Pseudo Clifford Bandpass Prolates

Jeffrey A. Hogan School of Information and Physical Sciences University of Newcastle Callaghan NSW 2308, Australia email: jeff.hogan@newcastle.edu.au Joseph D. Lakey Department of Mathematical Sciences New Mexico State University Las Cruces, NM, USA email: jlakey@nmsu.edu

Abstract—We introduce operators which generalise the classical modulation and translation operators, now acting on functions defined on \mathbb{R}^m and taking values in the associated Clifford algebra \mathbb{C}_m . The modulation operators are used to map orthonormal bases for Paley-Wiener spaces associated with balls in \mathbb{R}^m to incomplete orthonormal sets in Paley-Wiener spaces PW_A associated with annuli A in \mathbb{R}^m . The complementary spaces are characterised and an orthonormal basis for them is given. These bases are used to construct an orthonormal basis for PW_A composed of pseudo bandpass prolates.

I. INTRODUCTION

Given c > 0, the Paley-Wiener space $PW_c(\mathbb{R})$ is the collection of functions $f \in L^2(\mathbb{R})$ whose Fourier transforms $\mathcal{F}f$ are supported on the interval [-c,c]. Let Q_c be the *time-limiting* projection operator $Q_cf(t) = \mathbf{1}_{[-c,c]}(t)f(t)$ where $\mathbf{1}_{[-c,c]}$ is the characteristic function of the interval [-c,c]. The *band-limiting* operator P_c is given by $P_c = \mathcal{F}Q_c\mathcal{F}$. The (one-dimensional) prolate spheroidal wavefunctions (PSWFs) are eigenfunctions of the self-adjoint Hilbert-Schmidt integral operator P_cQ_1 . They are most efficiently computed by observing that they are also eigenfunctions of a second order differential operator \mathcal{L}_c which commutes with P_cQ_1 [9], [6].

For $0 < c < c' < \infty$, bandpass prolates (BPPs) are eigenfunctions of $(P_{c'} - P_c)Q_1$. BPPs are members of $PW_{c',c}(\mathbb{R})$ – the space of square-integrable functions on the line whose Fourier transforms are supported on $[-c', -c] \cup [c, c']$. It was shown [8] that bandpass prolates are not eigenfunctions of a differential operator. Nevertheless [7] the construction of BPPs can be achieved by solving an appropriate matrix eigenvalue problem. The key observation in the construction is that if $\{\varphi_n\}_{n=0}^{\infty}$ is an orthonormal basis for PW_c and t > c, then $\{e^{-2\pi i tx}\varphi_n(x)\}_{n=0}^{\infty} \cup \{e^{2\pi i tx}\varphi_n(x)\}_{n=0}^{\infty}$ is an orthonormal basis for $PW_{t-c,t+c}$.

In this paper we investigate the multidimensional analogue of this construction in which intervals are replaced by balls and the union of intervals is replaced by spherically symmetric annuli in *m*-dimensional euclidean space \mathbb{R}^m ($m \ge 3$ odd). This requires the application of techniques from *Clifford analysis* [3].

Let $\{e_1, e_2, \ldots, e_m\}$ be an orthonormal basis for *m*dimensional euclidean space \mathbb{R}^m . The associative *Clifford algebra* \mathbb{R}_m is the 2^m -dimensional algebra spanned by the collection

$$\bigcup_{j=1}^{m} \{e_A : A = \{i_1, i_2, \dots, i_j\} \text{ with } 1 \le i_1 < i_2 < \dots < i_j \le m\}$$

with algebraic properties $e_{\emptyset} = 1$ (the identity), $e_j^2 = -1$, and if j < k then $e_{\{j,k\}} = e_j e_k = -e_k e_j$. Here \emptyset is the null set and we often abuse notation and write $e_{\emptyset} = e_0 = 1$. Notice that for convenience we write $e_{\{j\}} = e_j$. In particular we have $\mathbb{R}_m = \{\sum_A x_A e_A; x_A \in \mathbb{R}\}$. Similarly, we have the complexified Clifford algebra $\mathbb{C}_m = \{\sum_A z_A e_A; z_A \in \mathbb{C}\}$.

The canonical mapping of \mathbb{R}^m into \mathbb{R}_m maps the vector $(x_1, x_2, \ldots, x_m) \in \mathbb{R}^m$ to $\sum_{j=1}^m x_j e_j \in \mathbb{R}_m$. For this reason, elements of \mathbb{R}_m of the form $\sum_{j=1}^m x_j e_j$ are also known as *vec*-tors. Notice that \mathbb{R}_m decomposes as $\mathbb{R}_m = \Lambda_0 \oplus \Lambda_1 \oplus \ldots \Lambda_m$, where $\Lambda_j = \{\sum_{|A|=j} x_A e_A\}$. A similar decomposition applies to \mathbb{C}_m . In particular, Λ_0 is the collection of scalars while Λ_1 is the collection of vectors. Given $x \in \mathbb{R}_m$ of the form $x = \sum_A x_A e_A$ and $0 \le p \le m$ we write $[x]_p$ to mean the " Λ_p -part" of x, i.e, $[x]_p = \sum_{|A|=p} x_A e_A$.

If $x, y \in \mathbb{R}_m$ are vectors, then

$$x^2 = -|x|^2$$
 and $xy = -\langle x, y \rangle + x \land y \in \Lambda_0 \oplus \Lambda_2$. (1)

Here $\langle x, y \rangle$ is the usual dot product of x and y while $x \wedge y$ is their wedge product. The linear involution \overline{u} of $u \in \mathbb{R}_m$ is determined by the rules $\overline{x} = -x$ if $x \in \Lambda_1$ while

$$\overline{uv} = \overline{v}\,\overline{u} \tag{2}$$

for all $u, v \in \mathbb{R}_m$. On \mathbb{C}_m , (2) still applies, but we also have $\overline{\lambda e_j} = \lambda^* \overline{e_j}$ where λ^* is the complex conjugate of the complex number λ . Further details are available in [3].

Given an open domain Ω in \mathbb{R}^m , the Dirac operator acts on functions in $C^1(\Omega, \mathbb{C}_m)$ by

$$Df(x) = \sum_{j=1}^{m} e_j \frac{\partial f}{\partial x_j}$$

Functions in the kernel of the Dirac operator are said to be monogenic. A spherical monogenic of degree $k \ge 0$ is a polynomial Y defined on \mathbb{R}^m of homogeneous degree k (i.e., $Y(\lambda x) = \lambda^k Y(x)$ for all $\lambda > 0$) with coefficients in \mathbb{C}_m , which is also monogenic.

We consider the right Clifford module $\mathcal{H} = L^2(\mathbb{R}^m, \mathbb{C}_m)$ of measurable \mathbb{C}_m -valued functions f defined on \mathbb{R}^m for which $\int_{\mathbb{R}^m} |f(x)|^2 dx < \infty$. The \mathbb{C}_m -valued inner product on \mathcal{H} is defined by

$$\langle f,g\rangle = \int_{\mathbb{R}^m} \overline{f(x)}g(x) \, dx.$$

The \mathbb{C}_m -valued inner product on the sequence space $\ell^2(\mathbb{N}, \mathbb{C}_m)$ is given by

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\ell^2} = \sum_{n=1}^{\infty} \overline{a_n} b_n.$$

The Fourier transform \mathcal{F} is defined on $L^1(\mathbb{R}^m, \mathbb{C}_m)$ by $\mathcal{F}f(\xi) = \int_{\mathbb{R}^m} f(x)e^{-2\pi i \langle x,\xi \rangle} dx$ and extends to a unitary operator on \mathcal{H} . The Paley-Wiener space PW_c^m associated with the ball B(c) (centred at the origin and of radius c > 0) is the class of those functions $f \in \mathcal{H}$ for which $\mathcal{F}f(\xi) = 0$ for $|\xi| > c$. Similarly, if $0 \le c < c' < \infty$, the Paley-Wiener space $PW_{c',c}^m$ associated with the annulus A(c',c) is the class of those functions $f \in \mathcal{H}$ for which $\mathcal{F}f(\xi) = 0$ for $|\xi| < c$ or $|\xi| > c'$.

A. Clifford-Legendre polynomials and Clifford Prolate Spheroidal Wavefunctions

In [1] and [2], the Clifford-Legendre polynomials (C-L polys) $\bar{C}_n^0(Y_k^\ell)$ are studied. Here $\{Y_k^\ell\}_{\ell=1}^{d_k^m}$ is an orthonormal basis for the space \mathcal{H}_k of spherical monogenics of degree k, and d_k^m is the dimension of \mathcal{H}_k . Each C-L poly is an \mathbb{R}_m -valued function on \mathbb{R}^m , normalised so that $\int_{B(1)} |\bar{C}_n^0(Y_k^\ell)(x)|^2 dx = 1$, and takes one of two forms, depending on whether n is even or odd:

$$\bar{C}_{2N}^0(Y_k^\ell)(x) = P_N(|x|^2)Y_k^\ell(x)$$

$$\bar{C}_{2N+1}^0(Y_k^\ell)(x) = xQ_N(|x|^2)Y_k^\ell(x)$$

where P_N and Q_N are real-valued polynomials of degree N on [0, 1]. The C-L polys satisfy the *Bonnet formula* [2]:

$$x\bar{C}_{2N}^{0}(Y_{k}^{\ell})(x) = \alpha_{N}\bar{C}_{2N+1}^{0}(Y_{k}^{\ell})(x) + \beta_{N}\bar{C}_{2N-1}^{0}(Y_{k}^{\ell})(x)$$

$$x\bar{C}_{2N+1}^{0}(Y_{k}^{\ell})(x) = \alpha_{N}'\bar{C}_{2N+2}^{0}(Y_{k}^{\ell})(x) + \beta_{N}'\bar{C}_{2N}^{0}(Y_{k}^{\ell})(x)$$
(3)

where α_N , β_N , α'_N , β'_N are explicit real constants which are bounded independent of N.

Given $0 \le c < c' < \infty$ and r > 0, we define orthogonal projections P_c , $P_{c',c}$ and Q_r on \mathcal{H} as follows: $Q_r f(x) = \mathbf{1}_{B(r)}(x)f(x)$ and

$$P_c f(x) = \mathcal{F}^{-1} Q_c \mathcal{F}; \quad P_{c',c} = \mathcal{F}^{-1} (Q_{c'} - Q_c) \mathcal{F}.$$

Here $\mathbf{1}_{B(r)}$ is the characteristic function of B(r), Q_r is the space-limiting operator which truncates functions outside B(r), P_c and $P_{c',c}$ are frequency-limiting operators which truncate the Fourier transforms of functions outside B(c) and the annulus A(c', c) respectively. By Q we mean the operator Q_1 . Clifford-Prolate Spheroidal Wavefunctions (CPSWFs) are eigenfunctions of P_cQ . In [1] and [2], orthonormal bases $\{\psi_{n,k}^{\ell} : (n, k, \ell) \in \Lambda\}$ for PW_c^m consisting of CPSWFs are constructed and their properties developed. Here

$$\Lambda = \{ (n, k, \ell) : n, k \ge 0, 1 \le \ell \le d_k^m \}.$$

We have $P_c Q \psi_{n,k}^\ell = \lambda_n^k \psi_{n,k}^\ell$ with $\lambda_n^k \ge 0$ and $\lambda_n^k \downarrow 0$ as $n \to \infty$. The functions $\phi_{n,k}^\ell = (\lambda_n^k)^{-1/2} Q \psi_n^k$ $((n,k,\ell) \in \Lambda)$

form an orthonormal basis for $L^2(B(1), \mathbb{C}_m)$. The construction of CPSWFs given in [1] and [2] involves the numerical computation of real constants $d_{N,i}^{k,\ell}$ and $b_{N,i}^{k,\ell}$ for which

$$\phi_{2N,k}^{\ell} = \sum_{i=0}^{\infty} \bar{C}_{2i}^{0}(Y_{k}^{\ell}) d_{N,i}^{k,\ell}$$

$$\phi_{2N+1,k}^{\ell} = \sum_{i=0}^{\infty} \bar{C}_{2i+1}^{0}(Y_{k}^{\ell}) b_{N,i}^{k,\ell}.$$
(4)

It is shown in [2] that the CPSWFs have the functional form

$$\phi_{2N,k}^{\ell}(x) = p_N(|x|)Y_k^{\ell}(x)
\phi_{2N+1,k}^{\ell}(x) = xq_N(|x|)Y_k^{\ell}(x)$$
(5)

with p_N , q_N radial functions whose expansions in Jacobi polynomials are explicitly computed.

B. Clifford translations and modulations

As a consequence of (1), we have for each $t \in \mathbb{R}$ and $x \in \mathbb{R}^m$,

$$e^{tx} = \sum_{n=0}^{\infty} \frac{t^n x^n}{n!} = \cos(t|x|) + \frac{x}{|x|} \sin(t|x|).$$
(6)

Since $(\frac{x}{|x|})^2 = -1$, we may view equation (6) as a generalisation of Euler's formula for complex exponentials. Given $\xi, y \in \mathbb{R}^m$, the classical modulation operator M_{ξ} and classical translation operator T_y act on \mathcal{H} by $M_{\xi}f(x) = e^{-2\pi i \langle x, \xi \rangle} f(x)$ and $T_y f(x) = f(x - y)$ and are intertwined by the Fourier transform: $\mathcal{F}T_y = M_y \mathcal{F}$. Analogously, given $t \in \mathbb{R}$, we define the *Clifford modulation operator* m_t on \mathcal{H} by

$$m_t f(x) = e^{tx} f(x)$$

and the *Clifford translation operator* τ_t by $\tau_t = \mathcal{F}^{-1}m_t\mathcal{F}$. The multiplication operator S given by Sf(x) = xf(x) is intertwined with the Dirac operator by the Fourier transform: $\mathcal{F}D = 2\pi i S \mathcal{F}$. Since $D^2 = -\Delta$ (the space Laplacian), we see that $u(\xi, t) = e^{itD_{\xi}}f(\xi)$ satisfies the following initial value problem for the wave equation in \mathbb{R}^m :

$$\frac{\partial^2 u(\xi,t)}{\partial t^2} = \Delta_x u(\xi,t) \quad (\xi \in \mathbb{R}^m, \ t > 0)$$
$$u(\xi,0) = f(\xi) \qquad (\xi \in \mathbb{R}^m)$$
$$\frac{\partial u(\xi,t)}{\partial t}\Big|_{t=0} = iDf(\xi) \qquad (\xi \in \mathbb{R}^m).$$

When the ambient dimension m is odd, the solution of this problem is obtained by taking mean-values of the initial data over spheres in \mathbb{R}^m : if $\mu = \frac{m-3}{2}$ (an integer) then

$$u(\xi,t) = \frac{1}{\gamma_m |S^{m-1}|} \left[\partial_t \left(\frac{1}{t} \partial_t \right)^{\mu} \left(\frac{1}{t} \int_{\partial B_t(\xi)} f(y) \, d\sigma(y) \right) + \left(\frac{1}{t} \partial_t \right)^{\mu} \left(\frac{1}{t} \int_{\partial B_t(\xi)} iDf(y) \, d\sigma(y) \right) \right]$$
(7)

where $\gamma_m = 1.3.5...(m-2)$, S^{m-1} is the unit sphere in \mathbb{R}^m and $|S^{m-1}|$ is its surface measure. From (7) we see that if fis supported on B(c) and t > c, then $\tau_t f$ is supported on the annulus A(t-c,t+c). Hence if $f \in PW_c$ and t > c, then D. An orthonormal basis for the complementary space \tilde{X}_t^+ $e^{2\pi tx} f \in PW^m_{t-c,t+c}.$

C. Clifford translates of C-L polys

We now investigate the action of Clifford modulations on the C-L polys. Since $\bar{C}_n^0(Y_k^\ell)$ is supported on B(1), if t > 1 the Clifford translates $\tau_{\varepsilon t} \bar{C}_n^0(Y_k^\ell)$ ($\varepsilon \in \{\pm 1\}$) are supported on A(t-1,t+1). From the unitarity of $\tau_{\varepsilon t}$ and the orthonormality of the C-L polys on B(1), we see that if t > 1, the Clifford translates

$$\tilde{\mathcal{B}}_t = \{ \tau_{\varepsilon t} \bar{C}_n^0(Y_k^\ell) : (n,k,\ell) \in \Lambda, \, \varepsilon \in \{\pm 1\} \}$$
(8)

form an orthonormal collection in $L^2(A(t-1,t+1),\mathbb{C}_m)$, or equivalently, the Clifford modulates

$$\mathcal{B}_t = \{ m_{\varepsilon t} \mathcal{F} \bar{C}_n^0(Y_k^\ell) : (n, k, \ell) \in \Lambda, \, \varepsilon \in \{\pm 1\} \}$$

form an orthonormal collection in $PW_{t-1,t+1}^m$.

For c > 0, let D_c be the unitary isotropic dilation on \mathcal{H} , i.e., $D_c f(x) = c^{-m/2} f(\frac{x}{c})$. Since $\tau_t D_c = D_c \tau_{t/c}$, for t > cthe collection

$$\mathcal{B}_{t,c} = \{ m_{\varepsilon t} \mathcal{F} D_c \bar{C}_n^0(Y_k^\ell) : (n,k,\ell) \in \Lambda, \, \varepsilon \in \{\pm 1\} \}$$

forms an orthonormal collection in $PW_{t-c,t+c}^m$. As we shall see, this collection does not span $PW_{t-c,t+c}^m$.

We have the following explicit description of the Clifford translates of the C-L polys. In what follows, let m be odd and $\nu = k + \frac{m}{2}.$

Theorem 1. Let $C_n^{(\nu)}$ be the Gegenbauer polynomial of degree n on the real line. Then for each pair of integers $N, k \ge 0$, there are real constants a_N^k , b_N^k , c_N^k , d_N^k for which

$$\begin{split} \tau_t \bar{C}_{2N}^0(Y_k)(\xi) &= \\ a_N^k Y_k(\xi) \left(\frac{1}{s} \frac{d}{ds}\right)^{\nu - \frac{3}{2}} \frac{1}{s} [(1 - (s - t)^2)^{\nu - \frac{3}{2}} C_{2N+1}^{(\nu - 1)}(s - t)] \\ &+ b_N^k \xi Y_k(\xi) \left(\frac{1}{s} \frac{d}{ds}\right)^{\nu - \frac{1}{2}} \frac{1}{s} [(1 - (s - t)^2)^{\nu - \frac{1}{2}} C_{2N}^{(\nu)}(s - t)], \\ \tau_t \bar{C}_{2N+1}^0(Y_k) &= \\ c_N^k \xi Y_k(\xi) \left(\frac{1}{s} \frac{d}{ds}\right)^{\nu - \frac{1}{2}} \frac{1}{s} [(1 - (s - t)^2)^{\nu - \frac{1}{2}} C_{2N+1}^{(\nu)}(s - t)] \\ &+ d_N^k Y_k(\xi) \left(\frac{1}{s} \frac{d}{ds}\right)^{\nu - \frac{3}{2}} \frac{1}{s} [(1 - (s - t)^2)^{\nu - \frac{3}{2}} C_{2N+2}^{(\nu - 1)}(s - t)] \end{split}$$

where $s = |\xi|$.

Let t > c and

$$\tilde{X}_{t,c} = \overline{\operatorname{sp}}\{\tau_{\varepsilon t} D_c \bar{C}_n^0(Y_k^\ell) : (n,k,\ell) \in \Lambda, \, \varepsilon \in \{\pm 1\}\}.$$

 $X_{t,c}$ is a closed submodule of $L^2(A(t-c,t+c),\mathbb{C}_m)$. Let $X_{t,c}^{\perp}$ be the collection of those $g \in L^2(A(t-c,t+c),\mathbb{C}_m)$ which are orthogonal to all functions in $\tilde{X}_{t,c}$. Then $X_{t,c} := \mathcal{F}(\tilde{X}_{t,c})$ is a closed submodule of $PW_{t-c,t+c}^m$.

As a consequence of Theorem 1, we have the following description of $X_{t,c}^{\perp}$:

Corollary 2. Let t > c. Then

$$\tilde{X}_{t,c}^{\perp} = \left\{ \sum_{k=0}^{\infty} \sum_{\ell=1}^{d_k^m} [p_{2\nu-2}^{(\ell)}(|x|) + \omega q_{2\nu-3}^{(\ell)}(|x|)] \frac{Y_k^{\ell}(\omega)}{|x|^{2\nu-1}} \right\}$$
(9)

where $\omega = \frac{x}{|x|}$, $p_{2\nu-2}$ is the restriction of an odd polynomial of degree less than or equal to $2\nu - 2$ to the interval [t-c, t+c]and $q_{2\nu-3}$ is the restriction of an even polynomial of degree less than or equal to $2\nu - 3$ to the interval [t - c, t + c].

For t > c fixed, let I_t be the interval $I_t = [t - c, t + c]$. For each non-negative integer k, consider the Hilbert space $L_k^2(I_t)$ consisting of measurable functions $f: I_t \to \mathbb{R}$ for which

$$\int_{t-c}^{t+c} |f(s)|^2 \frac{ds}{s^{2\nu-1}} < \infty.$$

The inner product in $L_k^2(I_t)$ is $\langle f, g \rangle_k = \int_{t-c}^{t+c} f(s)g(s) \frac{ds}{s^{2\nu-1}}$. Within $L_k^2(I_t)$, we identify the closed subspaces $\pi_n(I_t)$ of restrictions to I_t of polynomials of degree less than or equal to $n, \pi_n^e(I_t)$ of restrictions to I_t of even polynomials of degree less than or equal to n and $\pi_n^o(I_t)$ of restrictions of odd polynomials of degree less than or equal to n.

For a fixed positive integer k, we apply Gram-Schmidt orthogonalisation within $L_k^2(I_t)$ to the even monomials $\{1, s^2, \ldots, s^{2\nu-3}\}$ to produce an orthonormal basis $\{P_{2j}^k\}_{j=0}^{\nu-\frac{3}{2}}$ for $\pi_{2\nu-3}^e(I_t)$. Similarly, we apply Gram-Schmidt orthogonalisation within $L_k^2(I_t)$ to the odd monomials $\{s, s^3, \ldots, s^{2\nu-2}\}$ to produce an orthonormal basis $\{P_{2j+1}^k\}_{j=0}^{\nu-\frac{3}{2}}$ for $\pi_{2\nu-2}^o(I_t)$. Note that the collection $\{P_{2j}^k\}_{j=0}^{\nu-\frac{3}{2}}$ need not be orthogonal to the collection $\{P_{2j+1}^k\}_{j=0}^{\nu-\frac{3}{2}}$.

Define functions $\chi^{\varepsilon}_{j,k,l}$ $(k \ge 0, 1 \le \ell \le d^m_k, 0 \le j \le d^m_k)$ $\nu - \frac{3}{2}, \, \varepsilon \in \{\pm 1\})$ by

$$\chi_{j,k,l}^{\varepsilon}(x) = [P_{2j+1}^k(|x|) + \varepsilon \omega P_{2j}^k(|x|)] \frac{Y_k^{\ell}(\omega)}{\sqrt{2}|x|^{k+m-1}}$$

Theorem 3. The collection

$$\mathcal{B}_{t,c}' = \left\{ \mathcal{F}\chi_{j,k,\ell}^{\varepsilon} : k \ge 0, \, 1 \le \ell \le d_k^m, \, 0 \le j \le \nu - \frac{3}{2}, \, \varepsilon \in \{\pm 1\} \right\}$$

is an orthonormal basis for $X_{t,c}^{\perp}$.

II. PSEUDO CLIFFORD BANDPASS PROLATES (PCBPS)

From Theorem 3 we see that the collection $\mathcal{B}_{t,c} \cup \mathcal{B}'_{t,c}$ is an orthonormal basis for $PW_{t-c,t+c}^m$ provided t > c. By a *pseudo prolate* we mean an eigenfunction of either $P_{X_{t,c}}Q$ or $P_{X_{tc}^{\perp}}Q.$

A. Matrix formulation of the eigenvalue problem for PBCPs

Let $\{\psi_{n,k}^{\ell} : (n,k,\ell) \in \Lambda\}$ be the orthonormal basis for PW_c^m consisting of the CPSWFs of section IA. Since $\mathcal{V}_{k,\ell} := \overline{\operatorname{sp}} \{e^{2\pi tx} \psi_{n,k}^{\ell}\}_{n=0}^{\infty} \oplus \overline{\operatorname{sp}} \{e^{-2\pi tx} \psi_{n,k}^{\ell}\}_{n=0}^{\infty}$ is invariant under $P_{X_{t,c}}Q$ for each $k \geq 0$ and $1 \leq \ell \leq d_k^m$, we may seek eigenfunctions of $P_{X_{t,c}}Q$ within each $\mathcal{V}_{k,\ell}$. Suppose

$$f = \sum_{n=0}^{\infty} e^{2\pi tx} \psi_{n,k}^{\ell} a_n^+ + \sum_{n=0}^{\infty} e^{-2\pi tx} \psi_{n,k}^{\ell} a_n^- \in \mathcal{V}_{k,\ell}$$

is an eigenfunction of $P_{X_{t,c}}Q$. Then

$$P_{X_{t,c}}Qf = \sum_{m=0}^{\infty} e^{2\pi tx} \psi_{m,k}^{\ell} \langle e^{2\pi tx} \psi_{m,k}^{\ell}, Qf \rangle + \sum_{m=0}^{\infty} e^{-2\pi tx} \psi_{m,k}^{\ell} \langle e^{-2\pi tx} \psi_{m,k}^{\ell}, Qf \rangle = \sum_{m,n} e^{2\pi tx} \psi_{m,k}^{\ell} [\langle Q\psi_{m,k}^{\ell}, \psi_{n,k}^{\ell} \rangle a_{n}^{+} + \langle Q\psi_{m,k}^{\ell}, e^{-4\pi tx} \psi_{n,k}^{\ell} \rangle a_{n}^{-}] + \sum_{m,n} e^{-2\pi tx} \psi_{m,k}^{\ell} [\langle Q\psi_{m,k}^{\ell}, e^{4\pi tx} \psi_{n,k}^{\ell} \rangle a_{n}^{+} + \langle Q\psi_{m,k}^{\ell}, \psi_{n,k}^{\ell} \rangle a_{n}^{-}] = \sum_{m} \psi_{m,k}^{\ell} [e^{2\pi tx} [D\mathbf{a}^{+} + G\mathbf{a}^{-}]_{m} + e^{-2\pi tx} [G^{*}\mathbf{a}^{+} + D\mathbf{a}^{-}]_{m}]$$

where *D* is the (doubly-infinite) diagonal matrix with diagonal entries $D_{n,n} = \lambda_n^k$ and *G* is the (doubly-infinite) matrix with entries $G_{n,m} = \langle Q \psi_{m,k}^\ell, e^{4\pi t x} \psi_{n,k}^\ell \rangle$. We conclude that $P_{X_{t,c}}Qf = f\lambda$ for some Clifford constant λ if and only if the vector $\mathbf{a} = (\mathbf{a}^+ \ \mathbf{a}^-)^T$ satisfies the matrix equation

$$C\mathbf{a} = \begin{pmatrix} D & G \\ G^* & D \end{pmatrix} \begin{pmatrix} \mathbf{a}^+ \\ \mathbf{a}^- \end{pmatrix} = \begin{pmatrix} \mathbf{a}^+ \\ \mathbf{a}^- \end{pmatrix} \lambda.$$
(10)

It can be shown that the entries of G are real. The matrix C on the left hand side of (10) is self-adjoint and by the orthonormality of $\{\psi_{n,k}^{\ell}\}_{n=0}^{\infty}$ on B(1) we have

$$\sum_{m,n} |C_{m,n}|^2 = 2 \sum_n (\lambda_n^k)^2 + 2 \sum_{m,n} |G_{m,n}|^2$$
$$= 2 \sum_n (\lambda_n^k)^2 + 2 \sum_{m,n} |\langle \phi_{m,k}^\ell, e^{4\pi t x} Q \phi_{n,k}^\ell \rangle|^2$$
$$\leq 2 \sum_n (\lambda_n^k)^2 + 2 \left(\sum_n \lambda_n^k\right)^2 < \infty.$$

We conclude that C has a complete system of eigenvectors $\mathbf{a}_n = \begin{pmatrix} \mathbf{a}_n^+ & \mathbf{a}_n^- \end{pmatrix}^T$ with real eigenvalues θ_n . Let \mathbf{a}_n be such an eigenvector and

$$\Psi_{n,k}^{\ell} = \sum_{m} e^{2\pi tx} \psi_{m,k}^{\ell} (\mathbf{a}_{n}^{+})_{m} + \sum_{m} e^{-2\pi tx} \psi_{m,k}^{\ell} (\mathbf{a}_{n}^{-})_{m}.$$

Then $\Psi_{n,k}^{\ell}$ is an eigenfunction of $P_{X_{t,c}}Q$ with eigenvalue θ_n and

$$\langle \Psi_{n,k}^{\ell}, \Psi_{m,k}^{\ell} \rangle = \langle \mathbf{a}_{n}^{+}, \mathbf{a}_{m}^{+} \rangle + \langle \mathbf{a}_{n}^{-}, \mathbf{a}_{m}^{-} \rangle = \langle \mathbf{a}_{n}, \mathbf{a}_{m} \rangle = \delta_{n,m}.$$

We have:

Theorem 4. The collection $\mathcal{B}_{\Psi} = \{\Psi_{n,k}^{\ell} : (n,k,\ell) \in \Lambda\}$ is an orthonormal basis for $X_{t,c}$ consisting of eigenfunctions of $P_{X_{t,c}}Q$ (i.e., consisting of pseudo Clifford bandpass prolates).

B. Matrix formulation of the eigenvalue problem for the complementary space

The elements of the orthonormal basis $\mathcal{B}'_{t,c}$ for $X_{t,c}^{\perp}$ may be computed as follows:

$$\begin{split} \mathcal{F}\chi_{j,k}^{\ell,\varepsilon}(x) &= \int_{A_{t-c,t+c}} \frac{P_{2j+1}^k(|\xi|) + \varepsilon \omega P_{2j}^k(|\xi|)}{\sqrt{2} |\xi|^{k+m-1}} Y_k^\ell(\omega) e^{-2\pi i \langle x,\xi \rangle} \, d\xi \\ &= A_{j,k}^\ell(x) + \varepsilon B_{j,k}^\ell(x) \end{split}$$

where

$$\begin{aligned} A_{j,k}^{\ell}(x) &= \frac{2\pi}{\sqrt{2}} (-i)^k \frac{Y_k^{\ell}(\eta)}{|x|^{\nu-1}} \int_{t-c}^{t+c} \frac{P_{2j+1}^k(r)}{r^{\nu-1}} J_{\nu-1}(2\pi r|x|) \, dr \\ B_{j,k}^{\ell}(x) &= \frac{2\pi}{\sqrt{2}} (-i)^{k+1} \eta \frac{Y_k^{\ell}(\eta)}{|x|^{\nu-1}} \int_{t-c}^{t+c} \frac{P_{2j}^k(r)}{r^{\nu}} J_{\nu}(2\pi r|x|) \, dr, \end{aligned}$$

 $\eta = \frac{x}{|x|}$ and J_{μ} is a Bessel function of the first kind. To obtain these expressions for $A_{j,k}^{\ell}$ and $B_{j,k}^{\ell}$, we have used the Funk-Hecke theorem [5]. Closed forms for $A_{j,k}^{\ell}(x)$ and $B_{j,k}^{\ell}(x)$ may be written in terms of the values of P_{2j}^k and P_{2j+1}^k and their derivatives evaluated at $t \pm c$ and the values of various Bessel functions J_{μ} at $2\pi(t \pm c)|x|$. Details will appear elsewhere.

If $f = \sum_{j} \mathcal{F}\chi_{j,k}^{\ell,+} b_{j}^{+} + \sum_{j} \mathcal{F}\chi_{j,k}^{\ell,-} b_{j}^{-} \in X_{t,c}^{\perp}$ is an eigenfunction of $P_{X_{t,c}^{\perp}}Q$, then the coefficients b_{j}^{+} and b_{j}^{-} satisfy the matrix equation

$$\begin{pmatrix} H^{++} & H^{+-} \\ H^{-+} & H^{--} \end{pmatrix} \begin{pmatrix} \mathbf{b}^+ \\ \mathbf{b}^- \end{pmatrix} = \begin{pmatrix} \mathbf{b}^+ \\ \mathbf{b}^- \end{pmatrix} \lambda$$
(11)

where H^{++} , H^{+-} , H^{-+} , H^{--} are (doubly-infinite) matrices given by $H_{j',j}^{\varepsilon_1,\varepsilon_2} = \langle \mathcal{F}\chi_{j,k}^{\ell,\varepsilon_1}, Q\mathcal{F}\chi_{j',k}^{\ell,\varepsilon_2} \rangle$. The matrix on the left hand side of (11) is self-adjoint. Before invoking the spectral theory, we must show that this matrix is Hilbert-Schmidt. Let

$$K_k(r,s) := \int_0^1 u J_{k+\nu-1}(2\pi r u) J_{\nu-1}(2\pi s u) \, du$$

= $\frac{2\pi s J_{\nu-1}(2\pi s) J_{\nu-1}(2\pi r) - 2\pi r J_{\nu-2}(2\pi r) J_{\nu-1}(2\pi s)}{r^2 - s^2}.$

The second equality is obtained from 6.521(1) in [4]. We find that

$$\frac{\langle A_{j,k}^{\ell}, QA_{j',k}^{\ell} \rangle}{2\pi^2} = \int_{t-c}^{t+c} \frac{P_{2j+1}^k(r)}{r^{\nu-1}} \int_{t-c}^{t+c} \frac{P_{2j'+1}^k(s)}{s^{\nu-1}} K_k(r,s) \, ds \, dr$$
$$= \mathcal{G}_1^k \mathcal{G}_2^k(K_k)(j,j')$$

where $\mathcal{G}_1^k \mathcal{G}_2^k F(j,j')$ is the generalised (j,j')-th Fourier coefficient of F(r,s) $(r,s \in [t-c,t+c])$ relative to the orthonormal collection $\{P_{2j}^k\}_{j=0}^{\nu-\frac{3}{2}}$. By Bessel's inequality we have

$$\sum_{j,j'} |\langle A_{j,k}^{\ell}, Q A_{j',k}^{\ell} \rangle|^2 \le \int_{t-c}^{t+c} \int_{t-c}^{t+c} |K_k(r,s)|^2 \frac{dr \, ds}{(sr)^{\nu-1}} < \infty.$$

A similar estimate may be made for $\sum_{j,j'} |\langle B_{j,k}^{\ell}, QB_{j',k}^{\ell} \rangle|^2$. Since $\langle A_{j,k}^{\ell}, B_{j',k}^{\ell} \rangle = 0$, we have

$$\begin{split} \sum_{j,j'} |H_{j,j'}^{\varepsilon_1,\varepsilon_2}|^2 &= \sum_{j,j'} |\langle A_{j,k}^{\ell} + \varepsilon_1 B_{j,k}^{\ell}, Q(A_{j',k}^{\ell} + \varepsilon_2 B_{j',k}^{\ell})|^2 \\ &= \sum_j [|\langle A_{j,k}^{\ell}, QA_{j,k}^{\ell}\rangle|^2 + |\langle B_{j,k}^{\ell}, QB_{j,k}^{\ell}\rangle|^2 \\ &+ 2\varepsilon_1\varepsilon_2 \Re(\langle A_{j,k}^{\ell}, QA_{j,k}^{\ell}\rangle \overline{\langle B_{j,k}^{\ell}, QB_{j,k}^{\ell}\rangle}) \end{split}$$

Summing over $\varepsilon_1, \varepsilon_2 \in \{\pm 1\}$ gives

$$\sum_{\varepsilon_{1},\varepsilon_{2}} \sum_{j,j'} |H_{j,j'}^{\varepsilon_{1},\varepsilon_{2}}|^{2}$$

= $4 \sum_{j} [|\langle A_{j,k}^{\ell}, QA_{j,k}^{\ell} \rangle|^{2} + |\langle B_{j,k}^{\ell}, QB_{j,k}^{\ell} \rangle|^{2}]$
 $\leq 16\pi^{4} \int_{t-1}^{t+1} \int_{t-c}^{t+c} [|K_{k}(r,s)|^{2} + |K_{k+1}(r,s)|^{2}] \frac{dr \, ds}{(rs)^{\nu-1}} < \infty.$

C. Computation of G

The construction of bandpass prolates within $X_{t,c}$ still requires the computation of the matrix G in (10). One scheme involves another eigenfunction property of the CPSWFs ([1], [2]):

$$\int_{B} \psi_n^{k,\ell}(x) e^{2\pi i c \langle x, y \rangle} \, dx = \mu_m^k \psi_{n,k}^\ell(x) \tag{12}$$

where $\mu_n^k = \pm i^{k+n} \sqrt{\frac{\lambda_k^k}{c^m}}$. From (12) we have the following:

Theorem 5. Let $\alpha_{n,n';k} = \frac{\mu_n^k \overline{\mu_{n'}^k}(-1)^{n+k+1}}{2\pi i c((\mu_n^k)^2 + (\overline{\mu_{n'}^k})^2)}$. Then

$$\int_{B} \overline{\psi_{n',k'}^{\ell'}(x)} x \psi_{n,k}^{\ell}(x) \, dx = \delta_{k,k'} \delta_{\ell,\ell'} \sqrt{\lambda_n^k \lambda_{n'}^k} \gamma_{n,n,k'}$$

where

$$\gamma_{n,n';k} = \alpha_{n,n';k} \begin{cases} -\overline{p_{n'}^{k}(1)}q_{\frac{n-1}{2}}^{k}(1) & \text{if } n' \text{ even and } n \text{ odd} \\ \overline{q_{\frac{n'-1}{2}}^{k}(1)}p_{\frac{n}{2}}^{k}(1) & \text{if } n' \text{ odd and } n \text{ even} \\ 0 & \text{if } n-n' \text{ even} \end{cases}$$
(13)

with p_N and q_N as in (5).

The orthonormality of the CPSWFs on B(1) now allows for the following description of the matrix G:

Theorem 6. Let $\Gamma^{(k)}$ be the doubly-infinite matrix with entries $\Gamma_{n,n'}^{(k)} = \gamma_{n,n';k}$ with $\gamma_{n,n';k}$ as in (13). Then $G = \exp(4\pi t \Gamma^{(k)})$.

Finally, we provide another method of computation of the matrix G of (10). We recall the expansions (4) of $L^2(B)$ -normalised CPSWFs as linear combinations of C-L polys. By iterating the Bonnet formulae (3) we find negative definite,

tri-diagonal, symmetric, doubly-infinite matrices M^e and M^o for which

$$x^{2} \sum_{i=0}^{\infty} \bar{C}_{2i}^{0}(Y_{k}^{\ell})a_{i} = \sum_{i=0}^{\infty} \bar{C}_{2i}^{0}(Y_{k}^{\ell})(M^{e}\mathbf{a})_{i}$$
$$x^{2} \sum_{i=0}^{\infty} \bar{C}_{2i+1}^{0}(Y_{k}^{\ell})b_{i} = \sum_{i=0}^{\infty} \bar{C}_{2i+1}^{0}(Y_{k}^{\ell})(M^{o}\mathbf{b})_{i}$$

As a consequence, we have the following result:

Theorem 7. The entries $G_{2N,2N'}$ of the matrix G are given by

$$\int_{B} \overline{\psi_{2N,k}^{\ell}(x)} e^{4\pi t x} \psi_{2N',k'}^{\ell'}(x) dx$$
$$= \sqrt{\lambda_{2N}^{k} \lambda_{2N'}^{k}} \delta_{k,k'} \delta_{\ell,\ell'} \langle \mathbf{d}_{N}^{k,\ell}, \cos(4\pi t \sqrt{-M^{e}}) \mathbf{d}_{N'}^{k,\ell} \rangle_{\ell^{2}}$$

where the sequence $\mathbf{d}_N^{k,\ell}$ with *i*-th entry $d_{N,i}^{k,\ell}$ is as in (4). Similar formulae hold for other entries of G.

REFERENCES

- [1] H. Baghal Ghaffari, J.A. Hogan and J.D. Lakey, "New Properties of Clifford Prolate Spheroidal Wavefunctions", (this volume).
- [2] H. Baghal Ghaffari, Higher-dimensional Prolate Spheroidal Wavefunctions, PhD. thesis, University of Newcastle (Australia), 2022.
- [3] R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions: a Function Theory for the Dirac Operator, Kluwer Academic, 1992.
- [4] I.S. Gradshteyn and I.M. Ryzhik, *Table of Integrals, Series and Products* (7th edition), Elsevier/Academic Press, Amsterdam, 2007.
- [5] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl. 61, Cambridge University Press, Cambridge, 1996.
- [6] J.A. Hogan and J.D. Lakey, Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Boston, MA: Birkhäuser, 2012.
- [7] J.A. Hogan and J.D. Lakey, "Letter to the editor: On the numerical evaluation of bandpass prolates II", *Jour. Fourier Anal. Appl.*, vol 23, pp 125–140, 2017.
- [8] J.A. Morrison, "On the eigenfunctions corresponding to the bandpass kernel", *Quart. Appl. Math.* vol 21 pp 13–19, 1963.
- [9] D. Slepian and H.O. Pollak, "Prolate spheroidal wavefunctions, Fourier analysis and uncertainty - I", *Bell Syst. Tech. Jour.* vol 40 (1), pp 43–63, 1961.