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Cost-Sensitive Label Propagation for
Semi-Supervised Face Recognition
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Abstract— In real-world applications, different kinds of
learning and prediction errors are likely to incur different
costs for the same system. Moreover, in practice, the cost label
information is often available only for a few training samples.
In a semi-supervised setting, label propagation is critical to infer
the cost information for unlabeled training data. The existing
methods typically conduct label propagation independently ahead
of supervised cost-sensitive learning. The precomputed label
information is kept fixed, which may become suboptimal in
the subsequent learning process and hence degrade the overall
system performance. In this paper, we develop a unified cost-
sensitive framework for semi-supervised face recognition that can
jointly optimize the inferred label information and the classifier
in an iterative manner. Our experiments on face benchmark
datasets demonstrate that in comparison with the state-of-the-
art methods for label propagation and cost-sensitive learning,
the proposed approach can significantly improve the overall
system performance, especially in terms of classification errors
associated with high costs.

Index Terms— Cost-sensitive learning, semi-supervised learn-
ing, label propagation, face recognition.

I. INTRODUCTION

COST-SENSITIVE learning takes into account the fact
that in real-world applications different classification

errors incur different penalties [1]. For face recognition sys-
tems, possible mistakes in making a classification decision
include 1) false rejection that incorrectly identifies a gallery
person as an imposter, 2) false acceptance that incorrectly
identifies an imposter as a gallery person, and 3) false identi-
fication that incorrectly identifies a gallery person as another
gallery person. In a door-locker scenario, for example, a false
acceptance error that admits an imposter could result in a
security breach far more severe than the cost of inconvenience
that blocks a legitimate user due to a false rejection error.
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On the contrary, in a watch-list lookup scenario, any false
rejection error, i.e., a criminal suspect on the watch list passes
screening by mistake, could become a serious threat to public
security.

In traditional face recognition systems, the three kinds of
classification errors are assumed to have an equal cost in
minimizing the overall loss of misclassification. However,
as pointed out in [1], the de facto unequal costs are likely
to affect the optimal decision threshold of a face learner.
Lowering the total or average recognition error, as attained
in conventional machine learning techniques, cannot solve the
problem as long as the different types of errors exist and
contribute unequally to the misclassification loss. Therefore,
cost-sensitive learning methods were proposed to incorporate
different misclassification costs into the loss function for
different applications [2]–[15].

Most of existing cost-sensitive learning methods
are supervised, which require labels that define the
misclassification cost of each sample for training. Often
in practice, however, only a few training samples can acquire
the cost label information while the rest of the training data
are unlabeled. This led to the development of cost-sensitive
semi-supervised techniques to make use of both labeled and
unlabeled data effectively. In particular, label propagation
is critical in semi-supervised learning as it infers the label
information for unlabeled training data.

State-of-the-art methods [4], [6], [8] conduct label propa-
gation in advance, then followed by supervised cost-sensitive
learning based on the given and inferred label information.
Such a two-step pipeline approach has two limitations. Firstly,
the label propagation step therein is cost insensitive and
therefore may result in wrong label estimates for the unlabeled
data. Secondly, as the label propagation step is conducted
independently of the subsequent step of cost-sensitive learning,
the precomputed label information is kept fixed and may
become suboptimal as the cost-sensitive model evolves. As a
result, such cost-insensitive and unadaptive label propagation
may impair classifier learning and degrade the overall system
performance.

We address these issues by updating label propagation with
the cost-sensitive model to minimize the overall misclassifi-
cation loss. As a result, we develop a unified cost-sensitive
framework in an iterative manner for extracting high-level face
semantic features, conducting label propagation and learning
the classifier simultaneously. In this paper, we consider the
door-locker system for a cost-sensitive scenario to develop the
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cost-sensitive semi-supervised framework. It is worth noting
that the proposed methodology can be conveniently extended
to other applications of face recognition systems.

The main contributions of this paper are:
• We design cost-sensitive latent semantic regression to

embed face images into the label space of training data.
This enables a cost-sensitive process of label propagation
that updates the estimated labels with the learned classi-
fier information in an iterative manner.

• We introduce cost-sensitive regularization for guiding
the label propagation process. Our experimental results
show that imposing regularization on the labeled data
improves the accuracy of label propagation and thus the
system performance in terms of the total cost due to
misclassification.

• We propose to jointly optimize learning of latent semantic
features, cost-sensitive label propagation and the classifier
all in a unified framework. We devise an algorithm for
solving the unified framework by iteration. We show that
the algorithm is iteratively descent and its computational
complexity is linear with the size of the training dataset
in each iteration of the training process.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III describes the problem
formulation. Section IV provides details of the unified cost-
sensitive framework. Experimental results are reported in
Section V. Section VI draws the conclusion.

II. RELATED WORK

Cost-sensitive classifiers were proposed to make an optimal
decision by minimizing some loss function that incorpo-
rates different misclassification costs. The most representa-
tive work includes multi-class cost-sensitive kernel logistic
regression (McKLR) and multi-class cost-sensitive k-nearest
neighbor (McKNN) methods [2], cost-sensitive Laplacian
support vector machine [15], cost-sensitive support vector
machine [16], multi-category support vector machine [17],
cost-sensitive decision trees with example-dependent mis-
classification costs [18]. In particular, sparse cost-sensitive
classifier [9] and cost-sensitive sparse representation based
classification (CS_SRC) [10] were proposed for the door-
locker system based on face recognition. Recent work on cost-
sensitive algorithms can also be found in [19]–[23]. These
cost-sensitive classifiers all involve parts, such as dimension-
ality reduction or feature selection, that are cost insensitive.

Lu et al. [3]–[5] considered that useful cost-sensitive infor-
mation may be lost in the dimensionality reduction phase.
To address the problem, they embedded misclassification
costs into the cost-insensitive dimensionality reduction phase
and proposed cost-sensitive principal component analysis
(CSPCA), cost-sensitive linear discriminant analysis (CSLDA)
and cost-sensitive locality preserving projections (CSLPP),
respectively. Under similar motivation, cost-sensitive Lapla-
cian score (CSLS) [12] and discriminative cost-sensitive
Laplacian score (DCSLS) [7] were also proposed to embed
cost information into the feature selection phase. Such cost-
sensitive methods are mostly based on supervised learning.
Using supervised information can lead to better performance,

TABLE I

KEY NOTATIONS

but in practice it is difficult to obtain labels for all the training
data.

Semi-supervised learning makes use of both labeled and
unlabeled data. For example, the two self-training methods
proposed in [24] and [25] iteratively add the pseudo-class
labels of unlabeled data to increase the labeled training data
set. Two assumptions widely used in semi-supervised learning
are the cluster assumption [26] and the manifold assumption.
The former assumes that near neighbors have similar labels.
The latter assumes that the high-dimensional data are distrib-
uted in a low-dimensional manifold structure. To obtain better
performance, the objective function usually obeys the graph
preserving criterion. The representative work includes the kNN
graph [27]–[29] and L1 graph [30]–[33] based approaches.

As far as we know, cost-sensitive semi-supervised
discriminant analysis (CS3DA) [4] is the first work proposed
for cost-sensitive semi-supervised learning. CS3DA first uses
the sparsity learning technique [34] to infer the soft label of
unlabeled data and then learns the projection by incorporating
misclassification costs into linear discriminant analysis.
Considering that the sparse representation is computationally
inefficient and the sparsity assumption may not hold in
applications like face recognition [35], Wan et al. [6] proposed
a method named PCSDA, which adopts the L2 norm approach
to learn the label information of unlabeled data. Furthermore,
to obtain more effective label information for unlabeled data,
a soft L2 norm approach was proposed in cost-sensitive
semi-supervised canonical correlation analysis (CS3CCA) [8].
As discussed in Section I, such a two-step pipeline approach
has limitations that can affect the overall system performance.

III. PROBLEM FORMULATION

Table I lists key notations used in this paper. In the door-
locker system based on face recognition [2]–[10], suppose that
there are in total c classes including c − 1 classes of gallery
subjects and the class c of imposters. Let C denote the cost
matrix of size c × c, where Cij is the cost of misclassifying
class i as class j and Cij = 0 for i = j by definition.

Let X = [x1, x2, . . . , xN ] ∈ R
D×N contain N face image

vectors each from the D dimensional space. The training
set X is then divided into two parts, i.e., X = [XL, XU]
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where XL = [x1, x2, . . . , xNl ] is the labeled subset and
XU = [xNl+1, xNl +2, . . . , xN ] is the unlabeled subset. Let YL
be the given label matrix for XL. For the labeled training data,
the label information y j i = 1 if sample xi belongs to class j ,
where j = 1, 2, . . . , c, otherwise y j i = 0.

For the unlabeled training data, existing cost-sensitive semi-
supervised methods such as [4], [6], and [8] have label infor-
mation estimated through some label propagation function in
the form of L(XL, XU, YL) that is typically cost insensitive.

In this paper, we propose a unified cost-sensitive framework
for conducting label propagation and classifier learning simul-
taneously. Let F = [f1, f2, . . . , fN ] denote the inferred cost-
sensitive label matrix, where fi is a one-hot vector, i.e., only
one of its c elements is one and all the others are zero.
In our approach, each label vector fi for i = 1, 2, . . . , N is
estimated in a cost-sensitive way by regressing the current
classification results. The joint optimization problem can be
solved by minimizing some misclassification loss function in
the general form of

min
W,F

loss{φ(X, W ), F, C} (1)

where φ classifies the input training data X with the projection
matrix W . Then, the classification results can be used to
evaluate the label matrix F with the cost matrix C . The
cost-sensitive label information is used in turn to update the
classifier φ with respect to W . This process is iterated until
the overall misclassification loss is minimized. In this way,
both label propagation and classifier learning are embedded in
a cost-sensitive framework.

To deal with face feature variations, we further propose to
conduct cost-sensitive semi-supervised learning in some latent
semantic space of face images. The last two key notations
in Table I specify the robust high-level features used in
our approach. In particular, B ∈ R

D×d spans the learned
latent semantic space and S ∈ R

d×N accommodates the
d-dimensional latent semantic representations of X .

IV. THE UNIFIED COST-SENSITIVE FRAMEWORK

In this section, we elaborate our unified cost-sensitive
framework for semi-supervised face recognition. Section IV-A
proposes cost-sensitive latent semantic regression for label
propagation and learning of the classifier. Section IV-B
introduces cost-sensitive regularization to guide the label
propagation process. Section IV-C presents design of the
misclassification loss function for cost-sensitive learning in
the latent semantic space. Section IV-D describes the iterative
algorithm for solving the unified framework. Section IV-E
explains the procedure for inference.

A. Cost-Sensitive Learning in the Latent Semantic Space

Considering facial expressions, lighting and poses of face
images taken at different times, it is necessary to extract
robust feature representations for cost-sensitive face recogni-
tion. To address this issue, we adopt matrix factorization to
extract high-level features that can reflect the inherent structure

between data [34], [36]–[39]. The latent semantic space B and
the high-level features S can be jointly learned from

L1(B, S) = ‖X − BS‖2
F (2)

where ‖ · ‖F denotes the Frobenius norm. We do not include
any sparsity constraint in (2) for matrix factorization because
face recognition is not commonly considered as a compressive
sensing problem [6], [8], [35].

We then use a linear predictive classifier to project S into
the label space, i.e., φ(X, W ) = W T S(X) where S(X) is the
latent semantic features learned from (2) with input X , and
cast least square minimization for the loss function. Note that it
is possible to consider other classifiers for φ and optimization
rules. In our context, linear regression makes an update simpler
in every iteration and yet can achieve effective results for the
unified framework. Thus, we introduce cost-sensitive latent
semantic regression as

L2(W, S, F) =
N∑

i=1

h(i)‖W T si − fi‖2
2 (3)

where si denotes the latent semantic representation of sample
xi and h(i), known as the importance function [3], [6]–[8],
depicts the importance of sample xi in the training process.

In supervised learning scenarios [3], [40], the importance
function is often defined as the total cost of misclassifying
sample xi whose true class label is denoted by l(xi ). In our
context of semi-supervised learning, sample xi can be either
labeled or unlabeled. Accordingly, the importance of sample xi

is evaluated as

h(i) =

⎧
⎪⎪⎨

⎪⎪⎩

c∑

j=1

Cl(xi ) j , if i ≤ Nl

τ, if i > Nl

(4)

where the hyper-parameter τ is set for unlabeled training data
and its value is found empirically to stress the importance of
unlabeled data in cost-sensitive learning.

Proposition 1: Assume that xi ∈ X for i = 1, 2, . . . , N
are conditionally independent of each other given their label
classes l(xi ) = 1, 2, . . . , c whose densities are multivariate
Gaussian’s with a common covariance matrix. Given the label
matrix F = [f1, f2, . . . , fN ], minimizing the least squares
criterion in the form of minW ‖W T S − F‖2

2 results in a
solution Ŵ = [ŵ1, ŵ2, . . . , ŵc] that projects the latent seman-
tic feature si of each sample xi into the label space with
regressed terms proportional to the posteriori class probabili-
ties, i.e., ŵT

k si ∝ p(l(xi ) = k|xi ) for k = 1, 2, . . . , c, and

‖Ŵ T si −fi‖2
2 ∝

∑

j : j≤c, j �=l(xi)

p( j |xi)
2+[1− p(l(xi)|xi)]2. (5)

Proof: Let gT
k be a row vector in F containing one-hot

vectors for label class k = 1, 2, . . . , c such that gki = 1 if
l(xi ) = k and gki = 0 otherwise for all i = 1, 2, . . . , N in
the training dataset. The least squares solution can also be
obtained by solving

min
wk

‖ST wk − gk‖2
2 (6)

for each label classifier individually [41].
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Note that the problem expressed in (6) is two-class regres-
sion with class k and a null class that contains all samples
that do not belong to class k, i.e., l(xi ) �= k. Suppose that the
mean for the two classes are mk and m0, respectively. Since
all label classes have the same covariance matrix �, the least
squares solution of two-class regression satisfies the following
relationship [41]:

ŵk ∝ �−1(mk − m0). (7)

On the other hand, we may use a Gaussian Naive
Bayes (GNB) classifier to estimate the posteriori class prob-
ability p(l(xi) = k|xi), or equivalently p(gki = 1|si ), for the
above two-class problem with Gaussian densities. According
to the Bayes rule, we have

p(gki = 1|si ) = 1

1 + exp(ak − [�−1(mk − m0)]T si )
(8)

with

ak = 1

2
(mk + m0)

T �−1(mk − m0) + ln
n0

nk
(9)

where nk and n0 are sizes of class k and the null class,
respectively. It can be seen that (8) is linear in the latent
semantic feature si . Therefore, we have

[�−1(mk − m0)]T si ∝ p(l(xi ) = k|xi ). (10)

Combining (7) and (10) yields

ŵT
k si ∝ p(l(xi ) = k|xi) (11)

for k = 1, 2, . . . , c.
Let pi = [p(1|xi), p(2|xi ), . . . , p(c|xi)]T . Note from (11)

that ‖Ŵ T si −fi‖2
2 ∝ ‖pi −fi‖2

2 and the residual-sum-of-squares
(RSS) between pi and fi can be expressed as

‖pi − fi‖2
2

= (pi − fi )
T (pi − fi )

= pT
i pi − pT

i fi − fT
i pi + fT

i fi

=
∑

j : j≤c, j �=l(xi)

p( j |xi)
2 + p(l(xi )|xi)

2 − 2 p(l(xi )|xi) + 1

=
∑

j : j≤c, j �=l(xi)

p( j |xi)
2 + [1 − p(l(xi )|xi)]2. (12)

It can be seen that (12) contains two parts. The first part
corresponds to Type I errors of misclassifying xi as another
class j �= l(xi ) and the second part indicates Type II errors
of misclassifying xi as the null class. Thus, ‖Ŵ T si − fi‖2

2 is
proportional to both Type I and Type II errors. A small value
of RSS indicates that xi is likely to be regressed to the right
class l(xi ), i.e., p(l(xi )|xi) is close to 1 and p( j |xi) is close
to 0 for j ≤ c and j �= l(xi ).

Proposition 1 states that the projection matrix Ŵ learned in
the latent semantic space can minimize classification errors.
In addition, we multiply the error probabilities with the
associated costs as in (3). In this way, minimizing (3) mini-
mizes the overall misclassification loss of all training samples,
including both labeled and unlabeled ones, with respect to their
individual importance in terms of the misclassification cost.

B. Cost-Sensitive Regularization for Label Propagation

In this section, we further improve the proposed scheme by
introducing cost-sensitive regularization for label propagation.
The main idea is to guide the semi-supervised learning process
with supervised label information YL. Intuitively, we should
keep estimated labels in F close to the corresponding ones in
YL with the label propagation loss minimized.

Proposition 2: Let yi ∈ YL be the label vector of xi ∈ XL
with label class l(xi ) and qi = [√Cl(xi )1, . . . ,

√
Cl(xi )c]T con-

tains the cost of classifying xi as class j for j = 1, 2, . . . , c.
Following Proposition 1, the estimate f̂i = Ŵ T si for
i = 1, 2, . . . , Nl in the label space satisfies

‖(f̂i − yi ) � qi‖2
2 ∝

∑

j : j≤c, j �=l(xi)

p( j |xi)
2 Cl(xi ) j (13)

where the symbol � denotes element-wise multiplication.
Proof: The true label vector yi has yl(xi )i = 1 and y j i = 0

for j �= l(xi ). Noting Cl(xi )l(xi ) = 0 and due to (11), we have

‖(f̂i − yi) � qi‖2
2 =

c∑

j=1

[
(ŵT

j si − y j i)
√

Cl(xi ) j

]2

=
∑

j : j≤c, j �=l(xi)

(
ŵT

j si

)2
Cl(xi ) j

∝
∑

j : j≤c, j �=l(xi)

p( j |xi)
2 Cl(xi ) j . (14)

According to Proposition 2, we can reduce the label prop-
agation loss on the labeled training data by adding the reg-
ularization term ‖(fi − yi ) � qi‖2

2 in optimization together
with cost-sensitive latent semantic regression. Consider that
the labeled and unlabeled data have a similar structure if they
come from the same class. The posterior class probabilities
p( j |xi), j = 1, 2, . . . , c, learned from the labeled samples
can also be applied to the unlabeled ones, thus minimizing
the label propagation loss for the unlabeled data. The regular-
ization term for label propagation is defined as

L3(F) =
N∑

i=1

‖(fi − yi) � qi‖2
2 (15)

where the sample size is extended to N for incorporat-
ing L3(F) into the overall objective function. In particular,
we define yi = 0 and qi = 0 for i > Nl in (15), because label
estimates of the unlabeled samples should not have influence
on regularization. Note that the regularization term in (15) is
cost sensitive due to the vector qi as well as the fact that fi is
estimated by cost-sensitive latent semantic regression in (3).

C. Misclassification Loss Function

In our design of the misclassification loss function,
we include the term L1(B, S) in (2) that performs matrix fac-
torization for learning latent semantic representations, the term
L2(W, S, F) in (3) that performs cost-sensitive label regres-
sion in the latent semantic space for updating the classifier and
the label matrix, and the regularization term L3(F) in (15) for
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Algorithm 1 Iterative Algorithm for Optimization
Input: Training set X , given label matrix YL, cost matrix C ,

hyper-parameters μ, γ , λ and τ .
Output: Latent semantic space B , projection matrix W .
1: Initialize B[k], S[k], W [k] and F [k] randomly with k = 0.
2: repeat
3: Update B[k+1] using (19) with S = S[k].
4: Update s[k+1]

i for i = 1, 2, . . . , N using (21) with B =
B[k+1], W = W [k] and F = F [k].

5: Update W [k+1] using (23) with S = S[k+1] and F =
F [k].

6: Update f [k+1]
i for i = 1, 2, . . . , N that minimizes (24)

with S = S[k+1] and W = W [k+1].
7: Set k = k + 1.
8: until termination criterion reached.

supervising label propagation in a cost-sensitive way. In addi-
tion, to resist overfitting, we introduce another regularization
term

R(B, S, W ) = ‖B‖2
F + ‖S‖2

F + ‖W‖2
F . (16)

The resulting loss function is of the form

loss(B, S, W, F) = L1(B, S) + μL2(W, S, F) + γ L3(F)

+ λR(B, S, W ) (17)

where the hyper-parameters μ, γ and λ are used to trade off
the corresponding terms. In particular, μ and λ affect updates
of the learned classifier in the latent semantic space while
μ and γ control the label propagation process. Note that
it is possible to use separate parameters for controlling the
three regularization terms in R(B, S, W ) though at the expense
of complicating parameter selection. Section V-D.1 discusses
parameter selection in more details.

D. Iterative Algorithm for Optimization

Here we present the iterative algorithm to learn the latent
semantic space B and the projection matrix W for the unified
framework with the aim of minimizing the misclassification
loss function (17). Specifically, as shown in Algorithm 1,
the algorithm updates one matrix variable at a time by
fixing all the other variables in every step of an iteration.
The updating steps of the algorithm in the kth iteration,
k = 0, 1, . . ., are described as follows:

1) Update the latent semantic space B[k+1]. We note that,
by fixing S, W and F , minimizing (17) with respect to
B is equivalent to

min
B

‖X − BS‖2
F + λ‖B‖2

F (18)

which is a quadratic minimization problem [42] and has
a unique solution of the form

B = X ST (SST + λI )−1 (19)

where I ∈ R
d×d is the identity matrix. Thus, we update

B[k+1] using (19) with S = S[k].

2) Update the latent semantic representations S[k+1]. We
update s[k+1]

i , i = 1, 2, . . . , N , independently with each
other. In this way, by fixing B , W and F , minimiz-
ing (17) with respect to si is equivalent to

min
si

‖xi − Bsi‖2
2 + μh(i)‖W T si − fi‖2

2 + λ‖si ‖2
2

(20)

which is a quadratic minimization problem [42] and has
a unique solution of the form

si = (BT B+μh(i)W W T +λI )−1(BT xi +μh(i)W fi ).

(21)

Thus, for i = 1, 2, . . . , N , we update s[k+1]
i using (21)

with B = B[k+1], W = W [k] and F = F [k].
3) Update the projection matrix W [k+1]. We note that,

by fixing B , S and F , minimizing (17) with respect to
W is equivalent to

min
W

μ

N∑

i=1

h(i)‖W T si − fi‖2
2 + λ‖W‖2

F (22)

which is a quadratic minimization problem [42] and has
a unique solution of the form

W = (μSH ST + λI )−1(μSH FT ) (23)

where H = diag(h(1), . . . , h(N)). Thus, we update
W [k+1] using (23) with S = S[k+1] and F = F [k].

4) Update the cost-sensitive label matrix F [k+1]. We update
f [k+1]
i , i = 1, 2, . . . , N , independently with each other.

In this way, by fixing B , S and W , minimizing (17) with
respect to fi is equivalent to minimizing

μh(i)‖W T si − fi‖2
2 + γ ‖(fi − yi ) � qi‖2

2 . (24)

Recall by definition that fi is a one-hot vector. Thus, for
i = 1, 2, . . . , N , we update f [k+1]

i by enumerating all the
c possible solutions in this context and finding the one
that minimizes (24) with S = S[k+1] and W = W [k+1].

The above steps are repeated until the algorithm reaches
the termination criterion, i.e., loss(B[k], S[k], W [k], F [k]) −
loss(B[k+1], S[k+1], W [k+1], F [k+1]) ≤ ε, where ε is an arbi-
trarily small value.

Remark 1: It can be observed that the proposed algorithm
is iteratively descent. This is because each of the quadratic
minimization problems derived in Steps 1) to 3) is convex and
hence guarantees that the objective function is strictly decreas-
ing. The minimization problems involved in Step 4, though not
necessarily convex, ensure that the objective function is at least
non-increasing. Accordingly, for all k, we have

loss(B[k], S[k], W [k], F [k])
> loss(B[k+1], S[k], W [k], F [k])
> loss(B[k+1], S[k+1], W [k], F [k])
> loss(B[k+1], S[k+1], W [k+1], F [k])
≥ loss(B[k+1], S[k+1], W [k+1], F [k+1]) . (25)

Remark 2: In the proposed algorithm, the time complex-
ity for updating B[k+1] is O(N(Dd + d2) + Dd + d3).
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The time complexity for updating each s[k+1]
i , i = 1, 2, . . . , N ,

is O(d(D + c) + d2(D + c + 1) + d3). As H in (23) is a
diagonal matrix, the time complexity for updating W [k+1] is
O(N(2d + d2 + dc) + d2c + d3). For updating each f [k+1]

i ,
i = 1, 2, . . . , N , we enumerate its c possible solutions and the
time complexity is O(3c2 + c). Therefore, the computational
complexity of the proposed algorithm is linear with the size N
of the training dataset in each iteration of the training process.

E. Inference for Face Recognition

At the inference stage, given a test sample x, we extract
its high-level feature representations sx in the latent semantic
space B learned from the training process. The high-level
feature sx is then projected into the c-dimensional label space
using the learned classifier W via W T sx. The class label k is
assigned to x if the kth element of W T sx has the maximum
value which corresponds to the minimum misclassification loss
as shown in Proposition 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
approach for semi-supervised face recognition in door-locker
systems. The experiments are conducted on five public face
datasets. The following describes main specifications of these
benchmark datasets.

• Extended Yale B [43]: It contains 2,414 front-view face
images of 38 individuals under different illuminations.
The images are cropped to 32 × 32 pixels.

• AR [44]: We use a subset of the AR face dataset pre-
processed by Martinez and Kak [45]. This subset contains
1,400 face images corresponding to 100 individuals,
where each individual has 14 images taken with different
expressions and illumination conditions. The resolution
of face images is resized to 66 × 48 pixels.

• PIE [46]: It contains 41,368 images of 68 individuals
with 13 different poses and 4 different expressions,
under 43 different illumination conditions. In this paper,
we choose five near frontal poses (C05, C07, C09, C29)
with all different expressions and illuminations. This
results in 170 images for each individual and the image
size is 32 × 32 pixels.

• LFW [47]: This dataset is more challenging for study-
ing unconstrained face recognition, which contains
13,233 face images of 5,749 subjects crawled from the
web. We use the pre-aligned version LFW-a [48]. Similar
to [49], we crop each face image to 50 × 50 pixels and
gather the subjects that have no less than 30 samples per
subject from LFW-a to use in our experiments.

• CASIA-WebFace [50]: It is a large-scale face dataset that
contains 494,414 face images of 10,575 subjects collected
from the Internet in a semi-automatic way. Similar to [51],
we use MTCNN [52] to detect the faces and find the five
face landmarks. Then, all the face images are converted
to gray-scale images and normalized to 144 × 144 pixels
via the landmarks. Inspired by [53], we further rotate the
two eye points to be horizontal to overcome the pose
variations. We gather the subjects that have no less than

TABLE II

EXPERIMENTAL SETTINGS

200 samples per subject from CASIA-WebFace to be used
in our experiments.

In all cases, face images are preprocessed with PCA for
dimension reduction to speed up matrix factorization of the
high-dimensional features.

For each of the five datasets, we randomly select c − 1
subjects as the gallery person and the rest as imposters. The
training data is formed by randomly selecting N tr

G images for
each gallery person containing GL labeled and GU unlabeled
samples, and N tr

I images for the imposters containing IL
labeled and IU unlabeled images. The remaining N te

G gallery
images and N te

I imposter images are used for testing. The
total number of training images and test images is Ntr =
(c − 1)N tr

G + N tr
I and Nte = N te

G + N te
I , respectively. Table II

specifies the settings for each of the five datasets used in our
experiments.

We perform three-fold cross validation on the training data
for choosing the values of the hyper-parameters μ, λ, γ and τ .
Section V-D.1 discusses parameter selection in more details.
As a result, we choose μ = 0.007, γ = 1, λ = 0.01 and
τ = 0.2 for all datasets.

For ease of discussion, in our experiments, we assume

Cij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i = j

CGG, if i < c, j < c and i �= j

CGI, if i < c and j = c

CIG, if i = c and j < c

(26)

where CGG, CGI and CIG are the cost of false identification,
false rejection and false acceptance, respectively. In door-
locker scenarios, it often considers CIG > CGI > CGG. That
is, misrecognizing an imposter as a gallery person is more
serious than misrecognizing a gallery person as an imposter,
whereas the latter is more serious than misrecognizing a
gallery person as another gallery person. In Section V-D.2,
we discuss how the cost ratios CIG : CGI : CGG may influence
the system performance. If not specified elsewhere, we set
CIG : CGI : CGG = 20 : 2 : 1 as in [2]–[10].

Given the cost matrix C in the form of (26) and based on
the definition of the importance function h(i) in (4), we have

h(i) =

⎧
⎪⎨

⎪⎩

(c − 2)CGG + CGI, if i ≤ Nl and l(xi ) < c

(c − 1)CIG, if i ≤ Nl and l(xi ) = c

τ, if i > Nl

(27)

for labeled gallery subjects, labeled imposters and unlabeled
training data, respectively. Note that, in semi-supervised
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TABLE III

CONTRIBUTION OF EACH TERM IN THE LOSS FUNCTION WITH REGARD TO T otal Cost ( Accuracy)

learning, it is not uncommon to assume that the unlabeled data
are less important than their labeled counterparts in the training
process. Thus, we have τ < (c − 2)CGG + CGI < (c − 1)CIG
for CGG < CGI < CIG. For convenience, we normalize h(i)
by (c − 2)CGG + CGI and the resulting importance function
is of the simplified form

h(i) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i ≤ Nl and l(xi ) < c
(c−1)CIG

(c−2)CGG + CGI
, if i ≤ Nl and l(xi ) = c

τ ∈ [0, 1], if i > Nl .

(28)

For performance evaluation, we adopt five widely-used met-
rics in cost-sensitive learning [2]–[5], [9], [10], i.e., total cost ,
ErrIG (error rate of false acceptance), ErrGI (error rate of
false rejection), ErrGG (error rate of false identification), and
Err (total error rate). We also introduce the metric accuracy
to evaluate the effectiveness of cost-sensitive approaches in
imposter detection. In our context, the metrics are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

total cost = CIG×Nfa +CGI×Nfr +CGG×Nfi

ErrIG = Nfa/N te
I × 100%

ErrGI = Nfr/N te
G × 100%

ErrGG = Nfi/N te
G × 100%

Err = (Nfa + Nfr + Nfi)/Nte × 100%

accuracy = 1 − ErrIG

(29)

where Nfa , Nfr and Nfi denote the number of false acceptance,
false rejection and false identification, respectively.

A. Contribution of Each Term in the Loss Function

Recall that the loss function (17) of our proposed unified
framework contains four terms, i.e., L1(B, S), L2(W, S, F),
L3(F), and R(B, S, W ). Here we evaluate the contribution of
each component by removing it from (17). The corresponding
results in terms of total cost and accuracy are reported
in Table III for each of the five benchmark datasets.

It is clear that the most critical term is L2(W, S, F) which
performs cost-sensitive label regression in the latent semantic
space. According to Proposition 1, the projection matrix W
learned from L2(W, S, F) helps to minimize classification
errors. In fact, by removing the L2(W, S, F) term from (17),
the proposed approach is reduced to vanilla matrix factoriza-
tion on PCA features. Without cost-sensitive label propagation,
the related terms involving W and F are no longer included in
the reduced loss function for regularization. The results have
total cost increased by more than 17 times on the AR dataset
and accuracy reduced by almost 70% on the PIE dataset.

The next significant term is L1(B, S) for extracting high-
level feature representations in the latent semantic space.
Removing the L1(B, S) term from (17) results in total cost
increased by 130% on the CASIA-WebFace dataset and
accuracy reduced by 46% on the PIE dataset. This demon-
strates the effectiveness of learning latent semantic representa-
tions on top of raw image features to deal with face variations.

The remaining two regularization terms also help to improve
the performance of the proposed approach. In particular,
L3(F) is for supervising label propagation. According to
Proposition 2, the L3(F) term can reduce the label propagation
loss and thus improve the overall system performance. This
is supported by the results in Table III where we see that,
by removing the L3(F) term from (17), total cost is almost
doubled on the CASIA-WebFace dataset. The other regular-
ization term R(B, S, W ) is to resist overfitting. The results
in Table III show that removing R(B, S, W ) from (17) can
reduce accuracy by 22% on the LFW-a dataset.

B. Comparison With Other Cost-Sensitive Learning Methods

We demonstrate the effectiveness of the proposed unified
cost-sensitive framework by comparing it with the following
nine cost-sensitive learning methods:

• Cost-sensitive classifiers including McKLR [2],
McKNN [2] and CS_SRC [10].

• Cost-sensitive feature selection including CSLS [12] and
DCSLS [7].

• Supervised cost-sensitive dimensionality reduction such
as CSLDA [3].

• Semi-supervised cost-sensitive dimensionality reduction
including CS3DA [4], PCSDA [6] and CS3CCA [8].

In particular, McKLR, McKNN, CS_SRC, CSLS, DCSLS and
CSLDA are supervised and trained on labeled samples only,
while the remaining methods including the proposed one are
semi-supervised and trained on all samples. The cost-sensitive
methods of feature selection and dimensionality reduction are
evaluated with a kNN classifier with k = 3.

The results are presented in Table IV for comparison on
total cost and in Table V for comparison on accuracy.
We observe that semi-supervised methods outperform super-
vised methods in most cases. This suggests that unlabeled data
can provide useful additional information for training. Among
the ten comparing methods, the proposed unified framework
performs the best over all five benchmark datasets.

For a more rigorous study of the experimental results,
we also conduct a statistical analysis of the difference
between the proposed method and each of the other
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TABLE IV

COMPARISON OF COST-SENSITIVE LEARNING METHODS ON T otal Cost

TABLE V

COMPARISON OF COST-SENSITIVE LEARNING METHODS ON Accuracy

Fig. 1. Paired t-tests comparing the proposed method with the other methods on: (a) total cost . (b) ErrIG . (c) ErrGI . (d) ErrGG. (e) Err .

comparing methods. Specifically, let E (i)
p and E (i)

o denote the
result of the proposed approach and that of the other com-
paring method, respectively, in the i th independent run of the
experiment, and let Zi = E (i)

o − E (i)
p , i = 1, 2, . . . , n. Let μEo

and μEp denote the expected result of the proposed method
and that of the other comparing method. We are interested in
testing if the difference between μEo and μEp is statistically
significant with the null hypothesis H0 : μEo = μEp

and the alternatives H1 : μEo > μEp ; H2 : μEo < μEp . The
test statistic that we use to make an inference decision is the
T -statistic defined as [54]:

T = Z̄ − μZ

sZ /
√

n
(30)

where Z̄ and sZ are the sample mean and standard deviation
of {Zi }, and μZ is the hypothesized difference between μEo

and μEp . Under the null hypothesis, i.e., H0, we have μZ = 0
and the test statistic follows a t-distribution with n − 1
degrees of freedom for paired samples [54]. This allows us to
determine the rejection region on T for a test at a significance
level α. Accordingly, we decide that the proposed approach
yields:

Win if T > tn−1(α) by rejecting H0 for H1 at level α;
Loss if T < −tn−1(α) by rejecting H0 for H2 at level α;
Tie otherwise, i.e., |T | ≤ tn−1(α).

Figure 1 plots the paired t-test results with α = 0.05 and
n = 10. Note that, for better visualization, the scale of all
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Fig. 2. Cumulative distributions of relative difference on: (a) total cost . (b) ErrIG .

Fig. 3. Success and failure cases in imposter detection. (a) Example in the Extended Yale B dataset. (b) Example in the LFW-a dataset.

vertical axes is changed by taking the inverse hyperbolic sine
function of the T values. We observe that the proposed method
wins or ties in the majority of cases, especially on total cost
and ErrIG. The loss is mainly on ErrGI, which is less critical
in door-locker systems. For ErrGG and Err , the proposed
method is comparable to the best performing method.

In Fig. 2, we further demonstrate the gain on total cost
and ErrIG achievable by the proposed method. We present
the results in the form of cumulative distributions of relative
difference. Specifically, given E (i)

p and E (i)
o of the i -th run of

the experiment on a dataset, their relative difference is defined
as Zi/E (i)

o . As expected, the proposed method, being a semi-
supervised one, outperforms the supervised methods. It can be
seen that, in nearly 75% of the cases, the gain in total cost
achieved by the proposed method is more than 8%, 19%, 26%,
40%, 42% and 49% over CSLDA, McKLR, McKNN, DCSLS,
CSLS and CS_SRC, respectively, while the gain in ErrIG is
at least 35%. The median reduction is up to 66% in terms
of total cost and up to 97% in terms of ErrIG. Comparing
with the three semi-supervised methods, we observe that the
proposed method outperforms CS3CCA and CS3DA in all

cases in terms of total cost . Although in 12% of the cases
the proposed method yields a larger total cost of up to 5%
than that of PCSDA, the gain is up to 40% in 88% of the
cases. In 12% of the cases, the proposed method also yields
a larger ErrIG of up to 30% and 24% than that of CS3CCA
and PCSDA, respectively. However, the gain is up to 100% in
88% of the cases with a median reduction of nearly 80%.

In Fig. 3, we present success and failure cases of the
proposed method in imposter detection. In particular, we con-
sider two examples, one taken from the Extended Yale B
dataset and the other taken from the LFW-a dataset. For
both examples, images (i)-(iii) are training samples labeled
as imposters, while images (iv)-(x) are test samples of the
same subject. Among the test samples, (iv)-(v) in Fig. 3(a)
and (iv) in Fig. 3(b) are falsely accepted by the proposed
method but PCSDA and CS3CCA. In contrast, (vii)-(x) in both
examples are correctly identified by the proposed method but
are falsely accepted by PCSDA and CS3CCA. Observing these
success and failure cases, it seems that PCSDA and CS3CCA
are better in identifying face images visually closer to the
training samples, owing to their use of the Fisher criterion
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TABLE VI

COMPARING LABEL PROPAGATION METHODS BY COST-SENSITIVE CORRELATION COEFFICIENT 	 BENCHMARKED AGAINST THE UPPER BOUND 	∗

directly established at the pixel level. In contrast, since the
proposed method is conducted in the latent semantic space
which learns high-level feature representations, it is more
robust in identifying face images with semantic variations of
illumination, pose and facial expression. However, none of the
three methods is able to identify (vi) in Fig. 3(a) and (v)-(vi)
in Fig. 3(b) that deviate too much at both the pixel level and
the semantic level.

C. Comparison With Other Label Propagation Methods

Next, we compare the proposed cost-sensitive label prop-
agation method with the following nine state-of-the-art label
propagation methods:

• kNN classifies an unlabeled sample by checking the
labels of its k nearest neighbors in the supervised training
set (k is set to 3).

• MF extracts high-level features of unlabeled data by
matrix factorization first, and then propagates their labels
with the kNN classifier (k is set to 3).

• Soft SR [4] obtains the soft label information of unlabeled
data according to its sparse representation.

• L2 [6] estimates the label information of unlabeled data
by an L2 norm approach.

• Soft L2 [8] estimates the soft label information of unla-
beled data by a soft L2 norm approach.

• LPCR [55] uses the unlabeled training samples as the
dictionary to reconstruct labeled training data. The label
information of unlabeled data is then linearly propagated
with reconstruction coefficients.

• L1 graph [33] infers the label information of unlabeled
data with the L1 graph preserving criterion.

• MASC [27] predicts unlabeled data by using the smooth-
ness criterion on the manifold.

• SODA [28] propagates the label information from labeled
data to unlabeled data according to the distribution of
labeled and unlabeled data.

To evaluate the accuracy of label inference, we define a
measure of cost-sensitive correlation coefficient as

	 = 1

(N − Nl )

N∑

i=Nl +1

h̃(i)〈yi , fi 〉 (31)

where yi and fi denote the true and estimated label vectors of
the unlabeled sample xi , 〈, 〉 is the dot product, and

h̃(i) =
⎧
⎨

⎩

1, if l(xi ) < c
(c − 1)CIG

(c − 2)CGG + CGI
, if l(xi ) = c

(32)

indicates the importance of sample xi in the learning process.
Intuitively, a larger value of 	 indicates a higher expectation
of cost-sensitive correlation between fi and yi . In the ideal
case where fi is identical to yi , (31) reduces to

	∗ = 1

(N − Nl )

N∑

i=Nl +1

h̃(i) (33)

which represents the upper bound that can be achieved by a
label propagation method. Table VI reports the 	 values of the
various label propagation methods benchmarked against the
upper bound 	∗. In all cases, it is clear that the 	 value of
the proposed method is the closest to 	∗. The results confirm
that the proposed method infers labels more accurately than
the comparing methods.

D. Influential Factors

In this section, we study the influence of various factors
in the proposed framework, including the choice of hyper-
parameters, cost ratios, the number of gallery subjects, and
the number of labeled training samples per class.

1) Choice of Hyper-Parameters: We choose the values of
hyper-parameters μ, λ, γ in (17) and τ in (28) empirically
from three-fold cross validation performed on the training
dataset. As shown in Section IV-D, μ and λ affect updates
of the latent semantic representations S and the projection
matrix W in the training process. Figure 4 shows the effect of
μ and λ on total cost with the value of μ chosen from the
set {0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03} and the value
of λ chosen from the set {0, 10−4, 10−3, 10−2, 10−1, 100}.
It can be seen that the minimum of total cost is obtained
when μ ∈ [0.005, 0.015] and λ ∈ [10−3, 10−1].

The parameter γ controls the regularization term for
label propagation, which may be tuned with respect to μ in
updating the cost-sensitive label matrix F . Figure 5 shows
the effect of γ on total cost where we fix μ = 0.007 and
vary γ from 10−2μ to 104μ. It is clear that regularization
improves the performance of label propagation. We also
observe that there tends to be a performance degradation
when γ < 100μ or when γ > 103μ. Thus, a proper value
of γ may be chosen from the range [100μ, 103μ].

The parameter τ sets the importance of unlabeled data in
cost-sensitive learning. In the extreme case where τ = 0,
we do not consider any cost for misclassifying an unlabeled
sample while training. On the other hand, when τ = 1,
the unlabeled data and their estimated labels are treated
equally as the labeled ones. Figure 6 shows the effect
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Fig. 4. Influence of the parameters μ and λ on total cost . (a) Extended Yale B. (b) AR. (c) PIE. (d) LFW-a.

Fig. 5. Influence of the parameter γ on total cost .

of τ on total cost with τ varied from 0 to 1 at a step of
0.1. An appropriate value of τ may be selected from the range
[0.1, 0.3].

2) Cost Ratios: It is clear in (28) that normalizing both the
numerator and the denominator by CGG has no effect on the
importance function h(i). It can also be seen from (13), (15)
and (17) that normalizing the objective function of L3(F) by
CGG and adjusting the parameter γ accordingly do not change
the optimization result. Thus, in our design, the learning results
depend on the ratios CIG : CGI : CGG rather than the absolute
values of the cost items.

Fig. 6. Influence of the parameter τ on total cost .

Figure 7 shows the effect of cost ratios on total cost by
fixing CGI : CGG = 2 : 1 and varying CIG : CGI from 2.5 to 15
at a step of 2.5. We see that, when CIG : CGI increases, CSLS,
DCSLS and CS_SRC increase total cost at a significantly
higher rate than the other methods. In all cases, the proposed
approach is among the best performing methods.

Figure 8 plots the ROC curves based on ErrIG and ErrGI
as a result of the varying cost ratios configured in Fig. 7.
In most of the cases, we observe a clear trade-off between
false acceptance and false rejection. That is, when CIG : CGI
increases, ErrIG decreases but ErrGI increases. Note that
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Fig. 7. Influence of the ratio CIG : CGI on total cost . (a) Extended Yale B. (b) AR. (c) PIE. (d) LFW-a.

Fig. 8. ROC curves based on ErrIG vs. ErrGI influenced by the ratio CIG : CGI. (a) Extended Yale B. (b) AR. (c) PIE. (d) LFW-a.

some curves such as those of CSLS and DCSLS are short
and nearly vertical in all cases, which indicates that variation
of the cost ratio does not have much effect on the error
rates of such cost-sensitive methods. On the other hand,
the proposed approach not only keeps ErrIG to the minimum
in cases where CIG : CGI is small, but also reduces the
high-cost error even further in response to the change of
system requirements as expected. This observation supports
our analysis in Proposition 1 where the cost-sensitive latent
semantic regression error is shown proportional to the
probability of misclassifying a training sample including both
Type I and Type II errors. This relationship enables the uni-
fied framework to minimize the overall misclassification loss
of all training samples, including both labeled and unlabeled

ones, with respect to their importance played in cost-sensitive
learning.

3) Number of Gallery Subjects: We investigate how the
system performs by changing the training data distribution
between gallery and imposter classes. In doing so, we vary
the number of gallery persons from small to large until gallery
classes become a majority in the training datasets. Specifically,
we vary the number of gallery persons for training from
16 to 36 at a step of 4 for Extended Yale B, from 40 to 90 at
a step of 10 for AR, from 38 to 63 at a step of 5 for PIE,
and from 12 to 32 at a step of 4 for LFW-a. The results of
total cost and ErrIG are presented in Fig. 9 and Fig. 10,
respectively, where we observe that the proposed approach
outperforms the nine comparing methods in all cases.
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Fig. 9. Influence of the number of gallery subjects on total cost . (a) Extended Yale B. (b) AR. (c) PIE. (d) LFW-a.

Fig. 10. Influence of the number of gallery subjects on ErrIG . (a) Extended Yale B. (b) AR. (c) PIE. (d) LFW-a.

Fig. 11. Influence of the number of labeled training samples per class on total cost . (a) Extended Yale B. (b) AR. (c) PIE. (d) LFW-a.

We notice also in both Fig. 9 and Fig. 10 that the results
do not change monotonically with an increasing number
of gallery persons. This effect can be explained as follows.
In cases where there are significantly more imposters
than gallery subjects in the training dataset, the resulting
system is more likely to misclassify a gallery subject as
an imposter. This leads to a larger ErrGI and a smaller
ErrIG. Thus, total cost is reduced as ErrIG is associated
with a higher cost in door-locker systems. On the other
hand, ErrIG may also become smaller when there are less
instances of imposters causing false acceptance. Compared
with the other cost-sensitive learning methods, the proposed
approach demonstrates less variation in ErrIG when the data
distribution between gallery and imposter classes changes.

4) Number of Labeled Training Samples per Class: In
Fig. 11, we vary the number of labeled training samples per
class from 2 to 6 and evaluate its influence on total cost .
As expected, the performance is improved by including more
labeled data for cost-sensitive learning. It can be seen that,
compared with the other methods, the proposed approach may
require less labeled data in order to reduce total cost .

E. Computational Cost

All methods considered in this paper are implemented on
a machine with 3.5 GHz CPU and 32 GB RAM under the
same experimental settings. Table VII reports the average
training and test time. In general, the supervised methods such
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TABLE VII

COMPARISON OF COMPUTATIONAL COST (IN SECONDS)

as McKNN, CSLS, DCSLS and CSLDA are more efficient
than the semi-supervised methods (including the proposed
approach) at the training stage. However, it is worth noting
that training is usually done offline. Thus, the test time is more
of a concern in practice. The results in Table VII show that
the proposed approach is comparable to the best performing
methods in terms of the test time.

Note also that the high-level features of test data can
be solved simultaneously by matrix factorization in our
approach. Thus, the time complexity can become linear with
the number of classes at the inference stage. In this regard,
the proposed approach can conduct a test more efficiently
than those using kNN classifiers, such as CSLS, DCSLS,
CSLDA, CS3DA, PCSDA and CS3CCA, whose time com-
plexity depends on the size of the labeled training data set
that is usually much larger than the number of classes in a
dataset.

VI. CONCLUSION

In this paper, we proposed to incorporate label propaga-
tion and classifier learning in a unified cost-sensitive frame-
work for semi-supervised face recognition in the application
scenario of door-locker systems. In particular, we showed
that cost-sensitive learning in the latent semantic space is
able to minimize classification errors of all training samples,
including both labeled and unlabeled ones, with respect to
their misclassification costs. We also showed both analytically
and experimentally that the cost-sensitive regularization term
introduced in the proposed approach is able to reduce the label
propagation loss and thus improve the classifier performance.
The proposed approach jointly updates high-level semantic
features, label propagation and the semi-supervised classifier
in the unified framework which is optimized by an iterative
descent algorithm. As a result, the proposed approach signif-
icantly improves the system performance in comparison with
state-of-the-art cost-sensitive learning methods. In future work,
we shall consider using explicit structures of unlabeled training
data for more robust learning, e.g., by adding constraints in
the misclassification loss function that force nearest neighbors
to have similar labels. We shall also consider extending label
propagation on large datasets that may contain wrong labels
affecting both training and test processes.
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