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ABSTRACT

Diffusion models are expressive priors for generating and predicting data from
high-dimensional dynamical systems. Yet, purely data-driven approaches of-
ten lack reliability and trustworthiness, motivating growing interest in physics-
informed machine learning (PIML). Most existing PIML methods, however, as-
sume access to exact governing equations during training—an assumption that
fails when the dynamics are unknown or too complex to model accurately. To
address this gap, we introduce PHDME1 (Port-Hamiltonian Diffusion Model),
a physics-informed diffusion framework that learns system dynamics without
requiring exact equations. Our approach first trains a Gaussian process dis-
tributed Port-Hamiltonian system (GP-dPHS) on limited observations to capture
an energy-based representation of the dynamics. The GP-dPHS is then used to
generate a physically consistent and diverse dataset for diffusion training. To
enforce physics-consistency, we embed the GP-dPHS structure directly into the
diffusion training objective through a loss that penalizes deviations from the
learned Hamiltonian dynamics, weighted by the GP’s predictive uncertainty. After
training, we employ conformal prediction to provide distribution-free uncertainty
quantification of the generated trajectories. In this way, PHDME is designed for
regimes with scarce data and unknown equations, enabling data-efficient, physi-
cally valid trajectory generation with calibrated uncertainty estimates.

1 INTRODUCTION

Predicting the evolution of complex dynamical systems is central to policy design (Bevacqua et al.,
2023), collision avoidance (Missura & Bennewitz, 2019), and long-horizon planning (Li et al.,
2025). However, accurate forecasts remain a significant challenge where dynamics involve high
nonlinearity and dimensionality, as well as when observational data are sparse and limited. A com-
mon constraint in robotics, for instance, where fully instrumenting a soft-bodied manipulator with
tactile sensors is often expensive and physically difficult. Furthermore, many of these systems are
described by partial differential equations (PDEs), but traditional numerical solvers are computa-
tionally expensive, which requires fine-grained spatiotemporal discretization that is overwhelming
for real-time control or long-horizon forecasting. To tackle these challenges, various deep learning
frameworks have been proposed to learn the underlying dynamics from collected data. Methods
like neural ODE (Chen et al., 2018) and neural PDE (Zubov et al., 2021) formulations impose
substantial computational cost. Training requires repeated forward time integrations together with
backward sensitivity computations through stiff multiscale solvers. The computational cost scales up
with prediction horizon, state dimension, and solver stiffness, leading to high runtime and memory
usage that force compromises on model fidelity and spatial resolution of the grid. Although alterna-
tive frameworks, such as discrete-time autoregressive models, circumvent the integration cost, they
introduce challenges of error accumulation over rollouts.

Diffusion models (Sohl-Dickstein et al., 2015) offer a flexible generative prior for forecasting in
dynamical systems. Denoising diffusion defines a forward Markov corruption with Gaussian pertur-
bations and trains a reverse process (Ho et al., 2020; Karras et al., 2022) that estimates the score of
the data distribution, achieving state-of-the-art synthesis in images (Xia et al., 2023; Xu et al., 2023),

1Code available at: https://github.com/InvincibleTdog/PHDME_anonymous
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videos (Ho et al., 2022; Liang et al., 2024), and audio (Guo et al., 2024). In scientific machine learn-
ing the key advantage is the ability to represent full predictive distributions rather than single trajec-
tories, which supports inverse problems (Chung et al., 2023) and planning (Römer et al., 2025) under
uncertainty. In case of spatiotemporal problem that are encoded as an image 1 or video, the output
of the diffusion model is the solution of the PDE over spatial and temporal domain. Nevertheless,
standard diffusion models are purely data-driven, so samples may align with dataset statistics while
violating the physics that govern the real world. The absence of explicit physics limits performance
and reliability and weakens guarantees in applications like safety-critical systems (Tan et al., 2023).

Physics-informed training addresses this gap by constraining learning with governing equations.
Classic work like physics-informed Neural Networks (PINNs) (Raissi et al., 2019) ensures that the
learning outcomes follow the physics, and recent work has begun to embed such constraints into
generative modeling (Shu et al., 2023; Bastek et al., 2024). These approaches typically require that
the governing equations are known (except for some unknown parameters) and can be enforced
during training. However, in many real systems, the exact governing equations are unknown or
prohibitively complex to model, and observations are limited, e.g., modeling the equations of motion
of soft robots via first principles is quite challenging due to the highly nonlinear and unstructured
dynamics. Under these conditions, standard physics-informed pipelines are difficult to deploy.

Contribution: We aim to offer rapid, physically reliable, multi-step dynamic forecasting. In this
paper, we propose PHDME, which is built on a Gaussian-process distributed Port-Hamiltonian Sys-
tem (Tan et al., 2024). The Port-Hamiltonian framework provides an expressive yet physically con-
sistent representation for hard-to-model, unstructured dynamics. We learn the governing equations
directly from limited observations by fitting a GP-dPHS that models the underlying Hamiltonian of
the system. The learned GP-dPHS is then integrated into the diffusion training objective as a physics-
consistency term that aligns the score network with Hamiltonian-consistent dynamics across noise
levels. This coupling of energy-based representation learning with diffusion training enables data-
efficient forecasting that respects physical structure even when governing equations are unavailable.
Moreover, the probabilistic deep prior encapsulates a class of partial differential equations dynam-
ics, enabling it to directly generate the PDE solution reliably even under unseen initial conditions,
bypassing the need for iterative, numerical PDE solvers.

Our contributions can be summarized as:

• Leveraging a single draw from the diffusion model, PHDME provides fast forecasts for
PDE systems where the governing equations are unknown but highly nonlinear. PHDME
produces reliable results even when data availability is strictly limited.

• The proposed PHDME uses structured energy representations of the system to make the
learning process physically informed. By using the Bayesian nature of the GP, diffusion
model training has been weighted by the uncertainties from the data observation stage,
which makes it possible to inform and constrain the system with physics without knowing
the exact underlying functions.

• We also introduce a conformal prediction as postprocessing of the PHDME, where we
not only provide a physically-valid sample given the initial condition, but also provide
the uncertainty quantification of the sample. These features make the method suitable for
safety-critical applications.

2 PRELIMINARY

In this section, we give a brief overview of denoise diffusion models, Gaussian process distributed
Port-Hamiltonian systems, and conformal prediction (CP).

2.1 DENOISING DIFFUSION MODELS

Diffusion models have demonstrated excellent potential in various domains (Ho et al., 2020; Song &
Ermon, 2019; Dhariwal & Nichol, 2021). While recent efforts extend them to time series forecast-
ing (Rasul et al., 2021), super resolution for dynamic prediction (Rühling Cachay et al., 2023), and
time-invariant physics-informed generation (Bastek et al., 2024). The spatiotemporal forecasting
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Figure 1: The left panel depicts a typical soft robot scenario in which a flexible continuum manip-
ulator exhibits dynamics that are difficult to specify. The middle panel adopts a top-down param-
eterization with the y-axis as spatial projection along the arm direction, the z-axis (pixel value) as
displacement, and the x-axis as temporal evolution. This converts the evolution into an image form,
enabling the diffusion model to synthesize the full spatiotemporal field in a single shot rather than
step-by-step rollouts.

with physics guarantee has remained underexplored, especially when the governing equations are
unknown or difficult to obtain.

Diffusion indexing, parameterization, and objective. Let A(m) be the noised image at step
m ∈ {0, . . . ,M}, where the diffusion step m is different to any physical time notation t. The
forward noise corruption is linear Gaussian: A(m) = αm A(0) + σm ε with ε ∼ N (0, I); the
schedule {(αm, σm)}Mm=0 yields A(M) ≈ N (0, I). In the x0 parameterization, a neural denoiser

predicts the clean sample from a noised input and optional condition y via Â
(0)

= fθ([A
(m),y],m).

The reverse transition uses the closed-form Gaussian posterior with mean µm(A(m), Â
(0)

) and
variance σ̃2

mI, both fixed by the forward schedule. And wm is set to Min-SNR-5 weighting (Hang
et al., 2023). Training minimizes a timestep-weighted reconstruction loss

LDDPM(θ) = Em,A(0),ε

[
wm ∥fθ([αmA(0) + σmε,y],m)−A(0)∥2

]
.

Sampling and uncertainty. Starting from A(M) ∼ N (0, I), generation iterates A(m−1) =

µm(A(m), Â
(0)

) + σ̃mz with z ∼ N (0, I); repeated runs thus form an ensemble approximating
the conditional distribution of A(0) given y.

2.2 GAUSSIAN PROCESS DISTRIBUTED PORT-HAMILTONIAN SYSTEM

Based on Hamiltonian dynamics, GP-dPHS is a physics-informed PDE learning method that not
only generalizes well from sparse data, but also provides uncertainty quantification (Tan et al., 2024).
The composition of Hamiltonian systems through input and output ports leads to Port Hamiltonian
systems, a class of dynamical systems in which ports formalize interactions among components.
The Hamiltonian can also be interpreted as the energy representation of the system. This frame-
work applies in the classical finite dimensional setting (Beckers et al., 2022) and extends naturally
to distributed parameter and multivariable cases. In the infinite dimensional formulation, the inter-
connection, damping, and input and output matrices are replaced by matrix differential operators
that do not explicitly depend on the state or energy variables. Under this learning structure, once the
Hamiltonian is specified, the system model follows in a systematic manner. This general formula-
tion is versatile enough to represent various PDEs and has been shown to capture a wide range of
physical phenomena, including heat conduction, piezoelectricity, and elasticity. In what follows, we
recall the definition of distributed Port Hamiltonian systems as presented in (Macchelli et al., 2004).

More formally, let Z be a compact subset of Rn representing the spatial domain, and consider a
skew-adjoint constant differential operator J along with a constant differential operator Gd. Define
the Hamiltonian functionalH : X → R in this following form:

H(x) =
∫
Z
H(z, x)dV,

3
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where H : × X → R is the energy density. Denote by W the space of vector-valued smooth
functions on ∂Z representing the boundary terms W := {w|w = BZ(δxH,u)} defined by the
boundary operator BZ . Then, the general formulation of a multivariable dPHS Σ is fully described
by

Σ(J,R,H, G) =


∂x
∂t = (J −R)δxH+Gdu

y = G∗
dδxH

w = BZ(δxH,u),
(1)

where R is a constant differential operator taking into account energy dissipation. Furthermore,
x(t, z) ∈ Rn denotes the state (also called energy variable) at time t ∈ R≥0 and location z ∈ Z
and u,y ∈ Rm the I/O ports, see (Tan et al., 2024) for more details. Generally, the J matrix defines
the interconnection of the elements in the dPHS, whereas the Hamiltonian H characterizes their
dynamical behavior. The constitution of the J matrix predominantly involves partial differential
operators. The port variables u and y are conjugate variables in the sense that their duality product
defines the energy flows exchanged with the environment of the system.

When the system dynamics are only partially known, the Hamiltonian can be modeled within a
probabilistic framework using Gaussian processes. A Gaussian process is fully specified by a mean
function and a covariance function, and as a nonparametric Bayesian prior, it is well-suited for
smooth Hamiltonian functionals. Its invariance under linear transformations further supports con-
sistent representation propagation through the operators that define the dynamics (Jidling et al.,
2017).

Integrating these concepts, the unknown Hamiltonian latent function of a distributed system is en-
coded within a dPHS model to ensure physical consistency. Here, the unknown dynamics are cap-
tured by approximating the Hamiltonian functional with a GP, while treating the matrices J , R, and
G (more precisely, their estimates ĴΘ, R̂Θ, and ĜΘ) as hyperparameters. This leads to the following
GP representation for the system dynamics:

∂x

∂t
∼ GP(ĜΘu, kdphs(x,x

′)),

with a physics-informed kernel function defined as

kdphs(x,x
′) = σ2

f (ĴRΘ)δx exp

(
−∥x− x′∥2

2φ2
l

)
δ⊤x′(ĴRΘ)

⊤,

where ĴRΘ = ĴΘ − R̂Θ and the kernel is based on the squared exponential function. The training
of this GP-dPHS model involves optimizing the hyperparameters Θ, φl, and σf by minimizing the
negative log marginal likelihood. Hence, the physics representation prior is learned by GP without
any presumption of the functional form; this information is fully described by the structured mean
function and variance function.

Exploiting the linear invariance property of GPs, the Hamiltonian Ĥ now follows a GP prior. This
integration effectively combines the structured, physically consistent representation of distributed
Port-Hamiltonian systems with the flexibility of GP to handle uncertainties and learn unknown dy-
namics from data. The resulting framework not only ensures that the model adheres to the underlying
physics but also provides a comprehensive, data-informed prediction of the system’s behavior.

2.3 CONFORMAL PREDICTION

Conformal prediction a statistical technique used to quantify the uncertainty of predictions in ma-
chine learning models. It provides a prediction set that contains the true output with a user-specified
probability 1 − δ. We calibrate the mean squared error of our stochastic generator with conformal
prediction. Let the calibration set be Dcal =

{
x⋆
i )
}K

i=1
, where each x⋆

i is the ground-truth dynamic

landscape on the grid G. For every i we call the predictor Num times, drawing x̂
(n)
i ∼ Pθ(·),

n = 1, . . . , N , and define the non-conformity score (NCS) of a single sample as (Lindemann et al.,
2023; Vlahakis et al., 2024):

ri,n =
1

|G|
∥∥x̂(n)

i − x⋆
i

∥∥2
F
. (2)

4
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Pooling the K∗Num scores and sorting them in ascending order gives an empirical error distribution
for a single stochastic draw. For a target miscoverage level δ ∈ (0, 1), set the calibrated threshold to
the order statistic

τ := Quantile(1+ 1
K∗Num )(1−δ)(r

(1), . . . , r(K∗Num)), (3)

Under exchangeability of scores, we can say under at least 1 − δ probability guarantee, a future
prediction from Pθ(·) has mean squared error at most τδ , formally as: PROB(r ≤ τ) ≥ 1− δ.

3 PROPOSED PHDME

In this section, we will discuss the assumptions and problem formulation, followed by a detailed
introduction of the proposed Port-Hamiltonian Diffusion Model without Explicit underlying equa-
tions (PHDME) enhances predictive performance by leveraging the learned energy representations
and observation uncertainties.

3.1 ASSUMPTIONS AND SETTINGS

We study the problem of spatiotemporal dynamic prediction with uncertainty quantification. We
have a PDE system 0 = f(x,dx, · · · ) and aim to predict the solution for t = 0, · · · , T for this
system. We assume that this system can be written in dPHS form even though we do not require
knowledge about the components. further we assume that we can collect limited data from the PDE.

Hence, instead of learning the regular dynamic directly, where the underlying functions are hard to
acquire. We transform the problem space to the structured derivative space. The energy representa-
tion can be modeled through a distributed Port-Hamiltonian system. We adopt a dPHS representation
in which the dynamics are modeled as

∂x

∂t
= (J −R)δxĤ+Gdu

where J is power preserving, R is dissipative, Gd maps inputs, and Ĥ is a learned Hamiltonian
functional. In PHDME, Ĥ is represented by a Gaussian process trained on limited observations,
and the induced Hamiltonian gradients are integrated into the diffusion training objective through a
physics consistency term. This aligns the learned score field with Hamiltonian consistent dynamics
across noise levels and avoids reliance on guidance during sampling.

We make the following assumptions:

Assumption 1 The PHDME is designed to handle the scenario where the observations are limited
and the underlying functions are hard to acquire, which means the regular data-driven predictors
are hard to train and the conventional physics-informed methods are not able to handle. We observe
the state on a limited spatiotemporal grid, yielding measurements

{
x(ti, zj)

} j=1,...,Nz

i=1,...,Nt
.

Assumption 2 The structural form of the interconnection, dissipation, and input operators is known
up to a finite set of parameters. Specifically, J , R, and Gd are specified by templates with unknown
coefficients Θ ⊂ RnΘ , which are estimated from data. The qualitative structure, such as the type
of friction model encoded in R, is known, while the numerical values of the parameters may be
unknown.

3.2 PHDME FRAMEWORK

Instead of forecasting by sequential rollouts or numerical integration, which can be computationally
expensive, PHDME generates the entire future spatiotemporal field in a single pass conditioned on
the given initial conditions. The central idea is to guide this single draw-image like generation with
a deep prior learned from limited observations. The training pipeline has two stages, as illustrated in
Figure 2. First, we encode the scarce observations from the real system through the dPHS structure.
And naturally learn a probabilistic energy-based representation of the system using the Gaussian
processes. Then this deep prior is used to synthesize a rich dataset for the diffusion model training,
as well as guiding the second training stage of the PHDME with a physics consistency loss derived
from the prior and weighted by its predictive uncertainty based on observations, thereby aligning the
learned score field with Hamiltonian consistent dynamics while preserving data efficiency.

5
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Figure 2: This figure visualize the two-stage training of the PHDME, where we firstly train a rather
slow but structured deep prior. Then we leverage this prior to inform the diffusion training for rapid
sample generations.

Data collection and GP-dPHS training (stage 1). We observe the state x(t, z) at discrete times
and spatial locations, D =

{
ti, zj , x(ti, zj), u(ti)

} i=Nt−1, j=Nz−1

i=0,j=0
. Since measurements are

sparse and derivatives are required for model learning, we fit a smooth Gaussian process interpolant
to x(t, z) using a squared exponential kernel, and exploit closed form differentiation of the Gaussian
process to collect over time yields X =

[
x̃(t0), . . . , x̃(tNt−1)

]
, Ẋ =

[
∂tx̃(t0), . . . , ∂tx̃(tNt−1)

]
,

and the training set E = [X, Ẋ ], aligned with the input sequence {u(ti)}Nt
i=1. This construction

provides derivative information from x(t, z) while enlarging spatial coverage for subsequent GP
dPHS training. Based on this dataset, we learn a distributed Port Hamiltonian representation in
which the dynamics satisfy

∂tx(t, z) = (J −R) δxĤ(t, z) +Gd u(t, z),

with interconnection matrixJ , dissipative term R , and Hamiltonian Ĥ. The unknown Hamiltonian
is modeled by a Gaussian process and eventually unknown coefficients of J , R, and Gd are treated
as hyperparameters Θ. Using the linear invariance of Gaussian processes, we place a GP prior on
the energy derivatives and obtain a GP over the time derivative of the state,

∂tx ∼ GP
(
ĜΘ u, kdphs(x,x

′)
)
,

with physics-informed kernel

kdphs(x,x
′) = σ2

f (ĴΘ − R̂Θ) δx exp
(
− ∥x−x′∥2

2φ2
l

)
δ⊤x′ (ĴΘ − R̂Θ)

⊤.

We train the model on E by maximizing the marginal likelihood with respect to Θ and the kernel
hyperparameters (φl, σf ). The resulting posterior induces a stochastic Hamiltonian Ĥ and yields
the learned dPHS

∂tx(t, z) = (ĴΘ − R̂Θ) δxĤ(t, z) + ĜΘ u(t, z),

which serves as a probabilistic physics prior for subsequent data generation and diffusion training.
However, since this numerical solution of GP-dPHS is computational demanding, we train a physics-
informed diffusion model instead of directly using the GP-dPHS for prediction.

Dataset generation using GP samples. We place a GP prior over the energy functional, yielding
a posterior that captures a family of plausible energy representations. Using only the posterior mean
to represent the learned dynamics neglects posterior uncertainty and is therefore not a valid surrogate
for the true system. Instead, we leverage random fourier feature prior draw to provide realizations
of the GP-dPHS that will be used as training data for the diffusion model. See appendix A.5 for
more details.

GP-dPHS yields a posterior over Hamiltonian energy functionals rather than a single estimate based
on limited observations, as discussed in 3.2. We draw function realizations of the Hamiltonian
gradient δxĤ from this posterior and then plug it into the dPHS form and solve it numerically to
generate a trajectory x(z, t). For a real and shift-invariant kernel kf , Bochner theory (Langlands,
2006) implies a spectral density that admits a finite feature approximation. We use a random feature
map:

ϕ(x) =
√

2
d [cos(ω

⊤
1 x+ β1), . . . , cos(ω

⊤
Dx+ βD)]⊤,

6
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with ωj drawn from the spectral density and βj ∼ Uniform[0, 2π]. The d denotes the dimensions
of the feature map, so that kf (x,x′) ≈ ϕ(x)⊤ϕ(x′). A pathwise prior sample is

f(x) = ϕ(x)⊤w, w ∼ N (0, I),

which provides one realization for the stacked gradients δxH. Then the posterior correction on a
finite set can be occupied. For any query set X =

[
x⋆(t0), . . . ,x

⋆(tNt−1)
]
, define the covariance

kernel: CXX =
[
kf (xi,xj)

]
ij
,C⋆X =

[
kf (x

⋆
i ,xj)

]
ij
. A posterior function sample on X⋆ is then

f(x⋆) = µf (x
⋆) + f(x⋆) + C⋆X

(
CXX + σ2

nI
)−1(

y − µf (X)− f(X)
)
,

applied component wise to δxH. This warps the prior draw to match the observations and yields
an exact finite dimensional posterior sample suitable for insertion into the dPHS evolution. By
evaluating the sample-based posterior function under different initial conditions, we build a rich
training and validation set for the PHDME.

Diffusion training Notation. We follow the diffusion indexing introduced above. The latent at
diffusion step m ∈ {0, . . . ,M} is A(m), the clean tensor is A(0), and conditioning is provided by
the first two frames cinit. The denoiser fθ predicts the clean tensor in the A0 parameterization,

Â
(0)

= fθ
(
[A(m), cinit], m

)
.

We interpret Â
(0)

as the image like representation of the state over the spatiotemporal grid T × Z ,
where T =

{
t0, · · · , ti

} i=Nt−1

i=0
. and Z =

{
z0, · · · , zj

} j=Nz−1

j=0
. aligned with cinit.

Physics operator from GP-dPHS. Purely data-driven models can fit trajectories while ignoring
invariants or stability. Following the spirit of Bastek et al. (2024), we therefore regularize the de-
noiser with a physics operator. In contrast to approaches that assume a closed-form PDE, we first
learn a deep probabilistic physics prior with the GP-dPHS model and then use this learned Hamil-
tonian representation to define the residual. Concretely, on the discrete spatio-temporal grid we

interpret the denoised sample Â
(0)

together with the conditioning cinit as a candidate field x. The
dPHS residual operator FdPHS(x) is obtained by evaluating the port-Hamiltonian dynamics from
equations 1 with the GP-based energy gradients and discretizing the spatial and temporal deriva-
tives by centered differences in the interior and consistent boundary stencils. We then aggregate this
residual into a scalar penalty with boundary terms

Rphys

(
Â

(0)
; cinit

)
=

1

|Ω|
∥∥FdPHS(x)

∥∥2
2
+ λbc B

(
x; cinit

)
, (4)

where |Ω| denotes the total number of grid points (space, time, and batch) and B encodes fixed-end
and conditioning constraints (see Appendix A.7 for details).

Because GP-dPHS is Bayesian, it provides a posterior variance at each grid location that quantifies
the epistemic uncertainty in the learned Hamiltonian vector field. We exploit this by constructing an
uncertainty-aware version R̃phys, in which the contribution of each residual term is weighted by the
inverse GP variance. In regions where the learned physics representation is confident, the physics
penalty is strong; in regions with high uncertainty it is softened. This turns the physics operator
into a heteroscedastic regularizer that guides the diffusion model toward Hamiltonian-consistent
trajectories where the prior is reliable, without over-constraining it where the model is less certain.

Proposed PHDME loss. PHDME augments the standard reconstruction objective with the physics
penalty evaluated on the denoised prediction,

L(θ) = E
m,A(0), ε

[
wm

∥∥fθ([A(m), cinit],m
)
−A(0)

∥∥2
2
+ λphys R̃phys

(
fθ([A

(m), cinit],m); cinit
)]
.

The second term backpropagates through fθ and aligns the learned score field with Hamiltonian
consistent dynamics across diffusion steps. It does not alter the forward noising process or the
ancestral form of the reverse kernel.
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Generative uncertainty via conformal prediction. Beyond producing physically plausible tra-
jectories, we would like PHDME to expose calibrated generative uncertainty for its forecasts. To
this end, we use CP as a purely post-hoc layer on top of the trained diffusion model; the training
objective of PHDME is unchanged. For a fixed conditioning cinit, each reverse-diffusion rollout of
DDPM with an independent noise seed can be viewed as one sample from the learned conditional
distribution pθ(x | cinit). These samples are exchangeable by construction, which is exactly the
assumption under which CP provides finite-sample coverage guarantees.

Concretely, we construct a calibration set Dcal = {(c(i)init,x
⋆
i )}Ki=1 and, for each c

(i)
init, draw Num

stochastic PHDME rollouts to compute the non-conformity scores defined in equation 2. The em-
pirical (1 − δ)-quantile of these scores yields a threshold τδ as in equation 3, so that for a new
conditioning and an on-the-fly test rollout r we have P

(
r ≤ τδ

)
≥ 1 − δ. In other words, the CP

layer wraps PHDME’s stochastic samples into prediction bands with guaranteed marginal coverage
under the data-generating distribution. Appendix A.8 reports the resulting coverage and set sizes in
detail, empirically confirming that our CP construction behaves as expected in this setting.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness and performance of the PHDME. By quantitatively
discuss the accuracy and generative speed, and qualitatively visualizing the generated sample, we
show the powerful aspects of the framework. The further discussion can be found in the appendix.

4.1 SETUP

Data benchmarks. PHDME is designed to have access only to a small number of trajectories,
not to closed-form PDEs. To mimic this regime, we evaluate the proposed method on three PDE
systems: (i) a canonical fixed-end string governed by the wave equation, see Appendix A.1 (ii) a
one-dimensional shallow-water system, see Appendix A.2 and (iii) a real-world vibrating spring
recorded by a high frame-rate camera in Appendix A.3

For the two simulator-based benchmarks (string and shallow water), the high-fidelity solvers are used
only to generate a small observation set of 20 trajectories on the 64 × 64 grid, with an additional
temporal downsampling factor of 50 to reflect limited sensing and logging capabilities. We fit a
GP-dPHS model to these sparse observations and then use GP-dPHS sampling (Section 3.2) for data
augmentation to produce 10 000 training and 1 000 validation trajectories per system. A separate set
of 10 000 trajectories from the simulators serves as ground-truth test data for evaluating accuracy.
For the real-world benchmark, we use a high-speed Blackfly S USB3 camera (Flir BFS-U3-16S2C-
CS) to record the motion of a red spring at 226 FPS. The spring body is segmented using an RGB
mask, yielding a binary foreground mask. We then skeletonize this mask to obtain a centerline
representation of the flexible spring (see Figure 3). We learn a GP-dPHS prior to these processed
trajectories and use GP-dPHS sampling to generate 4,500 training and 500 validation trajectories for
PHDME training; the remaining real-world data from the camera are held out as a test set to assess
transfer to truly equation-unknown data. More details of data preprocessing are in the Appendix A.3.

For all experiments, PHDME operates on the 64× 64 grid using a U-Net (Ronneberger et al., 2015)
backbone whose input and output dimensions match this grid. We adopt a 4-channel design: two
channels encode the initial frames cinit, and two channels collect the dynamic fields (p, q). The deep
priors are trained from limited observations; PHDME never sees or uses the analytic PDE form, only
the learned deep prior is used to inform the physics.

Figure 3: From left to right, the figure illustrates the process starting with the original video, skele-
tonization, and final spring movement data over time (overlay).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Baselines. We compare PHDME against four baselines under the same architecture, training
schedule, and hardware: (i) a standard diffusion model with the same U-Net and diffusion schedule
but no physics loss; (ii) a diffusion model with limited physics that only encodes easy-to-observe
structure (e.g., fixed-end boundary conditions) without access to deep Hamiltonian priors; (iii) a GP-
dPHS integrator that rolls out trajectories step-by-step using learned energy-based representations;
and (iv) a NeuralODE (Chen et al., 2018) that learns purely from data without any knowledge of the
underlying physics (and thus cannot use physics-based data augmentation). Baselines (i)–(ii) test
whether PHDME’s learned physics prior improves over purely data-driven or weakly constrained
generative modeling, while (iii) isolates the benefit of a strong GP-dPHS prior and (iv) provides a
fully data-driven baseline reference.

4.2 RESULTS

Quantitative results We present the grid-average metrics for the PDEs in Table 1, the models with
physics knowledge (Boundary condition / GP-dPHS priors) starts with lower Loss during the early
stage of training, then balance the data loss and physics loss terms as the training iterations increase.

Figure 4: On the left side, PHDME beats the baselines with pure-data driven and limited physics
access by having the minimum MSE over iterations. On the right side, we further investigate the
potential impacts of the physics-loss term percentage regarding the performance.

Table 1 summarizes test performance across all datasets. We emphasize that the CP module is
designed for the diffusion generative uncertainty; hence, the non-conformity score (NCS) (recall
in 2) is only reported for diffusion-based models. On the synthetic string and 1-D shallow water
benchmark, PHDME attains the lowest MSE, reducing error by roughly 28% relative to the stan-
dard DDPM, while also achieving the smallest NCS. Indicating more accurate and better calibrated
generative uncertainty than both purely data-driven and weakly physics-aware diffusion baselines.
On the real-world spring dataset, PHDME matches the best purely data-driven DDPM baseline in
MSE (within about 4%) and remains competitive in NCS. In all three settings, the baselines like GP-
dPHS and NeuralODE exhibit substantially larger MSE, illustrating the difficulty of long-horizon
rollouts in the sparse state space grid and highlighting that amortizing the GP-dPHS priors into a dif-
fusion model leads to more accurate generative predictions. Notice that the data augmentation step
is usually on a dense grid to have accurate derivatives, but for fair comparison against the diffusion
models, we list the result of GP-dPHS on the same 64× 64 grid here.

Dataset Metric Models
PHDME DDPM DDPM+Limited Physics GP-dPHS NeuralODE

String MSE 2.74e−3 3.81e−3 4.53e−3 2.03e−2 2.54e−2
Dataset NCS 6.41e−3 6.82e−3 9.80e−3 – –

Shallow MSE 2.06e−2 2.31e−2 2.92e−2 2.23e−1 4.76e−2
Water NCS 9.75e−2 1.02e−1 1.05e−1 – –

Real-world MSE 5.21e−2 5.02e−2 5.44e−2 7.65e−1 2.037
Spring NCS 2.93e−3 3.07e−3 7.09e−4 – –

Table 1: The results of model test performance. Key take-away: The data augmentation from GP-
dPHS improve the general performance, and the deep physics priors help the model to learn the
dynamics pattern better with general tighter generative uncertainty bound.
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Qualitative results We qualitatively assess the full PHDME pipeline by inspecting predicted
states. Our success criterion is accurate state forecasting under unseen initial conditions and en-
vironments. As illustrated in Fig. 5, generated samples closely match the true system behavior,
preserving boundary behavior and phase progression. See (App. A.6) that errors introduced by the
GP-dPHS data generation and by diffusion sampling are both limited on the evaluation grid. And
the sampling process has been visualized in Fig. 6. For more details and discussions regarding the
representation learning and the correctness of learned Hamiltonian, see App. A.7.

Figure 5: Left: Ground-truth state evolution of the wave equation. Right: Physically consistent
and accurate prediction of PHDME based on sparse data and limited knowledge of the governing
equations. Key takeaway: PHDME generates samples with correct dynamic pattern and amplitude
by only conditioning on the initial two frames.

Figure 6: The visualization of diffusion sampling process

Related work. We target the realistic regime where only limited trajectory data are available
and the exact governing functions are inaccessible, as formalized in Assumption 1. In this set-
ting, equation-based diffusion models (Jacobsen et al., 2025; Bastek et al., 2024) that require an
explicit PDE are not directly applicable, since we restrict all methods to observed trajectories and
simple, easily measured constraints (e.g., boundary conditions). At the other extreme, purely data-
driven continuous-time models such as NeuralODEs (Chen et al., 2018) lack structural physics pri-
ors and perform poorly under these limited observations. For more discussions on NeuralODE, see
App. A.9. PHDME instead learns a reusable physics prior from data and amortizes it into a diffusion
model that operates directly on trajectories without ever accessing explicit equations.

5 CONCLUSION

We presented PHDME, a physics-informed diffusion framework for dynamical systems in the re-
alistic regime where only limited trajectories are observed and the exact governing equations are
unavailable. By learning a reusable GP-dPHS prior and amortizing it into a denoising diffusion
model, PHDME combines the flexibility of diffusion models with structure-aware representations
of Hamiltonian dynamics. Across synthetic string, 1-D shallow water, and real-world spring sys-
tems, PHDME framework provide fairly reliable predictions. Our results highlight representation
level physics priors as a promising guide for generative modeling of dynamical systems under scarce
physical supervision.
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A APPENDIX

A.1 WAVE PDE DATA GENERATION

We synthesize supervision using a physically faithful simulator of a fixed–end string that solves the
one–dimensional wave equation on a fine grid and then projects to the learning grid. Let s(z, t)
denote displacement, with spatial domain z ∈ [0, L] and time t ∈ [0, T ]. The continuous dynamics
satisfy

∂tts(z, t) = c2 ∂zzs(z, t), s(0, t) = 0, s(L, t) = 0, (5)

with initial conditions s(z, 0) = s0(z) and ∂ts(z, 0) = w0(z). The learned state is the derivative
pair

p(z, t) = ∂zs(z, t), q(z, t) = ∂ts(z, t), (6)

and we collect the state vector as x(z, t) = [p(z, t), q(z, t)].

Fine–to–coarse simulation. We integrate an equivalent first–order system on a fine grid and then
downsample to the learning resolution. Let y(t) = [s(·, t); w(·, t)] with w = ∂ts. Discretize space
on Nfine

z nodes with step ∆zfine, and approximate the Laplacian by a second–order central stencil.
The semi–discrete dynamics are

d

dt

[
s

w

]
=

[
w

c2 Dzz
fine s

]
, s1(t) = sN fine

z
(t) = 0, (7)

where Dzz
fine is the tridiagonal second–difference operator with Dirichlet boundary rows. We in-

tegrate (7) over Nfine
t fine time points using an adaptive ODE solver. From the fine solution we

compute
pfine = ∂zs ≈ Dz

fine s, qfine = ∂ts ≈ Dt
fine s, (8)

with Dz
fine the centered first–difference in z and Dt

fine a centered time stencil. Optional Gaussian
smoothing with standard deviation σ may be applied to s before differencing. We then downsample
(pfine, qfine) to the learning grid of size Nz ×Nt to obtain

p ∈ RNz×Nt , q ∈ RNz×Nt . (9)

Randomized, valid initial conditions. To span smooth, physically consistent excitations, we sam-
ple s0 and w0 as finite Fourier–sine series that respect fixed ends:

s0(z) =

Nm∑
n=1

an sin
(nπz

L

)
cosϕn, w0(z) =

Nm∑
n=1

an sin
(nπz

L

)
sinϕn

nπc

L
, (10)

with amplitudes an in a symmetric range and phases ϕn ∼ U [0, 2π).

Four–channel tensor with boundary conditioning. Each sample is packaged into[
p field, full p, q field, full q

]
∈ R4×Nz×Nt ,

where full p = p and full q = q. The conditioning channels encode the first two time frames
with zeros elsewhere. The first frame of p field is set to zero to anchor the spatial–slope channel:

p field[:, 0] = 0, p field[:, 1] = p[:, 1], p field[:, t] = 0 for t ≥ 2, (11)
q field[:, 0] = q[:, 0], q field[:, 1] = q[:, 1], q field[:, t] = 0 for t ≥ 2. (12)

Normalization. To harmonize dynamic range, we apply channelwise min–max normalization to
[ℓ, u] with ℓ = −1 and u = 1,

X̃ = ℓ+
u− ℓ

Xmax −Xmin + ϵ

(
X −Xmin

)
, X ∈ {full p,full q}, (13)

and use the same affine map for the corresponding conditioning frames.
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Algorithm 1 Wave Data Generation (create string dataset v3.0, z–space, s–displacement)
1: Set Nfine

z ← 4Nz and Nfine
t ← 4Nt

2: for each sample do
3: Sample {an, ϕn}Nm

n=1 and construct s0, w0 via (10)
4: Integrate (7) on the fine grid to obtain sfine(zi, tj)
5: Compute pfine = ∂zs

fine and qfine = ∂ts
fine using centered differences

6: Downsample pfine, qfine to p, q ∈ RNz×Nt

7: Set targets full p← p and full q← q
8: Form conditioning p field,q field with the first two frames and zeros elsewhere, en-

forcing p field[:, 0] = 0
9: Apply channelwise normalization and write tensors to disk

10: end for

A.2 SHALLOW WATER PDE DATA GENERATION

We synthesize an additional supervision set from a one–dimensional linearized shallow–water layer,
again using a high–resolution PDE solver followed by projection to the learning grid. Let η(x, t)
denote the free–surface displacement above rest, with spatial domain x ∈ [0, L] and time t ∈ [0, T ].
For each sample we draw a water depth H uniformly from a range [Hmin, Hmax] and set the wave
speed

c(H) =
√

g H,

with gravitational constant g. The continuous dynamics follow the linearized shallow–water equa-
tion

∂ttη(x, t) = c(H)2 ∂xxη(x, t), η(0, t) = 0, η(L, t) = 0, (14)

with initial height η(x, 0) = η0(x) and initial vertical velocity ∂tη(x, 0) = v0(x). The learned state
is again a pair of spatial–temporal derivatives,

p(x, t) = ∂tη(x, t), q(x, t) = ∂xη(x, t), (15)

and we collect x(x, t) = [p(x, t), q(x, t)] as the representation used by PHDME.

Fine to coarse shallow water simulation. We integrate an equivalent first–order system on a fine
grid and then downsample to the learning resolution. Define y(t) = [η(·, t); v(·, t)] with v = ∂tη.
Discretize space on Nfine

x nodes with step ∆xfine and approximate the second derivative with a
centered three–point stencil. The semi–discrete dynamics read

d

dt

[
η

v

]
=

[
v

c(H)2 Dxx
fine η

]
, η1(t) = ηN fine

x
(t) = 0, (16)

where Dxx
fine is the tridiagonal second–difference operator with Dirichlet boundary rows. In code

we set L = T = 1, choose a learning grid of size Nx × Nt = 64 × 64, and a fine grid Nfine
x =

4Nx, Nfine
t = 4Nt to obtain accurate derivatives. The ODE (16) is integrated over Nfine

t fine time
points using a high–order adaptive solver (DOP853). Dirichlet boundary conditions are enforced by
pinning the endpoint time–derivatives, so that η and v at x = 0, L remain fixed over time.

From the fine solution ηfine(xi, tj) we compute the representation fields

pfine = ∂tη ≈ Dt
fine η

fine, qfine = ∂xη ≈ Dx
fine η

fine, (17)

where Dt
fine and Dx

fine are centered finite–difference stencils along t and x, respectively. For nu-
merical stability we apply a mild Gaussian smoothing in time to ηfine before differencing (with
standard deviation scaled to the fine temporal grid). We then downsample (pfine, qfine) by uniform
subsampling in both x and t to the learning grid

p, q ∈ RNx×Nt .

To remove residual numerical drift in the temporal derivative at initialization, we enforce p(·, 0) = 0.
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Randomized initial conditions and depth. To span a family of smooth, physically consistent
shallow–water excitations, each sample draws a depth H ∼ U [Hmin, Hmax] and a random finite
sine series for the initial free surface,

η0(x) =

Nm∑
n=1

an sin
(nπx

L

)
, ∂tη(x, 0) = v0(x) ≡ 0, (18)

where Nm ∈ {1, . . . , 5} is sampled uniformly and amplitudes an are drawn from a symmetric
range [amin, amax] with random sign. The sine basis automatically satisfies the fixed–end constraint
η0(0) = η0(L) = 0, and the zero–velocity initialization is consistent with our choice to set p(·, 0) =
0 during data generation.

Four channel tensor with boundary conditioning. Each shallow–water trajectory is packaged
into a four–channel tensor[

p field, full p, q field, full q
]
∈ R4×Nx×Nt ,

with
full p = p, full q = q,

and boundary–conditioning channels that expose the first few time frames and mask out the rest:

p field[:, t] =

{
p[:, t], t = 0, 1,

0, t ≥ 2,
q field[:, t] =

{
q[:, t], t = 0, 1,

0, t ≥ 2.
(19)

Thus p field and q field encode two observed frames of the temporal and spatial derivatives
of η, while full p and full q provide the full spatiotemporal evolution that the model must
reconstruct.

Global normalization. To harmonize dynamic range across samples while preserving relative
amplitudes, we use global min–max normalization per derivative type. In a first pass over the dataset
we collect

pmin, pmax = min
i,x,t

p(i)(x, t), max
i,x,t

p(i)(x, t), qmin, qmax = min
i,x,t

q(i)(x, t), max
i,x,t

q(i)(x, t),

where i indexes samples. In a second pass we rescale every occurrence of p and q (both conditioning
and target channels) to a fixed range [ℓ, u] = [−1, 1] via

p̃ = ℓ+
u− ℓ

pmax − pmin + ϵ

(
p− pmin

)
, q̃ = ℓ+

u− ℓ

qmax − qmin + ϵ

(
q − qmin

)
, (20)

yielding normalized tensors ˜p field, ˜full p, ˜q field, ˜full q that are fed to the model.

A.3 REAL WORLD SPRING DATA COLLECTION

Experimental setup. As an abstraction of deformable obstacles that robots may encounter in
their operational environments, we consider a Home Depot extension spring (model #26455, length
41.91 cm, diameter 1.42 cm) mounted with fixed endpoints and excited into transverse oscillation.
This setup mimics the dynamic behavior of flexible obstacles such as swinging cables or a soft robot
arm.

High speed acquisition and coordinate system. We record the motion of the spring using
a high–speed RGB camera (Blackfly S USB3 Flir BFS-U3-16S2C-CS) at 226FPS. Let i ∈
{0, . . . , N raw

t − 1} index video frames and ti = i∆t with ∆t = 1
226 s denote the correspond-

ing physical time. The spring endpoints are rigidly mounted and their pixel locations are identified
once at the beginning of each recording. Using the known physical length L = 41.91 cm, we define
a normalized arclength coordinate z ∈ [0, L] along the spring and interpolate the extracted centerline
onto a fixed grid {zj}Nz

j=1, resulting in discrete observations of the transversal deflection s(ti, zj).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Shallow–Water Data Generation (create shallow water dataset v3.0, x–space,
η–displacement)

1: Set Nx, Nt ← 64 and Nfine
x ← 4Nx, Nfine

t ← 4Nt

2: for each sample do
3: Sample depth H ∼ U [Hmin, Hmax] and set c←

√
gH

4: Sample {an}Nm
n=1 and build η0 via (18) on Nx grid points

5: Set v0(x) ≡ 0 and form y(0) = [η0; v0]
6: Integrate (16) on the fine grid to obtain ηfine(xi, tj)
7: Compute pfine = ∂tη

fine and qfine = ∂xη
fine using centered differences with optional Gaus-

sian smoothing
8: Downsample pfine, qfine to p, q ∈ RNx×Nt and enforce p(·, 0) = 0
9: Set targets full p← p, full q← q

10: Form conditioning channels p field,q field by copying the first two time frames and
setting later frames to zero

11: end for
12: Compute global (pmin, pmax) and (qmin, qmax) over all samples
13: for each sample do
14: Apply global min–max normalization to all four channels and write the 4×Nx×Nt tensor

to disk
15: end for

RGB segmentation and skeletonization. To facilitate robust segmentation, the spring is painted
red and the background is chosen to provide strong color contrast. For each frame, we apply a simple
RGB thresholding mask

[150, 0, 0] ≤ RGB(x, y) ≤ [255, 80, 80]

componentwise to isolate spring pixels from the background. The resulting binary mask encodes the
body of the deformable obstacle. We then apply skeletonization to reduce the segmented region to a
one–pixel–wide medial axis (Fig. 7), which provides a compact representation of the spring shape.
Mapping this skeleton to the arclength grid {zj} produces a discrete, time–indexed centerline

D0 =
{
(ti, zj , s(ti, zj))

}
,

where s(ti, zj) denotes the transversal deflection at time ti and arclength position zj measured in
pixel units and later scaled to physical units via the known length L.

Figure 7: The visualization of the skeletonization process

Denoising and Gaussian process representation. Real world videos contain sensor noise, quan-
tization artifacts, and occasional segmentation errors. To mitigate these effects while preserving the
underlying dynamics, we first apply a Kalman filter along the temporal axis of each spatial location
zj to obtain a denoised trajectory ŝ(ti, zj). The denoised dataset

D̂1 =
{
(ti, zj , ŝ(ti, zj))

}
is then used to train a Gaussian Process (GP) model that acts as a continuous, differentiable rep-
resentation of the spring dynamics. We treat (t, z) ∈ [0, T ] × [0, L] as the input and model the
state

s(t, z) ∼ GP
(
m(t, z), k

(
(t, z), (t′, z′)

))
,
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with a smooth covariance kernel k, e.g. a squared–exponential kernel in time and space, and mean
function m fitted from data. Training proceeds by maximizing the GP marginal likelihood on D̂1,
resulting in a posterior distribution p

(
s(·, ·) | D̂1

)
.

Because derivatives of a GP are again GPs, the posterior directly provides a probabilistic estimate
of temporal and spatial partial derivatives,

∂s

∂t
(t, z),

∂s

∂z
(t, z), (21)

which we use as physics–aware latent features. We define the representation fields

p(t, z) =
∂s

∂z
(t, z), q(t, z) =

∂s

∂t
(t, z), (22)

consistent with the synthetic string system, and evaluate (p, q) on a refined spatial grid of size Ne ≫
Nz to obtain a dense, noise–robust surrogate of the real–world string dynamics.

A.4 SYNTHESIZE DATASET USING MEAN PREDICTION OF GP-DPHS

This section describes how the version 4 data generator constructs spatiotemporal training
pairs by simulating the mean field dynamics implied by a trained Gaussian–Process distributed
Port–Hamiltonian system. The generator replaces the analytical wave operator with the posterior
mean of two Gaussian Processes that approximate the Hamiltonian gradients and then integrates the
induced first–order evolution to produce full fields of p and q.

Learned energy gradients and induced evolution Let u(x, t) denote displacement on x ∈ [0, L]
and t ∈ [0, T ]. The representation uses

p(x, t) = ∂tu(x, t), q(x, t) = ∂xu(x, t), (23)

stacked channelwise into x(x, t) = [p(x, t), q(x, t)]. The GP dPHS module comprises two Gaussian
Processes trained on pairs (p, q) to regress the energy gradients gp = ∂E/∂p and gq = ∂E/∂q.
Denote their posterior means by

µp(p, q) = E[gp(p, q) | D] , µq(p, q) = E[gq(p, q) | D] , (24)

where D is the training set of derivative–integral pairs. The distributed Port–Hamiltonian evolution
induced by these learned gradients is

∂tp(x, t) = ∂xµq

(
p(x, t), q(x, t)

)
, ∂tq(x, t) = ∂xµp

(
p(x, t), q(x, t)

)
, (25)

with fixed–end constraints applied at the spatial boundaries for the p channel. Equation (25) special-
izes the canonical dPHS structure to the GP mean and consequently yields a learned but physically
structured flow on the representation.

Space–time discretization and solver Discretize the spatial domain on S nodes with spacing ∆x
and the time horizon on T frames with step ∆t. Let Dx be the standard centered first–difference
matrix on the interior nodes with Dirichlet boundary handling. Vectorize the state at time t as
x(t) ∈ R2S with x(t) = [p(t);q(t)]. The right–hand side used by the integrator is

d

dt

[
p(t)

q(t)

]
=

[
Dx µq

(
p(t),q(t)

)
Dx µp

(
p(t),q(t)

)] , (26)

where µp and µq are evaluated pointwise at each spatial node using the trained GP posterior means.
A standard explicit adaptive ODE solver advances (26) over [0, T∆t]. After each step, boundary
rows of p are set to zero to enforce fixed ends, which preserves the intended physical interpretation
of p at the string endpoints.

Initialization and conditioning convention The generator samples smooth, band–limited initial
profiles that satisfy the boundary conditions. The convention follows the version 3 setup for com-
patibility with the downstream diffusion model. The first frame of the p channel is set to zero and
the first two frames of the q channel are provided by the sampler. The solver then integrates (26)
forward in time to obtain a complete trajectory {p(tj),q(tj)}T−1

j=0 on the learning grid. This seeding
strategy anchors the learned representation on early frames and stabilizes the subsequent generative
steps.
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Mean only synthesis and uncertainty handling The evolution in (26) uses the posterior means
µp, µq exclusively to synthesize ground truth. This choice yields a single, coherent physical tra-
jectory per initialization without injecting GP sampling noise, which is desirable when creating
supervisory targets for representation learning. The GP predictive variances are retained as optional
quality indicators for out–of–distribution detection during generation and can be logged for later
analysis but do not perturb the synthesized fields.

Packaging and normalization For each realization the generator writes a four–channel tensor of
shape [4, S, T ], [

p field, full p, q field, full q
]
. (27)

The targets are full p = p and full q = q. The conditioning channels encode the two initial
time frames with zeros elsewhere and respect the initialization convention for p. A channelwise
affine normalization maps the targets to a symmetric range with the same transform applied to the
corresponding conditioning frames to maintain consistency.

A.5 SYNTHESIZE DATASET USING SAMPLE PREDICTION OF GP-DPHS

From limited observations to a generative physics prior. LetD = {(xn, yn)}Nn=1 be a small set
of observations used to train a Gaussian process distributed Port Hamiltonian system. The Gaussian
process does not return a single function, it yields a posterior distribution over Hamiltonian energy
functionals. We exploit this posterior to draw function realizations of the energy gradients and to
simulate many physically consistent trajectories x(t, z) = [ p(t, z), q(t, z) ]⊤ for diffusion training.

Random Fourier feature prior draw. Consider a real, continuous, shift invariant kernel kf (·, ·)
for the gradient field. By Bochner theory there exists a spectral density ρ(ω) such that

kf (x,x
′) =

∫
Rd

e iω⊤(x−x′) ρ(ω) dω.

We approximate kf by a random D dimensional feature map

ϕ(x) =
√

2
D

[
cos(ω⊤

1 x+ β1), . . . , cos(ω
⊤
Dx+ βD)

]⊤
,

with ωj ∼ ρ and βj ∼ Uniform[0, 2π]. This gives kf (x,x
′) ≈ ϕ(x)⊤ϕ(x′). A pathwise prior

sample is then

f0(x) = ϕ(x)⊤w, w ∼ N (0, I),

which provides one random realization for the stacked energy gradients f(x) =[
dÊ/dp(x), dÊ/dq(x)

]⊤
.

Posterior correction on a finite set. Let X = [x1, . . . ,xN ] collect the training inputs and let y
collect the targets. Denote the learned mean by µf (·). Define the covariance blocks

CXX =
[
kf (xi,xj)

]
ij
, C⋆X =

[
kf (x

⋆
i ,xj)

]
ij
, C⋆⋆ =

[
kf (x

⋆
i ,x

⋆
j )
]
ij
,

for any query set X⋆ = {x⋆
j}

N⋆
j=1. The random Fourier feature draw induces the vector f0(X) and

its evaluation on X⋆, written f0(X⋆). A function sample from the posterior on X⋆ is obtained by
the exact conditioning correction

f(x⋆) = µf (x
⋆) + f0(x

⋆) + C⋆X

(
CXX + σ2

nI
)−1

(
y − µf (X)− f0(X)

)
, (28)

applied entrywise to both gradient components. Equation (28) warps the prior draw so that it agrees
with the observations in a kernel consistent manner, and it yields an exact posterior sample in the
finite dimensional sense induced by X and X⋆.
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Insertion into the distributed Port Hamiltonian dynamics. The sampled gradients define the
variational derivative δxĤ(·) =

[
dÊ/dp(·), dÊ/dq(·)

]⊤
. On the spatial grid we assemble the semi

discrete evolution
d

dt

[
p(t)
q(t)

]
= A δxĤ

(
p(t),q(t)

)
+ Bu(t),

where A is the discrete representation of J − R and boundary conditions, and B maps inputs. The
right hand side is evaluated by applying centered differences in the interior and consistent one sided
stencils at the boundaries to the sampled gradient fields. With initial state fixed by the first two
frames, we integrate in time with an adaptive Runge Kutta scheme to obtain the trajectories

full p = {p(ti)}Nt
i=1, full q = {q(ti)}Nt

i=1.

Assembly of conditioning and targets. The conditioning channels keep only the first two frames,
p field(:, :, 1:2) = full p(:, :, 1:2), q field(:, :, 1:2) = full q(:, :, 1:2),

and are zero elsewhere. Stacking [p field, full p, q field, full q] yields a tensor of shape [4, Nz, Nt]
that matches the diffusion model interface.

Why this sample based generator helps representation learning. Drawing δxĤ from the pos-
terior produces a family of Hamiltonian consistent vector fields that reflect epistemic uncertainty
learned from D. The resulting collection of simulated trajectories covers a diverse yet physically
structured region of the state space. This enlarged dataset serves as supervision for the diffusion
objective, which we further weight by the predictive uncertainty, thereby aligning the learned score
field with the Port Hamiltonian manifold while remaining data efficient.

Implementation notes in v5.0. The code fixes the trained hyperparameters, constructs the random
Fourier feature map, draws w to obtain f0, and applies the posterior correction in (28) on the grid
required by the discrete operator. Each dataset shard records the random seeds, solver tolerances,
grid sizes (Nz, Nt), and identifiers of the hyperparameters to ensure exact reproducibility of the
sampled gradient fields and of the generated trajectories.

A.6 DISPLACEMENT RECONSTRUCTION FROM (p, q) AND VALIDATION PROTOCOLS

State, operators, and learned surrogates. On a spatial grid Z and discrete time index t =
0, . . . , T , the port-Hamiltonian state is (pt(z), qt(z)). The GP-dPHS learns the Hamiltonian
gradients as functions on the grid, yielding surrogates ĝp(p, q) ≈ ∂H/∂p and ĝq(p, q) ≈
∂H/∂q (implemented by the two trained heads loaded from model dp trained.pth and
model dq trained.pth). In the canonical wave-form system, the continuous-time dynamics
are q̇ = ∂H/∂p and ṗ = −∂H/∂q; we therefore define d̂q(p, q) := ĝp(p, q) and d̂p(p, q) :=
− ĝq(p, q). Boundary handling follows the PDE module used during training (Dirichlet by default
in our code), and the time step ∆t is read from the dataset metadata.

Displacement reconstruction (rollout). Given two initial frames (p0, q0) and (p1, q1) on Z , we
reconstruct the entire displacement trajectory {qt}Tt=2 by iterating an explicit, symplectic first-order
update (vectorized over z ∈ Z):

qt+1 = qt +∆t d̂q(pt, qt), pt+1 = pt +∆t d̂p(pt, qt), t = 1, . . . , T−1.
In practice, we: (i) load the GP-dPHS checkpoints and the dataset item containing initial two frames
(p init, q init); (ii) standardize/unstardardize using the same statistics as training; (iii) loop
the update above for T −2 steps; (iv) enforce the boundary condition after each step. The recon-
structed displacement is the sequence {qt}.

How this appears in the codebase. Data are formatted as four channels (p full, p init,
q full, q init) by the dataset scripts (create string dataset v5.py). The GP mod-
els are defined and loaded from train gp phs v35.py, while the port-Hamiltonian resid-
uals and utilities reside in pde.py and residuals string.py. The diffusion model
(unet model.py with sampling utilities in denoising utils.py / main.py) consumes the
same conditioning (p init, q init) to generate trajectory samples that are evaluated against
the ground truth produced by the GP-dPHS simulator.
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Validation protocol. We validate two aspects: (A) the physics fidelity of GP-dPHS rollouts; (B)
the data efficiency and accuracy of the diffusion model trained on GP-dPHS trajectories.

1. GP-dPHS accuracy. For a set of random initializations, compare {qt} reconstructed by
the GP-dPHS integrator to the reference simulator (same grid and ∆t). Report MSE scores.

Figure 8: Validation of GP-dPHS performance and PHDME performance. The left column is the
ground-truth dynamics generated by A.1, the middle column is the forecast made by the proposed
method, and the last column is the GP-dPHS prediction based on the initial conditions. Key take-
away: Both GP-dPHS and PHDME have learned the correct dynamic patterns, but not 100% perfect.
The red residual comparsion figures show the differences, notice that the magnitude of the residual
is very low.

2. Reconstruction of the displacement using the generated states. Train the diffusion
model in using the state and state derivatives of the system, which is the key to getting
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rid of the exact function of movements. We want to validate that the proposed method can
reconstruct the displacement over time by using the predicted state.

Figure 9: This is the reconstruction based on the derivative field, the blue line is the movement
(displacement) of the soft string system using a faithful physics simulator. The red dot line is the
one reconstructed based on the derivative field using the rollout that has been mentioned above.
Key takeaway: The state and state derivative method is applicable to the physics-informed machine
learning.

Notes for exact reproducibility. Use the saved checkpoints model dp trained.pth and
model dq trained.pth; read metadata.json for ∆t, grid size, and normalization; en-
sure the same boundary operator as in training; and keep the discretization identical to the
equations above so that the reconstruction and training distributions match. You can run the
train gp phs v35.py file to get the GIF of the reconstruction over time.

A.7 REPRESENTATION LEARNING OF PHDME

Instantiation of the physics-informed loss and uncertainty weighting. Equation (4) in the main
text uses an abstract physics regularizer R̃phys with a generic normalization factor |Ω|. In our im-
plementation, this abstract notation is instantiated as a variance-weighted residual over the discrete
spatiotemporal grid and the training mini-batch.

For each denoised prediction Â
(0)

= fθ([A
(m), cinit],m) at diffusion step m, the model outputs

two fields on a regular one-dimensional grid,

pθ(ti, xj), qθ(ti, xj) ∈ R, i = 0, . . . , Nt − 1, j = 0, . . . , Nx − 1,

where pθ and qθ are the predicted momentum and strain for the string, and Nt, Nx are the numbers
of temporal and spatial grid points. During training we process a mini-batch of size B, so that the
discrete domain actually used inside the code is

Ωst = {1, . . . , B} × {0, . . . , Nt − 1} × {0, . . . , Nx − 1}, |Ωst| = BNtNx,

and the abstract factor 1/|Ω| in equation (4) is implemented as an average over all elements of Ωst.

The GP-dPHS module exposes a Hamiltonian-based representation of the state through the learned
energy gradients

δxĤ(p, q) =

[
µp(p, q)

µq(p, q)

]
,
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where µp and µq denote the GP posterior means for ∂E/∂p and ∂E/∂q, respectively. Specializ-
ing the distributed port-Hamiltonian structure to the one-dimensional string yields the continuous
dynamics

∂tp(x, t) = ∂xµq

(
p(x, t), q(x, t)

)
, ∂tq(x, t) = ∂xµp

(
p(x, t), q(x, t)

)
.

On the discrete grid, we approximate derivatives using second-order finite differences. Let ∆t and
∆x denote the time and space steps. For each batch index b, time index i, and spatial index j, the
discrete time derivatives of the predicted fields are

∆tp
b
θ(i, j) ≈

pbθ(ti+1, xj)− pbθ(ti−1, xj)

2∆t
, ∆tq

b
θ(i, j) ≈

qbθ(ti+1, xj)− qbθ(ti−1, xj)

2∆t
,

with forward and backward stencils used for i = 0 and i = Nt − 1. Spatial derivatives of the GP
energy gradients are defined analogously,

∆xµ
b
q(i, j) ≈

µb
q(ti, xj+1)− µb

q(ti, xj−1)

2∆x
, ∆xµ

b
p(i, j) ≈

µb
p(ti, xj+1)− µb

p(ti, xj−1)

2∆x
,

again with one-sided stencils at the spatial boundaries j = 0 and j = Nx − 1. Given these discrete
operators, the local port-Hamiltonian residuals at (b, i, j) ∈ Ωst are

rbp(i, j) = ∆tp
b
θ(i, j)−∆xµ

b
q(i, j), rbq(i, j) = ∆tq

b
θ(i, j)−∆xµ

b
p(i, j).

Because the GP-dPHS is Bayesian, it also provides predictive variances for the energy gradients. At
each point (b, i, j) we obtain

σ2
q (b, i, j) = Var

[
∂E/∂q | pbθ(ti, xj), q

b
θ(ti, xj)

]
, σ2

p(b, i, j) = Var
[
∂E/∂p | pbθ(ti, xj), q

b
θ(ti, xj)

]
,

from the GP posterior. To obtain an uncertainty measure for the spatial derivatives ∆xµq and ∆xµp,
the implementation propagates these variances through the finite-difference stencil. For example,
the variance of the central-difference approximation to ∂x(∂E/∂q) at an interior spatial index j is
approximated as

σ2
q,x(b, i, j) ≈

σ2
q (b, i, j+1) + σ2

q (b, i, j−1)
4∆x2

,

with analogous expressions for σ2
q,x and σ2

p,x at the boundaries and for the ∂E/∂p channel. These
quantities are computed in the code as var dEdq dx and var dEdp dx.

The uncertainty-aware physics loss used in all string experiments is then

R̃phys

(
Â

(0)
; cinit

)
=

1

|Ωst|
∑

(b,i,j)∈Ωst

(
wq(b, i, j)

∣∣rbp(i, j)∣∣2+wp(b, i, j)
∣∣rbq(i, j)∣∣2)+λbc B

(
pθ, qθ; cinit

)
,

where B(·; cinit) is the boundary and conditioning penalty described in Section A.5, and the weights

wq(b, i, j) =
1

σ2
q,x(b, i, j) + ε

, wp(b, i, j) =
1

σ2
p,x(b, i, j) + ε

,

are inverse variances with a small numerical stabilizer ε > 0. In the actual implementation this
expression is computed as the mean over Ωst, that is, the factor 1/|Ω| in equation (4) is concretely

1

|Ωst|
=

1

BNtNx
,

and the per-point weights wp, wq are derived from the GP posterior variance at each grid location.

From a representation-learning perspective, the GP-dPHS defines a Hamiltonian energy represen-
tation δxĤ on the space of string states. The uncertainty-weighted residual above encourages the
denoiser’s predi

A central component of PHDME is the use of Gaussian Processes to learn the energy representation
of the distributed port-Hamiltonian string system from limited data. Unlike purely data-driven mod-
els that fit trajectories directly, our GP-dPHS surrogates approximate the underlying gradients of the
Hamiltonian, dE/dp and dE/dq, providing a structured representation aligned with physical laws.
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Learning energy gradients. The training data consist of spatiotemporal fields of momentum p
and strain q generated from the wave system. From these, we compute integrated derivatives that
serve as training targets for the GP models. Two Gaussian Processes are trained jointly: one learns
the mapping (p, q) 7→ dE/dp and the other (p, q) 7→ dE/dq, thereby embedding the system into
an implicit energy functional. This construction encodes the Hamiltonian structure directly into the
representation space.

Visualization of learned surfaces. Figure 10 show the learned GP surfaces for dE/dp and
dE/dq, respectively, overlaid with the training data. Even with only 1640 training data points drawn
from a single Hamiltonian-consistent trajectory, the GP recovers smooth and coherent energy gradi-
ents across the (p, q) domain. This confirms that the representation is not tied to specific trajectories,
but generalizes across state space.

Figure 10: GP-learned representation of dE/dp and dE/dq(partial derivative of energy) with train-
ing data points. The limited observations lie on the surface of the GP plane, indicating the correct
and smooth energy representation of the system.

Correctness of the PHDME prediction. To verify that the proposed PHDME respects the learned
Hamiltonian structure, we compute the Hamiltonian energy of both the ground–truth solution and
the PHDME prediction for each generated trajectory using H(p, q) =

∫
(p2 + q2)/2 dx. Figure 11

shows a representative test sample: the energy curve of the PHDME prediction (red, dotted) almost
perfectly overlaps with the ground–truth ODE solver (black, solid), stays strictly positive, and does
not exhibit any artificial growth over time. Since the underlying string simulator does not include an
explicit damping term, the theoretically correct behavior is energy conservation; numerically, this
manifests as an energy profile that is effectively constant and at most weakly non–increasing due
to discretization error. The close match between the two curves indicates that PHDME does not

Figure 11: PHDME follows the same non-increasing Hamiltonian profile as the simulator, demon-
strating adherence to the underlying physics.
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inject spurious energy and its latent representation faithfully follows the same Hamiltonian law as
the governing dPHS, rather than merely fitting snapshots in a purely data–driven manner.

Role in PHDME. These GP-learned energy gradients form the backbone of the physics-informed
diffusion model. Instead of constraining the generative model with explicit PDE coefficients,
PHDME leverages the GP posterior as a flexible representation of admissible energy functionals.
During diffusion training, the GP structure enters the physics loss to guide denoising steps toward
physically consistent dynamics. This tight coupling ensures that the learned latent dynamics reflect
both data evidence and energy-based physics, enabling sharper generalization to unseen conditions.

A.8 CONFORMAL PREDICTION, EXCHANGEABILITY, AND EMPIRICAL DIAGNOSTICS.

There are two stages of uncertainty quantification setting in proposed PHDME pipeline, one is the
deep prior uncertainty based on GP-dPHS to inform the training process of the data uncertainties,
the other is calibrated conformal prediction. We equip PHDME with split conformal prediction
on the scalar trajectory error in order to obtain distribution–free uncertainty sets for the learned
spatio–temporal representation.

Conformal prediction based on exchangeability. Conformal calibration is performed
on a held out subset of the synthetic PDE dataset that is not used for training the
diffusion model. The calibration and test subsets are constructed by random splitting
of the same simulator generated corpus and are then processed by the same evalua-
tion pipeline, so that the underlying pairs (cinit,A

⋆) are i.i.d. and hence exchangeable
across both splits. In evaluate conformal prediction fast.py, each batch pro-
vides tensors of shape (B, 4, X, T ); for a given initial condition the conditioning channels
[A(0), cinit] are repeated M times along the batch dimension, and the optimized sampler
DenoisingDiffusionLite.p sample loop is run once with i.i.d. Gaussian noise initial-
ization of shape (BM, 2, X, T ), producing M stochastic samples that are conditionally independent
and identically distributed given the initial condition. The resulting mean squared error scores are
computed over space and time for each draw, stored as a flat array of length N×M . We treats these
scores as an exchangeable sequence when computing overall coverage and per trajectory coverage
statistics. The conformal boundary τ1−α is obtained beforehand by running a separate calibration
script that sets τ1−α to the empirical (1− α) quantile of the calibration scores. See 12 for the main
experiment details we choose α = 0.1 and M = 100, which yields 10 000 draws on both calibration

Figure 12: Calibration and test MSE distributions with the fixed conformal boundary τ1−α. Key
takeaway: The calibrated score strictly holds for an on-the-fly unseen test set, where the test set data
is never seen in the calibration set.
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and test sets, and the summary file reports an overall coverage of 90.01% on calibration and 95.00%
on the held out test trajectories, indicating a slightly conservative predictor on unseen data.

Conformal prediction coverage analysis. Figure 13 visualizes how well our conformal predic-
tion bands are calibrated across a range of target coverages. The horizontal axis shows the nominal
coverage level 1 − α used when constructing the bands, and the vertical axis reports the empirical
coverage, that is, the fraction of trajectories whose ground-truth paths fall inside the predicted bands.
The red dashed diagonal corresponds to perfect calibration, where empirical and nominal coverages
coincide. Blue circles denote results on the calibration set used to fit the conformal threshold and
lie almost exactly on this diagonal, confirming that the procedure is implemented correctly. Green
squares show performance on a disjoint test set: the curve remains close to the diagonal and is
consistently above it, indicating that our intervals are slightly conservative but never under-cover.
In particular, at the target level 1 − α = 0.9 the empirical test coverage is around 0.95, demon-
strating that the conformal layer generalizes to unseen trajectories and provides reliable uncertainty
quantification for PHDME forecasts.

Figure 13: Take-away: The conformal prediction bands are well calibrated and slightly conservative,
reliably achieving at least the desired coverage on unseen test trajectories.

A.9 NEURALODE BASELINE ANALYSIS

In our experiments, NeuralODE (Chen et al., 2018) serves as a purely data-driven baseline that
has no access to the underlying Hamiltonian or PDE structure. The model parameterizes a latent
vector field and is trained only to minimize prediction error on observed trajectories, without any
physics-informed regularization or constraints. As a consequence, NeuralODE can only leverage
the limited set of initial conditions and time horizons present in the training split; it cannot exploit
knowledge of conserved quantities or boundary conditions to interpolate or extrapolate beyond this
regime. We therefore evaluate it on a more challenging setting where the test trajectories, including
the real-world spring dataset, exhibit different initial displacements and modal compositions from
those seen during training.

Visualization of the trained NeuralODE. To verify that the baseline is properly optimized, Fig-
ure 14 visualizes NeuralODE rollouts on a representative trajectory drawn from the training distri-
bution. Each panel shows a space–time heat map of the momentum field p and configuration field
q, comparing ground truth (left) with NeuralODE predictions (right). Along both spatial and tem-
poral axes, the predicted wave fronts, phases, and amplitudes closely match the reference solution,
indicating that the latent ODE has learned a good representation of the dynamics for the specific
initial conditions it was trained on. Quantitatively, this corresponds to low reconstruction error and
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qualitatively smooth, coherent patterns, confirming that the failure modes discussed below are not
due to underfitting.

Figure 14: NeuralODE accurately reconstructs the training-distribution trajectory, with predicted p
and q fields closely matching the ground-truth patterns for seen initial conditions.

Comparison between NeuralODE and PHDME Figure 15 reports the same visualization for an
unseen test trajectory with a different initial condition and energy level. In this regime, NeuralODE
collapses: the predicted p and q fields quickly saturate to nearly constant values, lose the oscillatory
structure present in the ground truth, and fail to capture the spatial propagation of the wave. The
learned latent dynamics clearly do not generalize across initial conditions, despite performing well
on the training distribution. In contrast, PHDME, shown in Figure 16, produces a rollout for the
same unseen initial condition whose space–time pattern closely aligns with the ground truth in both
phase and amplitude. This suggests that the Hamiltonian-informed latent representation learned by
PHDME captures invariants that transfer across initial conditions, whereas the purely data-driven
NeuralODE representation overfits to the finite set of observed trajectories and lacks the inductive
bias needed for robust out-of-distribution generalization.

Figure 15: NeuralODE fails on the unseen initial conditions during test time. The same prediction
of PHDME is on the next page.
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Figure 16: Credit to the physics-informed structure, the proposed PHDME makes relatively close
predictions on the unseen initial condition.

A.10 FUTHER DISCUSSION AND LIMITATIONS

Limitations under extreme scales. While the GP-based representation is robust to moderate data
scarcity, it exhibits limitations when the dynamics evolve near extremely small state magnitudes. In
these regimes, the training data provide only sparse coverage of the (p, q) space, and the GP posterior
surfaces tend to flatten, resulting in poor approximation of the true energy gradients. Consequently,
when the diffusion model is conditioned on such representations, generated samples may fail to
capture fine-scale oscillatory behavior. This effect is visible in the tails of the learned surfaces,
where variance grows and predictions become less structured.

Relative performance. Despite these limitations, PHDME consistently outperforms non-physics
baselines and ablated variants. Even when extreme scales introduce local inaccuracies, the GP-
informed energy representation provides global structural regularization, preventing the generative
process from drifting into unphysical states. As a result, the model produces sharper and more
reliable forecasts on average, while the baselines either overfit to data trajectories or violate physical
constraints. Thus, although failure cases exist at vanishingly small state magnitudes, the method
achieves overall superior representation quality and downstream predictive performance.

Figure 17: Under extremely small scale, the performance of the method may be compromised.

Method 100 samples 1,000 samples 10,000 samples Avg. speed (s/sample)
GP-dPHS 4:40 1:06:40 11:23:20 4.1
PHDME 20s 3:21 33:23 0.2

Table 2: Generation speed comparison between GP-dPHS and PHDME. Reported time to gener-
ate different numbers of samples and the corresponding average. The PHDME is measured on a
standard grid with 50 diffusion steps. while GP-dPHS is evaluated at a 640 square grid to give good
derivative output. Otherwise, the long-horizon rollout of GP-dPHS would compromise the accuracy.
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Ablation: Selecting GP-dPHS as the Deep Prior. To isolate the benefit of using a GP-dPHS as
the guiding prior for the diffusion model, we conduct a controlled ablation in which we replace the
GP-dPHS energy-gradient models with an oracle quadratic Hamiltonian estimator. Using the same
training data, we perform linear regression to obtain ∂H/∂p and ∂H/∂q, which corresponds exactly
to fitting a global quadratic Hamiltonian. Even under this favorable assumption for the baseline,
the GP-dPHS prior achieves a markedly lower MSE (0.1818 compared to 0.2967), indicating that
nonparametric learning of variational derivatives provides a substantially stronger inductive bias
than enforcing a fixed quadratic form. This observation aligns with the broader motivation of our
method: in realistic settings, the Hamiltonian is unknown and seldom quadratic, so prescribing a
closed-form energy is both restrictive and brittle. GP-dPHS instead learns a flexible representation
of the underlying energy landscape, offering a more informative and generalizable deep prior for
physics-informed diffusion models.
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