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Abstract

Discovering ideal Graph Neural Networks (GNNs) architectures for different tasks
is labor intensive and time consuming. To save human efforts, Neural Architecture
Search (NAS) recently has been used to automatically discover adequate GNN
architectures for certain tasks in order to achieve competitive or even better perfor-
mance compared with manually designed architectures. However, existing works
utilizing NAS to search GNN structures fail to answer the question How NAS is
able to select the desired GNN architectures. In this paper, we investigate this
question to solve the problem, for the first time. We conduct theoretical analysis
and measurement study with experiments to discover that gradient based NAS
methods tend to select proper architectures based on the usefulness of different
types of information with respect to the target task. Our explorations further show
that gradient based NAS also suffers from noises hidden in the graph, resulting
in searching suboptimal GNN architectures. Based on our findings, we propose
a Graph differentiable Architecture Search model with Structure Optimization
(GASSO), which allows differentiable search of the architecture with gradient
descent and is able to discover graph neural architectures with better performance
through employing graph structure learning as a denoising process in the search
procedure. Extensive experiments on real-world graph datasets demonstrate that
our proposed GASSO model is able to achieve the state-of-the-art performance
compared with existing baselines.

1 Introduction

In real-world applications including social networks, e-commerce, traffics, and biochemistry, a variety
of relational data can be represented as graphs. This motivates the advent of graph neural networks
(GNNs) based models such as GCN [1], GAT [2] and GIN [3], which are designed to learn and extract
knowledge from the relational graph-structured data. To utilize information in graph structure and
node features, GNNs follow a recursive message passing scheme where nodes aggregate information
from their neighbors in each layer, making great success in various graph related tasks. Given that
discovering ideal GNN architectures for different tasks is labor intensive and time consuming, graph
architecture search [4, 5] employs the ideas of neural architecture search (NAS) [6–8] to facilitate the
automatic design of optimal GNN architectures so that a large number of human efforts can be saved.
These automatically generated GNNs can achieve competitive or even better performance compared
with manually designed GNNs on graph related tasks. 2

Nevertheless, existing works on graph architecture search mainly focus on designing search space
and search strategy, ignoring the fundamental mechanism in adopting NAS for automatic GNN
∗Corresponding Authors.
2Our code will be released at https://github.com/THUMNLab/AutoGL
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Figure 1: Overview framework of the proposed GASSO model, where the original graph and super
network architecture are jointly optimized, hidden feature smoothness loss and training loss are
proposed to optimize the neural architecture and graph structure. Then the learned architecture is
adopted on the denoised graph, giving predictions of target nodes.

structure search and failing to answer the following questions. (i) How does graph architecture
search select its desired architectures? and (ii) How optimal are the architectures selected by graph
neural architecture search? Answers to these questions can help us to understand the NAS and
GNN mechanism in gathering messages, leading us to design better GNN structures for certain tasks.
However, the failure of existing works in answering the questions significantly limits their capabilities
of designing powerful GNN architectures.

In this paper, we answer the above question through exploring how graph neural architecture search
is able to select the desired GNN architectures. Given that neural architecture search approaches in
literature can be mainly categorized into several groups, i.e., gradient based (DARTS [8]), reinforce-
ment learning based, evolution algorithm based, and Bayesian optimization based methods, we only
focus on gradient based architecture search approach in this work and leave investigations into the
other groups as future works. We theoretically analyze DARTS behavior and find that DARTS prefers
operations who can help to correct the predictions on hard data. Further analysis on graph data shows
that different operations fit graphs with different amount of information in the node features and
graph structures. Measurement study via designing synthetic experiments corroborates our theory.
We find that DARTS on GNN is able to evaluate the usefulness of information hidden in node features
and graph structure with respect to the target task, then automatically select appropriate operations
based on the evaluated usefulness for GNN architecture. On the other hand, we also discover that the
performance of gradient based graph architecture search (e.g., DARTS) can also be deteriorated by
noises inside the graphs, leading to suboptimal architectures.

To solve the problem, we propose Graph differentiable Architecture Search model with Structure
Optimization (GASSO), which allows differentiable search of the architecture with gradient descent
and is capable of searching the optimal architecture as well as adjusting graph structure adaptively
through a joint optimization scheme. The graph structure adjustment in our proposed GASSO model
serves as an adaptive noise reduction to enhance the architecture search performance. The framework
of GASSO is shown in Figure 1. We employ differentiable graph structure to allow us to optimize
graph structure by gradient based methods during the training process, and we use hidden feature
smoothness to evaluate the edge importance and constrain edge weights. Overall, we jointly optimize
the parameters of neural architecture and graph structure in an iterative updating manner. We evaluate
our model on several widely used graph benchmark datasets including CiteSeer, Cora and PubMed.
The experimental results show that our proposed GASSO model can outperform state-of-the-art
methods and demonstrate a better denoising ability than existing graph architecture search model
using DARTS and other GNNs models. To summarize, this paper makes the following contributions:
(1) We theoretically explore how graph neural architecture search is able to select the desired GNN
architectures, to the best of knowledge, for the first time, showing that i) gradient based graph
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architecture search prefers operations who can help to correct the predictions on hard data, and ii)
different operations fit graphs with different amount of information in the node features and graph
structures. (2) We design measurement study with experiments to show that i) gradient based graph
architecture search is able to select operations based on the usefulness of the information in graphs, and
ii) noises in graph features and structures can deteriorate the architecture search performance. (3)We
propose Graph differentiable Architecture Search model with Structure Optimization (GASSO),
which searches the optimal architecture as well as adjusts graph structure adaptively through a joint
optimization scheme. Experimental results on several graph benchmark datasets demonstrate the
superiority of our GASSO model against state-of-the-art methods.

2 Related Work

2.1 Graph Neural Network

As an effective framework for graph representation learning, GNN [1–3, 9–13] follows a neigh-
borhood aggregation scheme. At each iteration, representations of nodes are generated through
aggregating their neighbors’ representations. For instance, graph convolutional neural network
(GCN) [1] takes the average of all neighbor nodes’ features as aggregation. Different from GCN,
Graph Attention Network (GAT) [2] treats neighbors unequally. It calculates the attention on each
neighbor. Therefore, the aggregation can emphasize representations of more important neighbor
nodes with larger attentions. The vectorized representation of a given node in the graph after k
iterations can capture both structural (topological) and semantic (attributed) information within the
region of the target node’s k-hop neighborhood. As such, GNN characterizes the whole graph by
aggregating node representations [1, 14], making themselves achieve the state-of-the-art results for
tasks including node and graph classifications. Like other types of deep neural networks, GNNs
are vulnerable to noise and adversarial attacks. Graph attackers usually adopt data perturbation by
changing the node features or graph structure [15, 16]. How to denoise and defend graph adversarial
attacks is also a popular question [17–19]. Graph structure learning is presented in recent GNN
methods [20–22]. Since graph structure plays an important role in GNN scheme, certain noise in the
original graph is extremely harmful to GNNs. Graph structure learning aims to generate a clean graph
during the training procedure. To achieve this, prior constraints such as low rank and smoothness
are utilized. Learning a new graph structure improves the model’s ability of denoising, as well as its
robustness to adversarial attacks of GNNs.

2.2 (Graph) Neural Architecture Search

Recent years have witnessed a significant surge in research on automated machine learning, including
hyper-parameter optimization [23–26] and Neural Architecture Search (NAS) methods [6–8, 27–30]
aim at designing an neural architecture automatically for certain tasks. Since the architecture search
space is discrete, reinforce learning [6, 7] and evolution algorithm [31, 32] are often used in NAS
methods. Besides, transferring the discrete architecture search space into a differentiable space
is another strategy for solving the NAS problems. DARTS [8] and SNAS [33] construct a super
network where each operation is mixed by all candidate operations, making it possible to update the
architecture as well as the weights simultaneously through the classical gradient descent method.
NAS has also been applied to graph tasks, achieving competitive performance with the state-of-the-art
performances. Existing works [4, 5, 34–36] mainly focus on defining a proper search space and
search strategy for GNNs. However, the mechanism of NAS methods to select architectures and the
relationship between NAS methods and GNN denoising ability have not been noticed.

3 Exploring Architecture Search for Graph

3.1 Preliminaries: Differentiable Architecture Search

We use DARTS [8], a representative NAS method with both conciseness and effectiveness as the
exploration object in this paper. In DARTS, neural architecture is represented as a directed acyclic
graph (DAG) where the input data is the source node, the output is the sink node, and the edges
represent operations (e.g. a GCN layer, or a linear layer) adopted on the data. Following a micro
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search space setting, DARTS only searches which operation should be selected and how the nodes in
the DAG should be connected. The calculation inside each operation is predefined.

There are two phases in DARTS procedure, the searching phase and the evaluation phase. In searching
phase, a super network (shown in Figure 1) is constructed, where edges exist between each two nodes,
i.e., ei,j exists, ∀0 ≤ i < j ≤ N − 1. Each edge is a mixed operation that can be calculated by

ei,j(xi) =
∑
o∈O

exp{αo
i,j}∑

o′∈O exp{αo′
i,j}
· o(xi), where xi is the output of node i, O is candidate operation

set, α is learnable architecture parameters. After calculating the mixed weighted sum, each node
aggregates all input edges by xj =

∑
i<j ei,j(xi). As such, all possible operations at all possible

positions are contained in the super network. DARTS uses gradient based methods to optimize both
architecture parameters α and operation parameters by a bi-level optimization scheme. Since the
parameters are all trained in the super network, W of different architectures are shared with each
other, the mathematical formulation is as follows:

min
A

Lval(W
∗,A) s.t. W ∗ = argminWEA∈Γ(A)Ltrain(W,A). (1)

Here, Γ(A) is architecture distribution learned in the searching phase. In this formulation, W and A
are independently learned, improving the search efficiency.

At the end of the training procedure, the operation with the maximum α of each node is chosen, and
the selected operations compose the optimal architecture. Then comes to evaluation phase, a new
network based on the designed architecture is constructed. This network will be trained from scratch
and finally get tested after retraining.

3.2 Theoretical Analysis of Architecture Parameters

We next explore the DARTS behavior on graph task, aiming to answer (i) how does graph neural
architecture search select its desired architectures? and (ii) how optimal are the architectures selected
by graph neural architecture search? We firstly provide theoretically analysis on (i).

Mixed operation is the key part in DARTS, where the architecture parameters controls the operation
selection. However, there is no theoretical analysis on how these architecture parameters change
according to the performance of different operations. To explore how these architecture parameters
change during training procedure, we firstly analyze a simple scene of a binary classification problem,
and there is only one layer with two candidate operations needs searching in the super network.
The mixed operation is F (xk) = o1f1(xk) + o2f2(xk). Here, o1 = exp{α1}

exp{α1}+exp{α2} and o2 =
exp{α2}

exp{α1}+exp{α2} . f1 and f2 are candidate operations. We use gradient methods to minimize binary
cross entropy loss combined with a sigmoid function: H(F ) = −

∑
k[yk · lnσ(F (xk)) + (1− yk) ·

ln(1− σ(F (xk)))]. Then we can conduct following theorem with proof in Appendix A.1.

Theorem 1 The changes of operation weights on after one step of gradient descent w.r.t. architecture
parameters depend on the score

∑
k[wkfn(xk)], where wk = σ(F (xk)) − yk. Specifically, if∑

k[wkf1(xk)] <
∑
k[wkf2(xk)], then o1 increases and o2 decreases, and vice versa.

Theorem 1 tells us that DARTS judges different candidate operations by a score, which can be seen as
a weighted sum of logits. As for the weights, we have wk ∈ (−1, 1), whether it is positive or negative
depends on the data label. If yk = 0, the weight is a positive number σ(F (xk)), which means
those data with bad prediction given by the super network have larger weights. If only considering
those scores with positive weights, the candidate operation giving better prediction has smaller logits.
Summing them up will get smaller score and increase architecture weight on. We can reach a similar
conclusion if we analyze data with label yk = 1. In a nutshell, we know DARTS prefers those
operations which can help to correct the predictions over hard data.

3.3 Synthetic Graph Experiment Setting

We further construct a synthetic graph which is composed of 600 nodes with 10 types, 60 nodes per
type. The node features of a certain type follow a Gaussian distribution N (µi, σ1) (to be simple,
we write one-dimension Gaussian distribution here, all dimensions are the same and independent,
the same below), where µi is sampled from another Gaussian distribution N (0, σ2). σ1 and σ2 are
predefined parameters. Here we can use β = σ2

σ1
to represent the difficulty of classifying nodes by
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their features. If β is large, intra-group node features are close while inter-group node features are far
away ("group" denotes node label here), thus it is easy to classify nodes by their features, vice versa.
This difficulty also reflexes the ratio of noises and type-relevant information inside the features.

As for the edges, we also set two parameters p1 and p2. p1 is the probability of generating an edge
between two intra-group nodes while p2 is that of two inter-group nodes. We define δ = p1

p2
, which

can reflex the difficulty of classifying nodes by message passing scheme. If δ is large, intra-group
nodes appear more often in the neighborhood, making it easier to classify nodes by aggregating
neighborhood information, and vice versa. This difficulty also reflexes the ratio of noises and
type-relevant information inside the graph structure.

We generate synthetic graphs with different β and δ, then split the nodes in supervised setting for
node classification task. To theoretically explore how different operations behave under different
settings, we analyze a simple scene here. We only consider one target node, which is connected
with only two classes of nodes, one is the same as its own class. The node feature channel is 1. The
candidate operations only contain linear and GCN [1], they can represent two types of operations,
message-passing operations and those without message passing.

Theorem 2 Under our synthetic graph setting, let n be the number of edges connected the target
node, the relative distance between the centers of two classes is |D|, which follows D ∼ N (0, β2).
Then, the probability of that linear operation gives more accurate prediction than GCN on the target
node is P = Φ[

√
2n|D|

(δ+1)
√

(n+1)(n+2)
].

The proof of Theorem 2 is in Appendix A.2. Theorem 2 shows that the information gained by
different operations are influenced by β, δ and n. When β increases, the expectation of |D| increases,
thus the probability to choose linear increases. When δ increases, the probability to choose GCN
increases. the number of edges can influence the probability as well, but weaker than β and δ.
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Figure 2: The frequency of GNNs appeared in optimal architecture in different graph setting

3.4 Operation Selection

To discover how β and δ influence DARTS in practice, we generate synthetic graphs by controlling
one variable when we change the other one. We set β = 0.4 while changing δ, and set δ = 4.0 while
changing β. For each setting of β and δ, we generate 100 different graphs and adopt DARTS on it.
We choose GCN [1], GAT [2], GIN [3], MRConv [37], EdgeConv [38], linear, skip connect and zero
operation as the candidate operations in DARTS. We set the number of operations to be 6. Since
GNNs usually are very shallow, we mainly explore DARTS behavior on operation selection but not
the connections. We count the times of each operation that appears in the optimal architecture and
show the frequency in Figure 2.

According to the results above, we found that for different graphs, DARTS suggests using different
operations. To be more specific, for graphs with more structure information (large δ) less feature
information (small β), DARTS tends to select typical message passing operations, such as GIN. When
there is less structure information (small δ) and more feature information (large β), DARTS is more
likely to select operations like linear and skip connect to prevent message passing. The results agree
with Theorem 2.
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Table 1: The GNN performances under different settings of the searching phase and evaluation phase.
"S" indicates the setting of searching phase. "E" indicates the setting of evaluation phase. All the
results are average of 100 runs, the variances of each result are listed in Appendix C.1. Left: under
different β. Right: under different δ.

S
E

0.2 0.3 0.4 0.5 0.6

β = 0.2 56.4 70.9 82.0 87.9 91.6
β = 0.3 55.5 73.1 85.1 91.7 94.4
β = 0.4 52.3 73.1 86.5 93.0 96.3
β = 0.5 48.5 72.7 88.6 96.1 98.6
β = 0.6 43.0 69.4 88.1 96.3 99.0

S
E

6.0 5.0 4.0 3.0 2.0

δ = 6.0 93.4 88.4 80.6 68.9 55.1
δ = 5.0 94.2 90.1 83.6 79.2 62.9
δ = 4.0 94.2 91.3 86.3 79.2 70.5
δ = 3.0 92.9 91.0 88.7 85.8 82.1
δ = 2.0 86.8 86.3 85.8 85.4 84.8

Here we can give some explanations for (i) by combining two theorems and the experiment results. A
GNN can be regarded as an information extractor, which collects useful messages inside the graph to
give accurate node classification. The operations in the search space have different ability to extract
information from node feature and graph structure, e.g., GCN has the ability to extract information
from graph structure but reduce the influence of the node’s own feature, while linear only uses
the feature information and ignores graph structure. DARTS aims to find the optimal information
extractor to help correct the prediction of the super network. To achieve this, it should judge how the
node feature and graph structure is useful for the task. If the graph structure is useful, DARTS will
take advantage of it and select operations that can extract information from the topology. If the node
features are useful, DARTS will decide to prevent message passing to make full use of the features.

In addition, we can find that the heat map of the two experiment results are very similar, revealing that
DARTS judges the relative amount of the two types of information but not the absolute amount. This
also agrees with Theorem 2, e.g., as long as node features are more useful than graph structure, the
structure is thought to have certain noise that is harmful to the task, so message passing is preferred
to be prevented.

On denoising issue. We have concluded that DARTS has the ability to judge which part inside the
graph is useful and select proper operations. This behavior motivates us to test the denoising ability
of DARTS. When random noise perturbs a clean graph, DARTS can rejudge the usefulness of these
two parts and give new architecture suggestions according to the current condition. Thus DARTS
may have denoising ability. We make experiments on real graph datasets in Section 5. The results
show its denoising ability is unstable. Therefore, we move on to explore how accurate DARTS selects
operations.

3.5 Accuracy of Operation Selection

To further explore the answer to (ii), we save the architectures searched on graphs with each β and δ
in Figure 2, and transfer them on graphs with different settings to do the evaluation. We also control
one variable while changing the other one. The results are shown in Table 1.

Following normal sense, the architecture searched on a graph should perform well on the same graph,
i.e., the elements on the main diagonal in the tables should be the maximum elements of theirs
columns. However, we find that when evaluating on a certain setting, architecture searched from
another setting can perform well, even better than the architecture searched at the same setting. E.g.,
the best architecture evaluated on the graph with δ = 5 is searched from the graph with δ = 4. This
phenomenon can answer (ii). DARTS may not be able to accurately select the optimal architecture
with the original graph.

We can also give our explanation here. Although DARTS can judge the usefulness of different
information, they cannot get an accurate answer, e.g., when δ = 6, graph structure contains useful
classification information. However, DARTS may have overconfidence in it and make radical
decisions, aggregating too much message from the neighborhood which includes noises and cause
over-fitting. Less graph structure information (δ = 4, 5) lets DARTS become more conservative
about aggregation. Architectures searched at these settings perform better when evaluating at δ = 6
setting. Similarly, DARTS may misjudge the information’s usefulness in other settings.

Based on the above exploration, we have found that DARTS cannot design the optimal architecture
due to certain noise in the original graph. Message passing scheme used in GNNs smooths node
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features, which can also be seen as a denoising process. Therefore, denoising graph structure is what
we should consider more. Combining architecture search and structure learning becomes a natural
way. In the next section, we will introduce our method which jointly optimizes neural architecture
and graph structure.

4 Joint optimization of graph architecture and structure

4.1 Differentiable Graph Structure

In most real graph datasets, the graph structure is discrete, i.e., the edges given in the graph are
unweighted. Although these edges contain crucial information, certain noise is brought into the data
as well. Take citation dataset for example, a paper cites other papers for many different reasons.
Some citations are helpful for paper classification, such as citing related works and baselines. Others
may have less use, such as citing a mathematical method. However, the graph treats all these different
types of citation equally. The classification model may be confused by those unhelpful edges. This
phenomenon can be also found in other types of graphs. In addition, the discrete space of graph
structure makes it difficult to optimize the structure. Thus, it is necessary to differentiate the edges in
the graph.

We apply differentiable graph structure here. We use a parameter to represent the weight of each
edge. To restrict the weight is in (0, 1) during message passing, we use a sigmoid function to
the parameter. Thus, the parameter matrix used in message passing can be represented as Gp =
normalize(sigmoid(G)), where G is the parameter. The normalize function includes adding
self-loops, i.e, we can only change the weight of normal edges, the weight of self-loops is fixed. In
the message passing procedure, edge weights are used as multipliers before aggregation.

We benefit from the differentiable graph structure in two ways. One is we can distinguish the
helpfulness of edges, and aggregate more useful information during message passing. The other one
is we can use gradient based methods to optimize the structure. We should note this differentiable
graph structure fits most of GNNs by just replacing the adjacent matrix with the parameter matrix Gp.

4.2 Learning by Hidden Feature Smoothness Constraint

An important assumption in graph is the first-order proximity. It is proved in [21, 22] that more links
between intra-group nodes and fewer links between inter-group nodes improve the node classification
accuracy. However, we cannot get all node labels in the training phase. We use hidden feature H to
approximate the node labels, which is the matrix indicating the probability of which type the nodes
belong to. It is proper to use H to represent the node label. To minimize the connections between
inter-group nodes, we can use the hidden feature smoothness as a regularizer. In condition that the
model has learnt some knowledge, the model will give good predictions about node labels. Thus, the
edge weights whose connected nodes have similar hidden features are larger than those have different
hidden features. By updating the structure, similar node features are aggregated more in later GNN
procedure, improving the denoising ability of the algorithm. However, if we only adopt this loss to
optimize the structure. All edge weight will be reduced to 0 at convergence. Thus we combine the
smoothness loss with a distance loss, which can be formulated as:

Ls = λ

N∑
i,j

Gij ‖ hi − hj ‖2 +

N∑
i,j

(Gij −Go,ij)
2, (2)

where Gij is the weight parameter of the edge between node i and j, Go,ij is the elements in the
initialization ofG, we initial all edge weights as 0.5, λ is a hyper-parameter to control the contribution
of the hidden feature smoothness. Hence, the weight of edges between inter-group nodes is reduced.
This loss guarantees the first-order proximity to a certain degree. In addition, this loss restricts G not
to change too much from the original graph. To save calculation resources, we only learn the weight
of edges existing in the original graph in this procedure. The weight of other edges is always kept
as 0. Therefore, the memory and time complexity of our methods is O(|E|). Besides, since G also
takes part in the calculation of Ls, we detach H from the computational graph while calculating the
gradient of Ls to G in order to prevent a complex back-propagation.
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4.3 Training Procedure

We formulate the joint optimization problem as follows:
min
A
Lval(W

∗,A, G∗)

s.t. G∗ = argminGLs(W
∗,A, G),

W ∗ = argminWEA∈Γ(A)Ltrain(W,A, G).

(3)

In this problem, there are three parameters W,A, G needing optimized. It is hard to optimize all of
them at the same time. Thus we apply gradient descent methods to these parameters in turns. In the
training procedure, we set the first several epochs as warming up, when only W is updated. Since at
the very beginning of training, W is unstable and may lead to incorrect hidden features. Using those
hidden features to update the other two parameters aggravates the model’s unstableness.

Different from DARTS for image tasks where a small proxy model is usually used in the searching
phase due to the memory limitation, and a larger network is retrained in the evaluation phase. Here,
the number of layers in the super network is the same as a complete GNN. We can directly use
the super network to do the evaluation. Interestingly, we find that the super network performs
well in node classification tasks, even better than retraining the designed architecture at most times.
This phenomenon may be due to the regularization caused by weight sharing, which is one type of
ensemble model [39]. Other ensemble models such as dropout [40] and multiple heads [41] have
proved their success in deep neural networks. All these models can be regarded as an ensemble of
different submodels, which learn different parts of knowledge from the data and provide different
perspectives of it. These submodels restrict each other during the training phase, which is de facto a
type of regularization, helping reduce over-fitting and improve performance.

5 Experiments

5.1 Performance Evaluation

Dataset Cora Citeseer Pubmed

GCN† 87.40 79.20 88.40
GAT† 87.26± 0.08 77.82± 0.11 86.83± 0.11
ARMA† 86.06± 0.05 76.50± 0.00 88.70± 0.24
DropEdge† 87.60± 0.05 78.57± 0.00 87.34± 0.24
DARTS 86.18± 0.36 74.96± 0.10 88.38± 0.18
GDAS 85.48± 0.30 74.20± 0.11 89.50± 0.14
ASAP 85.21± 0.13 75.14± 0.09 88.65± 0.10
XNAS 86.80± 0.14 76.33± 0.09 88.61± 0.25
GraphNAS‡ 86.83± 0.56 79.05± 0.28 89.99± 0.43

GASSO 87.63± 0.29 79.61± 0.32 90.52± 0.24

GASSO-V1 87.19± 0.24 78.71± 0.16 90.30± 0.46
GASSO-V2 87.17± 0.26 78.62± 0.22 90.13± 0.33
GASSO-V3 87.35± 0.19 78.80± 0.33 90.26± 0.44
GASSO-V4 87.31± 0.21 79.04± 0.34 89.12± 0.18

GASSO-V5 86.26± 0.50 77.08± 0.55 89.34± 0.20
GASSO-V6† 86.78± 0.24 79.40± 0.35 89.78± 0.20
GASSO-V7† 87.35± 0.46 78.38± 0.31 89.52± 0.20

GASSO-V8 87.14± 0.37 78.38± 0.24 90.40± 0.39
GASSO-V9 87.37± 0.24 78.22± 0.42 90.24± 0.30

Table 2: Node Classification Performance
† To be fairly compared, we expand the channels of these model to
make the number of model parameters comparable with GASSO.
‡We rerun GraphNAS because their code leaks test set of data.
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Figure 3: Weight ratio of noisy
edges to orignical edges. Top:
Cora. Bottom: Citeseer.

Since structure learning is directly performed on the original graph, we focus on transductive node
classification task. We evaluate our model on three widely used citation benchmark datasets, Cora,
Citeseer, and Pubmed, where nodes denote papers and edges denote citation relationship. We apply
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the full-supervised training fashion used in [42–44]. Hyper-parameter settings are listed in Appendix
B.2. We use GCN [1], GAT [2], ARMA [45], DropEdge [42], DARTS [8], GDAS [46], ASAP [47],
XNAS [48] and GraphNAS [5] as our baselines, and the hyper-parameter of them are following
the original implementation. For our GASSO model, we set the number of layers as 2 in Cora and
CiteSeer, 4 in PubMed. The candidate operations contain GCN [1], GAT [2], GIN [3], MRConv [37]
and linear. In the super network, we adopt dropout (p=0.8) before each layer and a ReLU function
after each layer. We summarize node classification accuracy in Table 2. All results in the table are
averaged over 10 runs with random parameter initialization, and the standard deviations are also
provided in the table.

Dataset Physics CoraFull ogbn-arxiv

GCN 95.94 68.08 70.39
GAT 95.86 65.78 68.53
DARTS 95.74 68.51 69.52

GASSO 96.38 68.89 70.52

Table 3: Node Classification Performance

We can find that our model GASSO outperforms
all baselines on all three benchmark datasets. The
results show that our proposed model has the power
to effectively utilize information in the original graph,
giving better node label predictions.

We conduct further experiments on three larger
graph benchmarks: Physics, CoraFull and ogbn-
arxiv. For Physics and CoraFull, we randomly split
train/valid/test set as 50:25:25. For ogbn-arxiv, we
follow the default setting. We narrow down the op-
eration search space to GCN, GAT and linear because of the memory limit. The results shown in
Table 3 indicating that our model still performs well in larger graphs.

5.2 Ablation Study

In our scheme, the most two important parts are neural architecture search and graph structure
learning. To further evaluate the contribution of these two components and their cooperation, we
conduct an ablation study on them. We design several variant models, which can be divided into three
parts. 1) We change the graph structure learning model in the first part of variants. For GASSO-V1,
we remove the structure learning part, i.e., the model becomes pure DARTS with our initial G.
For GASSO-V2, we replace hidden feature smoothness with original feature smoothness, which is
used in [20]. For GASSO-V3: we replace hidden feature smoothness with one-hot predicted label
smoothness, which is similar with [21]. For GASSO-V4: we directly calculate edge weight based on
similarities between nodes. 2) In the second part, we change the neural architecture search method.
For GASSO-V5, we do not update the neural architecture, but the super network is still kept, i.e.,
all candidate operations have equal weights from the beginning to the end. For GASSO-V6, we fix
GCN as the architecture. For GASSO-V7, we fix GAT as the architecture. 3) In the third part, we
change the optimization scheme. The aim of setting this part of variants is to prove the cooperation
of graph structure learning and neural architecture search. For GASSO-V8: we split the training of
neural architecture and graph structure. In the first half of epochs, we only train the graph structure.
In the second half, we only train the neural architecture. To be fair, the number of training epochs is
doubled, and the warming up procedure is still kept. For GASSO-V9: the same as GASSO-V8, but
the order of training neural architecture and graph structure is exchanged.

We examine all these variant on the same datasets, the results are also presented in Table 2. Overall,
our model outperforms all of the variants in all three datasets, showing training of both graph
architecture and neural architecture contributes to our model.

For part 1), we find that GASSO-V1 also achieves comparable performance with GCN and GAT,
showing the great power of ensemble in the super network. But the margin below GASSO proves
that graph structure learning is necessary. Interestingly, the performance of GASSO-V2 is not even
good as GASSO-V1. It is possible that using original feature smoothness to constrain edges causes
more severe over-fitting. The performance of GASSO-V3 indicates that one-hot predicted label
smoothness is of some usefulness. But neither the original feature nor the one-hot predicted label
is better than hidden feature for graph structure learning. GASSO-V4 is a radical method, which
makes the edge weights different at the early stage of training. For part 2), we observe that the
performance has an obvious drop in GASSO-V5, demonstrating that the neural architecture training is
of significant importance. GASSO-V6 and GASSO-V7 behave differently in three datasets compared
with GCN and GAT, showing these datasets have different properties. For part 3), we dicover that
GASSO-V8 can be regarded as GASSO-V4 followed by neural architecture search, and GASSO-V9
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can be regarded as GASSO-V1 followed by graph structure learning. The margin of GASSO-V8
over GASSO-V4 and margin of GASSO-V9 over GASSO-V1 prove that adding neural architecture
search behind graph structure learning can achieve better performances, while adding graph structure
learning behind neural architecture search causes unstable influence. Nevertheless, neither GASSO-
V8 nor GASSO-V9 outperforms GASSO, demonstrating that the cooperation training in our scheme
play a key role in optimizing the model.
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Figure 4: Accuracy with noisy edges

5.3 Denoising Analysis

Here we examine the denoising ability of our model. We select the experiment setting follow-
ing [15, 16, 20], where only the largest connected component is considered, and the split of train-
ing/validation/testing set is 10%/10%/80%. We manually include random edges in the three datasets
with different perturbation rates, from 0% to 100% with a step of 20%. We compare our methods
with baselines GCN, GAT and DARTS. The results are shown in Figure 4. We observe that DARTS
has an unstable denoising ability. It performs very well on PubMed, the accuracy almost keeps as
it on the original graph even when there is 100% perturbation rate of edges. However, it performs
badly in the other two cases, even worse than GCN. Our proposed methods consistently outperform
the three baselines in all three datasets. Comparing our proposed GASSO with GCN and GAT, the
performance gain gets larger when more noise is added to the graph in all cases. Moreover, GASSO
leads a margin of around 6% in CiteSeer and 4% in Cora upon DARTS at 100% perturbation rate
setting. To better demonstrate the effectiveness of our denoising process, we show the weight ratio
of noisy edges to original edges in Figure 3. We choose the case of 100% perturbation rate in Cora
and CiteSeer. We use 20 epochs to warm up. Then the weight ratio begins to decrease. It tends to be
stable at around 82.5% in both cases, indicating we can exclude 17.5% of noise effect. All the above
results show that GASSO has a great power to reduce noise disturbing NAS methods.

6 Conclusion

In this paper, we study how graph architecture search can select desired architectures by conducting
measurement study and proposing a Graph Differentianle Architecture Search model with Structure
Optimization (GASSO). We find that gradient based graph architecture search can select proper
operations according to the usefulness of information inside the graph, and may suffer from noises in
graph features and structures. Based on our findings, we proposed our GASSO model, which jointly
optimizes graph architecture and structure. Extensive experiments on real graph benchmark datasets
demonstrate that the joint optimization of neural architecture and graph structure not only benefits in
graph learning but also enhances the denoising ability.
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