Pseudo Clifford Bandpass Prolates

Jeffrey A. Hogan
School of Information and Physical Sciences
University of Newcastle
Callaghan NSW 2308, Australia
email: jeff.hogan@newcastle.edu.au

Joseph D. Lakey
Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM, USA
email: jlakey@nmsu.edu

Abstract

We introduce operators which generalise the classical modulation and translation operators, now acting on functions defined on \mathbb{R}^{m} and taking values in the associated Clifford algebra \mathbb{C}_{m}. The modulation operators are used to map orthonormal bases for Paley-Wiener spaces associated with balls in \mathbb{R}^{m} to incomplete orthonormal sets in Paley-Wiener spaces $P W_{A}$ associated with annuli A in \mathbb{R}^{m}. The complementary spaces are characterised and an orthonormal basis for them is given. These bases are used to construct an orthonormal basis for $P W_{A}$ composed of pseudo bandpass prolates.

I. Introduction

Given $c>0$, the Paley-Wiener space $P W_{c}(\mathbb{R})$ is the collection of functions $f \in L^{2}(\mathbb{R})$ whose Fourier transforms $\mathcal{F} f$ are supported on the interval $[-c, c]$. Let Q_{c} be the timelimiting projection operator $Q_{c} f(t)=\mathbf{1}_{[-c, c]}(t) f(t)$ where $\mathbf{1}_{[-c, c]}$ is the characteristic function of the interval $[-c, c]$. The band-limiting operator P_{c} is given by $P_{c}=\mathcal{F} Q_{c} \mathcal{F}$. The (onedimensional) prolate spheroidal wavefunctions (PSWFs) are eigenfunctions of the self-adjoint Hilbert-Schmidt integral operator $P_{c} Q_{1}$. They are most efficiently computed by observing that they are also eigenfunctions of a second order differential operator \mathcal{L}_{c} which commutes with $P_{c} Q_{1}$ [9], [6].

For $0<c<c^{\prime}<\infty$, bandpass prolates (BPPs) are eigenfunctions of $\left(P_{c^{\prime}}-P_{c}\right) Q_{1}$. BPPs are members of $P W_{c^{\prime}, c}(\mathbb{R})$ - the space of square-integrable functions on the line whose Fourier transforms are supported on $\left[-c^{\prime},-c\right] \cup\left[c, c^{\prime}\right]$. It was shown [8] that bandpass prolates are not eigenfunctions of a differential operator. Nevertheless [7] the construction of BPPs can be achieved by solving an appropriate matrix eigenvalue problem. The key observation in the construction is that if $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis for $P W_{c}$ and $t>c$, then $\left\{e^{-2 \pi i t x} \varphi_{n}(x)\right\}_{n=0}^{\infty} \cup\left\{e^{2 \pi i t x} \varphi_{n}(x)\right\}_{n=0}^{\infty}$ is an orthonormal basis for $P W_{t-c, t+c}$.

In this paper we investigate the multidimensional analogue of this construction in which intervals are replaced by balls and the union of intervals is replaced by spherically symmetric annuli in m-dimensional euclidean space \mathbb{R}^{m} ($m \geq 3$ odd). This requires the application of techniques from Clifford analysis [3].

Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an orthonormal basis for m dimensional euclidean space \mathbb{R}^{m}. The associative Clifford algebra \mathbb{R}_{m} is the 2^{m}-dimensional algebra spanned by the collection

$$
\bigcup_{j=1}^{m}\left\{e_{A}: A=\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \text { with } 1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq m\right\}
$$

with algebraic properties $e_{\emptyset}=1$ (the identity), $e_{j}^{2}=-1$, and if $j<k$ then $e_{\{j, k\}}=e_{j} e_{k}=-e_{k} e_{j}$. Here \emptyset is the null set and we often abuse notation and write $e_{\emptyset}=e_{0}=1$. Notice that for convenience we write $e_{\{j\}}=e_{j}$. In particular we have $\mathbb{R}_{m}=\left\{\sum_{A} x_{A} e_{A} ; x_{A} \in \mathbb{R}\right\}$. Similarly, we have the complexified Clifford algebra $\mathbb{C}_{m}=\left\{\sum_{A} z_{A} e_{A} ; z_{A} \in \mathbb{C}\right\}$.
The canonical mapping of \mathbb{R}^{m} into \mathbb{R}_{m} maps the vector $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ to $\sum_{j=1}^{m} x_{j} e_{j} \in \mathbb{R}_{m}$. For this reason, elements of \mathbb{R}_{m} of the form $\sum_{j=1}^{m} x_{j} e_{j}$ are also known as vectors. Notice that \mathbb{R}_{m} decomposes as $\mathbb{R}_{m}=\Lambda_{0} \oplus \Lambda_{1} \oplus \ldots \Lambda_{m}$, where $\Lambda_{j}=\left\{\sum_{|A|=j} x_{A} e_{A}\right\}$. A similar decomposition applies to \mathbb{C}_{m}. In particular, Λ_{0} is the collection of scalars while Λ_{1} is the collection of vectors. Given $x \in \mathbb{R}_{m}$ of the form $x=\sum_{A} x_{A} e_{A}$ and $0 \leq p \leq m$ we write $[x]_{p}$ to mean the " Λ_{p}-part" of x, i.e, $[x]_{p}=\sum_{|A|=p} x_{A} e_{A}$.

If $x, y \in \mathbb{R}_{m}$ are vectors, then

$$
\begin{equation*}
x^{2}=-|x|^{2} \quad \text { and } \quad x y=-\langle x, y\rangle+x \wedge y \in \Lambda_{0} \oplus \Lambda_{2} \tag{1}
\end{equation*}
$$

Here $\langle x, y\rangle$ is the usual dot product of x and y while $x \wedge y$ is their wedge product. The linear involution \bar{u} of $u \in \mathbb{R}_{m}$ is determined by the rules $\bar{x}=-x$ if $x \in \Lambda_{1}$ while

$$
\begin{equation*}
\overline{u v}=\bar{v} \bar{u} \tag{2}
\end{equation*}
$$

for all $u, v \in \mathbb{R}_{m}$. On \mathbb{C}_{m}, (2) still applies, but we also have $\overline{\lambda e_{j}}=\lambda^{*} \overline{e_{j}}$ where λ^{*} is the complex conjugate of the complex number λ. Further details are available in [3].

Given an open domain Ω in \mathbb{R}^{m}, the Dirac operator acts on functions in $C^{1}\left(\Omega, \mathbb{C}_{m}\right)$ by

$$
D f(x)=\sum_{j=1}^{m} e_{j} \frac{\partial f}{\partial x_{j}}
$$

Functions in the kernel of the Dirac operator are said to be monogenic. A spherical monogenic of degree $k \geq 0$ is a polynomial Y defined on \mathbb{R}^{m} of homogeneous degree k (i.e., $Y(\lambda x)=\lambda^{k} Y(x)$ for all $\lambda>0$) with coefficients in \mathbb{C}_{m}, which is also monogenic.
We consider the right Clifford module $\mathcal{H}=L^{2}\left(\mathbb{R}^{m}, \mathbb{C}_{m}\right)$ of measurable \mathbb{C}_{m}-valued functions f defined on \mathbb{R}^{m} for which $\int_{\mathbb{R}^{m}}|f(x)|^{2} d x<\infty$. The \mathbb{C}_{m}-valued inner product on \mathcal{H} is defined by

$$
\langle f, g\rangle=\int_{\mathbb{R}^{m}} \overline{f(x)} g(x) d x
$$

The \mathbb{C}_{m}-valued inner product on the sequence space $\ell^{2}\left(\mathbb{N}, \mathbb{C}_{m}\right)$ is given by

$$
\langle\mathbf{a}, \mathbf{b}\rangle_{\ell^{2}}=\sum_{n=1}^{\infty} \overline{a_{n}} b_{n} .
$$

The Fourier transform \mathcal{F} is defined on $L^{1}\left(\mathbb{R}^{m}, \mathbb{C}_{m}\right)$ by $\mathcal{F} f(\xi)=\int_{\mathbb{R}^{m}} f(x) e^{-2 \pi i\langle x, \xi\rangle} d x$ and extends to a unitary operator on \mathcal{H}. The Paley-Wiener space $P W_{c}^{m}$ associated with the ball $B(c)$ (centred at the origin and of radius $c>0$) is the class of those functions $f \in \mathcal{H}$ for which $\mathcal{F} f(\xi)=0$ for $|\xi|>c$. Similarly, if $0 \leq c<c^{\prime}<\infty$, the Paley-Wiener space $P W_{c^{\prime}, c}^{m}$ associated with the annulus $A\left(c^{\prime}, c\right)$ is the class of those functions $f \in \mathcal{H}$ for which $\mathcal{F} f(\xi)=0$ for $|\xi|<c$ or $|\xi|>c^{\prime}$.

A. Clifford-Legendre polynomials and Clifford Prolate Spheroidal Wavefunctions

In [1] and [2], the Clifford-Legendre polynomials (C-L polys) $\bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right)$ are studied. Here $\left\{Y_{k}^{\ell}\right\}_{\ell=1}^{d_{k}^{n n}}$ is an orthonormal basis for the space \mathcal{H}_{k} of spherical monogenics of degree k, and d_{k}^{m} is the dimension of \mathcal{H}_{k}. Each C-L poly is an \mathbb{R}_{m}-valued function on \mathbb{R}^{m}, normalised so that $\int_{B(1)}\left|\bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right)(x)\right|^{2} d x=1$, and takes one of two forms, depending on whether n is even or odd:

$$
\begin{aligned}
\bar{C}_{2 N}^{0}\left(Y_{k}^{\ell}\right)(x) & =P_{N}\left(|x|^{2}\right) Y_{k}^{\ell}(x) \\
\bar{C}_{2 N+1}^{0}\left(Y_{k}^{\ell}\right)(x) & =x Q_{N}\left(|x|^{2}\right) Y_{k}^{\ell}(x)
\end{aligned}
$$

where P_{N} and Q_{N} are real-valued polynomials of degree N on $[0,1]$. The C-L polys satisfy the Bonnet formula [2]:

$$
\begin{align*}
x \bar{C}_{2 N}^{0}\left(Y_{k}^{\ell}\right)(x) & =\alpha_{N} \bar{C}_{2 N+1}^{0}\left(Y_{k}^{\ell}\right)(x)+\beta_{N} \bar{C}_{2 N-1}^{0}\left(Y_{k}^{\ell}\right)(x) \\
x \bar{C}_{2 N+1}^{0}\left(Y_{k}^{\ell}\right)(x) & =\alpha_{N}^{\prime} \bar{C}_{2 N+2}^{0}\left(Y_{k}^{\ell}\right)(x)+\beta_{N}^{\prime} \bar{C}_{2 N}^{0}\left(Y_{k}^{\ell}\right)(x) \tag{3}
\end{align*}
$$

where $\alpha_{N}, \beta_{N}, \alpha_{N}^{\prime}, \beta_{N}^{\prime}$ are explicit real constants which are bounded independent of N.

Given $0 \leq c<c^{\prime}<\infty$ and $r>0$, we define orthogonal projections $P_{c}, P_{c^{\prime}, c}$ and Q_{r} on \mathcal{H} as follows: $Q_{r} f(x)=$ $\mathbf{1}_{B(r)}(x) f(x)$ and

$$
P_{c} f(x)=\mathcal{F}^{-1} Q_{c} \mathcal{F} ; \quad P_{c^{\prime}, c}=\mathcal{F}^{-1}\left(Q_{c^{\prime}}-Q_{c}\right) \mathcal{F}
$$

Here $\mathbf{1}_{B(r)}$ is the characteristic function of $B(r), Q_{r}$ is the space-limiting operator which truncates functions outside $B(r), P_{c}$ and $P_{c^{\prime}, c}$ are frequency-limiting operators which truncate the Fourier transforms of functions outside $B(c)$ and the annulus $A\left(c^{\prime}, c\right)$ respectively. By Q we mean the operator Q_{1}. Clifford-Prolate Spheroidal Wavefunctions (CPSWFs) are eigenfunctions of $P_{c} Q$. In [1] and [2], orthonormal bases $\left\{\psi_{n, k}^{\ell}:(n, k, \ell) \in \Lambda\right\}$ for $P W_{c}^{m}$ consisting of CPSWFs are constructed and their properties developed. Here

$$
\Lambda=\left\{(n, k, \ell): n, k \geq 0,1 \leq \ell \leq d_{k}^{m}\right\}
$$

We have $P_{c} Q \psi_{n, k}^{\ell}=\lambda_{n}^{k} \psi_{n, k}^{\ell}$ with $\lambda_{n}^{k} \geq 0$ and $\lambda_{n}^{k} \downarrow 0$ as $n \rightarrow \infty$. The functions $\phi_{n, k}^{\ell}=\left(\lambda_{n}^{k}\right)^{-1 / 2} Q \psi_{n}^{k}((n, k, \ell) \in \Lambda)$
form an orthonormal basis for $L^{2}\left(B(1), \mathbb{C}_{m}\right)$. The construction of CPSWFs given in [1] and [2] involves the numerical computation of real constants $d_{N, i}^{k, \ell}$ and $b_{N, i}^{k, \ell}$ for which

$$
\begin{align*}
\phi_{2 N, k}^{\ell} & =\sum_{i=0}^{\infty} \bar{C}_{2 i}^{0}\left(Y_{k}^{\ell}\right) d_{N, i}^{k, \ell} \tag{4}\\
\phi_{2 N+1, k}^{\ell} & =\sum_{i=0}^{\infty} \bar{C}_{2 i+1}^{0}\left(Y_{k}^{\ell}\right) b_{N, i}^{k, \ell} .
\end{align*}
$$

It is shown in [2] that the CPSWFs have the functional form

$$
\begin{align*}
\phi_{2 N, k}^{\ell}(x) & =p_{N}(|x|) Y_{k}^{\ell}(x) \\
\phi_{2 N+1, k}^{\ell}(x) & =x q_{N}(|x|) Y_{k}^{\ell}(x) \tag{5}
\end{align*}
$$

with p_{N}, q_{N} radial functions whose expansions in Jacobi polynomials are explicitly computed.

B. Clifford translations and modulations

As a consequence of (1), we have for each $t \in \mathbb{R}$ and $x \in \mathbb{R}^{m}$,

$$
\begin{equation*}
e^{t x}=\sum_{n=0}^{\infty} \frac{t^{n} x^{n}}{n!}=\cos (t|x|)+\frac{x}{|x|} \sin (t|x|) \tag{6}
\end{equation*}
$$

Since $\left(\frac{x}{|x|}\right)^{2}=-1$, we may view equation (6) as a generalisation of Euler's formula for complex exponentials. Given $\xi, y \in \mathbb{R}^{m}$, the classical modulation operator M_{ξ} and classical translation operator T_{y} act on \mathcal{H} by $M_{\xi} f(x)=e^{-2 \pi i\langle x, \xi\rangle} f(x)$ and $T_{y} f(x)=f(x-y)$ and are intertwined by the Fourier transform: $\mathcal{F} T_{y}=M_{y} \mathcal{F}$. Analogously, given $t \in \mathbb{R}$, we define the Clifford modulation operator m_{t} on \mathcal{H} by

$$
m_{t} f(x)=e^{t x} f(x)
$$

and the Clifford translation operator τ_{t} by $\tau_{t}=\mathcal{F}^{-1} m_{t} \mathcal{F}$. The multiplication operator S given by $S f(x)=x f(x)$ is intertwined with the Dirac operator by the Fourier transform: $\mathcal{F} D=2 \pi i S \mathcal{F}$. Since $D^{2}=-\Delta$ (the space Laplacian), we see that $u(\xi, t)=e^{i t D_{\xi}} f(\xi)$ satisfies the following initial value problem for the wave equation in \mathbb{R}^{m} :

$$
\begin{aligned}
\frac{\partial^{2} u(\xi, t)}{\partial t^{2}} & =\Delta_{x} u(\xi, t) & & \left(\xi \in \mathbb{R}^{m}, t>0\right) \\
u(\xi, 0) & =f(\xi) & & \left(\xi \in \mathbb{R}^{m}\right) \\
\left.\frac{\partial u(\xi, t)}{\partial t}\right|_{t=0} & =i D f(\xi) & & \left(\xi \in \mathbb{R}^{m}\right) .
\end{aligned}
$$

When the ambient dimension m is odd, the solution of this problem is obtained by taking mean-values of the initial data over spheres in \mathbb{R}^{m} : if $\mu=\frac{m-3}{2}$ (an integer) then

$$
\begin{align*}
u(\xi, t)= & \frac{1}{\gamma_{m}\left|S^{m-1}\right|}\left[\partial_{t}\left(\frac{1}{t} \partial_{t}\right)^{\mu}\left(\frac{1}{t} \int_{\partial B_{t}(\xi)} f(y) d \sigma(y)\right)\right. \\
& \left.+\left(\frac{1}{t} \partial_{t}\right)^{\mu}\left(\frac{1}{t} \int_{\partial B_{t}(\xi)} i D f(y) d \sigma(y)\right)\right] \tag{7}
\end{align*}
$$

where $\gamma_{m}=1.3 .5 \ldots(m-2), S^{m-1}$ is the unit sphere in \mathbb{R}^{m} and $\left|S^{m-1}\right|$ is its surface measure. From (7) we see that if f is supported on $B(c)$ and $t>c$, then $\tau_{t} f$ is supported on the
annulus $A(t-c, t+c)$. Hence if $f \in P W_{c}$ and $t>c$, then $e^{2 \pi t x} f \in P W_{t-c, t+c}^{m}$.

C. Clifford translates of C-L polys

We now investigate the action of Clifford modulations on the C-L polys. Since $\bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right)$ is supported on $B(1)$, if $t>1$ the Clifford translates $\tau_{\varepsilon t} \bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right)(\varepsilon \in\{ \pm 1\})$ are supported on $A(t-1, t+1)$. From the unitarity of $\tau_{\varepsilon t}$ and the orthonormality of the C-L polys on $B(1)$, we see that if $t>1$, the Clifford translates

$$
\begin{equation*}
\tilde{\mathcal{B}}_{t}=\left\{\tau_{\varepsilon t} \bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right):(n, k, \ell) \in \Lambda, \varepsilon \in\{ \pm 1\}\right\} \tag{8}
\end{equation*}
$$

form an orthonormal collection in $L^{2}\left(A(t-1, t+1), \mathbb{C}_{m}\right)$, or equivalently, the Clifford modulates

$$
\mathcal{B}_{t}=\left\{m_{\varepsilon t} \mathcal{F} \bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right):(n, k, \ell) \in \Lambda, \varepsilon \in\{ \pm 1\}\right\}
$$

form an orthonormal collection in $P W_{t-1, t+1}^{m}$.
For $c>0$, let D_{c} be the unitary isotropic dilation on \mathcal{H}, i.e., $D_{c} f(x)=c^{-m / 2} f\left(\frac{x}{c}\right)$. Since $\tau_{t} D_{c}=D_{c} \tau_{t / c}$, for $t>c$ the collection

$$
\mathcal{B}_{t, c}=\left\{m_{\varepsilon t} \mathcal{F} D_{c} \bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right):(n, k, \ell) \in \Lambda, \varepsilon \in\{ \pm 1\}\right\}
$$

forms an orthonormal collection in $P W_{t-c, t+c}^{m}$. As we shall see, this collection does not span $P W_{t-c, t+c}^{m}$.

We have the following explicit description of the Clifford translates of the C-L polys. In what follows, let m be odd and $\nu=k+\frac{m}{2}$.
Theorem 1. Let $C_{n}^{(\nu)}$ be the Gegenbauer polynomial of degree n on the real line. Then for each pair of integers $N, k \geq 0$, there are real constants $a_{N}^{k}, b_{N}^{k}, c_{N}^{k}, d_{N}^{k}$ for which

$$
\begin{aligned}
& \tau_{t} \bar{C}_{2 N}^{0}\left(Y_{k}\right)(\xi)= \\
& a_{N}^{k} Y_{k}(\xi)\left(\frac{1}{s} \frac{d}{d s}\right)^{\nu-\frac{3}{2}} \frac{1}{s}\left[\left(1-(s-t)^{2}\right)^{\nu-\frac{3}{2}} C_{2 N+1}^{(\nu-1)}(s-t)\right] \\
& +b_{N}^{k} \xi Y_{k}(\xi)\left(\frac{1}{s} \frac{d}{d s}\right)^{\nu-\frac{1}{2}} \frac{1}{s}\left[\left(1-(s-t)^{2}\right)^{\nu-\frac{1}{2}} C_{2 N}^{(\nu)}(s-t)\right] \\
& \tau_{t} \bar{C}_{2 N+1}^{0}\left(Y_{k}\right)= \\
& c_{N}^{k} \xi Y_{k}(\xi)\left(\frac{1}{s} \frac{d}{d s}\right)^{\nu-\frac{1}{2}} \frac{1}{s}\left[\left(1-(s-t)^{2}\right)^{\nu-\frac{1}{2}} C_{2 N+1}^{(\nu)}(s-t)\right] \\
& +d_{N}^{k} Y_{k}(\xi)\left(\frac{1}{s} \frac{d}{d s}\right)^{\nu-\frac{3}{2}} \frac{1}{s}\left[\left(1-(s-t)^{2}\right)^{\nu-\frac{3}{2}} C_{2 N+2}^{(\nu-1)}(s-t)\right]
\end{aligned}
$$

where $s=|\xi|$.
Let $t>c$ and

$$
\tilde{X}_{t, c}=\overline{\operatorname{sp}}\left\{\tau_{\varepsilon t} D_{c} \bar{C}_{n}^{0}\left(Y_{k}^{\ell}\right):(n, k, \ell) \in \Lambda, \varepsilon \in\{ \pm 1\}\right\}
$$

$\tilde{X}_{t, c}$ is a closed submodule of $L^{2}\left(A(t-c, t+c), \mathbb{C}_{m}\right)$. Let $\tilde{X}_{t, c}^{\perp}$ be the collection of those $g \in L^{2}\left(\underset{\tilde{X}}{(}(t-c, t+c), \mathbb{C}_{m}\right)$ which are orthogonal to all functions in $\tilde{X}_{t, c}$. Then $X_{t, c}:=\mathcal{F}\left(\tilde{X}_{t, c}\right)$ is a closed submodule of $P W_{t-c, t+c}^{m}$.
D. An orthonormal basis for the complementary space \tilde{X}_{t}^{\perp}

As a consequence of Theorem 1, we have the following description of $\tilde{X}_{t, c}^{\perp}$:

Corollary 2. Let $t>c$. Then

$$
\begin{equation*}
\tilde{X}_{t, c}^{\perp}=\left\{\sum_{k=0}^{\infty} \sum_{\ell=1}^{d_{k}^{m}}\left[p_{2 \nu-2}^{(\ell)}(|x|)+\omega q_{2 \nu-3}^{(\ell)}(|x|)\right] \frac{Y_{k}^{\ell}(\omega)}{|x|^{2 \nu-1}}\right\} \tag{9}
\end{equation*}
$$

where $\omega=\frac{x}{|x|}, p_{2 \nu-2}$ is the restriction of an odd polynomial of degree less than or equal to $2 \nu-2$ to the interval $[t-c, t+c]$ and $q_{2 \nu-3}$ is the restriction of an even polynomial of degree less than or equal to $2 \nu-3$ to the interval $[t-c, t+c]$.

For $t>c$ fixed, let I_{t} be the interval $I_{t}=[t-c, t+c]$. For each non-negative integer k, consider the Hilbert space $L_{k}^{2}\left(I_{t}\right)$ consisting of measurable functions $f: I_{t} \rightarrow \mathbb{R}$ for which

$$
\int_{t-c}^{t+c}|f(s)|^{2} \frac{d s}{s^{2 \nu-1}}<\infty
$$

The inner product in $L_{k}^{2}\left(I_{t}\right)$ is $\langle f, g\rangle_{k}=\int_{t-c}^{t+c} f(s) g(s) \frac{d s}{s^{2 \nu-1}}$. Within $L_{k}^{2}\left(I_{t}\right)$, we identify the closed subspaces $\pi_{n}\left(I_{t}\right)$ of restrictions to I_{t} of polynomials of degree less than or equal to $n, \pi_{n}^{e}\left(I_{t}\right)$ of restrictions to I_{t} of even polynomials of degree less than or equal to n and $\pi_{n}^{o}\left(I_{t}\right)$ of restrictions of odd polynomials of degree less than or equal to n.

For a fixed positive integer k, we apply Gram-Schmidt orthogonalisation within $L_{k}^{2}\left(I_{t}\right)$ to the even monomials $\left\{1, s^{2}, \ldots, s^{2 \nu-3}\right\}$ to produce an orthonormal basis $\left\{P_{2 j}^{k}\right\}_{j=0}^{\nu-\frac{3}{2}}$ for $\pi_{2 \nu-3}^{e}\left(I_{t}\right)$. Similarly, we apply Gram-Schmidt orthogonalisation within $L_{k}^{2}\left(I_{t}\right)$ to the odd monomials $\left\{s, s^{3}, \ldots, s^{2 \nu-2}\right\}$ to produce an orthonormal basis $\left\{P_{2 j+1}^{k}\right\}_{j=0}^{\nu-\frac{3}{2}}$ for $\pi_{2 \nu-2}^{o}\left(I_{t}\right)$. Note that the collection $\left\{P_{2 j}^{k}\right\}_{j=0}^{\nu-\frac{3}{2}}$ need not be orthogonal to the collection $\left\{P_{2 j+1}^{k}\right\}_{j=0}^{\nu-\frac{3}{2}}$.

Define functions $\chi_{j, k, l}^{\varepsilon}\left(k \geq 0,1 \leq \ell \leq d_{k}^{m}, 0 \leq j \leq\right.$ $\left.\nu-\frac{3}{2}, \varepsilon \in\{ \pm 1\}\right)$ by

$$
\chi_{j, k, l}^{\varepsilon}(x)=\left[P_{2 j+1}^{k}(|x|)+\varepsilon \omega P_{2 j}^{k}(|x|)\right] \frac{Y_{k}^{\ell}(\omega)}{\sqrt{2}|x|^{k+m-1}}
$$

Theorem 3. The collection

$\mathcal{B}_{t, c}^{\prime}=\left\{\mathcal{F} \chi_{j, k, \ell}^{\varepsilon}: k \geq 0,1 \leq \ell \leq d_{k}^{m}, 0 \leq j \leq \nu-\frac{3}{2}, \varepsilon \in\{ \pm 1\}\right\}$
is an orthonormal basis for $X_{t, c}^{\perp}$.

II. Pseudo Clifford Bandpass Prolates (PCBPs)

From Theorem 3 we see that the collection $\mathcal{B}_{t, c} \cup \mathcal{B}_{t, c}^{\prime}$ is an orthonormal basis for $P W_{t-c, t+c}^{m}$ provided $t>c$. By a pseudo prolate we mean an eigenfunction of either $P_{X_{t, c}} Q$ or $P_{X_{t, c}^{\perp}}^{\perp} Q$.

A. Matrix formulation of the eigenvalue problem for PBCPs

Let $\left\{\psi_{n, k}^{\ell}:(n, k, \ell) \in \Lambda\right\}$ be the orthonormal basis for $P W_{c}^{m}$ consisting of the CPSWFs of section IA. Since $\mathcal{V}_{k, \ell}:=\overline{\operatorname{sp}}\left\{e^{2 \pi t x} \psi_{n, k}^{\ell}\right\}_{n=0}^{\infty} \oplus \overline{\operatorname{sp}}\left\{e^{-2 \pi t x} \psi_{n, k}^{\ell}\right\}_{n=0}^{\infty}$ is invariant under $P_{X_{t, c}} Q$ for each $k \geq 0$ and $1 \leq \ell \leq d_{k}^{m}$, we may seek eigenfunctions of $P_{X_{t, c}} Q$ within each $\mathcal{V}_{k, \ell}$. Suppose

$$
f=\sum_{n=0}^{\infty} e^{2 \pi t x} \psi_{n, k}^{\ell} a_{n}^{+}+\sum_{n=0}^{\infty} e^{-2 \pi t x} \psi_{n, k}^{\ell} a_{n}^{-} \in \mathcal{V}_{k, \ell}
$$

is an eigenfunction of $P_{X_{t, c}} Q$. Then

$$
\begin{aligned}
& P_{X_{t, c}} Q f=\sum_{m=0}^{\infty} e^{2 \pi t x} \psi_{m, k}^{\ell}\left\langle e^{2 \pi t x} \psi_{m, k}^{\ell}, Q f\right\rangle \\
& \quad+\sum_{m=0}^{\infty} e^{-2 \pi t x} \psi_{m, k}^{\ell}\left\langle e^{-2 \pi t x} \psi_{m, k}^{\ell}, Q f\right\rangle \\
& =\sum_{m, n} e^{2 \pi t x} \psi_{m, k}^{\ell}\left[\left\langle Q \psi_{m, k}^{\ell}, \psi_{n, k}^{\ell}\right\rangle a_{n}^{+}+\left\langle Q \psi_{m, k}^{\ell}, e^{-4 \pi t x} \psi_{n, k}^{\ell}\right\rangle a_{n}^{-}\right] \\
& + \\
& \sum_{m, n} e^{-2 \pi t x} \psi_{m, k}^{\ell}\left[\left\langle Q \psi_{m, k}^{\ell}, e^{4 \pi t x} \psi_{n, k}^{\ell}\right\rangle a_{n}^{+}+\left\langle Q \psi_{m, k}^{\ell}, \psi_{n, k}^{\ell}\right\rangle a_{n}^{-}\right] \\
& =\sum_{m} \psi_{m, k}^{\ell}\left[e^{2 \pi t x}\left[D \mathbf{a}^{+}+G \mathbf{a}^{-}\right]_{m}+e^{-2 \pi t x}\left[G^{*} \mathbf{a}^{+}+D \mathbf{a}^{-}\right]_{m}\right]
\end{aligned}
$$

where D is the (doubly-infinite) diagonal matrix with diagonal entries $D_{n, n}=\lambda_{n}^{k}$ and G is the (doubly-infinite) matrix with entries $G_{n, m}=\left\langle Q \psi_{m, k}^{\ell}, e^{4 \pi t x} \psi_{n, k}^{\ell}\right\rangle$. We conclude that $P_{X_{t, c}} Q f=f \lambda$ for some Clifford constant λ if and only if the vector $\mathbf{a}=\left(\begin{array}{ll}\mathbf{a}^{+} & \mathbf{a}^{-}\end{array}\right)^{T}$ satisfies the matrix equation

$$
C \mathbf{a}=\left(\begin{array}{cc}
D & G \tag{10}\\
G^{*} & D
\end{array}\right)\binom{\mathbf{a}^{+}}{\mathbf{a}^{-}}=\binom{\mathbf{a}^{+}}{\mathbf{a}^{-}} \lambda .
$$

It can be shown that the entries of G are real. The matrix C on the left hand side of (10) is self-adjoint and by the orthonormality of $\left\{\psi_{n, k}^{\ell}\right\}_{n=0}^{\infty}$ on $B(1)$ we have

$$
\begin{aligned}
\sum_{m, n}\left|C_{m, n}\right|^{2} & =2 \sum_{n}\left(\lambda_{n}^{k}\right)^{2}+2 \sum_{m, n}\left|G_{m, n}\right|^{2} \\
& =2 \sum_{n}\left(\lambda_{n}^{k}\right)^{2}+2 \sum_{m, n}\left|\left\langle\phi_{m, k}^{\ell}, e^{4 \pi t x} Q \phi_{n, k}^{\ell}\right\rangle\right|^{2} \\
& \leq 2 \sum_{n}\left(\lambda_{n}^{k}\right)^{2}+2\left(\sum_{n} \lambda_{n}^{k}\right)^{2}<\infty
\end{aligned}
$$

We conclude that C has a complete system of eigenvectors $\mathbf{a}_{n}=\left(\begin{array}{ll}\mathbf{a}_{n}^{+} & \mathbf{a}_{n}^{-}\end{array}\right)^{T}$ with real eigenvalues θ_{n}. Let \mathbf{a}_{n} be such an eigenvector and

$$
\Psi_{n, k}^{\ell}=\sum_{m} e^{2 \pi t x} \psi_{m, k}^{\ell}\left(\mathbf{a}_{n}^{+}\right)_{m}+\sum_{m} e^{-2 \pi t x} \psi_{m, k}^{\ell}\left(\mathbf{a}_{n}^{-}\right)_{m}
$$

Then $\Psi_{n, k}^{\ell}$ is an eigenfunction of $P_{X_{t, c}} Q$ with eigenvalue θ_{n} and

$$
\left\langle\Psi_{n, k}^{\ell}, \Psi_{m, k}^{\ell}\right\rangle=\left\langle\mathbf{a}_{n}^{+}, \mathbf{a}_{m}^{+}\right\rangle+\left\langle\mathbf{a}_{n}^{-}, \mathbf{a}_{m}^{-}\right\rangle=\left\langle\mathbf{a}_{n}, \mathbf{a}_{m}\right\rangle=\delta_{n, m}
$$

We have:
Theorem 4. The collection $\mathcal{B}_{\Psi}=\left\{\Psi_{n, k}^{\ell}:(n, k, \ell) \in \Lambda\right\}$ is an orthonormal basis for $X_{t, c}$ consisting of eigenfunctions of $P_{X_{t, c}} Q$ (i.e., consisting of pseudo Clifford bandpass prolates).
B. Matrix formulation of the eigenvalue problem for the complementary space

The elements of the orthonormal basis $\mathcal{B}_{t, c}^{\prime}$ for $X_{t, c}^{\perp}$ may be computed as follows:

$$
\begin{aligned}
\mathcal{F} \chi_{j, k}^{\ell, \varepsilon}(x) & =\int_{A_{t-c, t+c}} \frac{P_{2 j+1}^{k}(|\xi|)+\varepsilon \omega P_{2 j}^{k}(|\xi|)}{\sqrt{2}|\xi|^{k+m-1}} Y_{k}^{\ell}(\omega) e^{-2 \pi i\langle x, \xi\rangle} d \xi \\
& =A_{j, k}^{\ell}(x)+\varepsilon B_{j, k}^{\ell}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
A_{j, k}^{\ell}(x) & =\frac{2 \pi}{\sqrt{2}}(-i)^{k} \frac{Y_{k}^{\ell}(\eta)}{|x|^{\nu-1}} \int_{t-c}^{t+c} \frac{P_{2 j+1}^{k}(r)}{r^{\nu-1}} J_{\nu-1}(2 \pi r|x|) d r \\
B_{j, k}^{\ell}(x) & =\frac{2 \pi}{\sqrt{2}}(-i)^{k+1} \eta \frac{Y_{k}^{\ell}(\eta)}{|x|^{\nu-1}} \int_{t-c}^{t+c} \frac{P_{2 j}^{k}(r)}{r^{\nu}} J_{\nu}(2 \pi r|x|) d r
\end{aligned}
$$

$\eta=\frac{x}{|x|}$ and J_{μ} is a Bessel function of the first kind. To obtain these expressions for $A_{j, k}^{\ell}$ and $B_{j, k}^{\ell}$, we have used the FunkHecke theorem [5]. Closed forms for $A_{j, k}^{\ell}(x)$ and $B_{j, k}^{\ell}(x)$ may be written in terms of the values of $P_{2 j}^{k}$ and $P_{2 j+1}^{k}$ and their derivatives evaluated at $t \pm c$ and the values of various Bessel functions J_{μ} at $2 \pi(t \pm c)|x|$. Details will appear elsewhere.

If $f=\sum_{j} \mathcal{F} \chi_{j, k}^{\ell,+} b_{j}^{+}+\sum_{j} \mathcal{F} \chi_{j, k}^{\ell,-} b_{j}^{-} \in X_{t, c}^{\perp}$ is an eigenfunction of $P_{X_{t, c}^{\perp}} Q$, then the coefficients b_{j}^{+}and b_{j}^{-}satisfy the matrix equation

$$
\left(\begin{array}{cc}
H^{++} & H^{+-} \tag{11}\\
H^{-+} & H^{--}
\end{array}\right)\binom{\mathbf{b}^{+}}{\mathbf{b}^{-}}=\binom{\mathbf{b}^{+}}{\mathbf{b}^{-}} \lambda
$$

where $H^{++}, H^{+-}, H^{-+}, H^{--}$are (doubly-infinite) matrices given by $H_{j^{\prime}, j}^{\varepsilon_{1}, \varepsilon_{2}}=\left\langle\mathcal{F} \chi_{j, k}^{\ell, \varepsilon_{1}}, Q \mathcal{F} \chi_{j^{\prime}, k}^{\ell, \varepsilon_{2}}\right\rangle$. The matrix on the left hand side of (11) is self-adjoint. Before invoking the spectral theory, we must show that this matrix is Hilbert-Schmidt. Let

$$
\begin{aligned}
& K_{k}(r, s):=\int_{0}^{1} u J_{k+\nu-1}(2 \pi r u) J_{\nu-1}(2 \pi s u) d u \\
& =\frac{2 \pi s J_{\nu-1}(2 \pi s) J_{\nu-1}(2 \pi r)-2 \pi r J_{\nu-2}(2 \pi r) J_{\nu-1}(2 \pi s)}{r^{2}-s^{2}}
\end{aligned}
$$

The second equality is obtained from 6.521 (1) in [4]. We find that

$$
\begin{aligned}
& \frac{\left\langle A_{j, k}^{\ell}, Q A_{j^{\prime}, k}^{\ell}\right\rangle}{2 \pi^{2}} \\
& =\int_{t-c}^{t+c} \frac{P_{2 j+1}^{k}(r)}{r^{\nu-1}} \int_{t-c}^{t+c} \frac{P_{2 j^{\prime}+1}^{k}(s)}{s^{\nu-1}} K_{k}(r, s) d s d r \\
& =\mathcal{G}_{1}^{k} \mathcal{G}_{2}^{k}\left(K_{k}\right)\left(j, j^{\prime}\right)
\end{aligned}
$$

where $\mathcal{G}_{1}^{k} \mathcal{G}_{2}^{k} F\left(j, j^{\prime}\right)$ is the generalised $\left(j, j^{\prime}\right)$-th Fourier coefficient of $F(r, s)(r, s \in[t-c, t+c])$ relative to the orthonormal collection $\left\{P_{2 j}^{k}\right\}_{j=0}^{\nu-\frac{3}{2}}$. By Bessel's inequality we have

$$
\sum_{j, j^{\prime}}\left|\left\langle A_{j, k}^{\ell}, Q A_{j^{\prime}, k}^{\ell}\right\rangle\right|^{2} \leq \int_{t-c}^{t+c} \int_{t-c}^{t+c}\left|K_{k}(r, s)\right|^{2} \frac{d r d s}{(s r)^{\nu-1}}<\infty
$$

A similar estimate may be made for $\sum_{j, j^{\prime}}\left|\left\langle B_{j, k}^{\ell}, Q B_{j^{\prime}, k}^{\ell}\right\rangle\right|^{2}$. Since $\left\langle A_{j, k}^{\ell}, B_{j^{\prime}, k}^{\ell}\right\rangle=0$, we have

$$
\begin{aligned}
\sum_{j, j^{\prime}}\left|H_{j, j^{\prime}}^{\varepsilon_{1}, \varepsilon_{2}}\right|^{2} & =\sum_{j, j^{\prime}} \mid\left\langle A_{j, k}^{\ell}+\varepsilon_{1} B_{j, k}^{\ell},\left.Q\left(A_{j^{\prime}, k}^{\ell}+\varepsilon_{2} B_{j^{\prime}, k}^{\ell}\right\rangle\right|^{2}\right. \\
& =\sum_{j}\left[\left|\left\langle A_{j, k}^{\ell}, Q A_{j, k}^{\ell}\right\rangle\right|^{2}+\left|\left\langle B_{j, k}^{\ell}, Q B_{j, k}^{\ell}\right\rangle\right|^{2}\right. \\
& +2 \varepsilon_{1} \varepsilon_{2} \Re\left(\left\langle A_{j, k}^{\ell}, Q A_{j, k}^{\ell}\right\rangle \overline{\left\langle B_{j, k}^{\ell}, Q B_{j, k}^{\ell}\right\rangle}\right)
\end{aligned}
$$

Summing over $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$ gives

$$
\begin{aligned}
& \sum_{\varepsilon_{1}, \varepsilon_{2}} \sum_{j, j^{\prime}}\left|H_{j, j^{\prime}}^{\varepsilon_{1}, \varepsilon_{2}}\right|^{2} \\
& =4 \sum_{j}\left[\left|\left\langle A_{j, k}^{\ell}, Q A_{j, k}^{\ell}\right\rangle\right|^{2}+\left|\left\langle B_{j, k}^{\ell}, Q B_{j, k}^{\ell}\right\rangle\right|^{2}\right] \\
& \leq 16 \pi^{4} \int_{t-1}^{t+1} \int_{t-c}^{t+c}\left[\left|K_{k}(r, s)\right|^{2}+\left|K_{k+1}(r, s)\right|^{2}\right] \frac{d r d s}{(r s)^{\nu-1}}<\infty
\end{aligned}
$$

C. Computation of G

The construction of bandpass prolates within $X_{t, c}$ still requires the computation of the matrix G in (10). One scheme involves another eigenfunction property of the CPSWFs ([1], [2]):

$$
\begin{equation*}
\int_{B} \psi_{n}^{k, \ell}(x) e^{2 \pi i c\langle x, y\rangle} d x=\mu_{m}^{k} \psi_{n, k}^{\ell}(x) \tag{12}
\end{equation*}
$$

where $\mu_{n}^{k}= \pm i^{k+n} \sqrt{\frac{\lambda_{k}^{k}}{c^{m}}}$. From (12) we have the following:
Theorem 5. Let $\alpha_{n, n^{\prime} ; k}=\frac{\mu_{n}^{k} \overline{\mu_{n}^{k}}(-1)^{n+k+1}}{2 \pi i c\left(\left(\mu_{n}^{k}\right)^{2}+\left(\overline{\mu_{n^{\prime}}^{k}}\right)^{2}\right)}$. Then

$$
\int_{B} \overline{\psi_{n^{\prime}, k^{\prime}}^{\ell^{\prime}}(x)} x \psi_{n, k}^{\ell}(x) d x=\delta_{k, k^{\prime}} \delta_{\ell, \ell^{\prime}} \sqrt{\lambda_{n}^{k} \lambda_{n^{\prime}}^{k}} \gamma_{n, n, ; k}
$$

where

$$
\gamma_{n, n^{\prime} ; k}=\alpha_{n, n^{\prime} ; k} \begin{cases}\overline{-\overline{p_{\frac{n}{2}}^{k}}(1)} q_{\frac{n-1}{2}}^{k}(1) & \text { if } n^{\prime} \text { even and } n \text { odd } \tag{13}\\ \overline{q_{\frac{n^{\prime}-1}{2}}^{k}(1)} p_{\frac{n}{2}}^{k}(1) & \text { if } n^{\prime} \text { odd and } n \text { even } \\ 0 & \text { if } n-n^{\prime} \text { even }\end{cases}
$$

with p_{N} and q_{N} as in (5).
The orthonormality of the CPSWFs on $B(1)$ now allows for the following description of the matrix G :

Theorem 6. Let $\Gamma^{(k)}$ be the doubly-infinite matrix with entries $\Gamma_{n, n^{\prime}}^{(k)}=\gamma_{n, n^{\prime} ; k}$ with $\gamma_{n, n^{\prime} ; k}$ as in (13). Then $G=$ $\exp \left(4 \pi t \Gamma^{(k)}\right)$.

Finally, we provide another method of computation of the matrix G of (10). We recall the expansions (4) of $L^{2}(B)$ normalised CPSWFs as linear combinations of C-L polys. By iterating the Bonnet formulae (3) we find negative definite,
tri-diagonal, symmetric, doubly-infinite matrices M^{e} and M^{o} for which

$$
\begin{aligned}
x^{2} \sum_{i=0}^{\infty} \bar{C}_{2 i}^{0}\left(Y_{k}^{\ell}\right) a_{i} & =\sum_{i=0}^{\infty} \bar{C}_{2 i}^{0}\left(Y_{k}^{\ell}\right)\left(M^{e} \mathbf{a}\right)_{i} \\
x^{2} \sum_{i=0}^{\infty} \bar{C}_{2 i+1}^{0}\left(Y_{k}^{\ell}\right) b_{i} & =\sum_{i=0}^{\infty} \bar{C}_{2 i+1}^{0}\left(Y_{k}^{\ell}\right)\left(M^{o} \mathbf{b}\right)_{i}
\end{aligned}
$$

As a consequence, we have the following result:
Theorem 7. The entries $G_{2 N, 2 N^{\prime}}$ of the matrix G are given by

$$
\begin{aligned}
& \int_{B} \overline{\psi_{2 N, k}^{\ell}(x)} e^{4 \pi t x} \psi_{2 N^{\prime}, k^{\prime}}^{\ell^{\prime}}(x) d x \\
& =\sqrt{\lambda_{2 N}^{k} \lambda_{2 N^{\prime}}^{k}} \delta_{k, k^{\prime}} \delta_{\ell, \ell^{\prime}}\left\langle\mathbf{d}_{N}^{k, \ell}, \cos \left(4 \pi t \sqrt{-M^{e}}\right) \mathbf{d}_{N^{\prime}}^{k, \ell}\right\rangle_{\ell^{2}}
\end{aligned}
$$

where the sequence $\mathbf{d}_{N}^{k, \ell}$ with i-th entry $d_{N, i}^{k, \ell}$ is as in (4). Similar formulae hold for other entries of G.

References

[1] H. Baghal Ghaffari, J.A. Hogan and J.D. Lakey, "New Properties of Clifford Prolate Spheroidal Wavefunctions", (this volume).
[2] H. Baghal Ghaffari, Higher-dimensional Prolate Spheroidal Wavefunctions, PhD. thesis, University of Newcastle (Australia), 2022.
[3] R. Delanghe, F. Sommen and V. Souc̆ek, Clifford Algebra and SpinorValued Functions: a Function Theory for the Dirac Operator, Kluwer Academic, 1992.
[4] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (7th edition), Elsevier/Academic Press, Amsterdam, 2007.
[5] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl. 61, Cambridge University Press, Cambridge, 1996.
[6] J.A. Hogan and J.D. Lakey, Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Boston, MA: Birkhäuser, 2012.
[7] J.A. Hogan and J.D. Lakey, "Letter to the editor: On the numerical evaluation of bandpass prolates II", Jour. Fourier Anal. Appl., vol 23, pp 125-140, 2017.
[8] J.A. Morrison, "On the eigenfunctions corresponding to the bandpass kernel", Quart. Appl. Math. vol 21 pp 13-19, 1963.
[9] D. Slepian and H.O. Pollak, "Prolate spheroidal wavefunctions, Fourier analysis and uncertainty - I", Bell Syst. Tech. Jour. vol 40 (1), pp 43-63, 1961.

