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Abstract—We introduce operators which generalise the classi-
cal modulation and translation operators, now acting on functions
defined on Rm and taking values in the associated Clifford
algebra Cm. The modulation operators are used to map or-
thonormal bases for Paley-Wiener spaces associated with balls
in Rm to incomplete orthonormal sets in Paley-Wiener spaces
PWA associated with annuli A in Rm. The complementary spaces
are characterised and an orthonormal basis for them is given.
These bases are used to construct an orthonormal basis for PWA

composed of pseudo bandpass prolates.

I. INTRODUCTION

Given c > 0, the Paley-Wiener space PWc(R) is the
collection of functions f ∈ L2(R) whose Fourier transforms
Ff are supported on the interval [−c, c]. Let Qc be the time-
limiting projection operator Qcf(t) = 1[−c,c](t)f(t) where
1[−c,c] is the characteristic function of the interval [−c, c]. The
band-limiting operator Pc is given by Pc = FQcF . The (one-
dimensional) prolate spheroidal wavefunctions (PSWFs) are
eigenfunctions of the self-adjoint Hilbert-Schmidt integral op-
erator PcQ1. They are most efficiently computed by observing
that they are also eigenfunctions of a second order differential
operator Lc which commutes with PcQ1 [9], [6].

For 0 < c < c′ < ∞, bandpass prolates (BPPs) are eigen-
functions of (Pc′ − Pc)Q1. BPPs are members of PWc′,c(R)
– the space of square-integrable functions on the line whose
Fourier transforms are supported on [−c′,−c] ∪ [c, c′]. It was
shown [8] that bandpass prolates are not eigenfunctions of a
differential operator. Nevertheless [7] the construction of BPPs
can be achieved by solving an appropriate matrix eigenvalue
problem. The key observation in the construction is that if
{ϕn}∞n=0 is an orthonormal basis for PWc and t > c, then
{e−2πitxϕn(x)}∞n=0 ∪ {e2πitxϕn(x)}∞n=0 is an orthonormal
basis for PWt−c,t+c.

In this paper we investigate the multidimensional analogue
of this construction in which intervals are replaced by balls
and the union of intervals is replaced by spherically symmetric
annuli in m-dimensional euclidean space Rm (m ≥ 3 odd).
This requires the application of techniques from Clifford
analysis [3].

Let {e1, e2, . . . , em} be an orthonormal basis for m-
dimensional euclidean space Rm. The associative Clifford
algebra Rm is the 2m-dimensional algebra spanned by the
collection
m⋃
j=1

{eA : A = {i1, i2, . . . , ij} with 1 ≤ i1 < i2 < · · · < ij ≤ m}

with algebraic properties e∅ = 1 (the identity), e2
j = −1,

and if j < k then e{j,k} = ejek = −ekej . Here ∅ is the
null set and we often abuse notation and write e∅ = e0 = 1.
Notice that for convenience we write e{j} = ej . In particular
we have Rm = {

∑
A xAeA; xA ∈ R}. Similarly, we have the

complexified Clifford algebra Cm = {
∑
A zAeA; zA ∈ C}.

The canonical mapping of Rm into Rm maps the vector
(x1, x2, . . . , xm) ∈ Rm to

∑m
j=1 xjej ∈ Rm. For this reason,

elements of Rm of the form
∑m
j=1 xjej are also known as vec-

tors. Notice that Rm decomposes as Rm = Λ0⊕Λ1⊕ . . .Λm,
where Λj = {

∑
|A|=j xAeA}. A similar decomposition applies

to Cm. In particular, Λ0 is the collection of scalars while
Λ1 is the collection of vectors. Given x ∈ Rm of the form
x =

∑
A xAeA and 0 ≤ p ≤ m we write [x]p to mean the

“Λp-part” of x, i.e, [x]p =
∑
|A|=p xAeA.

If x, y ∈ Rm are vectors, then

x2 = −|x|2 and xy = −〈x, y〉+ x ∧ y ∈ Λ0 ⊕ Λ2. (1)

Here 〈x, y〉 is the usual dot product of x and y while x ∧ y
is their wedge product. The linear involution u of u ∈ Rm is
determined by the rules x = −x if x ∈ Λ1 while

uv = v u (2)

for all u, v ∈ Rm. On Cm, (2) still applies, but we also have
λej = λ∗ej where λ∗ is the complex conjugate of the complex
number λ. Further details are available in [3].

Given an open domain Ω in Rm, the Dirac operator acts on
functions in C1(Ω,Cm) by

Df(x) =

m∑
j=1

ej
∂f

∂xj
.

Functions in the kernel of the Dirac operator are said to be
monogenic. A spherical monogenic of degree k ≥ 0 is a
polynomial Y defined on Rm of homogeneous degree k (i.e.,
Y (λx) = λkY (x) for all λ > 0) with coefficients in Cm,
which is also monogenic.

We consider the right Clifford module H = L2(Rm,Cm) of
measurable Cm-valued functions f defined on Rm for which∫
Rm |f(x)|2 dx < ∞. The Cm-valued inner product on H is

defined by

〈f, g〉 =

∫
Rm

f(x)g(x) dx.



The Cm-valued inner product on the sequence space
`2(N,Cm) is given by

〈a,b〉`2 =

∞∑
n=1

anbn.

The Fourier transform F is defined on L1(Rm,Cm) by
Ff(ξ) =

∫
Rm f(x)e−2πi〈x,ξ〉 dx and extends to a unitary

operator on H. The Paley-Wiener space PWm
c associated with

the ball B(c) (centred at the origin and of radius c > 0) is
the class of those functions f ∈ H for which Ff(ξ) = 0
for |ξ| > c. Similarly, if 0 ≤ c < c′ < ∞, the Paley-Wiener
space PWm

c′,c associated with the annulus A(c′, c) is the class
of those functions f ∈ H for which Ff(ξ) = 0 for |ξ| < c or
|ξ| > c′.

A. Clifford-Legendre polynomials and Clifford Prolate
Spheroidal Wavefunctions

In [1] and [2], the Clifford-Legendre polynomials (C-L
polys) C̄0

n(Y `k ) are studied. Here {Y `k }
dmk
`=1 is an orthonor-

mal basis for the space Hk of spherical monogenics of
degree k, and dmk is the dimension of Hk. Each C-L
poly is an Rm-valued function on Rm, normalised so that∫
B(1)
|C̄0
n(Y `k )(x)|2 dx = 1, and takes one of two forms,

depending on whether n is even or odd:

C̄0
2N (Y `k )(x) = PN (|x|2)Y `k (x)

C̄0
2N+1(Y `k )(x) = xQN (|x|2)Y `k (x)

where PN and QN are real-valued polynomials of degree N
on [0, 1]. The C-L polys satisfy the Bonnet formula [2]:

xC̄0
2N (Y `k )(x) = αN C̄

0
2N+1(Y `k )(x) + βN C̄

0
2N−1(Y `k )(x)

xC̄0
2N+1(Y `k )(x) = α′N C̄

0
2N+2(Y `k )(x) + β′N C̄

0
2N (Y `k )(x)

(3)

where αN , βN , α′N , β′N are explicit real constants which are
bounded independent of N .

Given 0 ≤ c < c′ < ∞ and r > 0, we define orthogonal
projections Pc, Pc′,c and Qr on H as follows: Qrf(x) =
1B(r)(x)f(x) and

Pcf(x) = F−1QcF ; Pc′,c = F−1(Qc′ −Qc)F .

Here 1B(r) is the characteristic function of B(r), Qr is
the space-limiting operator which truncates functions outside
B(r), Pc and Pc′,c are frequency-limiting operators which
truncate the Fourier transforms of functions outside B(c) and
the annulus A(c′, c) respectively. By Q we mean the operator
Q1. Clifford-Prolate Spheroidal Wavefunctions (CPSWFs) are
eigenfunctions of PcQ. In [1] and [2], orthonormal bases
{ψ`n,k : (n, k, `) ∈ Λ} for PWm

c consisting of CPSWFs are
constructed and their properties developed. Here

Λ = {(n, k, `) : n, k ≥ 0, 1 ≤ ` ≤ dmk }.

We have PcQψ
`
n,k = λknψ

`
n,k with λkn ≥ 0 and λkn ↓ 0 as

n → ∞. The functions φ`n,k = (λkn)−1/2Qψkn ((n, k, `) ∈ Λ)

form an orthonormal basis for L2(B(1),Cm). The construc-
tion of CPSWFs given in [1] and [2] involves the numerical
computation of real constants dk,`N,i and bk,`N,i for which

φ`2N,k =

∞∑
i=0

C̄0
2i(Y

`
k )dk,`N,i

φ`2N+1,k =

∞∑
i=0

C̄0
2i+1(Y `k )bk,`N,i.

(4)

It is shown in [2] that the CPSWFs have the functional form

φ`2N,k(x) = pN (|x|)Y `k (x)

φ`2N+1,k(x) = xqN (|x|)Y `k (x)
(5)

with pN , qN radial functions whose expansions in Jacobi
polynomials are explicitly computed.

B. Clifford translations and modulations

As a consequence of (1), we have for each t ∈ R and
x ∈ Rm,

etx =

∞∑
n=0

tnxn

n!
= cos(t|x|) +

x

|x|
sin(t|x|). (6)

Since ( x
|x| )

2 = −1, we may view equation (6) as a gener-
alisation of Euler’s formula for complex exponentials. Given
ξ, y ∈ Rm, the classical modulation operator Mξ and classical
translation operator Ty act on H by Mξf(x) = e−2πi〈x,ξ〉f(x)
and Tyf(x) = f(x − y) and are intertwined by the Fourier
transform: FTy = MyF . Analogously, given t ∈ R, we define
the Clifford modulation operator mt on H by

mtf(x) = etxf(x)

and the Clifford translation operator τt by τt = F−1mtF .
The multiplication operator S given by Sf(x) = xf(x) is
intertwined with the Dirac operator by the Fourier transform:
FD = 2πiSF . Since D2 = −∆ (the space Laplacian), we
see that u(ξ, t) = eitDξf(ξ) satisfies the following initial value
problem for the wave equation in Rm:

∂2u(ξ, t)

∂t2
= ∆xu(ξ, t) (ξ ∈ Rm, t > 0)

u(ξ, 0) = f(ξ) (ξ ∈ Rm)

∂u(ξ, t)

∂t

∣∣∣∣
t=0

= iDf(ξ) (ξ ∈ Rm).

When the ambient dimension m is odd, the solution of this
problem is obtained by taking mean-values of the initial data
over spheres in Rm: if µ = m−3

2 (an integer) then

u(ξ, t) =
1

γm|Sm−1|

[
∂t

(
1

t
∂t

)µ(
1

t

∫
∂Bt(ξ)

f(y) dσ(y)

)

+

(
1

t
∂t

)µ(
1

t

∫
∂Bt(ξ)

iDf(y) dσ(y)

)]
(7)

where γm = 1.3.5 . . . (m−2), Sm−1 is the unit sphere in Rm
and |Sm−1| is its surface measure. From (7) we see that if f
is supported on B(c) and t > c, then τtf is supported on the



annulus A(t − c, t + c). Hence if f ∈ PWc and t > c, then
e2πtxf ∈ PWm

t−c,t+c.

C. Clifford translates of C-L polys

We now investigate the action of Clifford modulations on
the C-L polys. Since C̄0

n(Y `k ) is supported on B(1), if t > 1
the Clifford translates τεtC̄0

n(Y `k ) (ε ∈ {±1}) are supported on
A(t−1, t+1). From the unitarity of τεt and the orthonormality
of the C-L polys on B(1), we see that if t > 1, the Clifford
translates

B̃t = {τεtC̄0
n(Y `k ) : (n, k, `) ∈ Λ, ε ∈ {±1}} (8)

form an orthonormal collection in L2(A(t− 1, t+ 1),Cm), or
equivalently, the Clifford modulates

Bt = {mεtFC̄0
n(Y `k ) : (n, k, `) ∈ Λ, ε ∈ {±1}}

form an orthonormal collection in PWm
t−1,t+1.

For c > 0, let Dc be the unitary isotropic dilation on H,
i.e., Dcf(x) = c−m/2f(xc ). Since τtDc = Dcτt/c, for t > c
the collection

Bt,c = {mεtFDcC̄
0
n(Y `k ) : (n, k, `) ∈ Λ, ε ∈ {±1}}

forms an orthonormal collection in PWm
t−c,t+c. As we shall

see, this collection does not span PWm
t−c,t+c.

We have the following explicit description of the Clifford
translates of the C-L polys. In what follows, let m be odd and
ν = k + m

2 .

Theorem 1. Let C(ν)
n be the Gegenbauer polynomial of degree

n on the real line. Then for each pair of integers N, k ≥ 0,
there are real constants akN , bkN , ckN , dkN for which

τtC̄
0
2N (Yk)(ξ) =

akNYk(ξ)

(
1

s

d

ds

)ν− 3
2 1

s
[(1− (s− t)2)ν−

3
2C

(ν−1)
2N+1(s− t)]

+ bkNξYk(ξ)

(
1

s

d

ds

)ν− 1
2 1

s
[(1− (s− t)2)ν−

1
2C

(ν)
2N (s− t)],

τtC̄
0
2N+1(Yk) =

ckNξYk(ξ)

(
1

s

d

ds

)ν− 1
2 1

s
[(1− (s− t)2)ν−

1
2C

(ν)
2N+1(s− t)]

+ dkNYk(ξ)

(
1

s

d

ds

)ν− 3
2 1

s
[(1− (s− t)2)ν−

3
2C

(ν−1)
2N+2(s− t)]

where s = |ξ|.

Let t > c and

X̃t,c = sp{τεtDcC̄
0
n(Y `k ) : (n, k, `) ∈ Λ, ε ∈ {±1}}.

X̃t,c is a closed submodule of L2(A(t−c, t+c),Cm). Let X̃⊥t,c
be the collection of those g ∈ L2(A(t− c, t+ c),Cm) which
are orthogonal to all functions in X̃t,c. Then Xt,c := F(X̃t,c)
is a closed submodule of PWm

t−c,t+c.

D. An orthonormal basis for the complementary space X̃⊥t

As a consequence of Theorem 1, we have the following
description of X̃⊥t,c:

Corollary 2. Let t > c. Then

X̃⊥t,c =


∞∑
k=0

dmk∑
`=1

[p
(`)
2ν−2(|x|) + ωq

(`)
2ν−3(|x|)] Y

`
k (ω)

|x|2ν−1

 (9)

where ω =
x

|x|
, p2ν−2 is the restriction of an odd polynomial

of degree less than or equal to 2ν−2 to the interval [t−c, t+c]
and q2ν−3 is the restriction of an even polynomial of degree
less than or equal to 2ν − 3 to the interval [t− c, t+ c].

For t > c fixed, let It be the interval It = [t− c, t+ c]. For
each non-negative integer k, consider the Hilbert space L2

k(It)
consisting of measurable functions f : It → R for which∫ t+c

t−c
|f(s)|2 ds

s2ν−1
<∞.

The inner product in L2
k(It) is 〈f, g〉k =

∫ t+c
t−c f(s)g(s) ds

s2ν−1 .
Within L2

k(It), we identify the closed subspaces πn(It) of
restrictions to It of polynomials of degree less than or equal
to n, πen(It) of restrictions to It of even polynomials of degree
less than or equal to n and πon(It) of restrictions of odd
polynomials of degree less than or equal to n.

For a fixed positive integer k, we apply Gram-Schmidt
orthogonalisation within L2

k(It) to the even monomials
{1, s2, . . . , s2ν−3} to produce an orthonormal basis {P k2j}

ν− 3
2

j=0

for πe2ν−3(It). Similarly, we apply Gram-Schmidt orthogonal-
isation within L2

k(It) to the odd monomials {s, s3, . . . , s2ν−2}
to produce an orthonormal basis {P k2j+1}

ν− 3
2

j=0 for πo2ν−2(It).

Note that the collection {P k2j}
ν− 3

2
j=0 need not be orthogonal to

the collection {P k2j+1}
ν− 3

2
j=0 .

Define functions χεj,k,l (k ≥ 0, 1 ≤ ` ≤ dmk , 0 ≤ j ≤
ν − 3

2 , ε ∈ {±1}) by

χεj,k,l(x) = [P k2j+1(|x|) + εωP k2j(|x|)]
Y `k (ω)√

2|x|k+m−1
.

Theorem 3. The collection

B′t,c =

{
Fχεj,k,` : k ≥ 0, 1 ≤ ` ≤ dmk , 0 ≤ j ≤ ν − 3

2
, ε ∈ {±1}

}
is an orthonormal basis for X⊥t,c.

II. PSEUDO CLIFFORD BANDPASS PROLATES (PCBPS)

From Theorem 3 we see that the collection Bt,c ∪ B′t,c is
an orthonormal basis for PWm

t−c,t+c provided t > c. By a
pseudo prolate we mean an eigenfunction of either PXt,cQ or
PX⊥t,cQ.



A. Matrix formulation of the eigenvalue problem for PBCPs

Let {ψ`n,k : (n, k, `) ∈ Λ} be the orthonormal basis
for PWm

c consisting of the CPSWFs of section IA. Since
Vk,` := sp{e2πtxψ`n,k}∞n=0 ⊕ sp{e−2πtxψ`n,k}∞n=0 is invariant
under PXt,cQ for each k ≥ 0 and 1 ≤ ` ≤ dmk , we may seek
eigenfunctions of PXt,cQ within each Vk,`. Suppose

f =

∞∑
n=0

e2πtxψ`n,ka
+
n +

∞∑
n=0

e−2πtxψ`n,ka
−
n ∈ Vk,`

is an eigenfunction of PXt,cQ. Then

PXt,cQf =

∞∑
m=0

e2πtxψ`m,k〈e2πtxψ`m,k, Qf〉

+

∞∑
m=0

e−2πtxψ`m,k〈e−2πtxψ`m,k, Qf〉

=
∑
m,n

e2πtxψ`m,k[〈Qψ`m,k, ψ`n,k〉a+n + 〈Qψ`m,k, e−4πtxψ`n,k〉a−n ]

+
∑
m,n

e−2πtxψ`m,k[〈Qψ`m,k, e4πtxψ`n,k〉a+n + 〈Qψ`m,k, ψ`n,k〉a−n ]

=
∑
m

ψ`m,k[e2πtx[Da+ +Ga−]m + e−2πtx[G∗a+ +Da−]m]

where D is the (doubly-infinite) diagonal matrix with diagonal
entries Dn,n = λkn and G is the (doubly-infinite) matrix
with entries Gn,m = 〈Qψ`m,k, e4πtxψ`n,k〉. We conclude that
PXt,cQf = fλ for some Clifford constant λ if and only if the
vector a =

(
a+ a−

)T
satisfies the matrix equation

Ca =

(
D G
G∗ D

)(
a+

a−

)
=

(
a+

a−

)
λ. (10)

It can be shown that the entries of G are real. The matrix
C on the left hand side of (10) is self-adjoint and by the
orthonormality of {ψ`n,k}∞n=0 on B(1) we have∑
m,n

|Cm,n|2 = 2
∑
n

(λkn)2 + 2
∑
m,n

|Gm,n|2

= 2
∑
n

(λkn)2 + 2
∑
m,n

|〈φ`m,k, e4πtxQφ`n,k〉|2

≤ 2
∑
n

(λkn)2 + 2

(∑
n

λkn

)2

<∞.

We conclude that C has a complete system of eigenvectors
an =

(
a+
n a−n

)T
with real eigenvalues θn. Let an be such

an eigenvector and

Ψ`
n,k =

∑
m

e2πtxψ`m,k(a+
n )m +

∑
m

e−2πtxψ`m,k(a−n )m.

Then Ψ`
n,k is an eigenfunction of PXt,cQ with eigenvalue θn

and

〈Ψ`
n,k,Ψ

`
m,k〉 = 〈a+

n ,a
+
m〉+ 〈a−n ,a−m〉 = 〈an,am〉 = δn,m.

We have:

Theorem 4. The collection BΨ = {Ψ`
n,k : (n, k, `) ∈ Λ} is

an orthonormal basis for Xt,c consisting of eigenfunctions of
PXt,cQ (i.e., consisting of pseudo Clifford bandpass prolates).

B. Matrix formulation of the eigenvalue problem for the
complementary space

The elements of the orthonormal basis B′t,c for X⊥t,c may
be computed as follows:

Fχ`,εj,k(x) =

∫
At−c,t+c

P k2j+1(|ξ|) + εωP k2j(|ξ|)√
2|ξ|k+m−1

Y `k (ω)e−2πi〈x,ξ〉 dξ

= A`j,k(x) + εB`j,k(x)

where

A`j,k(x) =
2π√

2
(−i)k Y

`
k (η)

|x|ν−1

∫ t+c

t−c

P k2j+1(r)

rν−1
Jν−1(2πr|x|) dr

B`j,k(x) =
2π√

2
(−i)k+1η

Y `k (η)

|x|ν−1

∫ t+c

t−c

P k2j(r)

rν
Jν(2πr|x|) dr,

η = x
|x| and Jµ is a Bessel function of the first kind. To obtain

these expressions for A`j,k and B`j,k, we have used the Funk-
Hecke theorem [5]. Closed forms for A`j,k(x) and B`j,k(x) may
be written in terms of the values of P k2j and P k2j+1 and their
derivatives evaluated at t± c and the values of various Bessel
functions Jµ at 2π(t± c)|x|. Details will appear elsewhere.

If f =
∑
j Fχ

`,+
j,k b

+
j +

∑
j Fχ

`,−
j,k b

−
j ∈ X⊥t,c is an eigen-

function of PX⊥t,cQ, then the coefficients b+j and b−j satisfy
the matrix equation(

H++ H+−

H−+ H−−

)(
b+

b−

)
=

(
b+

b−

)
λ (11)

where H++, H+−, H−+, H−− are (doubly-infinite) matrices
given by Hε1,ε2

j′,j = 〈Fχ`,ε1j,k , QFχ
`,ε2
j′,k〉. The matrix on the left

hand side of (11) is self-adjoint. Before invoking the spectral
theory, we must show that this matrix is Hilbert-Schmidt. Let

Kk(r, s) :=

∫ 1

0

uJk+ν−1(2πru)Jν−1(2πsu) du

=
2πsJν−1(2πs)Jν−1(2πr)− 2πrJν−2(2πr)Jν−1(2πs)

r2 − s2
.

The second equality is obtained from 6.521 (1) in [4]. We find
that

〈A`j,k, QA`j′,k〉
2π2

=

∫ t+c

t−c

P k2j+1(r)

rν−1

∫ t+c

t−c

P k2j′+1(s)

sν−1
Kk(r, s) ds dr

= Gk1Gk2 (Kk)(j, j′)

where Gk1Gk2F (j, j′) is the generalised (j, j′)-th Fourier coeffi-
cient of F (r, s) (r, s ∈ [t−c, t+c]) relative to the orthonormal
collection {P k2j}

ν− 3
2

j=0 . By Bessel’s inequality we have

∑
j,j′

|〈A`j,k, QA`j′,k〉|2 ≤
∫ t+c

t−c

∫ t+c

t−c
|Kk(r, s)|2 dr ds

(sr)ν−1
<∞.



A similar estimate may be made for
∑
j,j′ |〈B`j,k, QB`j′,k〉|2.

Since 〈A`j,k, B`j′,k〉 = 0, we have∑
j,j′

|Hε1,ε2
j,j′ |

2 =
∑
j,j′

|〈A`j,k + ε1B
`
j,k, Q(A`j′,k + ε2B

`
j′,k〉|2

=
∑
j

[|〈A`j,k, QA`j,k〉|2 + |〈B`j,k, QB`j,k〉|2

+ 2ε1ε2<(〈A`j,k, QA`j,k〉〈B`j,k, QB`j,k〉)

Summing over ε1, ε2 ∈ {±1} gives∑
ε1,ε2

∑
j,j′

|Hε1,ε2
j,j′ |

2

= 4
∑
j

[|〈A`j,k, QA`j,k〉|2 + |〈B`j,k, QB`j,k〉|2]

≤ 16π4

∫ t+1

t−1

∫ t+c

t−c
[|Kk(r, s)|2 + |Kk+1(r, s)|2]

dr ds

(rs)ν−1
<∞.

C. Computation of G

The construction of bandpass prolates within Xt,c still
requires the computation of the matrix G in (10). One scheme
involves another eigenfunction property of the CPSWFs ( [1],
[2]): ∫

B

ψk,`n (x)e2πic〈x,y〉 dx = µkmψ
`
n,k(x) (12)

where µkn = ±ik+n

√
λkk
cm . From (12) we have the following:

Theorem 5. Let αn,n′;k =
µknµ

k
n′ (−1)n+k+1

2πic((µkn)2+(µk
n′ )

2)
. Then

∫
B

ψ`
′
n′,k′(x)xψ`n,k(x) dx = δk,k′δ`,`′

√
λknλ

k
n′γn,n,;k

where

γn,n′;k = αn,n′;k


−pk

n′
2

(1)qkn−1
2

(1) if n′ even and n odd

qk
n′−1

2

(1)pkn
2

(1) if n′ odd and n even

0 if n− n′ even
(13)

with pN and qN as in (5).

The orthonormality of the CPSWFs on B(1) now allows
for the following description of the matrix G:

Theorem 6. Let Γ(k) be the doubly-infinite matrix with
entries Γ

(k)
n,n′ = γn,n′;k with γn,n′;k as in (13). Then G =

exp(4πtΓ(k)).

Finally, we provide another method of computation of the
matrix G of (10). We recall the expansions (4) of L2(B)-
normalised CPSWFs as linear combinations of C-L polys. By
iterating the Bonnet formulae (3) we find negative definite,

tri-diagonal, symmetric, doubly-infinite matrices Me and Mo

for which

x2
∞∑
i=0

C̄0
2i(Y

`
k )ai =

∞∑
i=0

C̄0
2i(Y

`
k )(Mea)i

x2
∞∑
i=0

C̄0
2i+1(Y `k )bi =

∞∑
i=0

C̄0
2i+1(Y `k )(Mob)i

As a consequence, we have the following result:

Theorem 7. The entries G2N,2N ′ of the matrix G are given
by ∫

B

ψ`2N,k(x)e4πtxψ`
′

2N ′,k′(x) dx

=
√
λk2Nλ

k
2N ′δk,k′δ`,`′〈d

k,`
N , cos(4πt

√
−Me)dk,`N ′ 〉`2

where the sequence dk,`N with i-th entry dk,`N,i is as in (4).
Similar formulae hold for other entries of G.

REFERENCES

[1] H. Baghal Ghaffari, J.A. Hogan and J.D. Lakey, “New Properties of
Clifford Prolate Spheroidal Wavefunctions”, (this volume).

[2] H. Baghal Ghaffari, Higher-dimensional Prolate Spheroidal Wavefunc-
tions, PhD. thesis, University of Newcastle (Australia), 2022.

[3] R. Delanghe, F. Sommen and V. Souc̆ek, Clifford Algebra and Spinor-
Valued Functions: a Function Theory for the Dirac Operator, Kluwer
Academic, 1992.

[4] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products
(7th edition), Elsevier/Academic Press, Amsterdam, 2007.

[5] H. Groemer, Geometric Applications of Fourier Series and Spherical
Harmonics, Encyclopedia Math. Appl. 61, Cambridge University Press,
Cambridge, 1996.

[6] J.A. Hogan and J.D. Lakey, Duration and Bandwidth Limiting. Prolate
Functions, Sampling, and Applications. Boston, MA: Birkhäuser, 2012.
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