agent/robot combinatorial optimization problems.
To be able to implement the AM method for our problem (for comparison with our CAM method),
the AM method is adapted to a multi-robot setting. For this purpose, we make the following three
changes to the AM method: (i) The node properties that are defined in Section 2.1 are used in AM;
(ii) The context for the attention mechanism is modified to be the same as that used for CAM; and
(iii) The cost function used for training is changed to that in Eq. equation 1.

We want to compare the structural representational quality of CAM and AM for generalizability and
scalabilty. Hence, for a fair comparison, both CAM and AM models were trained with the same
settings (Table 6 and14).

D.5.1 COMPUTING TIME (TRAINING AND EXECUTION)
Based on the epoch information in Section D.3, the average time to complete a training epoch
was found to be 19.50 minutes (i.e., ∼11.7 seconds per sample) for CAM and AM. The average
computing time (from Tables 1 and 2) taken by the learnt policies for producing the entire MRTA
solution (sequence of tasks assigned to each robot) was found to grow from 0.14 s to 20 s, as the
number of tasks grew from 50 to 1000, and thus remaining unprecedentedly attractive for real-time
decision-making even for large problems.

E MRTA – MULTI-UAV FLOOD RESPONSE: FURTHER RESULTS

E.1 TASK COMPLETION RATE AND COMPUTATION TIME

Table 7 shows the completion rate which corresponds to the test cases for generalizability (Table 1)
and the test for scalability (Table.2), respectively.
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Table 6: MRTA: Training algorithm settings for CAM and AM for MRTA-TAPTC

DETAILS AM CAM

Algorithm REINFORCE REINFORCE
Baseline Rollout Rollout
Epochs 100 100
# of tasks 200 200
Training samples 10000 10000
Baseline samples 1000 1000
Optimizer Adam Adam
Learning step size 0.0001 0.0001
Training frequency 100 SAMPLES 100 SAMPLES

Table 7: MRTA – Multi-UAV flood response: Comparison of CAM and AM on completion rate.
Higher the better.

# of # of Avg. Completion Rate
Tasks Robots BiG-MRTA Feas-RND AM CAM

50 5 96.82 63.85 89.8 92.8
10 99.88 93.54 98.0 99.2

100 10 99.15 64.45 91.8 92.5
20 99.98 94.04 98.0 99.8

200 20 99.91 65.06 93.85 95.05
40 100.00 94.59 98.65 100.0

500 50 99.93 65.18 92.64 93.00
100 100.00 94.16 98.42 99.92

1000 100 99.95 65.33 93.26 93.77
200 100.00 94.22 98.45 99.95
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Figure 5: MRTA-Multi-UAV flood response: Comparison of the average computation time in
seconds for CAM and BiG-MRTA, for the different scenarios. The x-axis denotes the different
scenarios. For example, T-50-R-5 corresponds to the scenarios with 50 tasks and 5 robots.

Figure 5, shows the comparison of the average computation time between CAM and BiG-MRTA. It
can be seen that, the computation time of BiG-MRTA increases exponentially as compared to that
of CAM. Even though the completion rate for BiG-MRTA is slightly greater than that of CAM as
can be seen from table 7, this advantage comes with a very high computational cost. This shows
the scalability of CAM to larger-sized problems. On comparing the cost function in tables 1 and
2, it can be seen that, compared to BiG-MRTA, the performance of CAM drops for scenarios with
higher tasks/robot ratios (such as 200-tasks-20-robots, 500-tasks-50-robots). However, this dip in
performance is marginal when comparing the task completion rate (in tables 7), with the maximum dip
in performance for CAM being 7.3% (between 100-tasks-10-robots and 100-tasks-20-robots). One
of the reason for this behaviour, is due to the cost function (Eq.1), where the distance minimization
is only taken into account when the task completion rate is 100%. Hence, we also compared the
performance of CAM, AM, and BiG-MRTA on a benchmark MRTA problem in section 5.2, where
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the objective is just to maximize the task completion rate, in which CAM demonstrates a superior
performance compared to the other methods.

E.2 ABLATION STUDIES

Table 8: MRTA – Multi-UAV flood response: Ablation studies. The performance is compared
with respect to the average cost function of 100 testing scenarios (with % task completion rate).
CAMEFF

: CAM model with CCN-based encoding ablated; CAMDFF
CAM model with AM based

decoding ablated

# of # of Avg. Cost Function (Avg. Completion Rate)
# tasks # robots CAM CAMEFF CAMDFF

50 5 -0.03 (92.8) 0.26 (73.0) 0.20 (79.8)
10 -0.47 (99.2) -0.07 (95.6) 0.07 (92.4)

100 10 0.01 (92.5) 0.26 (73.6) 0.19 (80.8)
20 -0.50 (99.8) -0.01 (96.0) 0.05 (93.3)

200 20 0.04 (95.0) 0.24 (75.5) 0.19 (81.6)
40 -0.45 (100.0) 0.04 (95.5) 0.06 (93.9)

500 50 0.07 (93.0) 0.23 (76.3) 0.19 (80.4)
100 -0.37 (99.9) 0.04 (95.1) 0.07 (92.9)

1000 100 0.06 (93.7) 0.12 (77.9) 0.18 (81.0)
200 -0.31 (99.9) 0.02 (95.0) 0.05 (94.0)

For Encoder: In order to study the true impact of the graph node encoding, we compared the
performance of CAM with it’s covariant based encoding removed to get a new model CAMEFF

. In
this case the, node encoding is performed using a simple feedforward network, following Eq.14. The
decoder for CAMEFF

is the same as that of CAM .

Fdi = W ddTi + bd (13)

Fi = WFFdi + bF (14)

where, di = [xi, yi, τi], ∀i ∈ V . W d, WF , bd, and bF are learnable weights and biases, where
W d ε Rdembed×3, bd ε Rdembed×1, and WF ε Rdembed×dembed , bF ε Rdembed×1

For Decoder: In order to study the impact of the MHA based decoder, we compare the performance
of CAM, with it’s decoder being replaced by a simple feedforward network to get a new model
CAMDFF

, which takes in the node embeddings and the context information, and computes the output
probabilities using the following equations. The encoder for CAMDFF

is the same as that of CAM .

PAct = softmax([PAct1 , . . . , PActN ]), (15)

PActi = LeakyReLU(W decConcat(Fi,Q)T + bdec), where i ∈ V (16)

Here W dec and bdec are learnable weights and biases, where W dec ∈ RN×2dembed and bdec ∈ RN×1.
Fi ∀ i ∈ V are the node embeddings from the encoder, and Q ∈ Rdembed is the context vector. The
value of dembed for both the models is the same as that of CAM in section 5. Both the models were
trained on the MRTA-Multi-UAV flood response problem in section 4, using the parameters in table
6, and tested on the same test scenarios as that used for CAM , AM , and BiG-MRTA, for varying
number of locations and varying number of robots (shown in table 8). The third and the fourth column
in table 8 shows the average cost function of 100 test scenarios, and it’s corresponding % completion
rate, for CAMEFF

and CAMDFF
ablation study, respectively.

As can be seen from table 8, the performance of both CAMEFF
and CAMDFF

is significantly
poor compared to CAM , in terms of both cost function and task completion rate. The performance
drop is more for scenarios with lower number of robots, with the maximum drop in task completion
rate being for CAMEFF

being 19.8% (for 50-tasks-5-robots), and for CAMDFF
being 13.4% (for

200-tasks-20-robots). It can also be observed that, the performance drop is greater for CAMEFF

than CAMDFF
, this indicates that the CCN-based encoder has a slightly more influence on the

performance, than the decoder.
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F MRTA - TASK ALLOCATION PROBLEM W/ TIME & CAPACITY (TAPTC)

F.1 PROBLEM DESCRIPTION AND FORMULATION

In order to assess the effectiveness of the CAM architecture for MRTA problems with time-extended
assignments, we test and validate our CAM on Task Allocation Problem with Time and Capacity
(TAPTC) benchmark problem Mitiche et al. (2019), which falls into the ST-SR-TA-TW (Single
Task robot, Single Robot task, Time-extended Assignment, TimeWindows). The TAPTC involves
task locations within a 100 × 100 grid map, with each task i having a time deadline ti, and also a
workload wi. Each robot j has a work capacity of cj . All the robots move with a maximum speed of
1 unit per second. A task i is considered to be completed only if a robot j visits node i and spends a
time of wi/cj . Each scenario is generated based on a uniform distribution reported in Mitiche et al.
(2019) and the training samples for our models are generated from the same distribution.

For evaluating the performance of the learned model and conducting a comparative analysis, we use
the TAPTC dataset (accessible from http://tinyurl.com/taptc15in. This dataset consists
of test cases with 100 tasks and varying number of robots (A = 2, 3, 5, 7 robots), and the speed of
every robot is considered to be the same (1 unit per second). The test cases can be divided equally
into two groups, based on tight deadlines (Group 1) and slack deadlines (Group 2). Each group can
be further divided into 4 sub-categories based on the fraction of tasks (R = 25%, 50%, 75%, and
100%) that have normally distributed task deadlines. For example, 25% indicates that there are 25
tasks with deadlines normally distributed between the limits tlow and thigh, while the remaining 75
tasks have a deadline of thigh. For group 1 (tight deadline), the value of thigh is considered as half
as that for group 2 (tight deadline). In both the groups, for all values of A and R, there will be 3
samples. Therefore the total number of test cases is given by number of groups × |A| × |R| ×
3) = 96, where each group has 48 test cases. Further description of the test cases can be found in
Mitiche et al. (2019).

The exact solution of the MRTA-TAPTC problem can be obtained by formulating it as the following
integer non-linear programming (INLP) problem:

min fcost =

N∑
i=1

ri,

{
ri =

τf
i

τi
, if τfi > τi

0, otherwise
(17)

subject to

si ∈ S ∀ i ∈ [1..N ] (18)
si 6= sj ∀ i 6= j (19)

Here, N is the number of tasks/nodes, τfi is the time at which task i was completed, τi is the time
deadline of task i, and S = [s1, s2, ...sN ] is the sequence of all the nodes that were visited. The
minimum cost function that can be achieved using Eq. 1 is 0, which corresponds to the case where all
the tasks are successfully completed. A detailed formulation of the exact ILP constraints that describe
the MRTA-TAPTC problem can be found in Mitiche et al. (2019). Note that, in our paper we use
a slightly different reward function as compared to the objective function in Mitiche et al. (2019),
but the intention of both the functions are essentially the same, which is to maximize the number of
successfully completed tasks.

Here, we craft the objective function (Eq. equation 17) such that only missed tasks (τfi > τi)
contribute to the cost function. It is important to note that the objective function can be tailored
according to the priority of the problem. Since the main priority in Mitiche et al. (2019) is to maximize
the number of successfully completed tasks, the objective function (Eq. 17) also prioritizes task
completion for a fair comparison with the baseline methods. The constraints in Eq. 18 and 19 are
such that each tasks must be visited exactly once by any robot.

F.2 MODIFICATIONS TO CAM AND AM

1. Change in encoder: The encoder for MRTA-TAPTC problems consider additional node properties,
namely the location of the tasks (xi, yi), the time deadline (τi), and the workload wi, i.e., di =
[xi, yi, τi, wi].
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2. Change in context: The context for the MHA layer in the decoder consists of the following five
features: 1) elapsed mission time; 2) Work capacity of the robot taking decision; 3) Current location
of robot taking decision; 4) Current destination of peers; and 5) Work capacity of peer.

3. Cost function: We use Eq. 17 as cost function.

The decoder need no change in this case.

F.3 BASELINE METHODS

We consider three non-learning methods, which are i) Iterated Local Search (ILS), ii) Enhanced
Iterated Local Search (EILS), iii) Bi-Graph MRTA (BiG-MRTA), which are briefly described below.
The learning based baseline method we implemented here is AM with minor modifications as also
discussed below.

i) Iterated Local Search (ILS): This is an online meta heuristic iterated search algorithm Vansteen-
wegen et al. (2009), where the output of one iteration is partially used as the input to the next iteration.
During each iteration, the best solution is improved by a perturbation step, followed by a local search.

ii) Enhanced Iterated Local Search (EILS): EILS is also an online meta heuristic iterated search
method Mitiche et al. (2019), with an improved perturbation step as compared to Vansteenwegen
et al. (2009).

iii) Bi-Graph MRTA (BiG-MRTA): The BiG-MRTA algorithm Ghassemi & Chowdhury (2021);
Ghassemi et al. (2019) is an online method based on the construction and maximum weighted
matching of a bipartite graph. BiG-MRTA (Ghassemi & Chowdhury, 2021) uses a novel combination
of a bipartite graph construction, an incentive model to assign edge weights in the bigraph, and
maximum weighted matching (based on the Karp alogirthm (Karp, 1980)) over the bigraph to allocate
tasks to robots. This method has been developed as an online solver for SR-ST type MRTA problems,
where tasks have deadlines, new tasks could appear during the mission, and robots are subject to
range and payload constraints.

iii) AM: The AM implementation is almost the same for the MRTA-TAPTC problem as that im-
plemented for the multi-UAV flood response problem in section D.3. In addition, the changes
implemented in CAM, as explained in Section F.2, are also applied here. The number of attention
heads for the encoder is 8, with 3 layers of encoding. The node embedding length is 128.

Both CAM and AM are trained using REINFORCE as described in algorithm 1 using the settings
given in Table 9.

Table 9: MRTA - TAPTC: Settings for model training for all CAM models and AM

DETAILS VALUES

Algorithm REINFORCE
Baseline Rollout
Epochs 100
# of tasks 100
Training samples 500,000
Baseline samples 10,000
Optimizer Adam
Learning step size 0.0001
Training frequency 500 SAMPLES

F.4 RESULT AND DISCUSSIONS

Tables 3 and 10 summarize the performance of CAM alongside the baseline methods, in terms of
the average completion rate, i.e, the ratio of the number of successfully completed tasks to the total
number of tasks averaged over 3 samples for all the scenarios (denoted by A and R). The CAM
model here uses k = 9, where k represents the number of nearest neighbors considered for a node
for computing its node embedding. For group 1, the CAM model was able to generate the best
results for 8 out of the 16 different scenarios (Table 10). From Table 10, it can be inferred that CAM
has a superior performance compared to the baselines for cases with larger number of robots (best
performance for all cases withA = 7, and for 3 out of 4 scenarios withA = 5), including a maximum
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margin of 19% for R75A7 compared to the next best solution (EILS). While for cases with smaller
number of robots (A = {2, 3}), CAM achieved the best performance for one scenario (R25A3), with
the worst performance having a margin of only 7% (scenario R75A3) compared to best performer
(EILS) in that case.

For group 2, CAM achieves top performance for all scenarios with A = {5, 7}, while achieving top
performance for 50% of the scenarios with A = 2, 3, as discussed in Section 5.2 of the main text.

Tables 11 and 4 gives the average computation time (in milliseconds) to generate the entire solution
for all the methods. As it can be seen from these tables, for the non-learning methods EILS and
BiG-MRTA, the general trend is an increase in the computation time with increasing number of
robots, while for both the learning-based methods (CAM and AM) the computation time increases
marginally with increasing number of robots.
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Figure 6: MRTA-TAPTC: Learning curve of all CAM models and AM model.

F.5 MORE DETAILS ON TRAINING DATASET FOR MRTA-TAPTC

Each training sample has 100 tasks, and are located randomly within a 100 × 100 grid map. Each
task i has a time deadline 50 ≤ τi ≤ 600, and a workload 10 ≤ wi ≤ 30. Each sample has nr
number of robots where 2 ≤ nr ≤ 7. The initial positions of the robots in a sample is also chosen
randomly within the grids. Each robot j has a work capacity of cj where 1 ≤ cj ≤ 3. All the robots
move at a speed of 1 unit. A task i is considered to be completed only if a robot j visits node i and
spends a time of wi/cj . All the training samples are generated such that all the associated variables
(mentioned above) follow a uniform distribution within their respective bounds.

Table 10: MRTA - TAPTC Group 1: Performance of CAM, AM and baselines in terms of average
completion rate. Bold font values indicate the best performer for the corresponding scenario. Higher
the better.

Avg. Completion Rate
R25A2 R25A3 R25A5 R25A7 R50A2 R50A3 R50A5 R50A7 R75A2 R75A3 R75A5 R75A7 R100A2 R100A3 R100A5 R100A7

ILS 23.00 32.33 52.33 76.67 21.67 30.67 52.33 73.67 21.00 30.67 50.33 72.33 19.33 26.33 42.33 64.33
EILS 23.00 33.33 53.67 77.67 22.00 32.00 52.67 74.00 21.33 32.33 52.00 73.00 20.33 27.33 43.67 66.00
BiG-MRTA 23.33 33.00 51.33 77.33 23.33 32.00 53.33 70.67 21.00 31.67 49.00 71.00 20.00 26.67 42.33 64.33
AM 20.67 32.00 55.67 79.33 14.00 26.00 51.67 76.00 13.33 20.33 42.67 70.33 13.33 20.33 35.67 59.67
CAM 22.67 38.00 63.00 90.67 17.00 27.00 63.33 92.00 16.33 25.33 47.67 92.00 15.33 24.00 44.00 71.67

Table 11: MRTA - TAPTC Group 1: Average computation time (in milliseconds) to generate the
entire solution for each scenario.

Avg. Computation Time
R25A2 R25A3 R25A5 R25A7 R50A2 R50A3 R50A5 R50A7 R75A2 R75A3 R75A5 R75A7 R100A2 R100A3 R100A5 R100A7

EILS 19.00 102.67 1037.00 4221.33 181.33 517.00 1522.00 2914.67 90.00 248.67 972.33 5194.67 137.00 42.33 950.67 3329.00
BiG-MRTA 53.34 115.08 207.37 377.10 51.31 87.73 255.50 437.91 58.78 98.85 227.58 520.07 75.64 190.04 406.07 563.80
AM 103.81 96.44 96.75 95.22 95.65 94.90 95.05 105.27 94.81 111.42 133.90 107.05 99.81 101.72 129.88 97.53
CAM(k=9) 94.36 95.34 93.97 96.91 94.58 94.35 95.32 95.29 94.15 94.31 97.44 94.89 93.42 94.55 95.10 93.94

F.6 IMPACT OF NEIGHBORHOOD SIZE FOR CAM ENCODER

Tables 12 and 13 compare the performance of CAM models with varying neighborhood size (k) in
the encoder, based on the average completion rate (average of the 3 samples) for all the scenarios (all
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values of A and R for the two groups). The impact of the neighborhood size k (during encoding)
is more evident on the performance of Group 1 test cases which has tasks with more number of
tight deadlines. As shown in Table 12, the completion rate of CAM (with k = {6, 9, 12}) are almost
comparable, while the performance of CAM with k = 3 is significantly lower than the other models.
Lower the neighborhood size, smaller will be the local structural information learned, which could
result in performance loss. However, increasing neighborhood size beyond a point may not necessarily
improve performance. The average epoch time for training for the models with k = {3, 6, 9, 12} are
11, 13, 14.3, and 15 minutes respectively. Figure 6 shows the learning curve for training all the CAM
models and AM model.

Table 12: MRTA - TAPTC Group 1: Comparison of performance (average completion rate) of CAM
models with varying neighborhood size (k). Higher the better.

Avg. Completion Rate
R25A2 R25A3 R25A5 R25A7 R50A2 R50A3 R50A5 R50A7 R75A2 R75A3 R75A5 R75A7 R100A2 R100A3 R100A5 R100A7

CAM K 3 20.67 32.00 55.67 79.33 14.00 26.00 51.67 76.00 13.33 20.33 42.67 70.33 13.33 20.33 35.67 59.67
CAM K 6 23.00 37.33 61.67 91.00 17.33 27.67 61.00 92.00 15.67 25.33 45.33 91.00 14.67 24.33 41.67 71.33
CAM K 9 22.67 38.00 63.00 90.67 17.00 27.00 63.33 92.00 16.33 25.33 47.67 92.00 15.33 24.00 44.00 71.67
CAM K 12 24.00 37.67 62.33 91.00 17.33 27.00 63.67 91.33 16.67 25.33 45.67 92.33 15.00 23.67 43.00 69.67

Table 13: MRTA - TAPTC Group 2: Comparison of performance (average completion rate) of CAM
models with varying neighborhood size (k). Higher the better.

Avg. Completion Rate
R25A2 R25A3 R25A5 R25A7 R50A2 R50A3 R50A5 R50A7 R75A2 R75A3 R75A5 R75A7 R100A2 R100A3 R100A5 R100A7

CAM K 3 47.33 65.33 100.00 100.00 29.00 64.67 100.00 100.00 23.67 39.67 100.00 100.00 20.33 36.33 76.67 100.00
CAM K 6 54.33 76.67 100.00 100.00 40.33 76.67 100.00 100.00 30.00 58.33 100.00 100.00 25.67 42.67 100.00 100.00
CAM K 9 53.00 78.67 100.00 100.00 45.67 74.33 100.00 100.00 31.00 55.00 100.00 100.00 29.33 45.33 99.67 100.00
CAM K 12 54.00 78.67 100.00 100.00 40.33 75.67 100.00 100.00 32.00 54.67 100.00 100.00 27.33 44.33 96.00 100.00

G FURTHER DETAILS ON CAPACITATED VEHICLE ROUTING PROBLEM

G.1 FORMULATION OF CAPACITATED VEHICLE ROUTING PROBLEM (CVRP)

The vehicle routing problem here we considered is a capacitated vehicle routing problem (CVRP),
where a vehicle is required to deliver packages to a number of locations N . Each task is designated
an index from 1 to N . We also consider a depot with id as 0. Each location has a demand ci on the
number of packages where i ∈ [1, N ], and the vehicles has a constraint for the maximum number
of packages C it can carry, such that ci < D. We assume that each package is of the same size.
The vehicle is required to create multiple routes visiting different locations to deliver the packages.
The vehicle starts from a depot, has a maximum capacity for the number of packages, and can have
multiple routes to deliver all the packages satisfying the demands in every location. Here we assume
that the vehicle can return to the depot for refilling to maximum capacity before starting a new route.
In this experiment we do not consider split delivery where the demand of a location is fulfilled
partially during a route, and then completed in another route. The ILP formulation for CVRP can be
represented as:

min fcost = Σδj , j ∈ [1, R] (20)

subject to Ct+1 =

{
max(0, Ct − ci) i 6∈ V
D, i = 0

(21)

where R is the number of routes, δj is total distance travelled in route j, Ct is the available capacity
at a time t, V is the set of locations visited. The node encoding and the context encoding are modified
for CVRP (as explained in appendix G.1.1 and G.1.2) for both CAM and AM. Both CAM and AM
are trained for the scenarios with 100 locations and tested on the unseen scenarios with varying
number of locations ranging from 50 to 1,000. The experimental details of this comparative study are
given in Appendix G.2.

G.1.1 ENCODING FOR CVRP

Except for the node properties, all the other steps for computing the node embeddings is same for
CVRP as compared to MRTA for CAM and AM. The node properties associated with the CVRP
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includes the x coordinate, y coordinate, and the demand ci for each location. Therefore each node
can be represented as di = [xi, yi, ci], where xi, yi, and ci are the x coordinate, y coordinate, and
capacity respectively for node i. For the encoding,di for CVRP will be used in equation 22 for CAM.

F di = W ddTi + bd (22)

G.1.2 CONTEXT ENCODING

The context serves the same purpose for which is represent the current state. For CVRP the current
location and the remaining capacity as the context, for CAM and AM.

G.2 TRAINING DETAILS FOR CVRP

The training procedure for CVRP follows algorithm 1 in appendix D with the only change being
in the calculation of the cost. Equation 20 is used in the algorithm 1 to compute the cost. Table 14
shows the different parametric setting for training CAM and AM for CVRP. CAM and AM models
were trained for 100 tasks and tested on CVRP with 5 different task sizes (50, 100, 200, 500, 1000).
Figure 7 shows the learning curve for training CAM and AM.

Table 14: CVRP: Training algorithm settings for CAM and AM for CVRP

DETAILS AM CAM

Algorithm REINFORCE REINFORCE
Baseline Rollout Rollout
Epochs 100 100
# of tasks 100 100
Training samples 20000 20000
Baseline samples 1000 1000
Optimizer Adam Adam
Learning step size 0.0001 0.0001
Training frequency 100 SAMPLES 100 SAMPLES

G.3 BASELINE DETAILS FOR CVRP

Lin-Kernighan heuristics (LKH3): We performed a single run with a maximum number of trails
as 10000.

AM: Same as that of MRTA-Multi-UAV flood response and MRTA-TAPTC.

Google OR tools: The first solution strategy algorithm used was PATH CHEAPEST ARC and the
local search algorithm was Simulated Annealing.

G.4 MORE DETAILS ON CVRP DATASET

Table 15: The capacity of the vehicle for different test scenarios

# of Tasks Capacity (C)

50 40
100 50
200 100
500 250
1000 500

The dataset used for training CVRP consists of scenarios with 100 locations and one depot. The
x and y coordinates of the locations (including the depot) are randomly generated from a uniform
distribution within the limits [0, 1]. The demand for all task locations will be a random integer from
a uniform distribution between [1,9], with depot assigned a 0 demand. The vehicle capacity (C)
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for a scenario with 100 locations, is considered as 50. The dataset used for testing (to analyze both
generalizability and scalibility) has the same limits as explained above. The assumed capacity of the
vehicle for test scenarios of different number of locations are shown in Table 15.
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Figure 7: CVRP: Learning curve of CAM and AM (trained on problem size with 100 locations).

H LIMITATIONS OF CAM

This work is implemented for a fixed number of nodes but can be easily extended for cases where
nodes are determined dynamically. The impact of the learning algorithm parameters such as the
learning rate, training frequency or training batch size, etc. is not analyzed. Parametric analysis of
the learning algorithm, as well as the implementation of more recent state-of-the-art RL algorithms
(e.g., PPO), can be considered as other directions of future work with CAM. The current learning
framework for CAM has been implemented with a greedy approach for decision-making. The
performance can be improved by adopting an epsilon greedy approach. In real-world settings, it
is possible that two robots want to make decisions at the same time, which might cause them to
visit the same location. This is very rare and there are various mitigations to address this issue. For
example, while robots are moving toward their selected task locations, they can check if their decision
is conflicting with another robot based on recent information. If there is conflict, the robot with the
worst time can cancel its current task and select a new task.

I ABBREVIATIONS:

Table 16: Abbreviations used in this paper

CAM Covariant-Attention based Model
CCN Covariant Compositional Networks
CO Combinatorial Optimization
CVRP Capacitated Vehicle Routing Problem
EILS Enhanced Iterated Local Search
GNN Graph Neural Network
ID In-schedule Dependencies
ILP Integer Linear Programming
ILS Iterated Local Search
INLP Integer Non-Linear Programming
MDP Markov Decision Process
MHA Multi-Head Attention
MR Multi-Robot
MRTA Multi-Robot Task Allocation
mTSP multi-Traveling Salesman Problem
RL Reinforcement Learning
SR-ST Single-Robot task Single Task robot
TAPTC Task Allocation Problem with Time and Capacity
TSP Traveling Salesman problem
UAV Unmanned Aerial Vehicle
VRP Vehicle Routing Problem
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