
Under review as a conference paper at ICLR 2024

CAN DIFFERENTIABLE DECISION TREES LEARN INTER-
PRETABLE REWARD FUNCTIONS?

Anonymous authors
Paper under double-blind review

ABSTRACT

There is an increasing interest in learning reward functions that model human pref-
erences. However, many frameworks use blackbox learning methods that, while
expressive, are difficult to interpret. We propose and evaluate a novel approach
for learning expressive and interpretable reward functions from preferences using
Differentiable Decision Trees (DDTs). Our experiments across several domains,
including CartPole, Visual Gridworld environments and Atari games, provide
evidence that that the tree structure of our learned reward function is useful in deter-
mining the extent to which the reward function is aligned with human preferences.
We provide experimentall evidence that reward DDTs can achieve competitive
performance when compared with larger capacity deep neural network reward
functions. We also observe that the choice between soft and hard (argmax) output
of reward DDT reveals a tension between wanting highly shaped rewards to ensure
good RL performance, while also wanting simpler, more interpretable rewards.

1 INTRODUCTION

Figure 1: We propose an approach for training
interpretable reward functions using differentiable
decision trees. Human feedback in the form of
trajectory preferences is used to efficiently train
the reward model end-to-end. The tree structure
allows the human to evaluate the alignment of the
learned reward function.

The reward function is central to reinforcement
learning (RL) algorithms (57); however, it is
often difficult to manually specify a precise re-
ward function for diverse tasks (46; 37), moti-
vating learning reward functions from human
input (1; 51; 15; 12; 8; 5; 47). In this paper, we
focus on the problem of learning interpretable
reward functions.

Most modern reward learning methods use deep
neural networks (19; 15; 30; 32; 60). How-
ever, despite the growing interest in explaining
these black box methods (26; 63; 29; 49), deep
neural networks remain extremely difficult to
interpret. In the context of reward learning, it
is especially critical that we can interpret the
learned objective—if we can not understand the
objective that a robot or AI system has learned, then it is difficult to know if the AI’s behavior will be
aligned with human preferences and intent (50; 40; 14). This is particularly significant in tasks where
human safety is on the line, for example in healthcare, autonomous navigation, and assistive robots.

Thus, we are faced with a problem: we want highly accurate and expressive reward models, but we
also want to be able to interpret the learned reward function. A natural step towards both of these
goals is to combine the expressiveness of neural networks with an architecture choice that is easy for
a human being to interpret, such as a decision tree. To tackle the the aforementioned problems, we
propose a novel reward learning approach that uses an end-to-end differentiable decision tree model
for learning interpretable reward functions from pairwise preferences. We evaluate our approach on
three different domains: CartPole (11), a novel set of Visual MNIST Gridworld environments, and
two Atari games from the Arcade Learning Environment (3). Our results demonstrate the ability to
learn expressive and interpretable reward functions from both low- and high-dimensional state inputs.

1

Under review as a conference paper at ICLR 2024

Learning a reward model as a differentiable decision tree (DDT) has the advantage that the tree
structure explicitly breaks the reward prediction for a state into a finite number of routing decisions
within the tree. This provides the potential to understand how the reward predictions are being made.
Our framework generates global explanations for all inputs across both low- and medium-dimensional
environments such as CartPole and visual MNIST gridworlds. For high-dimensional visual state
space, such as Atari, we propose a novel form of hybrid explanation that approximates global
explanations by leveraging aggregations of individual input states. Our results provide evidence that
we can leverage the interpretability of the learned reward DDT to identify reward misalignment.

This paper makes the following contributions: (1) We introduce a reward learning framework (Fig 1)
that employs differentiable decision trees to learn human intent using trajectory preference labels
without necessitating any hand-crafting of the input feature space. (2) We propose hybrid explanations
for internal nodes that approximate of global explanations by leveraging aggregations of individual
input states. (3) We study the ability of Differential Decision Trees (DDTs) to learn interpretable
rewards across several domains including complex visual-control tasks and find that Reward DDTs
can learn an interpretable reward function with RL performance comparable to that of a black-box
neural network. To the best of our knowledge, our framework is the first interpretable tree-based
method for reward learning that can be applied in visual domains.

2 RELATED WORK

Preference Learning Preference learning (61) is applicable across multiple forms of human input:
prior work has shown that demonstrations (13), e-stops (24), rankings (47), and corrections (43), can
all be represented in terms of pairwise preferences. Thus, our approach is applicable, even when
pairwise preference labels are not explicitly available. Prior work on learning reward functions from
preference labels typically either assumes access to a set of hand-designed reward features (52; 6; 43;
24) or uses deep convolutional or fully connected networks for reward learning (15; 12; 38; 32; 55; 41).
By contrast, we study the extent to which we can learn expressive, but also interpretable reward
functions from preferences via differentiable decision trees (22).

Explaining and Interpreting Reward Functions In the past few years, various attempts have been
made to understand learned reward functions. Prior work compares learned reward functions to a
ground truth reward using a pseudometric (27), uses saliency maps and counterfactuals (12; 44; 42),
leverages human teaching strategies (39; 9), wrapper modules (34) or uses human-centric evaluation
methods for reward explanation (53). Some of the prior works have also looked at using expert-
driven reward design techniques to incorporate structural and interpretability constraints (33; 17;
31).Recent work shows that reward functions learned from human preferences via deep neural
networks often suffer from spurious correlations and reward misidentificiation (60). In this work we
seek to investigate to what extent differentiable decision trees enable interpretable reward functions
that can aid in detecting reward misidentification.

Differentiable Decision Trees Differential Decision Trees (DDTs), also referred to as Soft Decision
Trees, seek to combine flexibility of neural networks with interpretable structure of decision trees.
DDTs have been previously applied to supervised learning tasks (22; 59; 28) and unsupervised tasks
(62). Recent work has investigated using DDTs for reinforcement learning tasks (56; 16; 58; 18; 48),
but focus on policy learning using DDTs. Compared to prior work, the primary objective of our work
is to learn interpretable reward functions using DDTs. While policy explanations are important, they
only show what triggers an agent to take an action, rather than the reason for taking the action. By
understanding agent’s reward, we gain insight into the agent’s value alignment (40; 20; 14) which
can transfer across different embodiments and dynamics (23), unlike policies. Furthermore, prior
work using DDTs for policy learning only considers low-dimensional, non-visual inputs (56; 16). By
contrast, we study DDTs applied to high-dimensional image observations.

Decision Trees for Reward Learning There has been very little prior work on using decision trees
for reward learning. Bewley et al. (5) formulate a tree-based reward learning method that requires a
complex, non-differentiable, multi-stage optimization procedure. By contrast, our approach is end-to-
end differentiable and trainable using a simple cross entropy loss. Bewley et al. (5) only consider
low-dimensional inputs where internal nodes in tree have the form (s, a)d ≥ c for each dimension d

2

Under review as a conference paper at ICLR 2024

of the state-action space and threshold c. This approach divides state-action space into axis aligned
hyperrectangles, which works for lower-dimensional spaces, but does not scale to higher-dimensional
state and action spaces. More recent work uses a differentiable loss function but is not end-to-end
differentiable as it requires reward tree to regrow at each update (4). Furthermore, prior work requires
hand crafting input features per decision node in the decision tree which makes it intractable to scale
to the types of visual inputs we consider. Our work seeks to address these limitations by learning
reward function DDTs that are end-to-end differentiable, do not require hand-crafted features, and
scale easily to high dimensional pixel inputs.

3 REWARD LEARNING USING DIFFERENTIABLE DECISION TREES

Classical decision trees are interpretable and easy to tune (36; 45); however, they require feature
engineering which can result in lower performance and less generalization compared with other
machine learning approaches (22; 28). In this section, we discuss our proposed approach for learning
interpretable but expressive reward functions via differentiable decision trees (DDTs).

3.1 INTERNAL NODES

Figure 2: Routing proba-
bility of an internal node
in a DDT.

Classical decision trees consist of internal nodes that deterministically
route inputs. Since we want our reward function tree to be easily trained
using backpropagation, we define a differentiable soft routing function
that retains the expressiveness of a neural network by learning the routing
function for each non-leaf node. We define an internal node in the DDT
as a sequence of one or more parameterized functions applied to the input
to the DDT to determine probability of routing left or right. Because each
internal node depends directly on the input, the differentiable decision
tree learns a hierarchy of decision boundaries that determine the routing
probabilities for each input. We describe two variants of an internal node below:

Simple Internal Node Proposed by Frosst and Hinton (22), a simple internal routing node, i, has a
linear layer with learnable parameters wi and a bias term b upon which sigmoid activation function,
σ, is applied to derive the routing probability given an input x (Fig 2). Thus, the probability at node i
of routing to the left branch is defined as pi(x) = σ(β(x · wi + b)). An inverse temperature, β, is
included in the equation above for controlling the degree of soft decisions.

Sophisticated Internal Node For higher-dimensional inputs we propose an alternative internal
node architecture, which consists of a single convolutional layer with Leaky ReLU as the non-linearity
followed by a fully connected linear layer, as before. The probability of going to the leftmost branch
at an internal node i is defined as pi(x) = σ((LeakyReLU(Conv2d(x))) · wi + b).

3.2 LEAF NODES

Following prior work that uses DDTs for classification problems (22), a leaf node l is parameterized
by ϕl, that defines a softmax distribution over a discrete number of reward outputs c. The probability
distribution at a leaf, Ql, is defined as Ql

i = exp(ϕl
i)/(

∑c
j=0 exp(ϕ

l
j)).We propose and study two

ways to obtain rewards at the leaves of a reward DDT.

Multi-Class Reward Leaf (CRL) This kind of leaf node performs multi-class classification and
assumes that the user can specify classes of possible discrete reward values suitable for the given task,
such that reward vector is of the form R = (r1, r2, . . . , rc), where c denotes the number of classes
for the DDT, where each class index i is assigned reward value ri. The learnable parameters ϕl at
leaf l form the logit values of a classification problem over the possible reward values in R.

Min-Max Reward Interpolation Leaf (IL) As an alternative to the classification approach, we
model the reward of a DDT as regression problem, that requires the user to specify only the minimum
and maximum range of possible reward values as opposed to requiring finite set of possible reward
values as in CRL. Thus, the reward vector is of the form R = (Rmin, Rmax), where Rmin and Rmax

3

Under review as a conference paper at ICLR 2024

correspond to minimum and maximum of the user-defined range of rewards respectively. Given this
parameterization, we can view the reward output of a DDT as a convex combination of Rmin and
Rmax based on the learned parameters ϕl.

3.3 TRAINING DDTS FOR REWARD LEARNING USING HUMAN PREFERENCES

As we want our reward DDT to be end-to-end differentiable when learning a reward function from
preference labels,we formulate soft reward prediction as follows. First, the tree of depth d ≥ 1 is
built by

∑d−1
k=0 2

k internal nodes and 2d leaves. Given an input x, we denote the path probability
from root node to a leaf ℓ by P ℓ(x).The soft reward prediction of the tree is given by the sum over all
leaves of the path probability of reaching that leaf P ℓ(x) , multiplied with the soft reward at the leaf:

rθ(x) =
∑
ℓ

P ℓ(x)(Qℓ · R) . (1)

To train our reward function DDT, we propose to leverage pairwise preference labels over trajectories.
Given preferences over trajectories of the form τi ≺ τj , where τ = (s1, s2, ...sT), we can train our
entire differentiable decision tree via the following cross entropy loss resulting from the Bradley
Terry model of preferences (10; 15). For DDTs with sophisticated nodes, we also regularized the
network to ensure that, on average across many inputs, each internal node routes left and right equally
often (see Appendix A for details).

3.4 USING A TRAINED REWARD DDT FOR REWARD PREDICTION

To use the trained reward DDT for reward prediction at test time (e.g., when using the reward DDT for
reinforcement learning), one option is to use the soft reward (averaged across all leaf nodes weighted
by routing probability); however, this loses interpretability since we cannot trace the predicted
reward to a small number of discrete decisions. To enable interpretable reward predictions we can
alternatively output a single reward prediction by first finding the leaf node with maximum routing
probability for a given input x:

l∗ = argmax
l∈L

P ℓ(x) , (2)

where L denotes set of all leaf nodes in the DDT. And then the test-time output of a reward DDT
with CRL Leaf nodes is given as rmax(x) = ri, for i = argmaxi Qℓ∗

i ; while for IL Leaf nodes it is
given as rmax(x) = Qℓ∗ · (Rmin, Rmax).

4 EXPERIMENTS AND RESULTS

We evaluate reward DDTs on three different types of environments: CartPole, a novel set of MNIST
Gridworld environments, and Atari 2600 games (2). In Appendix D.3, we examine the effect of
choice of internal node architecture on the interpretability of the reward DDT. We find that in low
and medium-dimensional state space, both type of nodes perform equivalently but as we scale up to
higher dimensions such as Atari, sophisticated internal nodes perform better.

4.1 CARTPOLE

The Cartpole environment comprises a cart with a pole attached to it, sliding on a friction-less track.
The objective is to balance the pole on the cart for as long as possible while cart moves to left and
right along the track without letting pole fall beyond ±12◦ from the upright position and without
letting the cart move beyond ±2.4 units along the track. We assume no access to ground truth reward
and we use our DDT framework to learn ground-truth reward from pairwise preference labels.

Setup To train a reward function DDT, we generate a wide variety of trajectories by running a
random policy in the environment for 200 steps for each trajectory with no access to any kind of
terminal or done flag (since this would leak significant information about the true reward (21)). Thus,
we ignore the done flag in the Cartpole environment and keep accumulating states in the trajectory
for 200 timesteps, even if the pole falls over. We design a synthetic preference labeler that returns
pairwise preferences based on the true (but unobserved) reward.

4

Under review as a conference paper at ICLR 2024

Figure 3: CartPole Reward DDT. The heatmap for each internal node depicts the learned routing
probability.Leaf nodes are depicted as circular nodes with their soft reward values. The tree learns
that small magnitude pole angles are good and should be routed to a +1 reward but there is no
learned decision boundary that clearly captures the preference that cart position stay within the range
[−2.4, 2.4] showing that learned reward is mis-aligned.

DDT Baseline
CRL Soft CRL Argmax Neural Network

Mean 189.90 183.466 66.29
Standard Deviation 10.32 17.39 66.70

Table 1: Evaluating RL on Learned Reward Function in CartPole. DDTs with soft outputs
outperforms argmax rewards at test time and both significantly outperform RL performance of a
non-interpretable fully connected 2-layer reward network baseline. CRL denotes a tree with Class
Reward Leaf nodes. The table shows Mean and Standard deviation across 10 seeds averaged over
100 rollouts.

Given pairwise preference labels over these suboptimal trajectories, we train a reward DDT of depth
2: the tree has 3 internal nodes and 4 leaf nodes (we experimented with larger depth and did not
see any improvements in performance). We use multi-class reward leaf(CRL) nodes with 2 classes:
R = (0.0, 1.0). This is because the true reward is binary and we wish to compare the results of the
reward DDT to the ground truth reward.

It is important to note that even though the ground truth preferences are based on both cart position
and pole angle, the pole usually falls past the desirable range long before the cart leaves the desirable
range. Thus, our dataset is biased and we hope to be able to pickup on this bias, and the corresponding
misaligned reward function by inspecting the learned reward DDT. To evaluate RL performance
of the learned reward function by the DDT, we train a vanilla policy gradient agent on the learned
reward function to obtain the final policy and then evaluate this learned policy on the ground-truth
reward function. We also compute the ground-truth performance of a policy gradient policy trained
on the same dataset using a neural network reward function comprised of 2 fully connected layers.

Results The results in Table 1 show that a simple reward DDT outperforms a neural network made
up of fully-connected layers, irrespective of whether the policy is learned using soft rewards or using
the maximum probability path across the learned reward DDT. Fig 3 shows learned reward DDT.
Because the input space to the reward function is 2-dimensional (cart position and pole angle) we
visualize the heatmap of routing probability at each internal node (as a function of cart position and
pole angle) along with leaf distributions. From DDT it is clear that most of the routing decisions are
made based on pole angle, rather than cart position. A nice feature of the reward DDT is that we can
easily visually interpret the learned reward just by looking at the tree. From Fig 3 we see that while
the tree learns that small magnitude pole angles are good and should be routed to a +1 reward, there
is no learned decision boundary that clearly captures the preference that cart position stay within the
range [−2.4, 2.4].

4.2 MNIST GRIDWORLDS

Next, we use our reward DDT framework for solving MDPs with visual inputs. We propose three
novel gridworld environments where agents can move in the four cardinal directions and each state is

5

Under review as a conference paper at ICLR 2024

(a) Pairwise trajectory
preference

(b) Visualization of Learned Re-
ward DDT

Figure 4: MNIST (0/1) Gridworld. (a) A pair of trajectories with the same starting state, where the
blue trajectory (which visits more 1’s) is preferred over the red trajectory. (b) Heatmap of Learned
Reward DDT : The dark pixels at center of heatmap form an approximate shape of digit 1 and are
routed to right as the dark colors in heatmap mean that those pixels are turned off, while lighter pixels
represent shape of digit 0 and routed to left as those pixels are turned on. Leaf nodes are depicted as
circular nodes with their soft reward values.

DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet Random

MNIST 0-1 92.37% 82.27% 99.98 100% 98.2% 7.38%
MNIST 0-3 71.66% 71.66% 98.99% 97.77% 99.53% 7.56%
MNIST 0-9 62.15% 62.15% 97.32% 92.87% 97.74% 7.93%

Table 2: RL Performance as the percentage of expected return obtained relative to the performance
of an optimal policy on the ground-truth reward. Results are averaged across 100 different MDPs.
We find that reward DDTs with Interpolated Leaf nodes (IL) perform as well as a neural network
reward in both gridworld environments, while using Class Reward Leaf nodes (CRL) results in lower
performance, but still significantly outperforms a random policy (Random). This provides evidence
that our simple framework can learn interpretable reward without losing the expressiveness of a
neural network under RL evaluation.

associated with a 28× 28 grey-scale image of the MNIST digit and the value of the digit determines
the true unobserved reward at that state. The rewards must be inferred from preferences over pairwise
demonstrations, where preference label assignment is based on comparison between sum of ground
truth labels of each state in a demonstration. To interpret the learned reward DDT, we construct a
pixel-level activation heatmap for each internal node by starting with a blank image and iteratively
toggling on and off each pixel and computing the resulting difference in routing probabilities for
each internal node. We compare the performance of the RL policy optimized using the learned DDT
reward function against the optimal policy under the ground truth reward, a random policy, and a
policy learnt by a neural network trained on the same preference dataset.

4.2.1 MNIST (0/1) GRIDWORLD

Setup In this 5x5 gridworld each state in the MDP corresponds to a MNIST digit 0 or 1. To test
whether we can learn an interpretable reward function from pairs of preference demonstrations over
trajectories (see Fig 4a for an example pairwise trajectory comparison), we modeled the reward as a
DDT of depth 1 with one simple internal node as the root node and 2 CRL leaf nodes with reward
vector R = (0.0, 1.0). See Appendix C for more details.

Results The resulting heatmap in Fig 4b demonstrates the fact that DDT learns to branch based
on visually interpretable features that correspond to a 0 (routes to left leaf node) and 1 (routes to
right leaf node).The RL performance using the Soft Reward from CRL Leaf DDT on MNIST 0-1
environment is shown in Table 2 is comparable to a deep neural network reward function trained on
pairwise preferences. We observe that taking the maximum probability path across the learned reward
tree results in a small loss of performance relative to when we take soft reward from the learned DDT.

4.2.2 MNIST (0-3) GRIDWORLD

Setup We increased the complexity of the reward function in the 5x5 gridworld MDP such that the
states now correspond to MNIST digits 0,1,2,3. We trained two different types of reward DDTs of
depth 2 with 3 simple internal nodes and 4 leaf nodes of type : CRL with R = (0, 1, 2, 3) and IL with
Rmin = 0 and Rmax = 3 (see Appendix D.

6

Under review as a conference paper at ICLR 2024

Figure 5: Visualization of MNIST (0-3) Reward DDT The activation maps provide interpretability
and show that images of 1s are routed left to node B and then left to leaf node that outputs 0.53.
Images of 0s are routed from Node A to node C then to the 0.05 leaf node. Images of 2s are routed
from A to B then to 2.14. Images of 3s are routed from A to C then to 2.96.Leaf nodes are depicted
as circular nodes with their soft reward values.

Results In Appendix D we visualize and compare the reward DDTs with CRL and IL leaf nodes
and find that in CRL formulation the leaf nodes fail to specialize and argmax output of the leaf nodes
is either 0 or 3, despite investigating several regularization techniques (see Appendix D). We conclude
that using IL leaf nodes is best when learning complicated reward functions where we wish to output
more than two possible rewards. It is also simpler,as it requires the human to only specify a range of
desired reward values, [Rmin, Rmax]. Thus, we focus on our analysis of the interpretability of the IL
reward DDT.

In Fig 5, the activation heatmaps are not simply combinations of digits like Fig 4, but rather isolate
pixel features that are maximally discriminative . However, they still provide a strong understanding
of what the network has learned and how it predicts rewards. These heatmaps show that DDT learns
to route based on visual representations of each digit: Node B routes left for vertical pixels in center
from vertical stroke of digit 1 and sends 1’s left while using upper and lower curves of digit 2 to route
2’s right (note the black shadow that looks like a 2). To discriminate between a digit 0 and 3, node C
discriminates based on middle cusp of 3 and left curve of the 0. Finally, node A learns that what best
distinguishes 1s and 2s from 0s and 3s is presence of central lower pixels—the highest activation for
node A is intersection of the 1 and 2 which falls between middle and lower cusps of 3 and inside
digit 0. Note that tree uses min-max reward interpolation between Rmin = 0 and Rmax = 3. Note
that there are no explicit reward labels, just pairwise preferences over trajectories. Despite the lack
of fine-grained feedback, the DDT learns a close approximation to the actual state rewards and the
learned rules in DDT are visually interpretable.

Table 2 shows that RL performance of IL reward DDT far exceeds the performance of CRL DDT
both when optimal policy is trained using soft reward outputs and when optimal policy is trained using
the output of the maximum probability path in the tree. RL performance of IL reward DDT using soft
reward is comparable to performance of a deep neural network reward function. In Appendix D, we
compare reward DDT in Fig 5 learned from pairwise preferences with a DDT trained with explicit
reward labels and a classification loss and find no significant degradation in interpretability from using
pairwise preferences. This is encouraging since requiring someone to hand label each individual
state with reward values is much more cumbersome than requiring binary preference labels over
trajectories.

4.2.3 MNIST (0-9) GRIDWORLD

Setup To assess scalability of our framework we use a 10x10 gridworld with state space comprising
of MNIST digits 0 to 9. We train 2 reward DDTs of depth 4 with simple internal nodes and leaf nodes
of type CRL with R = (0, 1, .., 9), and IL with Rmin = 0 and Rmax = 9 respectively.

Results Row 3 of Table 2 shows the IL soft reward performance is comparable to a black-box
ConvNet learned reward. However, we find that performance of CRL softmax and argmax is
significantly degraded, but much better than a random policy. This provides evidence that our
framework maintains high performance for much longer horizon and more difficult tasks when using

7

Under review as a conference paper at ICLR 2024

(a) DDT without activation penalty regularization (b) DDT with activation penalty regularization

Figure 6: Visualization of Beam Rider Reward DDTs. We plot the DDTs trained without (a)
vs with (b) a regularization penalty on the internal node routing probabilities. We find that the
regularization helps the DDT use all leaf nodes, but hurts performance during RL (see Table 3)

interpolated leaf nodes (IL). We analyzed learned DDT and find it still retains explainability despite
increase in depth, while still performing comparably to a black-box reward learning approach.

4.3 ATARI

To further test the efficacy of learning interpretable rewards, we trained reward DDTs on the Beam
Rider and Breakout Atari games (2). Learning rewards for these games is quite challenging as the
states are high-dimensional pixel inputs consisting of stacks of 4 84× 84 video frames.

Setup We generate preference training data by generating pairs of trajectory snippets obtained from
a variety of partially trained Proximal Policy Optimization (PPO) (54) policies. We follow same
procedure proposed by Brown et al. (12) who learned reward functions using deep convolutional
neural networks for these games. We then test whether a reward DDT can match the RL performance
of the T-REX deep neural network trained by Brown et al. (12), while being interpretable. Because
of the complexity of the task, we use sophisticated internal nodes and IL leaf nodes with Rmin = 0
and Rmax = 1 (see Appendix E for full details).

To enable interpretation of learned reward DDT, we create a synthetic trace at each internal node. The
synthetic trace creates a sequence of states with probability of routing left monotonically decreasing.
At an internal node, the trace begins with the state that has maximum probability of being routed left
and ends with the state that has minimum probability of being routed left. For ease of visualization,
we show the first and last state in the trace.

While trying to create synthetic trace for internal nodes that are children of root node, we discovered
that root node’s children nodes were using leaf nodes unequally, in the sense that one of child nodes
of Node C was never used, subsequently thesub-tree that began at the unused node did not ever
see any input state being routed to it. We re-trained the sophisticated reward DDT with the same
hyperparameters, but with an added penalty regularization (see Appendix A) and after training,
we re-created the synthetic traces for each internal node. We similarly trained a reward DDT
with and without penalty for Breakout (see Appendix E). We optimized a policy for each of these
learned reward functions by training a PPO agent for 50 million frames and compare it against the
previous benchmark in learning from sub-optimal demonstrations, T-REX (Trajectory-ranked Reward
EXtrapolation) (12). For training the PPO agent, we utilize each learnt reward DDT in two ways: we
either obtain a soft reward over all leaves from tree or we choose the path with maximum routing
probability and the reward in this case is obtained by argmaxing over the maximum probability path.

Results We visualize synthetic trace for each internal node in the sophisticated reward DDT trained
without penalty Fig 6a and compare it against that of reward DDT trained using penalty Fig 6b. In (a)
we see that Node A routes states where agent hits an enemy ship to left and states where it misses
enemy ships to right. Then Node B routes states where it looks like it will hit an enemy ship to a
reward of 1.0 but interestingly routes states where it has hit an enemy ship to a reward of 0 (yellow
flash indicates an enemy being destroyed). This allows us to see a misalignment in the learned reward

8

Under review as a conference paper at ICLR 2024

DDT Baseline
¬penalty ¬penalty penalty penalty T-REX

Game ¬argmax argmax ¬argmax argmax

Beam Rider 5212.04 725.84 793.12 3228.66 4742.68
Breakout 65.48 45.21 21.28 24.16 55.18

Table 3: Reinforcement learning using reward DDTs. We report performance averaged over
100 rollouts. We find that not using a regularization penalty (¬penalty) and allowing a soft output
(¬argmax) achieves the best results, even performing slightly better than a large end-to-end neural
network reward function (T-REX(12), trained on the same data.

function. We investigated this further and found that when the agent loses a life, this also triggers a
flashing yellow screen. Thus,agent appears to be misinterpreting yellow flash and associating it with
a penalty, when it should be associated with a reward. In Fig 6b we see a similar trend for Node B.

We visualize synthetic trace for Breakout unregularized and regularized Reward DDT in Fig 14 and
Fig 15. And for both traces, we find at Node A, states that have more number of bricks missing, have
a higher routing probability >0.5 and are routed left to Node B while the states in Node A that have
no or very few bricks missing have a lower routing probability(routing probability <0.5) and thus
are routed right, i.e. to Node C.For more details,see Appendix E In Table 3 we summarize learned
policy performance under 4 different scenarios: without Penalty without Argmax, without Penalty
with Argmax, with Penalty without Argmax (returning soft reward averaged over all leaf nodes), with
Penalty with Argmax for both Beam Rider and Breakout along with T-REX performance on each of
these games. We see that RL performance is hurt by adding regularization penalty. We achieve the
best scores when using no penalty and a soft output. Interestingly, when using a regularization penalty,
using a hard output of the DDT (returning the reward from the leaf node with highest probability)
performs best.

5 CONCLUSION

We formulated and analyzed a novel method to learn an interpretable reward using differentiable
decision trees. Our framework is capable of explaining the most significant features that determine
the final reward and routing probability. For low dimensional tasks such as CartPole and MNIST
GridWorld environments, our framework is capable of providing global explanations for all inputs.
For higher dimensional tasks such as Atari, we approximate global explanations by leveraging
aggregations of local explanations by finding the input states that maximally and minimally activate
the routing probability of each internal node. On one hand, we provide evidence that reward DDTs
are a viable alternative to end-to-end deep network rewards and can perform on-par and sometimes
better than their deep neural network reward counterparts; however, for complex domains like Atari,
this performance comes at the cost of using DDT in a way that is not interpretable since a soft
output that is a weighted sum of outputs of all leaf nodes is hard to interpret. Ideally, we could use
reward DDTs with hard reward outputs—the reward output during policy optimization would come
from a single leaf node, allowing us to trace the reward output to a small number of binary routing
decisions at the internal nodes. While optimizing this kind of hard output (argmax) process works
well for the simpler domains we studied (e.g., CartPole and MNIST Gridworlds); it seems to hurt
performance on more complex domains. We hypothesize this might be a result of the reward function
being too sparse–the number of possible reward outputs is limited, which may adversely affect policy
learning. Thus, our results reveal a tension between wanting highly shaped rewards to ensure good
RL performance, while also wanting simple, non-shaped rewards to afford interpretability. Future
work should investigate this trade-off in more depth.

Our experimental results also provide preliminary evidence that our framework can be used as an
alignment debugger tool to inspect learned reward functions for correctness and for capturing the
features learned by a model that are misaligned with respect to human intent. We hypothesize that
recently proposed methods for human-in-the-loop representation and feature learning (8; 7) and
methods for identifying causal features using small amounts of human annotations (25) could enable
humans to provide feedback to better align learned reward DDTs.Future work can extend the idea of
sophisticated internal node to transformer-based internal node for language and text inputs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
Jun 2013.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Tom Bewley, Jonathan Lawry, Arthur Richards, Rachel Craddock, and Ian Henderson. Reward
learning with trees: Methods and evaluation, 2023.

[5] Tom Bewley and Freddy Lecue. Interpretable preference-based reinforcement learning with
tree-structured reward functions. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, pages 118–126, 2022.

[6] Erdem Biyik, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, Dorsa Sadigh, et al.
Asking easy questions: A user-friendly approach to active reward learning. In Conference on
Robot Learning, pages 1177–1190. PMLR, 2020.

[7] Andreea Bobu, Yi Liu, Rohin Shah, Daniel S. Brown, and Anca D. Dragan. Sirl: Similarity-
based implicit representation learning. In Proceedings of the 2023 ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 2023.

[8] Andreea Bobu, Marius Wiggert, Claire Tomlin, and Anca D Dragan. Inducing structure in reward
learning by learning features. The International Journal of Robotics Research, 41(5):497–518,
2022.

[9] Serena Booth, Sanjana Sharma, Sarah Chung, Julie Shah, and Elena L Glassman. Revisiting
human-robot teaching and learning through the lens of human concept learning. In 2022 17th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 147–156. IEEE,
2022.

[10] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[12] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating be-
yond suboptimal demonstrations via inverse reinforcement learning from observations. In
International conference on machine learning, pages 783–792. PMLR, 2019.

[13] Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[14] Daniel S. Brown, Jordan Schneider, Anca Dragan, and Scott Niekum. Value alignment verifica-
tion. In International Conference on Machine Learning, pages 1105–1115. PMLR, 2021.

[15] Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In NIPS, 2017.

[16] Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber,
and Daniele Magazzeni. Distilling deep reinforcement learning policies in soft decision trees.
In Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence, pages 1–6,
2019.

[17] Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable
reward design for reinforcement learning agents. Advances in Neural Information Processing
Systems, 34:20118–20131, 2021.

10

Under review as a conference paper at ICLR 2024

[18] Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li, and Ruitong Huang.
Cdt: Cascading decision trees for explainable reinforcement learning, 2021.

[19] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International conference on machine learning, pages 49–58.
PMLR, 2016.

[20] Jaime F Fisac, Monica A Gates, Jessica B Hamrick, Chang Liu, Dylan Hadfield-Menell,
Malayandi Palaniappan, Dhruv Malik, S Shankar Sastry, Thomas L Griffiths, and Anca D
Dragan. Pragmatic-pedagogic value alignment. In Robotics Research: The 18th International
Symposium ISRR, pages 49–57. Springer, 2020.

[21] Pedro Freire, Adam Gleave, Sam Toyer, and Stuart Russell. Derail: Diagnostic environments
for reward and imitation learning. arXiv preprint arXiv:2012.01365, 2020.

[22] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

[23] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In International Conference on Learning Representations, 2018.

[24] Gaurav R Ghosal, Matthew Zurek, Daniel S Brown, and Anca D Dragan. The effect of modeling
human rationality level on learning rewards from multiple feedback types. AAAI Conference on
Artificial Intelligence, 2023.

[25] Gaurav Rohit Ghosal, Amrith Setlur, Daniel S. Brown, Anca Dragan, and Aditi Raghunathan.
Contextual reliability: When different features matter in different contexts. In International
Conference on Machine Learning (ICML), 2023.

[26] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA), pages 80–89.
IEEE, 2018.

[27] Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying
differences in reward functions. In International Conference on Learning Representations,
2021.

[28] Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In International Conference
on Machine Learning, pages 4138–4148. PMLR, 2020.

[29] Alexandre Heuillet, Fabien Couthouis, and Natalia Díaz-Rodríguez. Explainability in deep
reinforcement learning. Knowledge-Based Systems, 214:106685, 2021.

[30] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. arXiv preprint arXiv:1811.06521,
2018.

[31] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward
machines: Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173–208, 2022.

[32] Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop
RL. In 6th Annual Conference on Robot Learning, 2022.

[33] Yuqian Jiang, Suda Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-
logic-based reward shaping for continuing reinforcement learning tasks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 7995–8003, 2021.

[34] Eoin M Kenny, Mycal Tucker, and Julie Shah. Towards interpretable deep reinforcement
learning with human-friendly prototypes. In The Eleventh International Conference on Learning
Representations, 2022.

11

Under review as a conference paper at ICLR 2024

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[36] Sotiris B Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review, 39:261–
283, 2013.

[37] Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana
Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side of ai
ingenuity. DeepMind Blog, 2020.

[38] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

[39] Michael S Lee, Henny Admoni, and Reid Simmons. Machine teaching for human inverse
reinforcement learning. Frontiers in Robotics and AI, 8:693050, 2021.

[40] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018.

[41] Yi Liu, Gaurav Datta, Ellen Novoseller, and Daniel S Brown. Efficient preference-based
reinforcement learning using learned dynamics models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023.

[42] Saaduddin Mahmud, Sandhya Saisubramanian, and Shlomo Zilberstein. Reveale: Reward
verification and learning using explanations. 2023.

[43] Shaunak A Mehta and Dylan P Losey. Unified learning from demonstrations, corrections, and
preferences during physical human-robot interaction. arXiv preprint arXiv:2207.03395, 2022.

[44] Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions.
arXiv preprint arXiv:2012.05862, 2020.

[45] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[46] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,
1999.

[47] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[48] Alizée Pace, Alex J. Chan, and Mihaela van der Schaar. Poetree: Interpretable policy learning
with adaptive decision trees, 2022.

[49] Tilman Räukur, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent
ai: A survey on interpreting the inner structures of deep neural networks. arXiv preprint
arXiv:2207.13243, 2022.

[50] Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for robust and beneficial
artificial intelligence. Ai Magazine, 36(4):105–114, 2015.

[51] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics Science and Systems, 2017.

[52] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics: Science and Systems, 2017.

[53] Lindsay Sanneman and Julie A. Shah. An empirical study of reward explanations with human-
robot interaction applications. IEEE Robotics and Automation Letters, 7(4):8956–8963, 2022.

12

Under review as a conference paper at ICLR 2024

[54] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[55] Daniel Shin, Anca Dragan, and Daniel S. Brown. Benchmarks and algorithms for offline
preference-based reward learning. Transactions on Machine Learning Research.

[56] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Op-
timization methods for interpretable differentiable decision trees applied to reinforcement
learning. In International conference on artificial intelligence and statistics, pages 1855–1865.
PMLR, 2020.

[57] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[58] Pradyumna Tambwekar, Andrew Silva, Nakul Gopalan, and Matthew Gombolay. Natural
language specification of reinforcement learning policies through differentiable decision trees.
IEEE Robotics and Automation Letters, pages 1–8, 2023.

[59] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori.
Adaptive neural trees. In International Conference on Machine Learning, pages 6166–6175.
PMLR, 2019.

[60] Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca Dragan, and Daniel S Brown. Causal
confusion and reward misidentification in preference-based reward learning. In International
Conference on Learning Representations, 2023.

[61] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of
preference-based reinforcement learning methods. Journal of Machine Learning Research,
18(136):1–46, 2017.

[62] Valentina Zantedeschi, Matt J Kusner, and Vlad Niculae. Learning binary trees by argmin
differentiation. ICML, 2021.

[63] Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey.
Frontiers of Information Technology & Electronic Engineering, 19(1):27–39, 2018.

13

Under review as a conference paper at ICLR 2024

A DDT ROUTING PENALTY REGULARIZATION

We take inspiration from [19] for adding penalty regularization and we first explain how penalty is
defined at each internal node and then elaborate on calculating penalty for a single state over the
whole DDT.

The cross-entropy between desired routing probability distribution of an internal node such that it’s
children nodes are equally used and the actual routing probability distribution is referred to as Penalty
and is given by

αi =

∑
x P

i(x)pi(x)∑
x P

i(x)
(3)

where the probability of a current internal node is pi(x) and path probability from root node to an
internal node is P i(x).

Penalty over the whole DDT for a single state is defined as sum over all internal nodes for the given
input x

C = −λ
∑

i∈ Inner Nodes

0.5 log (αi) + 0.5 log (1− αi) (4)

where hyper-parameter λ controls the strength of penalty λ in reward DDT so that the penalty strength
is proportional to 2−d and decays exponentially with depth of tree. Finally the penalty term for
learning reward tree from pairwise preferences is calculated by taking the mean over all penalties for
all states in the pairwise demonstrations.

Figure 7: Cartpole Reward DDT. Ground Truth Reward on the left compared to Learnt Reward on
the right. The reward model learnt by DDT is missing vertical boundaries visually, implying that
it failed to pick up on cart position when contrasted with ground truth reward model that has both
horizontal and vertical boundaries corresponding to pole angle and cart position respectively.

B ADDITIONAL CARTPOLE DETAILS AND ANALYSIS

Figure 8: CartPole

For learning the reward DDT on classic control CartPole environment
Fig 8 , we used a learning rate and weight decay both equal to 0.001 and
the Adam optimizer. The neural network we compare to, is trained on
same dataset and is comprised of 2 fully connected layers with Leaky
ReLU as non-linearity between the layers and the output from the last
fully connected layer goes through a sigmoid activation for the final
reward from the neural network.

To verify that our DDT reward model picks up on the misalignment in the reward function with
respect to input features, particular cart position, we also compared the ground truth reward with the

14

Under review as a conference paper at ICLR 2024

output of the learned reward obtained by taking the argmax class from the leaf node with maximum
routing probability. We plot these two rewards as a function of pole angle and cart position in Figure 7

Figure 7 depicts that the learned reward is misaligned: the reward DDT has learned to approximate
the preferences over pole angle, but pays much less attention to the pole angle when predicting
rewards.

C MNIST GRIDWORLD ADDITIONAL DETAILS

In this environment,the action space a contains 4 main actions: go left, go right, move up, move
down. The transition function is stochastic and moves the agent in the direction chosen with an 80%
probability as long as the action does not take it off of the grid. Actions that would result in leaving
the grid result in a self transition.

And the neural network used to learn reward from pairwise human preferences consisted 2 convolu-
tional layers with kernel size 7 and 5 respectively and stride 1 with LeakyRelu as the non-linearities
followed by 2 fully connected layers.

MNIST (0/1) Gridworld Experimental Details For training the reward DDT with simple internal
nodes and CRL leaf nodes, we use a learning rate of 0.001, weight decay of 0.05, and the Adam
optimizer (35).

D MNIST (0-3) GRIDWORLD ADDITIONAL RESULTS AND ANALYSIS

In this section we provide detailed analysis about interpretability of different DDTs, beginning from
comparison between Reward DDT and Classification DDT, then comparing Reward DDTs constructed
using two different leaf node formulations, followed by comparison of different regularization on a
reward DDT.

Note that for both reward DDTs with different leaf nodes CRL and IL, we trained using a learning
rate of 0.001 and weight decay 0.005 and the Adam optimizer. And the neural network details are
same as defined above in Appendix C.

D.1 MIN-MAX REWARD INTERPOLATION TREE VS CLASSIFICATION TREE

We train a DDT with explicit reward labels and a classification loss, as in, we re-produce the
classification DDT from [19] and compare it to reward tree learned using preferences(refer to Sec
4.2.2 of main paper).

For comparison of reward tree against the classification tree trained using ground truth labels, we plot
the heatmaps of internal nodes in both the trees and our results in Figure 9 give evidence that reward
tree can capture visual features without any loss in interpretability when compared to the one learnt
from simple ground truth labels, even though preferences used here are weaker supervision than
ground truth label since preferences used in our experiments are binary as compared to ground truth
labels which are 0,1,2,3 corresponding to each actual digit image. This is particularly important in
cases where explicit labels are either missing or are hard to be specified or require intensive user-input
efforts.

In Figure 9b Node A activates strongly for pixels in the middle of 1s and 2s, routing them left, while
and 0s and 3s are routed right. Node B routes left for vertical pixels in the center and sends 2’s
left and 1’s right (note the light shadow looks like a 2 while the darker shadow in the middle that
looks like a 1). Node C learns to distinguish between 0s and 3s, routing 3s left and 0s right. This
is comparable to the activation heatmaps of the node probability distribution at each of the internal
node described for reward tree(in Sec 4.2.2 of main paper).

D.2 MIN-MAX REWARD INTERPOLATION LEAF DDT VS MULTI-CLASS REWARD LEAF DDT

We train and compare two reward DDTs with simple internal node architecture but with different
leaf formulations using the same Bradley-Terry loss over preference demonstration in Figure 10 by

15

Under review as a conference paper at ICLR 2024

(a) Reward Tree trained using preferences

(b) Classification Tree trained on ground truth label

Figure 9: Visualization of MNSIT (0-3) Reward vs Classification Tree

visualizing the activation heatmaps of routing probability distributions for the internal nodes and the
leaf distribution for each leaf node.

In Figure 10b, each internal node learns to capture almost the same visual feature while the leaf
nodes fail to specialize as the argmax output from first two leaf nodes is always a 0 and last two leaf
nodes always return a 3. Multi-class Leaf DDT fails to pick up on individual digit in the trajectory
, despite requiring the user to input discrete reward vector whereas in the Min-Max Interpolation
Leaf DDT each internal node captures different visual attributes and each of the leaf nodes in the
interpolated reward DDT is specialized, even though no discrete reward values were given as an
input.

This shows that Min-Max Reward Interpolation Leaf DDT is beneficial over Multi-Class Reward
Leaf DDT with respect to interpretability and also in terms of human-input efforts. for all states in
the pairwise demonstrations.

16

Under review as a conference paper at ICLR 2024

(a) Min-Max Reward Interpolation Leaf DDT (b) Multi-Class Leaf Reward DDT

Figure 10: Visualization of MNSIT (0-3) Reward Trees: Min-Max Reward Interpolation Leaf
vs Multi-Class Leaf

D.3 MIN-MAX REWARD INTERPOLATION DDTS WITH SIMPLE INTERNAL NODES VS
SOPHISTICATED INTERNAL NODE

We compare our 2 methods of constructing internal nodes for a reward DDTs.

(a) Min-Max Reward Interpolation Leaf DDT with
Simple Internal Nodes

(b) Min-Max Reward Interpolation Leaf DDT with Sophis-
ticated Internal Nodes

Figure 11: Visualization of MNSIT (0-3) Reward Trees :Simple Internal Node vs Sophisticated
Internal Node

Since Min-Max Reward Interpolation Leaf DDT outperforms Multi-Class Reward Leaf DDT, hence
we train two different Min-Max Reward Interpolation Leaf DDTs, first one with simple internal
nodes and second one with sophisticated internal nodes where a sophisticated internal node contains
a single convolutional layer with filter of size 3x3 and stride 1 with Leaky ReLU as the non-linearity
followed by the fully connected layer.

In Figure 11b Node A activates strongly for pixels in the middle of 1s and 3s, routing them left, while
and 0s and 3s are routed right. Node B routes left for vertical pixels in the center and sends 1’s left
and 3’s right (note the darker shadow in the middle that looks like a 3). Node C learns to distinguish
between 0s and 2s, routing 0s left and 2s right. This is comparable to the activation heatmaps of the
node probability distribution at each of the internal node described for reward tree(in Sec 4.2.2 of
main paper).

17

Under review as a conference paper at ICLR 2024

Our results depict that in a medium-complexity environment with visual inputs , both DDTs yield
relatively equal interpretability but with a higher-complexity environment with larger visual input
size such as Atari, the reward DDT with sophisticated node should be used as convolution layer with
non-linearity are more powerful in terms of processing an input than a simple fully connected layer.

D.4 MULTI-CLASS REWARD LEAF DDT REGULARIZATION

Since the DDT with Multi-Class Reward Leaves failed to specialize, this lead us to add the penalty
term to the Bradley-Terry preference loss for training the Multi-Class Reward Leaf DDT.

(a) Multi-Class Leaf Reward DDT with penalty calculated over a batch of 50 pairwise preference
demonstrations where each demonstration has a single state

(b) Multi-Class Leaf Reward DDT with penalty calculated over a batch of 50 pairwise preference
demonstrations where each demonstration has a single state

Figure 12: Multi-Class Leaf Reward DDT with penalty calculated over different temporal window
lengths

For training the Reward DDT,we calculate penalty over batch of 50 pairwise demonstrations where
each demonstration contains a single 28x28 greyscale image.To check interpretability, we plot the
activation heatmaps of routing probability distributions for the internal nodes and the leaf distribution
for each leaf node in Figure 12a and the resulting plots are hugely pixelated, causing a loss in
interpretability.

18

Under review as a conference paper at ICLR 2024

Following this, we increase the temporal window size for calculating penalty, as suggested in [19],
and thus we calculate penalty over a pair of 50 preference demonstration where each demonstration
is now 50 states long, as opposed to previous case where each demonstration contained a single state.
And we again visualize the heatmaps at internal nodes and leaf distributions for each leaf node in
Figure 12b. The heatmaps here are little better in contrast to Figure 12a but still have a huge loss of
interpretability as compared to Figure 10b.

D.5 SYNTHETIC TRACE FOR MNIST 0-3 REWARD DDT

Figure 13: Synthetic trace of MNIST(0-3) Reward DDT We plot the trace over the entire input
space at each internal node in order of decreasing routing probability from left to right in order to
generate global explanations. At each internal node we depict the actual states and their respective
routing probabilities. In node B images of 1 are routed to left leaf node as they have higher probability
while images of 2 are routed to right leaf node. For Node C, we find that 0s get routed to left leaf
node while some 2’s which are visually closer to 0s get routed to left leaf node while those 2’s that
are closer to 3s and actual 3s get routed to right leaf node.For Node A , we find 1s and higher number
of 2s are routed to Node B while 0s,3s, and some 2s , which are in terms of pixels, closer in shape to
0s and 3s are routed to Node C.

For the reward DDT trained using Min-Max Interpolation Leaf nodes in Sec 4.2.2 we visualize the
synthetic traces fig 13 over the entire state space to generate global explanations. At each internal
node, we also plot the respective routing probabilities of every state in the trace.To generate a trace for
an internal DDT node, we sort the training data in descending order based on the routing probability
assigned to each state. We then sample every Tth state to produce a trace of states that range from
those routed most highly to the left child to those most highly routed to the right child.

We find that B images of 1 are routed to left leaf node as their routing probability>0.5 while images
of 2 are routed to right leaf node. For Node C, our trace interestingly captures the fact that 0s get
routed to left leaf node while some 2’s which are visually closer to 0s get routed to left leaf node
while those 2’s that are closer to 3s and actual 3s get routed to right leaf node.For Node A , we find
1s and higher number of 2s are routed to Node B while 0s,3s, and some 2s , which are in terms of
pixels, closer in shape to 0s and 3s are routed to Node C.

Our synthetic trace on basis can explain the reward any state in the entire state space would get in a
discrete number of steps.

19

Under review as a conference paper at ICLR 2024

E ATARI

The input to DDT here is a 5-dimensional tensor of size B× 2×S× 84× 84× 4 where B represents
batch size of pairwise preference demonstrations while 2 is represents of number of demonstrations
in a pairwise preference and S represents number of states in a single trajectory. The sophisticated
internal node architecture here consists of a single convolution layer with kernel of size 7× 7 with
a stride of 2 and LeakyRelu as the non-linearity followed by the fully connected linear layer for
producing the routing probability inside a tree.We used IL leaf nodes with Rmin = 0 and Rmax = 1.
Note that we choose these min and max values for simplicity; though the actual numerical value of
Rmin and Rmax can be chosen at the discretion of the user since policies are invariant to positive
scaling and affine.

The baseline T-REX, that we compare to has an architecture similar to (15) and consists of 4
convolutional layers of sizes 7x7, 5x5, 3x3 and 3x3 with strides 3,2,1 and 1 respectively, where each
convolutional layer has 16 filters and LeakyReLU as non-linearity, followed by a fully connected
layer with 64 hidden units and a single scalar output.

Beam Rider For beam rider reward ddt using a batch of B = 10 pairwise demonstrations where
each demonstration is 25 states long and Adam optimizer, learning rate of 0.0009 with different seeds.
For training Min-Max Reward Interpolation Leaf DDT with sophisticated internal nodes on Beam
Rider we tried all combinations possible using the following hyper-parameter settings:

• Seed : 0, 1 and 2

• Batch size of Pairwise Preferences B : 1,10

• Learning Rate: 0.00005, 0.0009 for B equal to 1 and 10 respectively

But for all DDTs trained without the penalty, we ran into the problem of un-equal use of sub-trees.For
running-RL and visualizing the synthetic traces we use the reward DDT, trained using seed 0 with
B=10 and lr =0.0009.

Note: we use the same exact setting for training the reward DDT with penalty.

Figure 14: Interpolated DDT of depth 2 trained on Breakout without regularization

Breakout We trained 2 different Interpolated Leaf DDTs on Breakout, one without and another
with Penalty added and created the synsthetic trace over all input states starting from states that are
routed 100% to left and ending at states that are routed complete right (as in have 0% probability of
beiung routed left).

For Breakout , we show a more rigorous trace than BeamRider,by visualizing states that are routed
with 100% , 75%, 50% , 25% and 0% probability to left. And we found that, fig 14 without any
penalty added both children nodes of the root node only use their respective left leaves and do not
route any state to their respective right leaves. This meant that a synthetic trace could not be visualized
for either Node B or Node C.

20

Under review as a conference paper at ICLR 2024

Next, we visualize the synthetic trace over the penalized DDT, fig 15 and surprisingly , we found
that the regularization term added to the final loss of the tree while training was penalizing the DDT
so heavily that now the routing probability at Node B and Node C was always between 0.5 and 0.499,
which again lead to a failure in being able to create the synthetic trace over inputs as no states were
now being routed with a 100% probability neither left nor right and also numerically the difference in
routing probability was very trivial.

In fig 14 which depicts our trace for unregularized Reward DDT, we find at Node A, states that have
more number of bricks missing have a higher probability(>0.5) of being routed to left, i.e. to Node
B which only uses a single leaf node to give a reward of +1 while the states in Node A that have
no or very few bricks missing have a lower routing probability(routing probability <0.5) and thus
are routed right , i.e. to Node C which again uses a single leaf node to give a reward of 0. We can
similarly interpret the trace of regularized reward DDT fig 15 for breakout.

Figure 15: Interpolated DDT of depth 2 trained on Breakout with regularization

21

	Introduction
	Related Work
	Reward Learning using Differentiable Decision Trees
	Internal Nodes
	Leaf Nodes
	 Training DDTs for Reward Learning using Human Preferences
	Using a Trained Reward DDT for Reward Prediction

	Experiments and Results
	CartPole
	MNIST Gridworlds
	MNIST (0/1) Gridworld
	MNIST (0-3) Gridworld
	MNIST (0-9) Gridworld

	Atari

	Conclusion
	DDT Routing Penalty Regularization
	Additional Cartpole Details and Analysis
	MNIST Gridworld Additional Details
	MNIST (0-3) Gridworld Additional Results and Analysis
	Min-Max Reward Interpolation Tree vs Classification tree
	Min-Max Reward Interpolation Leaf DDT vs Multi-Class Reward Leaf DDT
	 Min-Max Reward Interpolation DDTs with Simple Internal Nodes vs Sophisticated Internal Node
	Multi-Class Reward Leaf DDT Regularization
	Synthetic trace for MNIST 0-3 Reward DDT

	Atari

