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Abstract

While large language models (LLMs) exhibit remarkable capabilities across
various tasks, they encounter potential security risks such as jailbreak at-
tacks, which exploit vulnerabilities to bypass security measures and gener-
ate harmful outputs. Existing jailbreak strategies mainly focus on maxi-
mizing attack success rate (ASR), frequently neglecting other critical fac-
tors, including the relevance of the jailbreak response to the query and the
level of stealthiness. This narrow focus on single objectives can result in
ineffective attacks that either lack contextual relevance or are easily rec-
ognizable. In this work, we introduce BlackDAN, an innovative black-box
attack framework with multi-objective optimization, aiming to generate
high-quality prompts that effectively facilitate jailbreaking while maintain-
ing contextual relevance and minimizing detectability. BlackDAN leverages
Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-
II algorithm, to optimize jailbreaks across multiple objectives including
ASR, stealthiness, and semantic relevance. By integrating mechanisms like
mutation, crossover, and Pareto-dominance, BlackDAN provides a trans-
parent and interpretable process for generating jailbreaks. Furthermore, the
framework allows customization based on user preferences, enabling the se-
lection of prompts that balance harmfulness, relevance, and other factors.
Experimental results demonstrate that BlackDAN outperforms traditional
single-objective methods, yielding higher success rates and improved robust-
ness across various LLMs and multimodal LLMs, while ensuring jailbreak
responses are both relevant and less detectable.

1 Introduction

As large language models (LLMs) are increasingly integrated into various applications, the
security of these models has become crucial Yi et al. (2024); Jin et al. (2024); Chu et al.
(2024). Jailbreaking, the process of manipulating these models to bypass safety constraints
and generate undesirable or harmful outputs, poses a significant challenge to maintaining
their integrity and ethical use. Current jailbreaking methods depend excessively on affirma-
tive cues from the model’s prefix Zou et al. (2023); Qi et al. (2024), leading to the possibility
of generating responses that are irrelevant or off-topic, leaving users helpless without out-
right rejecting prompts. This over-reliance underscores the urgent necessity for a more
nuanced approach to prompt selection and optimization, especially through multi-objective
strategies that focus on both effectiveness and usefulness.
Furthermore, existing jailbreaking approaches struggle to explain why certain special di-
rected vectors Zheng et al. (2024a) result in model rejections, highlighting a significant
challenge in comprehending the underlying distributions that dictate model behavior. The
absence of clear explanations regarding the acceptance or rejection of prompts makes it
challenging to establish a reliable safety boundary. Incorporating ranking mechanisms and
conducting a thorough analysis of the distribution of responses can help provide inter-
pretability and enable the identification of a more concrete safety boundary for prompts.
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These considerations are essential to ensure that jailbreaking attempts not only achieve
success but also do so within explainable and safe constraints.
Another major limitation in current black-box jailbreak optimization strategies is the lack of
transparency and interpretability. Most techniques rely on end-to-end optimization without
adequately explaining the processes involved. The lack of interpretability makes it difficult
to understand how jailbreak methods evolve or how specific adjustments impact the success
rate of jailbreak attempts. Addressing this gap through a more structured explanation of
the optimization processes will lead to more reliable and controllable jailbreak techniques.
To address these issues, we propose BlackDAN, a black-box, multi-objective, human-
readable, controllable, and extensible jailbreak optimization framework. BlackDAN intro-
duces a novel approach by optimizing multiple objectives simultaneously, including attack
success rate (ASR), context relevance, and other factors. In contrast to traditional methods
that focus solely on achieving a high ASR, BlackDAN adopts a more balanced approach by
simultaneously addressing the trade-offs between effectiveness, interpretability, and safety.
We hypothesize, verify, and analyze the concept of a safe boundary for prompts within this
framework, using multi-objective optimization to refine the selection of useful and effective
prompts while maintaining unsafety constraints.
To realize BlackDAN, we leverage the advances of Multiobjective Evolutionary Algorithms
(MOEAs) Zhou et al. (2011), specifically the NSGA-II algorithm Deb et al. (2002), which
shows effectiveness in solving complex multi-objective problems. By incorporating pareto-
dominance,mutation and crossover mechanisms, BlackDAN is capable of exploring a wider
solution space while providing clear explanations of the optimization process. This allows
for a more transparent and interpretable methodology for conducting jailbreak attacks,
addressing the shortcomings of traditional end-to-end optimization techniques.

Figure 1: This image illustrates the limitations of single-objective optimization, where an AI
system may produce a response that excels in one aspect but fails in another. For example,
it can generate highly harmful responses that are less semantically consistent or vice versa.

Fig 1 contrasts multiple scenarios demonstrating how multi-objective optimization can yield
outputs that are both semantically relevant( ) and harmful ( ). It shows the limitations
of single-objective optimization in AI, where focusing on just one goal (like semantic con-
sistency or safety) can lead to imbalanced results. In the top-left, responses are safe and
contextually relevant, while the bottom-left is safe but less helpful. The top-right shows
dangerous, harmful responses that are highly relevant, and the bottom-right is both harm-
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ful and irrelevant. The image highlights the need for multi-objective optimization to balance
safety and relevance in AI outputs.
Additionally, BlackDAN builds upon previous work, such as AutoDAN Zhu et al. (2023), by
extending the framework beyond single-objective optimization to a multi-objective perspec-
tive. AutoDAN focuses on balancing fluency and evading perplexity detection in prompt
text generation, but BlackDAN improves upon this by simultaneously optimizing multiple
objectives, such as harmfulness, context relevance and other factors, thereby increasing the
overall effectiveness and reliability of jailbreak attempts.
In summary, our contributions are as follows:

• Beyond ASR - Focus on Semantic Consistency: BlackDAN not only op-
timizes for attack success rate (ASR) but also emphasizes semantic consistency,
ensuring that jailbreak responses remain contextually relevant and aligned with
harmful prompts, making the attacks more practical and less detectable.

• Extensibility to Arbitrary Objectives: The BlackDAN framework is theoreti-
cally extensible to any number of optimization objectives. Users can customize and
prioritize different factors in jailbreak attempts, such as harmfulness, stealthiness,
or relevance, based on their specific needs.

• Rank Boundary Hypothesis and Improved Differentiation: We introduce
the Rank Boundary Hypothesis, positing that each rank has distinct boundaries
in the embedding space. This allows better differentiation between toxic and non-
toxic prompts, enhancing the framework’s ability to target specific harmful content
distributions.

• Comprehensive Single and Multi-Objective Experiments: Extensive experi-
ments conducted on both LLMs and multimodal LLMs demonstrate that BlackDAN
significantly outperforms single-objective and other black-box approaches. The re-
sults show higher effectiveness across multiple dimensions, establishing BlackDAN
as a robust and versatile tool for jailbreak optimization.

2 Related Work

LLMs’ susceptibility to adversarial attacks has been explored through various approaches,
mainly categorized into white-box and black-box attacks. White-box attacks require access
to the model’s parameters, as demonstrated by Zou et al. (2023), who utilized gradient
search to optimize adversarial prompts by accessing the model’s logits. Other methods,
such as Shadow alignment Yang et al. (2023b) and Weak-to-Strong Jailbreak Zhao et al.
(2024), involve modifying the model’s weights or decoding processes to bypass safeguards,
making these approaches unsuitable for black-box LLMs. On the other hand, black-box
attacks operate solely through prompt manipulation, modifying input queries to induce
harmful outputs. Examples include methods like AutoDAN Liu et al. (2023b), PAIR Chao
et al. (2023), and PAP Zeng et al. (2024), where LLMs are used to generate harmful queries.
Rule-based techniques have also been proposed, as illustrated by Yuan et al. (2023), who
encrypted harmful queries and requested LLMs to respond in the ciphered format. Other
rule-based methods include EasyJailbreak Zhou et al. (2024).
Black-box attacks are inherently more challenging than white-box attacks. Many existing
techniques rely heavily on the transferability of adversarial examples; adversarial examples
designed for one model often succeed in attacking other victim models. It is generally as-
sumed that attackers can query the victim model to annotate training samples or access a
pre-trained source model designed for the same task as the victim model. To enhance ad-
versarial transferability, several methods have been proposed to adjust the backpropagation
computation. Techniques include the skip gradient method (SGM) Wu et al. (2020), linear
backpropagation (LinBP) Guo et al. (2020), intermediate-level attack (ILA) Huang et al.
(2019), and ILA++ Li et al. (2020); Guo et al. (2022). Increasing input diversity has also
been widely adopted, as evidenced by works like Xie et al. (2019), Dong et al. (2019), Lin
et al. (2019), Huang et al. (2024), and Wang et al. (2021).
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3 Methodology

In this setting, we aim to generate prompts that maximize the likelihood of generating unsafe
responses from a target language model T while ensuring semantic consistency between the
generated responses and harmful questions. This process is framed as a multi-objective
optimization problem, and we utilize NSGA-II (Non-dominated Sorting Genetic Algorithm
II)Deb et al. (2002) to perform the optimization.

Figure 2: Overview of Multi-objective Genetic Method - BlackDAN

3.1 Fitness Functions

We define two continuous fitness functions to guide the optimization process:

Unsafe Token Probability (Using llama_guard_2): The first fitness function, f1, eval-
uates the probability that a response R generated by T contains unsafe content. This is
computed by the proxy model llama_guard_2, which outputs the log-probability of specific
”unsafe tokens.”
Given a prompt P and a harmful question Q, let R = T (P,Q) denote the response generated
by the target model T . The unsafe token probability is computed as:

f1(P,Q) = logP (unsafe token | R),

where P (unsafe token | R) is the probability of the most relevant unsafe token appearing in
response R as calculated by llama_guard_2.

Semantic Consistency (Using all-MiniLM-L6-v2): In the black-box attack setting,
we do not have direct access to the target model’s internals or its embeddings. Instead,
we utilize a pre-trained proxy model, such as the all-MiniLM-L6-v2, to generate sentence
embeddings for both the harmful prompt and the candidate responses. These embeddings
allow us to measure the semantic similarity between the prompt and the responses.
The second fitness function, f2, measures the semantic consistency between the generated
response R and the harmful question Q. We use a pre-trained sentence embedding proxy
model Mp (all-MiniLM-L6-v2) to compute the embeddings of both Q and R and then
calculate their cosine similarity.
Let eQ = EncodeMp

(Q) and eR = EncodeMp
(R) represent the embeddings of Q and R,

respectively. The cosine similarity between these two embeddings is computed as:

f2(P,Q) = Sim(eQ, eR) =
eQ · eR

‖eQ‖‖eR‖
,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where · represents the dot product, and ‖e‖ is the Euclidean norm of the embedding vector.
We select the responses with the higher similarity scores as the jailbreaking outputs. This
ensures that the selected response is semantically aligned with the harmful prompt, even
though we rely on a proxy model for the embedding computations.

3.2 NSGA-II for Multi-Objective Jailbreaking Prompts Optimization

To find an optimal set of jailbreak prompts, we apply the NSGA-II algorithm. This algo-
rithm performs multi-objective optimization based on two key criteria:

Dominance: A solution P1 dominates another solution P2 if it is better in at least one
objective (e.g., higher unsafe token probability or better semantic consistency) and no worse
in all other objectives. For a problem with m objectives, we define dominance as:

P1 ≺ P2

if ∀i ∈ {1, 2, . . . ,m}, fi(P1, Q) ≥ fi(P2, Q)

and ∃j ∈ {1, 2, . . . ,m}, fj(P1, Q) > fj(P2, Q),

where fi(P,Q) represents the fitness value for the i-th objective function given the prompt
P and the harmful question Q.

Crowding Distance: Once the population is sorted into non-dominated fronts, a crowd-
ing distance is assigned to each solution in order to maintain diversity. The crowding dis-
tance d(P ) for an individual solution P in a given front is calculated across all m objective
functions. For each objective fi, the crowding distance is computed as:

d(P ) =

m∑
i=1

(
fnext
i − fprev

i

fmax
i − fmin

i

)
,

where fnext
i and fprev

i are the fitness values of the neighboring solutions with respect to the
i-th objective, and fmax

i and fmin
i are the maximum and minimum fitness values in the front

for the i-th objective.
This ensures that the solutions selected from each non-dominated front are both optimal in
terms of the multiple objectives and diverse with respect to each objective.

3.3 Genetic Operations: Crossover and Mutation

NSGA-II evolves the population using genetic operations:

Crossover: The crossover operation creates two new offspring by recombining sentences
from two parent prompts. Let P1 and P2 be the parent prompts. The offspring C1 and C2

are generated by randomly swapping sentences between the two parent prompts:

C1, C2 = Crossover(P1, P2).

Mutation: The mutation operation modifies a randomly selected word in a prompt with
a synonym. Let W represent a randomly chosen word from prompt P , and let Syn(W )
denote the set Loper & Bird (2002)of synonyms for W . A mutated prompt is generated as:

P ′ = Mutation(P ) where W ′ ∈ Syn(W ).

The complete algorithm is provided in Appendix Algorithm 1 and 2 due to space constraints.

4 Evaluation Metrics for Jailbreaking Prompts

In our black-box jailbreaking attack evaluation, we use two main metrics: Keyword-based
Attack Success Rate (ASR) and the GPT-4 Metric. These metrics assess the effec-
tiveness of jailbreaks in bypassing restrictions and generating unsafe content.
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4.1 Keyword-based Attack Success Rate (ASR)

The Keyword-based ASR measures whether a generated response avoids predefined rejection
patterns typically used by language models. This is determined by checking if the response
R contains any phrases from a list of rejection keywords K (e.g., ”I’m sorry,” ”As a language
model,” ”I cannot”). The success indicator s(R) and ASR over N responses are defined as:

s(R) =

{
1 if ∀k ∈ K, k /∈ R,

0 otherwise. ASR =
1

N

N∑
i=1

s(Ri)

where Ri is the i-th response for harmful prompt Qi. The top-level ASR (ASRtop) is
computed similarly but only for the highest-ranked responses.

4.2 GPT-4 Metric

The GPT-4 Metric uses an external model to evaluate whether a response R violates ethical,
legal, or safety guidelines. The score g(Q,R) ranges from 1 (non-jailbroken, refusal to
answer) to 10 (fully jailbroken, comprehensive violation). It is computed as:

g(Q,R) = GPT-4Judge(Q,R),

where GPT-4Judge(Q,R) returns a score between 1 and 10. The success indicator sg(Q,R)
and GPT-4-based metric are defined as:

sg(Q,R) =

{
1 if g(Q,R) ≥ 5,

0 otherwise. GPT4-Metric =
1

N

N∑
i=1

sg(Qi, Ri)

This metric provides a qualitative measure of jailbreak success by assessing the ethical
violations in the responses.

5 Experiment

5.1 Experimental Setups

Text Dataset: For evaluating jailbreak attacks on large language models (LLMs), we uti-
lize the AdvBench Zou et al. (2023). This dataset consists of 520 requests spanning various
categories, including profanity, graphic depictions, threatening behavior, misinformation,
discrimination, cyber-crime, and dangerous or illegal suggestions.

Multimodal Dataset: To assess jailbreak attacks on multimodal large language models
(MLLMs), we use the MM-SafetyBench Liu et al. (2023c). This dataset encompasses 13
scenarios, including but not limited to illegal activity, hate speech, physical harm, and health
consultations, with a total of 5,040 text-image pairs.

Models: We utilize state-of-the-art (SOTA) open-source large language models (LLMs),
including Llama-2-7b-hf Touvron et al. (2023), Llama-2-13b-hf Touvron et al. (2023), In-
ternlm2-chat-7b Cai et al. (2024), Vicuna-7b Zheng et al. (2024b), AquilaChat-7BZhang
et al. (2024), Baichuan-7B, Baichuan2-13B-ChatYang et al. (2023a), GPT-2-XLRadford
et al. (2019), Minitron-8B-BaseMuralidharan et al. (2024), Yi-1.5-9B-ChatYoung et al.
(2024), and Internlm2-chat-7bCai et al. (2024). For multimodal LLMs, we employ llava-v1.6-
mistral-7b-hfLiu et al. (2023a) and llava-v1.6-vicuna-7b-hfLiu et al. (2023a) to demonstrate
the effectiveness of our approach in expanding from unimodal to multimodal capabilities.
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Table 1: Comparison of attack methods across different models and box types.(AdvBench
520 samples)

Model Attack Type White-box Gray-box Black-box(Ours)
GCG AutoDAN w/o question (LG2) w/ question (LG2)

Llama2-7b-chat Time Cost per Sample ≈ 15min ≈ 12min ≈ 2min ≈ 2min
Self-Attack 45.3% 60.7% 80.4% 93.1%

Vicuna-7B-v1.5 Transfer 13.7% 72.9% 89.6% 99.2%
Vicuna-13B-v1.5 Transfer 12.9% 69.2% 84.0% 86.6%

Llama3-8B Transfer 12.3% 45.0% 72.1% 60.1%

5.2 Single-Objective(harmfulness) Jailbreaking Optimization

Table 1 compares attack methods across various models (Llama2-7b-chat, Vicuna-7B-v1.5,
Vicuna-13B-v1.5, Llama3-8B) under different conditions (White-box, Gray-box, and Black-
box).

Time Efficiency: The black-box methods, both ”w/o question” (which do not use the
harmful question and response as input to the moderation model) and ”w/ question” (which
include the harmful question and response), are significantly faster, taking approximately 2
minutes per sample. In contrast, the white-box method takes around 15 minutes, and the
gray-box method takes about 12 minutes per sample, when applied to Llama2-7b-chat.

Self-Attack: The success rate(Llama2-7b-chat) significantly increases from White-box
(45.3%) to Black-box, reaching 93.1% with harmful questions (“w/ question”).

Transfer Attack: Vicuna-7B-v1.5 shows the highest success rate, increasing from 13.7%
in the White-box scenario to 99.2% in the Black-box scenario (”w/ question”). All mod-
els, such as Vicuna-7B-v1.5, are derived from Llama2-7b-chat through transfer learning.
Other models follow similar trends, though Llama3-8B shows a slight decline when harmful
questions are included.

5.3 Multi-Objective Optimization

Figure 3: Single-Obejective Self-attack & Transfer vs Multi-Objective Self-attack
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Fig 3 compares the success rates of single-objective black-box jailbreak attacks across various
models (left) and transferability of these attacks (bottom). Diagonal values represent self-
attacks, showing high vulnerability in most models (e.g., AquilaChat-7B at 99.8%). The final
row shows multi-objective self-attack optimization results, which consistently outperform or
match the self-attacks, indicating stronger, more generalizable attacks.

Transfer Success: Transfer success varies across models, with some, like GPT-2-XL
and Baichuan2-13B-Chat, being more vulnerable, while models such as Llama-2-7b-hf and
Llama-2-13b-hf demonstrate better resistance to attacks based on column averages, exclud-
ing self-attacks.

Figure 4: Single-Objective and Multi-Objective methods Jailbreak Multimodal Models

Jailbreak Multimodal Models across Different Scenarios: Fig 4 shows that multi-
objective (MO) optimization significantly outperforms single-objective (SO) across all harm-
ful categories and scenarios (SD, SD + Typo, Typo). MO consistently achieves higher attack
success rates (ASR), with models like llava-v1.6-mistral-7b-hf MO reaching 100% in many
cases. Overall, multi-objective optimization proves much more effective than single-objective
methods across all models and conditions.

Embedding Comparison for Best and Worst Pareto Ranks: Fig 5 provides a com-
parison of embeddings for samples with the best and worst Pareto ranks using three visu-
alization techniques: PCA 2D, PCA 3DJolliffe (2002), and UMAPMcInnes et al. (2018).
These embeddings are derived from the model bge-large-en-v1.5 to ensure fairness, as all-
MiniLM-L6-v2 was used for fitness calculation, potentially biasing the evaluation if used.
In the PCA plots, an SVM decision boundary effectively separates the two groups, demon-
strating that the different ranks occupy distinct regions within the embedding space. This
is further corroborated by the UMAP visualization, which shows clear and tight clustering
of the best and worst ranks. These results strongly suggest that Pareto ranking not only
differentiates the quality of jailbreak prompts but also has a significant discriminative effect
on how prompts are represented in the embedding space.

Pareto Ranking and Embedding Space: Figure 6 visualizes the relationships between
different Pareto rank categories across all samples by projecting the embeddings onto a 2D
spherical surface. Each subplot represents a specific model, where data points are color-
coded based on their Pareto rank, and larger points denote the Fréchet means for each
rank. The Fréchet means are connected by green geodesic lines, demonstrating the smooth
progression of the means as the Pareto rank decreases, which indicates better-performing
data points. At each Fréchet mean, Tangent PCA is applied to analyze the local variability
in the data, capturing the principal directions of variation around each mean point. This
visualization highlights both the global geometric structure of the embeddings and the local
variations, providing insights into how Pareto rank-ordered embeddings transition across
models and revealing underlying patterns in the data. The visualization showcases the
interpretability and advantages of multi-objective optimization by illustrating how solutions

8
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Figure 5: Best Pareto Rank vs Worst Pareto Rank Embedding

progress across Pareto ranks on a 2D spherical surface. Fréchet means and geodesic paths
reveal the convergence of solutions, while Tangent PCA offers a novel perspective on the
distribution of embeddings. This approach provides new insights into how multi-objective
optimization balances competing goals and enhances the structure of textual embeddings.

Table 2: Comparison of ASR and GPT4-Metric scores(%) across models
Methods Llama2-7b Vicuna-7b GPT-4 GPT-3.5

ASR GPT4-Metric ASR GPT4-Metric ASR GPT4-Metric ASR GPT4-Metric
PAIR Chao et al. (2023) 5.2 4.0 62.1 41.9 48.1 30.0 51.3 34.0

TAP Mehrotra et al. (2023) 30.2 23.5 31.5 25.6 36.0 11.9 48.1 5.4
DeepInception Li et al. (2023) 77.5 31.2 92.7 41.5 61.9 22.7 68.5 40.0

Ours(Multi-objective) 95.4 93.8 97.5 96.0 71.4 28.0 75.9 44.8

Evaluation across multiple models and metrics: Table 2 demonstrates BlackDAN
(Ours - Multi-objective) consistently outperforms all other methods, achieving the highest
ASR and GPT4-Metric scores across all models. Notably, it reaches an ASR of 95.4% on
Llama2-7b and 97.5% on Vicuna-7b, demonstrating significant improvement over previous
methods like DeepInception (77.5% on Llama2-7b and 92.7% on Vicuna-7b). GPT-4 shows
the lowest ASR overall (71.4%) for BlackDAN, highlighting its relative robustness com-
pared to other models. However, BlackDAN still significantly surpasses other methods like
DeepInception and PAIR on GPT-4. GPT4-Metric, which evaluates the ethical violation
degree of the generated outputs, indicates that BlackDAN produces the most harmful re-
sponses, with the highest scores of 93.8 on Llama2-7b and 96.0 on Vicuna-7b, outperforming
other techniques. The results show that BlackDAN achieves a much higher attack success
rate and generates more contextually harmful responses than traditional single-objective
jailbreak methods, proving the efficacy of multi-objective optimization.
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Figure 6: VisualizationMiolane et al. (2020) of the Fréchet meansTurner et al. (2014) for
different Pareto ranks across multiple datasets projected onto a 2D spherical surface. For
each dataset, data points are color-coded by Pareto rank, and the Fréchet means for each
rank are connected by green geodesic lines on the spherical surface. The Tangent PCA
is applied at each Fréchet mean to analyze local variations in the data, illustrating the
progression of the means as the Pareto rank decreases, indicating better data points.

6 Conclusion

In this paper, we introduced BlackDAN, a multi-objective, controllable jailbreak optimiza-
tion framework for large language models (LLMs) and multimodal large language models
(MLLMs). Beyond optimizing for attack success rate (ASR) and stealthiness, BlackDAN
addresses the critical challenge of context consistency by ensuring that jailbreak responses
remain semantically aligned with the original harmful prompts. This ensures that responses
are not only evasive but also relevant, increasing their practical impact. Leveraging the
NSGA-II algorithm, our method significantly improves over traditional single-objective tech-
niques, achieving higher success rates and more coherent jailbreak responses across various
models. Furthermore, BlackDAN is highly extensible, allowing the integration of any num-
ber of user-defined objectives, making it a versatile framework for a wide range of opti-
mization tasks. The inclusion of multiple objectives—specifically ASR, stealthiness, and
semantic consistency—sets a new benchmark for generating useful and interpretable jail-
break responses while maintaining safety and robustness in evaluation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen,

Zehui Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint
arXiv:2403.17297, 2024.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and
Eric Wong. Jailbreaking black box large language models in twenty queries. In R0-FoMo
Workshop on Robustness of Few-shot and Zero-shot Learning in Large Foundation Models
in Advances in Neural Information Processing Systems, 2023.

Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes, and Yang Zhang. Com-
prehensive assessment of jailbreak attacks against llms. arXiv preprint arXiv:2402.05668,
2024.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computa-
tion, 6(2):182–197, 2002.

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable
adversarial examples by translation-invariant attacks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4312–4321, June
2019.

Yiwen Guo, Qizhang Li, and Hao Chen. Backpropagating linearly improves transferability
of adversarial examples. In NeurIPS, 2020.

Yiwen Guo, Qizhang Li, Wangmeng Zuo, and Hao Chen. An intermediate-level attack
framework on the basis of linear regression. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim. En-
hancing adversarial example transferability with an intermediate level attack. In ICCV,
2019.

Xijie Huang, Xinyuan Wang, Hantao Zhang, Jiawen Xi, Jingkun An, Hao Wang, and Cheng-
wei Pan. Cross-modality jailbreak and mismatched attacks on medical multimodal large
language models. arXiv preprint arXiv:2405.20775, 2024.

Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and
vision-language models. arXiv preprint arXiv:2407.01599, 2024.

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

Qizhang Li, Yiwen Guo, and Hao Chen. Yet another intermediate-leve attack. In ECCV,
2020.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. Deepincep-
tion: Hypnotize large language model to be jailbreaker. arXiv preprint arXiv:2311.03191,
2023.

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Nes-
terov accelerated gradient and scale invariance for adversarial attacks. arXiv preprint
arXiv:1908.06281, 2019.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning. In Workshop on Instruction Tuning and Instruction Following in
Advances in Neural Information Processing Systems, 2023a.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy
jailbreak prompts on aligned large language models. arXiv preprint arXiv:2310.04451,
2023b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, and Yu Qiao. Query-relevant images jailbreak
large multi-modal models. arXiv preprint arXiv:2311.17600, 2023c.

Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint
cs/0205028, 2002.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson,
Yaron Singer, and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automati-
cally. arXiv preprint arXiv:2312.02119, 2023.

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann
Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. Geomstats:
a python package for riemannian geometry in machine learning. Journal of Machine
Learning Research, 21(223):1–9, 2020.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo
Molchanov. Compact language models via pruning and knowledge distillation. arXiv
preprint arXiv:2407.14679, 2024. URL https://arxiv.org/abs/2407.14679.

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami,
Prateek Mittal, and Peter Henderson. Safety alignment should be made more than just
a few tokens deep. arXiv preprint arXiv:2406.05946, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for
distributions of persistence diagrams. Discrete & Computational Geometry, 52:44–70,
2014.

Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the transfer-
ability of adversarial attacks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 16158–16167, 2021.

Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Rethinking the
security of skip connections in resnet-like neural networks. In ICLR, 2020.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L
Yuille. Improving transferability of adversarial examples with input diversity. In CVPR,
2019.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv,
Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models.
arXiv preprint arXiv:2309.10305, 2023a.

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and
Dahua Lin. Shadow alignment: The ease of subverting safely-aligned language models.
arXiv preprint arXiv:2310.02949, 2023b.

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He, Jiaxing Song, Ke Xu, and Qi Li.
Jailbreak attacks and defenses against large language models: A survey. arXiv preprint
arXiv:2407.04295, 2024.

12

https://arxiv.org/abs/2407.14679


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01.
ai. arXiv preprint arXiv:2403.04652, 2024.

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Pinjia He, Shuming Shi,
and Zhaopeng Tu. Gpt-4 is too smart to be safe: Stealthy chat with llms via cipher.
arXiv preprint arXiv:2308.06463, 2023.

Yi Zeng, Hongpeng Lin, Jingwen Zhang, Diyi Yang, Ruoxi Jia, and Weiyan Shi. How
johnny can persuade llms to jailbreak them: Rethinking persuasion to challenge ai safety
by humanizing llms, 2024.

Bo-Wen Zhang, Liangdong Wang, Jijie Li, Shuhao Gu, Xinya Wu, Zhengduo Zhang, Boyan
Gao, Yulong Ao, and Guang Liu. Aquila2 technical report, 2024. URL https://arxiv.
org/abs/2408.07410.

Xuandong Zhao, Xianjun Yang, Tianyu Pang, Chao Du, Lei Li, Yu-Xiang Wang, and
William Yang Wang. Weak-to-strong jailbreaking on large language models. arXiv
preprint arXiv:2401.17256, 2024.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang,
and Nanyun Peng. On prompt-driven safeguarding for large language models. In Forty-
first International Conference on Machine Learning, 2024a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36,
2024b.

Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan,
and Qingfu Zhang. Multiobjective evolutionary algorithms: A survey of the state of the
art. Swarm and evolutionary computation, 1(1):32–49, 2011.

Weikang Zhou, Xiao Wang, Limao Xiong, Han Xia, Yingshuang Gu, Mingxu Chai, Fukang
Zhu, Caishuang Huang, Shihan Dou, Zhiheng Xi, et al. Easyjailbreak: A unified frame-
work for jailbreaking large language models. arXiv preprint arXiv:2403.12171, 2024.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang,
Ani Nenkova, and Tong Sun. Autodan: Interpretable gradient-based adversarial attacks
on large language models, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable
adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

13

https://arxiv.org/abs/2408.07410
https://arxiv.org/abs/2408.07410


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A Appendix

Figure 7: This image demonstrates the logarithmic convergence of fitness as the number of
generations increases. With more generations, the fitness score tends to stabilize, indicat-
ing convergence to a steady state. Throughout this process, the model’s performance, as
evaluated by the fitness metric, shows significant improvement, supporting the effectiveness
of our approach. Moreover, around generation 50, most state-of-the-art (SOTA) large lan-
guage models (LLMs) reach convergence, further highlighting the efficiency of our proposed
method.

Algorithm 1 Multi-Objective Jailbreaking Prompts Optimization
1: Input: Initial prototype prompt P0, Harmful question Q, Population size N , Genera-

tions G, Mutation rate m
2: Output: Non-dominated front F with optimized prompts
3: Initialize population P with N individuals using P0

4: for each generation g = 1, 2, . . . , G do
5: Evaluate fitness of each individual in P using f1 (Unsafe Token Probability) and f2

(Semantic Consistency)
6: Perform non-dominated sorting on P to generate fronts F1,F2, . . .
7: for each front Fi do
8: Assign crowding distance d(P ) to each individual P ∈ Fi

9: end for
10: Select individuals for mating pool using non-dominated rank and crowding distance
11: Initialize offspring population O by applying crossover and mutation:
12: for each pair of parents (P1, P2) selected from the mating pool do
13: Apply crossover to P1 and P2 to generate two offspring C1, C2

14: Apply mutation to C1 and C2 with probability m
15: Add C1 and C2 to O
16: end for
17: Combine populations P ∪ O
18: Perform non-dominated sorting on the combined population
19: Truncate combined population to size N by selecting the best fronts and individuals

with highest crowding distance
20: end for
21: Return the non-dominated front F1
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Explanation of Symbols and Process in algorithm 1:

Inputs: P0: Initial prototype prompt. Q: Harmful question to guide the optimization
process. N : Population size, the number of prompts in each generation. G: Number of
generations to evolve the population. m: Mutation rate that controls how often mutations
happen in the population.

Fitness Functions: f1: Unsafe token probability based on a model like Llama Guard 2.
f2: Semantic similarity to the harmful question, based on a sentence embedding model.

Genetic Operations: Crossover: Combines parts of two parent prompts to create off-
spring. Mutation: Randomly alters parts of a prompt to introduce diversity.

Non-Dominated Sorting: Solutions are sorted based on dominance criteria—those that
are not dominated by any other solutions form the first front F1, and so on.

Crowding Distance: Used to maintain diversity in the population. Individuals with a
higher crowding distance are selected preferentially when fronts overlap.

Selection and Truncation: After generating offspring, the combined population is
sorted, and the best individuals are retained to form the next generation.

Algorithm 2 Non-Dominated Sorting Algorithm
1: Input: Population P, fitness values {f1(P ), f2(P )} for each P ∈ P
2: Output: Sorted fronts F1,F2, . . .
3: Initialize fronts F = ∅
4: Initialize domination count n[P ] = 0 for each individual P ∈ P
5: Initialize domination set S[P ] = ∅ for each individual P ∈ P
6: for each individual P ∈ P do
7: for each individual Q ∈ P, Q 6= P do
8: if P dominates Q then . Check if P dominates Q
9: Add Q to the domination set S[P ]

10: else if Q dominates P then
11: Increment domination count n[P ] = n[P ] + 1
12: end if
13: end for
14: if n[P ] = 0 then . P is non-dominated
15: Add P to the first front F1

16: end if
17: end for
18: Set front counter i = 1
19: while Fi 6= ∅ do
20: Initialize next front Fi+1 = ∅
21: for each individual P ∈ Fi do
22: for each individual Q ∈ S[P ] do . Q is dominated by P
23: Decrement domination count n[Q] = n[Q]− 1
24: if n[Q] = 0 then . Q is non-dominated now
25: Add Q to front Fi+1

26: end if
27: end for
28: end for
29: Increment front counter i = i+ 1
30: end while
31: Return sorted fronts F1,F2, . . .
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Figure 8: This image presents the results of the multi-objective optimization process. The
findings indicate that the hierarchical levels defined by BlackDAN align well with the Pareto
optimality principle. Additionally, different models are generally able to identify optimal
hierarchies under the multi-objective scenario, resulting in similar distributions.
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