

PHDME: PHYSICS-INFORMED DIFFUSION MODELS WITHOUT EXPLICIT GOVERNING EQUATIONS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Diffusion models are expressive priors for generating and predicting data from
 012 high-dimensional dynamical systems. Yet, purely data-driven approaches often
 013 lack reliability and trustworthiness, motivating growing interest in physics-
 014 informed machine learning (PIML). Most existing PIML methods, however, as-
 015 sume access to exact governing equations during training—an assumption that
 016 fails when the dynamics are unknown or too complex to model accurately. To
 017 address this gap, we introduce PHDME¹ (Port-Hamiltonian Diffusion Model),
 018 a physics-informed diffusion framework that learns system dynamics without
 019 requiring exact equations. Our approach first trains a Gaussian process dis-
 020 tributed Port-Hamiltonian system (GP-dPHS) on limited observations to capture
 021 an energy-based representation of the dynamics. The GP-dPHS is then used to
 022 generate a physically consistent and diverse dataset for diffusion training. To
 023 enforce physics-consistency, we embed the GP-dPHS structure directly into the
 024 diffusion training objective through a loss that penalizes deviations from the
 025 learned Hamiltonian dynamics, weighted by the GP’s predictive uncertainty. After
 026 training, we employ conformal prediction to provide distribution-free uncertainty
 027 quantification of the generated trajectories. In this way, PHDME is designed for
 028 regimes with scarce data and unknown equations, enabling data-efficient, physi-
 029 cally valid trajectory generation with calibrated uncertainty estimates.

1 INTRODUCTION

031 Predicting the evolution of complex dynamical systems is central to policy design (Bevacqua et al.,
 032 2023), collision avoidance (Missura & Bennewitz, 2019), and long-horizon planning (Li et al.,
 033 2025). However, accurate forecasts remain a significant challenge where dynamics involve high
 034 nonlinearity and dimensionality, as well as when observational data are sparse and limited. A com-
 035 mon constraint in robotics, for instance, where fully instrumenting a soft-bodied manipulator with
 036 tactile sensors is often expensive and physically difficult. Furthermore, many of these systems are
 037 described by partial differential equations (PDEs), but traditional numerical solvers are computa-
 038 tionally expensive, which requires fine-grained spatiotemporal discretization that is overwhelming
 039 for real-time control or long-horizon forecasting. To tackle these challenges, various deep learning
 040 frameworks have been proposed to learn the underlying dynamics from collected data. Methods
 041 like neural ODE (Chen et al., 2018) and neural PDE (Zubov et al., 2021) formulations impose
 042 substantial computational cost. Training requires repeated forward time integrations together with
 043 backward sensitivity computations through stiff multiscale solvers. The computational cost scales up
 044 with prediction horizon, state dimension, and solver stiffness, leading to high runtime and memory
 045 usage that force compromises on model fidelity and spatial resolution of the grid. Although alterna-
 046 tive frameworks, such as discrete-time autoregressive models, circumvent the integration cost, they
 047 introduce challenges of error accumulation over rollouts.

049 Diffusion models (Sohl-Dickstein et al., 2015) offer a flexible generative prior for forecasting in
 050 dynamical systems. Denoising diffusion defines a forward Markov corruption with Gaussian per-
 051 turbations and trains a reverse process (Ho et al., 2020; Karras et al., 2022) that estimates the score of
 052 the data distribution, achieving state-of-the-art synthesis in images (Xia et al., 2023; Xu et al., 2023),

053 ¹Code available at: https://github.com/InvincibleTdog/PHDME_anonymous

videos (Ho et al., 2022; Liang et al., 2024), and audio (Guo et al., 2024). In scientific machine learning the key advantage is the ability to represent full predictive distributions rather than single trajectories, which supports inverse problems (Chung et al., 2023) and planning (Römer et al., 2025) under uncertainty. In case of spatiotemporal problem that are encoded as an image 1 or video, the output of the diffusion model is the solution of the PDE over spatial and temporal domain. Nevertheless, standard diffusion models are purely data-driven, so samples may align with dataset statistics while violating the physics that govern the real world. The absence of explicit physics limits performance and reliability and weakens guarantees in applications like safety-critical systems (Tan et al., 2023).

Physics-informed training addresses this gap by constraining learning with governing equations. Classic work like physics-informed Neural Networks (PINNs) (Raissi et al., 2019) ensures that the learning outcomes follow the physics, and recent work has begun to embed such constraints into generative modeling (Shu et al., 2023; Bastek et al., 2024). These approaches typically require that the governing equations are known (except for some unknown parameters) and can be enforced during training. However, in many real systems, the exact governing equations are unknown or prohibitively complex to model, and observations are limited, e.g., modeling the equations of motion of soft robots via first principles is quite challenging due to the highly nonlinear and unstructured dynamics. Under these conditions, standard physics-informed pipelines are difficult to deploy.

Contribution: We aim to offer rapid, physically reliable, multi-step dynamic forecasting. In this paper, we propose PHDME, which is built on a Gaussian-process distributed Port-Hamiltonian System (Tan et al., 2024). The Port-Hamiltonian framework provides an expressive yet physically consistent representation for hard-to-model, unstructured dynamics. We learn the governing equations directly from limited observations by fitting a GP-dPHS that models the underlying Hamiltonian of the system. The learned GP-dPHS is then integrated into the diffusion training objective as a physics-consistency term that aligns the score network with Hamiltonian-consistent dynamics across noise levels. This coupling of energy-based representation learning with diffusion training enables data-efficient forecasting that respects physical structure even when governing equations are unavailable. Moreover, the probabilistic deep prior encapsulates a class of partial differential equations dynamics, enabling it to directly generate the PDE solution reliably even under unseen initial conditions, bypassing the need for iterative, numerical PDE solvers.

Our contributions can be summarized as:

- Leveraging a single draw from the diffusion model, PHDME provides fast forecasts for PDE systems where the governing equations are unknown but highly nonlinear. PHDME produces reliable results even when data availability is strictly limited.
- The proposed PHDME uses structured energy representations of the system to make the learning process physically informed. By using the Bayesian nature of the GP, diffusion model training has been weighted by the uncertainties from the data observation stage, which makes it possible to inform and constrain the system with physics without knowing the exact underlying functions.
- We also introduce a conformal prediction as postprocessing of the PHDME, where we not only provide a physically-valid sample given the initial condition, but also provide the uncertainty quantification of the sample. These features make the method suitable for safety-critical applications.

2 PRELIMINARY

In this section, we give a brief overview of denoise diffusion models, Gaussian process distributed Port-Hamiltonian systems, and conformal prediction (CP).

2.1 DENOISING DIFFUSION MODELS

Diffusion models have demonstrated excellent potential in various domains (Ho et al., 2020; Song & Ermon, 2019; Dhariwal & Nichol, 2021). While recent efforts extend them to time series forecasting (Rasul et al., 2021), super resolution for dynamic prediction (Rühling Cachay et al., 2023), and time-invariant physics-informed generation (Bastek et al., 2024). The spatiotemporal forecasting

Figure 1: The left panel depicts a typical soft robot scenario in which a flexible continuum manipulator exhibits dynamics that are difficult to specify. The middle panel adopts a top-down parameterization with the y-axis as spatial projection along the arm direction, the z-axis (pixel value) as displacement, and the x-axis as temporal evolution. This converts the evolution into an image form, enabling the diffusion model to synthesize the full spatiotemporal field in a single shot rather than step-by-step rollouts.

with physics guarantee has remained underexplored, especially when the governing equations are unknown or difficult to obtain.

Diffusion indexing, parameterization, and objective. Let $\mathbf{A}^{(m)}$ be the noised image at step $m \in \{0, \dots, M\}$, where the diffusion step m is different to any physical time notation t . The forward noise corruption is linear Gaussian: $\mathbf{A}^{(m)} = \alpha_m \mathbf{A}^{(0)} + \sigma_m \boldsymbol{\varepsilon}$ with $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$; the schedule $\{(\alpha_m, \sigma_m)\}_{m=0}^M$ yields $\mathbf{A}^{(M)} \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$. In the x_0 parameterization, a neural denoiser predicts the clean sample from a noised input and optional condition \mathbf{y} via $\hat{\mathbf{A}}^{(0)} = f_\theta([\mathbf{A}^{(m)}, \mathbf{y}], m)$. The reverse transition uses the closed-form Gaussian posterior with mean $\mu_m(\mathbf{A}^{(m)}, \hat{\mathbf{A}}^{(0)})$ and variance $\tilde{\sigma}_m^2 \mathbf{I}$, both fixed by the forward schedule. And w_m is set to Min-SNR-5 weighting (Hang et al., 2023). Training minimizes a timestep-weighted reconstruction loss

$$\mathcal{L}_{\text{DDPM}}(\theta) = \mathbb{E}_{m, \mathbf{A}^{(0)}, \boldsymbol{\varepsilon}} [w_m \|f_\theta([\alpha_m \mathbf{A}^{(0)} + \sigma_m \boldsymbol{\varepsilon}, \mathbf{y}], m) - \mathbf{A}^{(0)}\|^2].$$

Sampling and uncertainty. Starting from $\mathbf{A}^{(M)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, generation iterates $\mathbf{A}^{(m-1)} = \mu_m(\mathbf{A}^{(m)}, \hat{\mathbf{A}}^{(0)}) + \tilde{\sigma}_m \mathbf{z}$ with $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$; repeated runs thus form an ensemble approximating the conditional distribution of $\mathbf{A}^{(0)}$ given \mathbf{y} .

2.2 GAUSSIAN PROCESS DISTRIBUTED PORT-HAMILTONIAN SYSTEM

Based on Hamiltonian dynamics, GP-dPHS is a physics-informed PDE learning method that not only generalizes well from sparse data, but also provides uncertainty quantification (Tan et al., 2024). The composition of Hamiltonian systems through input and output ports leads to Port Hamiltonian systems, a class of dynamical systems in which ports formalize interactions among components. The Hamiltonian can also be interpreted as the energy representation of the system. This framework applies in the classical finite dimensional setting (Beckers et al., 2022) and extends naturally to distributed parameter and multivariable cases. In the infinite dimensional formulation, the interconnection, damping, and input and output matrices are replaced by matrix differential operators that do not explicitly depend on the state or energy variables. Under this learning structure, once the Hamiltonian is specified, the system model follows in a systematic manner. This general formulation is versatile enough to represent various PDEs and has been shown to capture a wide range of physical phenomena, including heat conduction, piezoelectricity, and elasticity. In what follows, we recall the definition of distributed Port Hamiltonian systems as presented in (Macchelli et al., 2004).

More formally, let \mathcal{Z} be a compact subset of \mathbb{R}^n representing the spatial domain, and consider a skew-adjoint constant differential operator J along with a constant differential operator G_d . Define the Hamiltonian functional $\mathcal{H}: \mathcal{X} \rightarrow \mathbb{R}$ in this following form:

$$\mathcal{H}(\mathbf{x}) = \int_{\mathcal{Z}} H(z, x) dV,$$

162 where $H: \times \mathcal{X} \rightarrow \mathbb{R}$ is the energy density. Denote by \mathcal{W} the space of vector-valued smooth
 163 functions on $\partial\mathcal{Z}$ representing the boundary terms $\mathcal{W} := \{w|w = B_{\mathcal{Z}}(\delta_{\mathbf{x}}\mathcal{H}, \mathbf{u})\}$ defined by the
 164 boundary operator $B_{\mathcal{Z}}$. Then, the general formulation of a multivariable dPHS Σ is fully described
 165 by

$$\Sigma(J, R, \mathcal{H}, G) = \begin{cases} \frac{\partial \mathbf{x}}{\partial t} = (J - R)\delta_{\mathbf{x}}\mathcal{H} + G_d\mathbf{u} \\ \mathbf{y} = G_d^*\delta_{\mathbf{x}}\mathcal{H} \\ w = B_{\mathcal{Z}}(\delta_{\mathbf{x}}\mathcal{H}, \mathbf{u}), \end{cases} \quad (1)$$

170 where R is a constant differential operator taking into account energy dissipation. Furthermore,
 171 $\mathbf{x}(t, \mathbf{z}) \in \mathbb{R}^n$ denotes the state (also called energy variable) at time $t \in \mathbb{R}_{\geq 0}$ and location $\mathbf{z} \in \mathcal{Z}$
 172 and $\mathbf{u}, \mathbf{y} \in \mathbb{R}^m$ the I/O ports, see (Tan et al., 2024) for more details. Generally, the J matrix defines
 173 the interconnection of the elements in the dPHS, whereas the Hamiltonian H characterizes their
 174 dynamical behavior. The constitution of the J matrix predominantly involves partial differential
 175 operators. The port variables \mathbf{u} and \mathbf{y} are conjugate variables in the sense that their duality product
 176 defines the energy flows exchanged with the environment of the system.

177 When the system dynamics are only partially known, the Hamiltonian can be modeled within a
 178 probabilistic framework using Gaussian processes. A Gaussian process is fully specified by a mean
 179 function and a covariance function, and as a nonparametric Bayesian prior, it is well-suited for
 180 smooth Hamiltonian functionals. Its invariance under linear transformations further supports con-
 181 sistent representation propagation through the operators that define the dynamics (Jidling et al.,
 182 2017).

183 Integrating these concepts, the unknown Hamiltonian latent function of a distributed system is en-
 184 coded within a dPHS model to ensure physical consistency. Here, the unknown dynamics are cap-
 185 tured by approximating the Hamiltonian functional with a GP, while treating the matrices J , R , and
 186 G (more precisely, their estimates \hat{J}_{Θ} , \hat{R}_{Θ} , and \hat{G}_{Θ}) as hyperparameters. This leads to the following
 187 GP representation for the system dynamics:

$$\frac{\partial \mathbf{x}}{\partial t} \sim \mathcal{GP}(\hat{G}_{\Theta}\mathbf{u}, k_{dphs}(\mathbf{x}, \mathbf{x}')),$$

190 with a physics-informed kernel function defined as

$$k_{dphs}(\mathbf{x}, \mathbf{x}') = \sigma_f^2(\hat{J}R_{\Theta})\delta_{\mathbf{x}} \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\varphi_l^2}\right) \delta_{\mathbf{x}'}^{\top}(\hat{J}R_{\Theta})^{\top},$$

194 where $\hat{J}R_{\Theta} = \hat{J}_{\Theta} - \hat{R}_{\Theta}$ and the kernel is based on the squared exponential function. The training
 195 of this GP-dPHS model involves optimizing the hyperparameters Θ , φ_l , and σ_f by minimizing the
 196 negative log marginal likelihood. Hence, the physics representation prior is learned by GP without
 197 any presumption of the functional form; this information is fully described by the structured mean
 198 function and variance function.

199 Exploiting the linear invariance property of GPs, the Hamiltonian $\hat{\mathcal{H}}$ now follows a GP prior. This
 200 integration effectively combines the structured, physically consistent representation of distributed
 201 Port-Hamiltonian systems with the flexibility of GP to handle uncertainties and learn unknown dy-
 202 namics from data. The resulting framework not only ensures that the model adheres to the underlying
 203 physics but also provides a comprehensive, data-informed prediction of the system's behavior.

205 2.3 CONFORMAL PREDICTION

207 Conformal prediction a statistical technique used to quantify the uncertainty of predictions in
 208 machine learning models. It provides a prediction set that contains the true output with a user-specified
 209 probability $1 - \delta$. We calibrate the mean squared error of our stochastic generator with conformal
 210 prediction. Let the calibration set be $\mathcal{D}_{\text{cal}} = \{\mathbf{x}_i^*\}_{i=1}^K$, where each \mathbf{x}_i^* is the ground-truth dynamic
 211 landscape on the grid \mathcal{G} . For every i we call the predictor Num times, drawing $\hat{\mathbf{x}}_i^{(n)} \sim P_{\theta}(\cdot)$,
 212 $n = 1, \dots, N$, and define the non-conformity score (NCS) of a single sample as (Lindemann et al.,
 213 2023; Vlahakis et al., 2024):

$$r_{i,n} = \frac{1}{|\mathcal{G}|} \|\hat{\mathbf{x}}_i^{(n)} - \mathbf{x}_i^*\|_F^2. \quad (2)$$

216 Pooling the $K*Num$ scores and sorting them in ascending order gives an empirical error distribution
 217 for a single stochastic draw. For a target miscoverage level $\delta \in (0, 1)$, set the calibrated threshold to
 218 the order statistic

$$219 \quad \tau := \text{Quantile}_{(1 + \frac{1}{K*Num})}(1 - \delta)(r^{(1)}, \dots, r^{(K*Num)}), \quad (3)$$

220 Under exchangeability of scores, we can say under at least $1 - \delta$ probability guarantee, a future
 221 prediction from $P_\theta(\cdot)$ has mean squared error at most τ_δ , formally as: $\text{PROB}(r \leq \tau) \geq 1 - \delta$.
 222

223 3 PROPOSED PHDME

226 In this section, we will discuss the assumptions and problem formulation, followed by a detailed
 227 introduction of the proposed **Port-Hamiltonian Diffusion Model without Explicit underlying equa-
 228 tions** (PHDME) enhances predictive performance by leveraging the learned energy representations
 229 and observation uncertainties.

230 3.1 ASSUMPTIONS AND SETTINGS

232 We study the problem of spatiotemporal dynamic prediction with uncertainty quantification. We
 233 have a PDE system $0 = f(\mathbf{x}, \mathbf{dx}, \dots)$ and aim to predict the solution for $t = 0, \dots, T$ for this
 234 system. We assume that this system can be written in dPHS form even though we do not require
 235 knowledge about the components. further we assume that we can collect limited data from the PDE.

236 Hence, instead of learning the regular dynamic directly, where the underlying functions are hard to
 237 acquire. We transform the problem space to the structured derivative space. The energy representa-
 238 tion can be modeled through a distributed Port-Hamiltonian system. We adopt a dPHS representation
 239 in which the dynamics are modeled as

$$240 \quad \frac{\partial \mathbf{x}}{\partial t} = (J - R)\delta_{\mathbf{x}}\hat{\mathcal{H}} + G_d\mathbf{u}$$

242 where J is power preserving, R is dissipative, G_d maps inputs, and $\hat{\mathcal{H}}$ is a learned Hamiltonian
 243 functional. In PHDME, $\hat{\mathcal{H}}$ is represented by a Gaussian process trained on limited observations,
 244 and the induced Hamiltonian gradients are integrated into the diffusion training objective through a
 245 physics consistency term. This aligns the learned score field with Hamiltonian consistent dynamics
 246 across noise levels and avoids reliance on guidance during sampling.

247 We make the following assumptions:

249 **Assumption 1** *The PHDME is designed to handle the scenario where the observations are limited
 250 and the underlying functions are hard to acquire, which means the regular data-driven predictors
 251 are hard to train and the conventional physics-informed methods are not able to handle. We observe
 252 the state on a limited spatiotemporal grid, yielding measurements $\{\mathbf{x}(t_i, z_j)\}_{i=1, \dots, N_t}^{j=1, \dots, N_z}$.*
 253

254 **Assumption 2** *The structural form of the interconnection, dissipation, and input operators is known
 255 up to a finite set of parameters. Specifically, J , R , and G_d are specified by templates with unknown
 256 coefficients $\Theta \subset \mathbb{R}^{n_\Theta}$, which are estimated from data. The qualitative structure, such as the type
 257 of friction model encoded in R , is known, while the numerical values of the parameters may be
 258 unknown.*

259 3.2 PHDME FRAMEWORK

261 Instead of forecasting by sequential rollouts or numerical integration, which can be computationally
 262 expensive, PHDME generates the entire future spatiotemporal field in a single pass conditioned on
 263 the given initial conditions. The central idea is to guide this single draw-image like generation with
 264 a deep prior learned from limited observations. The training pipeline has two stages, as illustrated in
 265 Figure 2. First, we encode the scarce observations from the real system through the dPHS structure.
 266 And naturally learn a probabilistic energy-based representation of the system using the Gaussian
 267 processes. Then this deep prior is used to synthesize a rich dataset for the diffusion model training,
 268 as well as guiding the second training stage of the PHDME with a physics consistency loss derived
 269 from the prior and weighted by its predictive uncertainty based on observations, thereby aligning the
 learned score field with Hamiltonian consistent dynamics while preserving data efficiency.

Figure 2: This figure visualize the two-stage training of the PHDME, where we firstly train a rather slow but structured deep prior. Then we leverage this prior to inform the diffusion training for rapid sample generations.

Data collection and GP-dPHS training (stage 1). We observe the state $\mathbf{x}(t, z)$ at discrete times and spatial locations, $\mathcal{D} = \{t_i, z_j, \mathbf{x}(t_i, z_j), \mathbf{u}(t_i)\}_{i=0, j=0}^{i=N_t-1, j=N_z-1}$. Since measurements are sparse and derivatives are required for model learning, we fit a smooth Gaussian process interpolant to $x(t, z)$ using a squared exponential kernel, and exploit closed form differentiation of the Gaussian process to collect over time yields $X = [\tilde{\mathbf{x}}(t_0), \dots, \tilde{\mathbf{x}}(t_{N_t-1})]$, $\dot{X} = [\partial_t \tilde{\mathbf{x}}(t_0), \dots, \partial_t \tilde{\mathbf{x}}(t_{N_t-1})]$, and the training set $\mathcal{E} = [X, \dot{X}]$, aligned with the input sequence $\{\mathbf{u}(t_i)\}_{i=1}^{N_t}$. This construction provides derivative information from $x(t, z)$ while enlarging spatial coverage for subsequent GP dPHS training. Based on this dataset, we learn a distributed Port Hamiltonian representation in which the dynamics satisfy

$$\partial_t \mathbf{x}(t, z) = (J - R) \delta_{\mathbf{x}} \hat{\mathcal{H}}(t, z) + G_d \mathbf{u}(t, z),$$

with interconnection matrix J , dissipative term R , and Hamiltonian $\hat{\mathcal{H}}$. The unknown Hamiltonian is modeled by a Gaussian process and eventually unknown coefficients of J , R , and G_d are treated as hyperparameters Θ . Using the linear invariance of Gaussian processes, we place a GP prior on the energy derivatives and obtain a GP over the time derivative of the state,

$$\partial_t \mathbf{x} \sim \mathcal{GP}(\hat{G}_\Theta \mathbf{u}, k_{dphs}(\mathbf{x}, \mathbf{x}')),$$

with physics-informed kernel

$$k_{dphs}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 (\hat{J}_\Theta - \hat{R}_\Theta) \delta_{\mathbf{x}} \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\varphi_l^2}\right) \delta_{\mathbf{x}'}^\top (\hat{J}_\Theta - \hat{R}_\Theta)^\top.$$

We train the model on \mathcal{E} by maximizing the marginal likelihood with respect to Θ and the kernel hyperparameters (φ_l, σ_f) . The resulting posterior induces a stochastic Hamiltonian $\hat{\mathcal{H}}$ and yields the learned dPHS

$$\partial_t \mathbf{x}(t, z) = (\hat{J}_\Theta - \hat{R}_\Theta) \delta_{\mathbf{x}} \hat{\mathcal{H}}(t, z) + \hat{G}_\Theta \mathbf{u}(t, z),$$

which serves as a probabilistic physics prior for subsequent data generation and diffusion training. However, since this numerical solution of GP-dPHS is computational demanding, we train a physics-informed diffusion model instead of directly using the GP-dPHS for prediction.

Dataset generation using GP samples. We place a GP prior over the energy functional, yielding a posterior that captures a family of plausible energy representations. Using only the posterior mean to represent the learned dynamics neglects posterior uncertainty and is therefore not a valid surrogate for the true system. Instead, we leverage random fourier feature prior draw to provide realizations of the GP-dPHS that will be used as training data for the diffusion model. See appendix A.5 for more details.

GP-dPHS yields a posterior over Hamiltonian energy functionals rather than a single estimate based on limited observations, as discussed in 3.2. We draw function realizations of the Hamiltonian gradient $\delta_{\mathbf{x}} \hat{\mathcal{H}}$ from this posterior and then plug it into the dPHS form and solve it numerically to generate a trajectory $\mathbf{x}(z, t)$. For a real and shift-invariant kernel k_f , Bochner theory (Langlands, 2006) implies a spectral density that admits a finite feature approximation. We use a random feature map:

$$\phi(\mathbf{x}) = \sqrt{\frac{2}{d}} [\cos(\boldsymbol{\omega}_1^\top \mathbf{x} + \beta_1), \dots, \cos(\boldsymbol{\omega}_D^\top \mathbf{x} + \beta_D)]^\top,$$

324 with ω_j drawn from the spectral density and $\beta_j \sim \text{Uniform}[0, 2\pi]$. The d denotes the dimensions
 325 of the feature map, so that $k_f(\mathbf{x}, \mathbf{x}') \approx \phi(\mathbf{x})^\top \phi(\mathbf{x}')$. A pathwise prior sample is
 326

$$327 \quad f(\mathbf{x}) = \phi(\mathbf{x})^\top \mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

328 which provides one realization for the stacked gradients $\delta_{\mathbf{x}} \mathcal{H}$. Then the posterior correction on a
 329 finite set can be occupied. For any query set $X = [\mathbf{x}^*(t_0), \dots, \mathbf{x}^*(t_{N_t-1})]$, define the covariance
 330 kernel: $\mathbf{C}_{XX} = [k_f(\mathbf{x}_i, \mathbf{x}_j)]_{ij}$, $\mathbf{C}_{\star X} = [k_f(\mathbf{x}_i^*, \mathbf{x}_j)]_{ij}$. A posterior function sample on X^* is then
 331

$$332 \quad f(\mathbf{x}^*) = \mu_f(\mathbf{x}^*) + f(\mathbf{x}^*) + \mathbf{C}_{\star X} (\mathbf{C}_{XX} + \sigma_n^2 \mathbf{I})^{-1} (\mathbf{y} - \mu_f(X) - f(X)),$$

333 applied component wise to $\delta_{\mathbf{x}} \mathcal{H}$. This warps the prior draw to match the observations and yields
 334 an exact finite dimensional posterior sample suitable for insertion into the dPHS evolution. By
 335 evaluating the sample-based posterior function under different initial conditions, we build a rich
 336 training and validation set for the PHDME.

337 **Diffusion training Notation.** We follow the diffusion indexing introduced above. The latent at
 338 diffusion step $m \in \{0, \dots, M\}$ is $\mathbf{A}^{(m)}$, the clean tensor is $\mathbf{A}^{(0)}$, and conditioning is provided by
 339 the first two frames \mathbf{c}_{init} . The denoiser f_θ predicts the clean tensor in the \mathbf{A}_0 parameterization,
 340

$$342 \quad \hat{\mathbf{A}}^{(0)} = f_\theta([\mathbf{A}^{(m)}, \mathbf{c}_{\text{init}}], m).$$

343 We interpret $\hat{\mathbf{A}}^{(0)}$ as the image like representation of the state over the spatiotemporal grid $\mathcal{T} \times \mathcal{Z}$,
 344 where $\mathcal{T} = \{t_0, \dots, t_i\}_{i=0}^{i=N_t-1}$ and $\mathcal{Z} = \{z_0, \dots, z_j\}_{j=0}^{j=N_z-1}$ aligned with \mathbf{c}_{init} .
 345

346 **Physics operator from GP-dPHS.** Purely data-driven models can fit trajectories while ignoring
 347 invariants or stability. Following the spirit of Bastek et al. (2024), we therefore regularize the de-
 348 noiser with a physics operator. In contrast to approaches that assume a closed-form PDE, we first
 349 learn a deep probabilistic physics prior with the GP-dPHS model and then use this learned Hamil-
 350 tonian representation to define the residual. Concretely, on the discrete spatio-temporal grid we
 351 interpret the denoised sample $\hat{\mathbf{A}}^{(0)}$ together with the conditioning \mathbf{c}_{init} as a candidate field \mathbf{x} . The
 352 dPHS residual operator $\mathcal{F}_{\text{dPHS}}(\mathbf{x})$ is obtained by evaluating the port-Hamiltonian dynamics from
 353 equations 1 with the GP-based energy gradients and discretizing the spatial and temporal deriva-
 354 tives by centered differences in the interior and consistent boundary stencils. We then aggregate this
 355 residual into a scalar penalty with boundary terms
 356

$$358 \quad \mathcal{R}_{\text{phys}}(\hat{\mathbf{A}}^{(0)}; \mathbf{c}_{\text{init}}) = \frac{1}{|\Omega|} \|\mathcal{F}_{\text{dPHS}}(\mathbf{x})\|_2^2 + \lambda_{\text{bc}} \mathcal{B}(\mathbf{x}; \mathbf{c}_{\text{init}}), \quad (4)$$

359 where $|\Omega|$ denotes the total number of grid points (space, time, and batch) and \mathcal{B} encodes fixed-end
 360 and conditioning constraints (see Appendix A.7 for details).

361 Because GP-dPHS is Bayesian, it provides a posterior variance at each grid location that quantifies
 362 the epistemic uncertainty in the learned Hamiltonian vector field. We exploit this by constructing an
 363 uncertainty-aware version $\tilde{\mathcal{R}}_{\text{phys}}$, in which the contribution of each residual term is weighted by the
 364 inverse GP variance. In regions where the learned physics representation is confident, the physics
 365 penalty is strong; in regions with high uncertainty it is softened. This turns the physics operator
 366 into a heteroscedastic regularizer that guides the diffusion model toward Hamiltonian-consistent
 367 trajectories where the prior is reliable, without over-constraining it where the model is less certain.

368 **Proposed PHDME loss.** PHDME augments the standard reconstruction objective with the physics
 369 penalty evaluated on the denoised prediction,
 370

$$373 \quad \mathcal{L}(\theta) = \mathbb{E}_{m, \mathbf{A}^{(0)}, \epsilon} \left[w_m \|f_\theta([\mathbf{A}^{(m)}, \mathbf{c}_{\text{init}}], m) - \mathbf{A}^{(0)}\|_2^2 + \lambda_{\text{phys}} \tilde{\mathcal{R}}_{\text{phys}}(f_\theta([\mathbf{A}^{(m)}, \mathbf{c}_{\text{init}}], m); \mathbf{c}_{\text{init}}) \right].$$

374 The second term backpropagates through f_θ and aligns the learned score field with Hamiltonian
 375 consistent dynamics across diffusion steps. It does not alter the forward noising process or the
 376 ancestral form of the reverse kernel.

378 **Generative uncertainty via conformal prediction.** Beyond producing physically plausible
 379 trajectories, we would like PHDME to expose *calibrated* generative uncertainty for its forecasts. To
 380 this end, we use CP as a purely post-hoc layer on top of the trained diffusion model; the training
 381 objective of PHDME is unchanged. For a fixed conditioning \mathbf{c}_{init} , each reverse-diffusion rollout of
 382 DDPM with an independent noise seed can be viewed as one sample from the learned conditional
 383 distribution $p_{\theta}(\mathbf{x} \mid \mathbf{c}_{\text{init}})$. These samples are exchangeable by construction, which is exactly the
 384 assumption under which CP provides finite-sample coverage guarantees.

385 Concretely, we construct a calibration set $\mathcal{D}_{\text{cal}} = \{(\mathbf{c}_{\text{init}}^{(i)}, \mathbf{x}_i^*)\}_{i=1}^K$ and, for each $\mathbf{c}_{\text{init}}^{(i)}$, draw *Num*
 386 stochastic PHDME rollouts to compute the non-conformity scores defined in equation 2. The em-
 387 pirical $(1 - \delta)$ -quantile of these scores yields a threshold τ_{δ} as in equation 3, so that for a new
 388 conditioning and an on-the-fly test rollout r we have $\mathbb{P}(r \leq \tau_{\delta}) \geq 1 - \delta$. In other words, the CP
 389 layer wraps PHDME’s stochastic samples into prediction bands with guaranteed marginal coverage
 390 under the data-generating distribution. Appendix A.8 reports the resulting coverage and set sizes in
 391 detail, empirically confirming that our CP construction behaves as expected in this setting.

393 4 EXPERIMENTS

395 In this section, we demonstrate the effectiveness and performance of the PHDME. By quantitatively
 396 discuss the accuracy and generative speed, and qualitatively visualizing the generated sample, we
 397 show the powerful aspects of the framework. The further discussion can be found in the appendix.

400 4.1 SETUP

401 **Data benchmarks.** PHDME is designed to have access only to a small number of trajectories,
 402 not to closed-form PDEs. To mimic this regime, we evaluate the proposed method on three PDE
 403 systems: (i) a canonical fixed-end string governed by the wave equation, see Appendix A.1 (ii) a
 404 one-dimensional shallow-water system, see Appendix A.2 and (iii) a **real-world vibrating spring**
 405 **recorded by a high frame-rate camera** in Appendix A.3

406 For the two simulator-based benchmarks (string and shallow water), the high-fidelity solvers are used
 407 only to generate a small observation set of 20 trajectories on the 64×64 grid, with an additional
 408 temporal downsampling factor of 50 to reflect limited sensing and logging capabilities. We fit a
 409 GP-dPHS model to these sparse observations and then use GP-dPHS sampling (Section 3.2) for data
 410 augmentation to produce 10 000 training and 1 000 validation trajectories per system. A separate set
 411 of 10 000 trajectories from the simulators serves as ground-truth test data for evaluating accuracy.
 412 For the real-world benchmark, we use a high-speed Blackfly S USB3 camera (Flir BFS-U3-16S2C-
 413 CS) to record the motion of a red spring at 226 FPS. The spring body is segmented using an RGB
 414 mask, yielding a binary foreground mask. We then skeletonize this mask to obtain a centerline
 415 representation of the flexible spring (see Figure 3). We learn a GP-dPHS prior to these processed
 416 trajectories and use GP-dPHS sampling to generate 4,500 training and 500 validation trajectories for
 417 PHDME training; the remaining real-world data from the camera are held out as a test set to assess
 418 transfer to truly equation-unknown data. More details of data preprocessing are in the Appendix A.3.

419 For all experiments, PHDME operates on the 64×64 grid using a U-Net (Ronneberger et al., 2015)
 420 backbone whose input and output dimensions match this grid. We adopt a 4-channel design: two
 421 channels encode the initial frames \mathbf{c}_{init} , and two channels collect the dynamic fields (p, q) . The deep
 422 priors are trained from limited observations; PHDME never sees or uses the analytic PDE form, only
 423 the learned deep prior is used to inform the physics.

424
 425 Figure 3: From left to right, the figure illustrates the process starting with the original video, skele-
 426 tonization, and final spring movement data over time (overlay).

Baselines. We compare PHDME against four baselines under the same architecture, training schedule, and hardware: (i) a standard diffusion model with the same U-Net and diffusion schedule but no physics loss; (ii) a diffusion model with limited physics that only encodes easy-to-observe structure (e.g., fixed-end boundary conditions) without access to deep Hamiltonian priors; (iii) a GP-dPHS integrator that rolls out trajectories step-by-step using learned energy-based representations; and (iv) a NeuralODE (Chen et al., 2018) that learns purely from data without any knowledge of the underlying physics (and thus cannot use physics-based data augmentation). Baselines (i)–(ii) test whether PHDME’s learned physics prior improves over purely data-driven or weakly constrained generative modeling, while (iii) isolates the benefit of a strong GP-dPHS prior and (iv) provides a fully data-driven baseline reference.

4.2 RESULTS

Quantitative results We present the grid-average metrics for the PDEs in Table 1, the models with physics knowledge (Boundary condition / GP-dPHS priors) starts with lower Loss during the early stage of training, then balance the data loss and physics loss terms as the training iterations increase.

Figure 4: On the left side, PHDME beats the baselines with pure-data driven and limited physics access by having the minimum MSE over iterations. On the right side, we further investigate the potential impacts of the physics-loss term percentage regarding the performance.

Table 1 summarizes test performance across all datasets. We emphasize that the CP module is designed for the diffusion generative uncertainty; hence, the non-conformity score (NCS) (recall in 2) is only reported for diffusion-based models. On the synthetic string and 1-D shallow water benchmark, PHDME attains the lowest MSE, reducing error by roughly 28% relative to the standard DDPM, while also achieving the smallest NCS. Indicating more accurate and better calibrated generative uncertainty than both purely data-driven and weakly physics-aware diffusion baselines. On the real-world spring dataset, PHDME matches the best purely data-driven DDPM baseline in MSE (within about 4%) and remains competitive in NCS. In all three settings, the baselines like GP-dPHS and NeuralODE exhibit substantially larger MSE, illustrating the difficulty of long-horizon rollouts in the sparse state space grid and highlighting that amortizing the GP-dPHS priors into a diffusion model leads to more accurate generative predictions. Notice that the data augmentation step is usually on a dense grid to have accurate derivatives, but for fair comparison against the diffusion models, we list the result of GP-dPHS on the same 64×64 grid here.

Dataset	Metric	Models				
		PHDME	DDPM	DDPM+Limited Physics	GP-dPHS	NeuralODE
String Dataset	MSE	2.74e-3	3.81e-3	4.53e-3	2.03e-2	2.54e-2
	NCS	6.41e-3	6.82e-3	9.80e-3	–	–
Shallow Water	MSE	2.06e-2	2.31e-2	2.92e-2	2.23e-1	4.76e-2
	NCS	9.75e-2	1.02e-1	1.05e-1	–	–
Real-world Spring	MSE	5.21e-2	5.02e-2	5.44e-2	7.65e-1	2.037
	NCS	2.93e-3	3.07e-3	7.09e-4	–	–

Table 1: The results of model test performance. Key take-away: The data augmentation from GP-dPHS improve the general performance, and the deep physics priors help the model to learn the dynamics pattern better with general tighter generative uncertainty bound.

486
 487 **Qualitative results** We qualitatively assess the full PHDME pipeline by inspecting predicted
 488 states. Our success criterion is accurate state forecasting under unseen initial conditions and en-
 489 vironments. As illustrated in Fig. 5, generated samples closely match the true system behavior,
 490 preserving boundary behavior and phase progression. See (App. A.6) that errors introduced by the
 491 GP-dPHS data generation and by diffusion sampling are both limited on the evaluation grid. And
 492 the sampling process has been visualized in Fig. 6. For more details and discussions regarding the
 493 representation learning and the correctness of learned Hamiltonian, see App. A.7.

504
 505 Figure 5: Left: Ground-truth state evolution of the wave equation. Right: Physically consistent
 506 and accurate prediction of PHDME based on sparse data and limited knowledge of the governing
 507 equations. Key takeaway: PHDME generates samples with correct dynamic pattern and amplitude
 508 by only conditioning on the initial two frames.

520 Figure 6: The visualization of diffusion sampling process

521 **Related work.** We target the realistic regime where only limited trajectory data are available
 522 and the exact governing functions are inaccessible, as formalized in Assumption 1. In this setting,
 523 equation-based diffusion models (Jacobsen et al., 2025; Basteck et al., 2024) that require an
 524 explicit PDE are not directly applicable, since we restrict all methods to observed trajectories and
 525 simple, easily measured constraints (e.g., boundary conditions). At the other extreme, purely data-
 526 driven continuous-time models such as NeuralODEs (Chen et al., 2018) lack structural physics pri-
 527 ors and perform poorly under these limited observations. For more discussions on NeuralODE, see
 528 App. A.9. PHDME instead learns a reusable physics prior from data and amortizes it into a diffusion
 529 model that operates directly on trajectories without ever accessing explicit equations.

531 5 CONCLUSION

533 We presented PHDME, a physics-informed diffusion framework for dynamical systems in the re-
 534 alistic regime where only limited trajectories are observed and the exact governing equations are
 535 unavailable. By learning a reusable GP-dPHS prior and amortizing it into a denoising diffusion
 536 model, PHDME combines the flexibility of diffusion models with structure-aware representations
 537 of Hamiltonian dynamics. Across synthetic string, 1-D shallow water, and real-world spring sys-
 538 tems, PHDME framework provide fairly reliable predictions. Our results highlight representation
 539 level physics priors as a promising guide for generative modeling of dynamical systems under scarce
 physical supervision.

540 REFERENCES
541

542 Jan-Hendrik Bastek, WaiChing Sun, and Dennis M Kochmann. Physics-informed diffusion models.
543 *arXiv preprint arXiv:2403.14404*, 2024.

544 Thomas Beckers, Jacob Seidman, Paris Perdikaris, and George J Pappas. Gaussian process port-
545 hamiltonian systems: Bayesian learning with physics prior. In *2022 IEEE 61st Conference on*
546 *Decision and Control (CDC)*, pp. 1447–1453. IEEE, 2022.

547 Emanuele Bevacqua, Laura Suarez-Gutierrez, Aglaé Jézéquel, Flavio Lehner, Mathieu Vrac, Pascal
548 Yiou, and Jakob Zscheischler. Advancing research on compound weather and climate events via
549 large ensemble model simulations. *Nature Communications*, 14(1):2145, 2023.

550 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
551 differential equations. *Advances in neural information processing systems*, 31, 2018.

552 Hyungjin Chung, Dohoon Ryu, Michael T McCann, Marc L Klasky, and Jong Chul Ye. Solving
553 3d inverse problems using pre-trained 2d diffusion models. In *Proceedings of the IEEE/CVF*
554 *conference on computer vision and pattern recognition*, pp. 22542–22551, 2023.

555 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
556 *in neural information processing systems*, 34:8780–8794, 2021.

557 Zhifang Guo, Jianguo Mao, Rui Tao, Long Yan, Kazushige Ouchi, Hong Liu, and Xiangdong Wang.
558 Audio generation with multiple conditional diffusion model. In *Proceedings of the AAAI Conference*
559 *on Artificial Intelligence*, volume 38, pp. 18153–18161, 2024.

560 Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
561 Guo. Efficient diffusion training via min-snr weighting strategy. In *Proceedings of the IEEE/CVF*
562 *international conference on computer vision*, pp. 7441–7451, 2023.

563 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
564 *neural information processing systems*, 33:6840–6851, 2020.

565 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
566 Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–
567 8646, 2022.

568 Christian Jacobsen, Yilin Zhuang, and Karthik Duraisamy. Cocogen: Physically consistent and
569 conditioned score-based generative models for forward and inverse problems. *SIAM Journal on*
570 *Scientific Computing*, 47(2):C399–C425, 2025.

571 Carl Jidling, Niklas Wahlström, Adrian Wills, and Thomas B Schön. Linearly constrained Gaussian
572 processes. *Advances in Neural Information Processing Systems*, 30, 2017.

573 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
574 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
575 2022.

576 Robert P Langlands. Problems in the theory of automorphic forms to salomon bochner in gratitude.
577 In *Lectures in modern analysis and applications III*, pp. 18–61. Springer, 2006.

578 Peilun Li, Kaiyuan Tan, and Thomas Beckers. Napi-mpc: Neural accelerated physics-informed mpc
579 for nonlinear pde systems. In *7th Annual Learning for Dynamics\& Control Conference*, pp.
580 1230–1242. PMLR, 2025.

581 Jingyun Liang, Yuchen Fan, Kai Zhang, Radu Timofte, Luc Van Gool, and Rakesh Ranjan. Movideo:
582 Motion-aware video generation with diffusion model. In *European Conference on Computer*
583 *Vision*, pp. 56–74. Springer, 2024.

584 Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dy-
585 namic environments using conformal prediction. *IEEE Robotics and Automation Letters*, 8(8):
586 5116–5123, 2023.

594 Alessandro Macchelli, Arjan J Van Der Schaft, and Claudio Melchiorri. Port Hamiltonian formula-
 595 tion of infinite dimensional systems i. modeling. In *2004 43rd IEEE Conference on Decision and*
 596 *Control (CDC)*, volume 4, pp. 3762–3767. IEEE, 2004.

597

598 Marcell Missura and Maren Bennewitz. Predictive collision avoidance for the dynamic window
 599 approach. In *2019 International Conference on Robotics and Automation (ICRA)*, pp. 8620–8626.
 600 IEEE, 2019.

601 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 602 deep learning framework for solving forward and inverse problems involving nonlinear partial
 603 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

604 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
 605 diffusion models for multivariate probabilistic time series forecasting. In *International conference*
 606 *on machine learning*, pp. 8857–8868. PMLR, 2021.

607

608 Ralf Römer, Alexander von Rohr, and Angela Schoellig. Diffusion predictive control with con-
 609 straints. In *7th Annual Learning for Dynamics\& Control Conference*, pp. 791–803. PMLR,
 610 2025.

611 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 612 ical image segmentation. In *International Conference on Medical image computing and computer-
 613 assisted intervention*, pp. 234–241. Springer, 2015.

614

615 Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed dif-
 616 fusion model for spatiotemporal forecasting. *Advances in neural information processing systems*,
 617 36:45259–45287, 2023.

618 Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
 619 flow field reconstruction. *Journal of Computational Physics*, 478:111972, 2023.

620

621 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 622 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 623 ing*, pp. 2256–2265. pmlr, 2015.

624

625 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 Advances in neural information processing systems, 32, 2019.

626

627 Kaiyuan Tan, Jun Wang, and Yiannis Kantaros. Targeted adversarial attacks against neural network
 628 trajectory predictors. In *Learning for Dynamics and Control Conference*, pp. 431–444. PMLR,
 629 2023.

630

631 Kaiyuan Tan, Peilun Li, and Thomas Beckers. Physics-constrained learning of pde systems with
 632 uncertainty quantified port-hamiltonian models. In *6th Annual Learning for Dynamics & Control
 633 Conference*, pp. 1753–1764. PMLR, 2024.

634

635 Eleftherios E Vlahakis, Lars Lindemann, Pantelis Sopasakis, and Dimos V Dimarogonas. Confor-
 636 mal prediction for distribution-free optimal control of linear stochastic systems. *IEEE Control
 637 Systems Letters*, 2024.

638

639 Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang,
 and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In *Proceedings of the
 IEEE/CVF international conference on computer vision*, pp. 13095–13105, 2023.

640

641 Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion:
 642 Text, images and variations all in one diffusion model. In *Proceedings of the IEEE/CVF interna-
 643 tional conference on computer vision*, pp. 7754–7765, 2023.

644

645 Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio,
 646 Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik
 647 Balakrishnan, Devesh Upadhyay, and Chris Rackauckas. Neuralpde: Automating physics-
 informed neural networks (pinns) with error approximations, 2021. URL <https://arxiv.org/abs/2107.09443>.

648
649

A APPENDIX

650
651

A.1 WAVE PDE DATA GENERATION

652
653
654
655
We synthesize supervision using a physically faithful simulator of a fixed-end string that solves the
one-dimensional wave equation on a fine grid and then projects to the learning grid. Let $s(z, t)$
denote displacement, with spatial domain $z \in [0, L]$ and time $t \in [0, T]$. The continuous dynamics
satisfy

656
$$\partial_{tt}s(z, t) = c^2 \partial_{zz}s(z, t), \quad s(0, t) = 0, \quad s(L, t) = 0, \quad (5)$$

657
658
with initial conditions $s(z, 0) = s_0(z)$ and $\partial_t s(z, 0) = w_0(z)$. The learned state is the derivative
pair

659
660
$$p(z, t) = \partial_z s(z, t), \quad q(z, t) = \partial_t s(z, t), \quad (6)$$

661
and we collect the state vector as $\mathbf{x}(z, t) = [p(z, t), q(z, t)]$.662
663
664
665
Fine-to-coarse simulation. We integrate an equivalent first-order system on a fine grid and then
downsample to the learning resolution. Let $y(t) = [s(\cdot, t); w(\cdot, t)]$ with $w = \partial_t s$. Discretize space
on N_z^{fine} nodes with step Δz^{fine} , and approximate the Laplacian by a second-order central stencil.
The semi-discrete dynamics are

667
668
$$\frac{d}{dt} \begin{bmatrix} s \\ w \end{bmatrix} = \begin{bmatrix} w \\ c^2 \mathbf{D}_{\text{fine}}^{zz} s \end{bmatrix}, \quad s_1(t) = s_{N_z^{\text{fine}}}(t) = 0, \quad (7)$$

669
670
671
672
where $\mathbf{D}_{\text{fine}}^{zz}$ is the tridiagonal second-difference operator with Dirichlet boundary rows. We in-
tegrate (7) over N_t^{fine} fine time points using an adaptive ODE solver. From the fine solution we
compute

673
$$p^{\text{fine}} = \partial_z s \approx \mathbf{D}_{\text{fine}}^z s, \quad q^{\text{fine}} = \partial_t s \approx \mathbf{D}_{\text{fine}}^t s, \quad (8)$$

674
675
676
with $\mathbf{D}_{\text{fine}}^z$ the centered first-difference in z and $\mathbf{D}_{\text{fine}}^t$ a centered time stencil. Optional Gaussian
smoothing with standard deviation σ may be applied to s before differencing. We then downsample
(p^{fine} , q^{fine}) to the learning grid of size $N_z \times N_t$ to obtain

677
678
$$p \in \mathbb{R}^{N_z \times N_t}, \quad q \in \mathbb{R}^{N_z \times N_t}. \quad (9)$$

679
680
681
Randomized, valid initial conditions. To span smooth, physically consistent excitations, we sam-
ple s_0 and w_0 as finite Fourier-sine series that respect fixed ends:

682
683
684
$$s_0(z) = \sum_{n=1}^{N_m} a_n \sin\left(\frac{n\pi z}{L}\right) \cos \phi_n, \quad w_0(z) = \sum_{n=1}^{N_m} a_n \sin\left(\frac{n\pi z}{L}\right) \sin \phi_n \frac{n\pi c}{L}, \quad (10)$$

685
686
with amplitudes a_n in a symmetric range and phases $\phi_n \sim \mathcal{U}[0, 2\pi]$.687
688
Four-channel tensor with boundary conditioning. Each sample is packaged into

689
690
$$[\text{p_field}, \text{full_p}, \text{q_field}, \text{full_q}] \in \mathbb{R}^{4 \times N_z \times N_t},$$

691
692
where $\text{full_p} = p$ and $\text{full_q} = q$. The conditioning channels encode the first two time frames
with zeros elsewhere. The first frame of p_field is set to zero to anchor the spatial-slope channel:

693
694
$$\text{p_field}[:, 0] = \mathbf{0}, \quad \text{p_field}[:, 1] = p[:, 1], \quad \text{p_field}[:, t] = \mathbf{0} \text{ for } t \geq 2, \quad (11)$$

695
$$\text{q_field}[:, 0] = q[:, 0], \quad \text{q_field}[:, 1] = q[:, 1], \quad \text{q_field}[:, t] = \mathbf{0} \text{ for } t \geq 2. \quad (12)$$

696
697
698
Normalization. To harmonize dynamic range, we apply channelwise min-max normalization to
 $[\ell, u]$ with $\ell = -1$ and $u = 1$,

699
700
$$\tilde{X} = \ell + \frac{u - \ell}{X_{\max} - X_{\min} + \epsilon} (X - X_{\min}), \quad X \in \{\text{full_p}, \text{full_q}\}, \quad (13)$$

701
and use the same affine map for the corresponding conditioning frames.

Algorithm 1 Wave Data Generation (create_string_dataset v3.0, z –space, s –displacement)

```

702 1: Set  $N_z^{\text{fine}} \leftarrow 4N_z$  and  $N_t^{\text{fine}} \leftarrow 4N_t$ 
703 2: for each sample do
704 3:   Sample  $\{a_n, \phi_n\}_{n=1}^{N_m}$  and construct  $s_0, w_0$  via (10)
705 4:   Integrate (7) on the fine grid to obtain  $s^{\text{fine}}(z_i, t_j)$ 
706 5:   Compute  $p^{\text{fine}} = \partial_z s^{\text{fine}}$  and  $q^{\text{fine}} = \partial_t s^{\text{fine}}$  using centered differences
707 6:   Downsample  $p^{\text{fine}}, q^{\text{fine}}$  to  $p, q \in \mathbb{R}^{N_z \times N_t}$ 
708 7:   Set targets  $\text{full\_p} \leftarrow p$  and  $\text{full\_q} \leftarrow q$ 
709 8:   Form conditioning  $\text{p\_field}, \text{q\_field}$  with the first two frames and zeros elsewhere, en-
710   forcing  $\text{p\_field}[:, 0] = \mathbf{0}$ 
711 9:   Apply channelwise normalization and write tensors to disk
712 10: end for
713

```

A.2 SHALLOW WATER PDE DATA GENERATION

We synthesize an additional supervision set from a one–dimensional linearized shallow–water layer, again using a high–resolution PDE solver followed by projection to the learning grid. Let $\eta(x, t)$ denote the free–surface displacement above rest, with spatial domain $x \in [0, L]$ and time $t \in [0, T]$. For each sample we draw a water depth H uniformly from a range $[H_{\min}, H_{\max}]$ and set the wave speed

$$c(H) = \sqrt{g H},$$

with gravitational constant g . The continuous dynamics follow the linearized shallow–water equation

$$\partial_{tt}\eta(x, t) = c(H)^2 \partial_{xx}\eta(x, t), \quad \eta(0, t) = 0, \quad \eta(L, t) = 0, \quad (14)$$

with initial height $\eta(x, 0) = \eta_0(x)$ and initial vertical velocity $\partial_t\eta(x, 0) = v_0(x)$. The learned state is again a pair of spatial–temporal derivatives,

$$p(x, t) = \partial_t\eta(x, t), \quad q(x, t) = \partial_x\eta(x, t), \quad (15)$$

and we collect $\mathbf{x}(x, t) = [p(x, t), q(x, t)]$ as the representation used by PHDME.

Fine to coarse shallow water simulation. We integrate an equivalent first–order system on a fine grid and then downsample to the learning resolution. Define $y(t) = [\eta(\cdot, t); v(\cdot, t)]$ with $v = \partial_t\eta$. Discretize space on N_x^{fine} nodes with step Δx^{fine} and approximate the second derivative with a centered three–point stencil. The semi–discrete dynamics read

$$\frac{d}{dt} \begin{bmatrix} \eta \\ v \end{bmatrix} = \begin{bmatrix} v \\ c(H)^2 \mathbf{D}_{\text{fine}}^{xx} \eta \end{bmatrix}, \quad \eta_1(t) = \eta_{N_x^{\text{fine}}}(t) = 0, \quad (16)$$

where $\mathbf{D}_{\text{fine}}^{xx}$ is the tridiagonal second–difference operator with Dirichlet boundary rows. In code we set $L = T = 1$, choose a learning grid of size $N_x \times N_t = 64 \times 64$, and a fine grid $N_x^{\text{fine}} = 4N_x$, $N_t^{\text{fine}} = 4N_t$ to obtain accurate derivatives. The ODE (16) is integrated over N_t^{fine} fine time points using a high–order adaptive solver (DOP853). Dirichlet boundary conditions are enforced by pinning the endpoint time–derivatives, so that η and v at $x = 0, L$ remain fixed over time.

From the fine solution $\eta^{\text{fine}}(x_i, t_j)$ we compute the representation fields

$$p^{\text{fine}} = \partial_t\eta \approx \mathbf{D}_{\text{fine}}^t \eta^{\text{fine}}, \quad q^{\text{fine}} = \partial_x\eta \approx \mathbf{D}_{\text{fine}}^x \eta^{\text{fine}}, \quad (17)$$

where $\mathbf{D}_{\text{fine}}^t$ and $\mathbf{D}_{\text{fine}}^x$ are centered finite–difference stencils along t and x , respectively. For numerical stability we apply a mild Gaussian smoothing in time to η^{fine} before differencing (with standard deviation scaled to the fine temporal grid). We then downsample $(p^{\text{fine}}, q^{\text{fine}})$ by uniform subsampling in both x and t to the learning grid

$$p, q \in \mathbb{R}^{N_x \times N_t}.$$

To remove residual numerical drift in the temporal derivative at initialization, we enforce $p(\cdot, 0) = 0$.

756 **Randomized initial conditions and depth.** To span a family of smooth, physically consistent
 757 shallow-water excitations, each sample draws a depth $H \sim \mathcal{U}[H_{\min}, H_{\max}]$ and a random finite
 758 sine series for the initial free surface,

$$760 \quad \eta_0(x) = \sum_{n=1}^{N_m} a_n \sin\left(\frac{n\pi x}{L}\right), \quad \partial_t \eta(x, 0) = v_0(x) \equiv 0, \quad (18)$$

763 where $N_m \in \{1, \dots, 5\}$ is sampled uniformly and amplitudes a_n are drawn from a symmetric
 764 range $[a_{\min}, a_{\max}]$ with random sign. The sine basis automatically satisfies the fixed-end constraint
 765 $\eta_0(0) = \eta_0(L) = 0$, and the zero-velocity initialization is consistent with our choice to set $p(\cdot, 0) =$
 766 0 during data generation.

767 **Four channel tensor with boundary conditioning.** Each shallow-water trajectory is packaged
 768 into a four-channel tensor

$$769 \quad [\text{p_field}, \text{full_p}, \text{q_field}, \text{full_q}] \in \mathbb{R}^{4 \times N_x \times N_t},$$

772 with

$$773 \quad \text{full_p} = p, \quad \text{full_q} = q,$$

775 and boundary-conditioning channels that expose the first few time frames and mask out the rest:

$$776 \quad \text{p_field}[:, t] = \begin{cases} p[:, t], & t = 0, 1, \\ 0, & t \geq 2, \end{cases} \quad \text{q_field}[:, t] = \begin{cases} q[:, t], & t = 0, 1, \\ 0, & t \geq 2. \end{cases} \quad (19)$$

779 Thus `p_field` and `q_field` encode two observed frames of the temporal and spatial derivatives
 780 of η , while `full_p` and `full_q` provide the full spatiotemporal evolution that the model must
 781 reconstruct.

783 **Global normalization.** To harmonize dynamic range across samples while preserving relative
 784 amplitudes, we use global min–max normalization per derivative type. In a first pass over the dataset
 785 we collect

$$787 \quad p_{\min}, p_{\max} = \min_{i, x, t} p^{(i)}(x, t), \quad \max_{i, x, t} p^{(i)}(x, t), \quad q_{\min}, q_{\max} = \min_{i, x, t} q^{(i)}(x, t), \quad \max_{i, x, t} q^{(i)}(x, t),$$

789 where i indexes samples. In a second pass we rescale every occurrence of p and q (both conditioning
 790 and target channels) to a fixed range $[\ell, u] = [-1, 1]$ via

$$791 \quad \tilde{p} = \ell + \frac{u - \ell}{p_{\max} - p_{\min} + \epsilon} (p - p_{\min}), \quad \tilde{q} = \ell + \frac{u - \ell}{q_{\max} - q_{\min} + \epsilon} (q - q_{\min}), \quad (20)$$

794 yielding normalized tensors $\widetilde{\text{p_field}}, \widetilde{\text{full_p}}, \widetilde{\text{q_field}}, \widetilde{\text{full_q}}$ that are fed to the model.

796 A.3 REAL WORLD SPRING DATA COLLECTION

798 **Experimental setup.** As an abstraction of deformable obstacles that robots may encounter in
 799 their operational environments, we consider a Home Depot extension spring (model #26455, length
 800 41.91 cm, diameter 1.42 cm) mounted with fixed endpoints and excited into transverse oscillation.
 801 This setup mimics the dynamic behavior of flexible obstacles such as swinging cables or a soft robot
 802 arm.

804 **High speed acquisition and coordinate system.** We record the motion of the spring using
 805 a high-speed RGB camera (Blackfly S USB3 Flir BFS-U3-16S2C-CS) at 226 FPS. Let $i \in$
 806 $\{0, \dots, N_t^{\text{raw}} - 1\}$ index video frames and $t_i = i \Delta t$ with $\Delta t = \frac{1}{226}$ s denote the correspond-
 807 ing physical time. The spring endpoints are rigidly mounted and their pixel locations are identified
 808 once at the beginning of each recording. Using the known physical length $L = 41.91$ cm, we define
 809 a normalized arclength coordinate $z \in [0, L]$ along the spring and interpolate the extracted centerline
 onto a fixed grid $\{z_j\}_{j=1}^{N_z}$, resulting in discrete observations of the transversal deflection $s(t_i, z_j)$.

810
 811 **Algorithm 2** Shallow-Water Data Generation (create_shallow_water_dataset v3.0, x -space,
 812 η -displacement)

813 1: Set $N_x, N_t \leftarrow 64$ and $N_x^{\text{fine}} \leftarrow 4N_x, N_t^{\text{fine}} \leftarrow 4N_t$
 814 2: **for** each sample **do**
 815 3: Sample depth $H \sim \mathcal{U}[H_{\min}, H_{\max}]$ and set $c \leftarrow \sqrt{gH}$
 816 4: Sample $\{a_n\}_{n=1}^{N_m}$ and build η_0 via (18) on N_x grid points
 817 5: Set $v_0(x) \equiv 0$ and form $y(0) = [\eta_0; v_0]$
 818 6: Integrate (16) on the fine grid to obtain $\eta^{\text{fine}}(x_i, t_j)$
 819 7: Compute $p^{\text{fine}} = \partial_t \eta^{\text{fine}}$ and $q^{\text{fine}} = \partial_x \eta^{\text{fine}}$ using centered differences with optional Gaus-
 820 sian smoothing
 821 8: Downsample $p^{\text{fine}}, q^{\text{fine}}$ to $p, q \in \mathbb{R}^{N_x \times N_t}$ and enforce $p(\cdot, 0) = 0$
 822 9: Set targets $\text{full_p} \leftarrow p, \text{full_q} \leftarrow q$
 823 10: Form conditioning channels $\text{p_field}, \text{q_field}$ by copying the first two time frames and
 824 setting later frames to zero
 825 11: **end for**
 826 12: Compute global (p_{\min}, p_{\max}) and (q_{\min}, q_{\max}) over all samples
 827 13: **for** each sample **do**
 828 14: Apply global min–max normalization to all four channels and write the $4 \times N_x \times N_t$ tensor
 829 to disk
 830 15: **end for**

831 **RGB segmentation and skeletonization.** To facilitate robust segmentation, the spring is painted
 832 red and the background is chosen to provide strong color contrast. For each frame, we apply a simple
 833 RGB thresholding mask

834
$$[150, 0, 0] \leq \text{RGB}(x, y) \leq [255, 80, 80]$$

835 componentwise to isolate spring pixels from the background. The resulting binary mask encodes the
 836 body of the deformable obstacle. We then apply skeletonization to reduce the segmented region to a
 837 one-pixel-wide medial axis (Fig. 7), which provides a compact representation of the spring shape.
 838 Mapping this skeleton to the arclength grid $\{z_j\}$ produces a discrete, time-indexed centerline

839
$$\mathcal{D}_0 = \{(t_i, z_j, s(t_i, z_j))\},$$

840 where $s(t_i, z_j)$ denotes the transversal deflection at time t_i and arclength position z_j measured in
 841 pixel units and later scaled to physical units via the known length L .

842 Figure 7: The visualization of the skeletonization process

843 **Denoising and Gaussian process representation.** Real world videos contain sensor noise, quan-
 844 tization artifacts, and occasional segmentation errors. To mitigate these effects while preserving the
 845 underlying dynamics, we first apply a Kalman filter along the temporal axis of each spatial location
 846 z_j to obtain a denoised trajectory $\hat{s}(t_i, z_j)$. The denoised dataset

847
$$\hat{\mathcal{D}}_1 = \{(t_i, z_j, \hat{s}(t_i, z_j))\}$$

848 is then used to train a Gaussian Process (GP) model that acts as a continuous, differentiable rep-
 849 resentation of the spring dynamics. We treat $(t, z) \in [0, T] \times [0, L]$ as the input and model the
 850 state

851
$$s(t, z) \sim \mathcal{GP}(m(t, z), k((t, z), (t', z'))),$$

864 with a smooth covariance kernel k , e.g. a squared-exponential kernel in time and space, and mean
 865 function m fitted from data. Training proceeds by maximizing the GP marginal likelihood on $\hat{\mathcal{D}}_1$,
 866 resulting in a posterior distribution $p(s(\cdot, \cdot) | \hat{\mathcal{D}}_1)$.
 867

868 Because derivatives of a GP are again GPs, the posterior directly provides a probabilistic estimate
 869 of temporal and spatial partial derivatives,

$$870 \quad \frac{\partial s}{\partial t}(t, z), \quad \frac{\partial s}{\partial z}(t, z), \quad (21)$$

872 which we use as physics-aware latent features. We define the representation fields

$$873 \quad p(t, z) = \frac{\partial s}{\partial z}(t, z), \quad q(t, z) = \frac{\partial s}{\partial t}(t, z), \quad (22)$$

874 consistent with the synthetic string system, and evaluate (p, q) on a refined spatial grid of size $N_e \gg$
 875 N_z to obtain a dense, noise-robust surrogate of the real-world string dynamics.
 877

878 A.4 SYNTHESIZE DATASET USING MEAN PREDICTION OF GP-dPHS

880 This section describes how the version 4 data generator constructs spatiotemporal training
 881 pairs by simulating the mean field dynamics implied by a trained Gaussian-Process distributed
 882 Port-Hamiltonian system. The generator replaces the analytical wave operator with the posterior
 883 mean of two Gaussian Processes that approximate the Hamiltonian gradients and then integrates the
 884 induced first-order evolution to produce full fields of p and q .
 885

886 **Learned energy gradients and induced evolution** Let $u(x, t)$ denote displacement on $x \in [0, L]$
 887 and $t \in [0, T]$. The representation uses

$$888 \quad p(x, t) = \partial_t u(x, t), \quad q(x, t) = \partial_x u(x, t), \quad (23)$$

889 stacked channelwise into $\mathbf{x}(x, t) = [p(x, t), q(x, t)]$. The GP dPHS module comprises two Gaussian
 890 Processes trained on pairs (p, q) to regress the energy gradients $g_p = \partial E / \partial p$ and $g_q = \partial E / \partial q$.
 891 Denote their posterior means by

$$892 \quad \mu_p(p, q) = \mathbb{E}[g_p(p, q) | \mathcal{D}], \quad \mu_q(p, q) = \mathbb{E}[g_q(p, q) | \mathcal{D}], \quad (24)$$

893 where \mathcal{D} is the training set of derivative-integral pairs. The distributed Port-Hamiltonian evolution
 894 induced by these learned gradients is

$$895 \quad \partial_t p(x, t) = \partial_x \mu_q(p(x, t), q(x, t)), \quad \partial_t q(x, t) = \partial_x \mu_p(p(x, t), q(x, t)), \quad (25)$$

896 with fixed-end constraints applied at the spatial boundaries for the p channel. Equation (25) special-
 897izes the canonical dPHS structure to the GP mean and consequently yields a learned but physically
 898 structured flow on the representation.
 899

900 **Space-time discretization and solver** Discretize the spatial domain on S nodes with spacing Δx
 901 and the time horizon on T frames with step Δt . Let \mathbf{D}_x be the standard centered first-difference
 902 matrix on the interior nodes with Dirichlet boundary handling. Vectorize the state at time t as
 903 $\mathbf{x}(t) \in \mathbb{R}^{2S}$ with $\mathbf{x}(t) = [\mathbf{p}(t); \mathbf{q}(t)]$. The right-hand side used by the integrator is
 904

$$905 \quad \frac{d}{dt} \begin{bmatrix} \mathbf{p}(t) \\ \mathbf{q}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{D}_x \mu_q(\mathbf{p}(t), \mathbf{q}(t)) \\ \mathbf{D}_x \mu_p(\mathbf{p}(t), \mathbf{q}(t)) \end{bmatrix}, \quad (26)$$

906 where μ_p and μ_q are evaluated pointwise at each spatial node using the trained GP posterior means.
 907 A standard explicit adaptive ODE solver advances (26) over $[0, T \Delta t]$. After each step, boundary
 908 rows of \mathbf{p} are set to zero to enforce fixed ends, which preserves the intended physical interpretation
 909 of p at the string endpoints.
 910

912 **Initialization and conditioning convention** The generator samples smooth, band-limited initial
 913 profiles that satisfy the boundary conditions. The convention follows the version 3 setup for com-
 914 patibility with the downstream diffusion model. The first frame of the p channel is set to zero and
 915 the first two frames of the q channel are provided by the sampler. The solver then integrates (26)
 916 forward in time to obtain a complete trajectory $\{\mathbf{p}(t_j), \mathbf{q}(t_j)\}_{j=0}^{T-1}$ on the learning grid. This seeding
 917 strategy anchors the learned representation on early frames and stabilizes the subsequent generative
 918 steps.
 919

918 **Mean only synthesis and uncertainty handling** The evolution in (26) uses the posterior means
 919 μ_p, μ_q exclusively to synthesize ground truth. This choice yields a single, coherent physical
 920 trajectory per initialization without injecting GP sampling noise, which is desirable when creating
 921 supervisory targets for representation learning. The GP predictive variances are retained as optional
 922 quality indicators for out-of-distribution detection during generation and can be logged for later
 923 analysis but do not perturb the synthesized fields.

924
 925 **Packaging and normalization** For each realization the generator writes a four-channel tensor of
 926 shape $[4, S, T]$,

$$[\text{p_field}, \text{full_p}, \text{q_field}, \text{full_q}]. \quad (27)$$

927 The targets are $\text{full_p} = \mathbf{p}$ and $\text{full_q} = \mathbf{q}$. The conditioning channels encode the two initial
 928 time frames with zeros elsewhere and respect the initialization convention for p . A channelwise
 929 affine normalization maps the targets to a symmetric range with the same transform applied to the
 930 corresponding conditioning frames to maintain consistency.

934 A.5 SYNTHESIZE DATASET USING SAMPLE PREDICTION OF GP-dPHS

935
 936 **From limited observations to a generative physics prior.** Let $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ be a small set
 937 of observations used to train a Gaussian process distributed Port Hamiltonian system. The Gaussian
 938 process does not return a single function, it yields a posterior distribution over Hamiltonian energy
 939 functionals. We exploit this posterior to draw function realizations of the energy gradients and to
 940 simulate many physically consistent trajectories $\mathbf{x}(t, z) = [p(t, z), q(t, z)]^\top$ for diffusion training.

941
 942 **Random Fourier feature prior draw.** Consider a real, continuous, shift invariant kernel $k_f(\cdot, \cdot)$
 943 for the gradient field. By Bochner theory there exists a spectral density $\rho(\omega)$ such that

$$k_f(\mathbf{x}, \mathbf{x}') = \int_{\mathbb{R}^d} e^{i\omega^\top(\mathbf{x}-\mathbf{x}')} \rho(\omega) d\omega.$$

944 We approximate k_f by a random D dimensional feature map
 945

$$\phi(\mathbf{x}) = \sqrt{\frac{2}{D}} [\cos(\omega_1^\top \mathbf{x} + \beta_1), \dots, \cos(\omega_D^\top \mathbf{x} + \beta_D)]^\top,$$

946 with $\omega_j \sim \rho$ and $\beta_j \sim \text{Uniform}[0, 2\pi]$. This gives $k_f(\mathbf{x}, \mathbf{x}') \approx \phi(\mathbf{x})^\top \phi(\mathbf{x}')$. A pathwise prior
 947 sample is then

$$f_0(\mathbf{x}) = \phi(\mathbf{x})^\top \mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

948 which provides one random realization for the stacked energy gradients $f(\mathbf{x}) = [d\hat{E}/dp(\mathbf{x}), d\hat{E}/dq(\mathbf{x})]^\top$.

949
 950 **Posterior correction on a finite set.** Let $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ collect the training inputs and let \mathbf{y}
 951 collect the targets. Denote the learned mean by $\mu_f(\cdot)$. Define the covariance blocks

$$\mathbf{C}_{XX} = [k_f(\mathbf{x}_i, \mathbf{x}_j)]_{ij}, \quad \mathbf{C}_{\star X} = [k_f(\mathbf{x}_i^\star, \mathbf{x}_j)]_{ij}, \quad \mathbf{C}_{\star\star} = [k_f(\mathbf{x}_i^\star, \mathbf{x}_j^\star)]_{ij},$$

952 for any query set $X_\star = \{\mathbf{x}_j^\star\}_{j=1}^{N_\star}$. The random Fourier feature draw induces the vector $f_0(X)$ and
 953 its evaluation on X_\star , written $f_0(X_\star)$. A function sample from the posterior on X_\star is obtained by
 954 the exact conditioning correction

$$f(\mathbf{x}^\star) = \mu_f(\mathbf{x}^\star) + f_0(\mathbf{x}^\star) + \mathbf{C}_{\star X} (\mathbf{C}_{XX} + \sigma_n^2 \mathbf{I})^{-1} (\mathbf{y} - \mu_f(X) - f_0(X)), \quad (28)$$

955 applied entrywise to both gradient components. Equation (28) warps the prior draw so that it agrees
 956 with the observations in a kernel consistent manner, and it yields an exact posterior sample in the
 957 finite dimensional sense induced by X and X_\star .

972 **Insertion into the distributed Port Hamiltonian dynamics.** The sampled gradients define the
 973 variational derivative $\delta_x \hat{\mathcal{H}}(\cdot) = [d\hat{E}/dp(\cdot), d\hat{E}/dq(\cdot)]^\top$. On the spatial grid we assemble the semi
 974 discrete evolution

$$975 \quad \frac{d}{dt} \begin{bmatrix} \mathbf{p}(t) \\ \mathbf{q}(t) \end{bmatrix} = \mathbf{A} \delta_x \hat{\mathcal{H}}(\mathbf{p}(t), \mathbf{q}(t)) + \mathbf{B} \mathbf{u}(t),$$

976 where \mathbf{A} is the discrete representation of $J - R$ and boundary conditions, and \mathbf{B} maps inputs. The
 977 right hand side is evaluated by applying centered differences in the interior and consistent one sided
 978 stencils at the boundaries to the sampled gradient fields. With initial state fixed by the first two
 979 frames, we integrate in time with an adaptive Runge Kutta scheme to obtain the trajectories

$$981 \quad \text{full_p} = \{\mathbf{p}(t_i)\}_{i=1}^{N_t}, \quad \text{full_q} = \{\mathbf{q}(t_i)\}_{i=1}^{N_t}.$$

983 **Assembly of conditioning and targets.** The conditioning channels keep only the first two frames,

$$984 \quad \mathbf{p_field}(:, :, 1:2) = \text{full_p}(:, :, 1:2), \quad \mathbf{q_field}(:, :, 1:2) = \text{full_q}(:, :, 1:2),$$

985 and are zero elsewhere. Stacking $[\mathbf{p_field}, \text{full_p}, \mathbf{q_field}, \text{full_q}]$ yields a tensor of shape $[4, N_z, N_t]$
 986 that matches the diffusion model interface.

988 **Why this sample based generator helps representation learning.** Drawing $\delta_x \hat{\mathcal{H}}$ from the posterior
 989 produces a family of Hamiltonian consistent vector fields that reflect epistemic uncertainty
 990 learned from \mathcal{D} . The resulting collection of simulated trajectories covers a diverse yet physically
 991 structured region of the state space. This enlarged dataset serves as supervision for the diffusion
 992 objective, which we further weight by the predictive uncertainty, thereby aligning the learned score
 993 field with the Port Hamiltonian manifold while remaining data efficient.

995 **Implementation notes in v5.0.** The code fixes the trained hyperparameters, constructs the random
 996 Fourier feature map, draws \mathbf{w} to obtain f_0 , and applies the posterior correction in (28) on the grid
 997 required by the discrete operator. Each dataset shard records the random seeds, solver tolerances,
 998 grid sizes (N_z, N_t) , and identifiers of the hyperparameters to ensure exact reproducibility of the
 999 sampled gradient fields and of the generated trajectories.

1000 A.6 DISPLACEMENT RECONSTRUCTION FROM (p, q) AND VALIDATION PROTOCOLS

1002 **State, operators, and learned surrogates.** On a spatial grid \mathcal{Z} and discrete time index $t = 1003$
 1004 $0, \dots, T$, the port-Hamiltonian state is $(p_t(z), q_t(z))$. The GP-dPHS learns the Hamiltonian
 1005 gradients as functions on the grid, yielding surrogates $\hat{g}_p(p, q) \approx \partial H / \partial p$ and $\hat{g}_q(p, q) \approx$
 1006 $\partial H / \partial q$ (implemented by the two trained heads loaded from `model_dp_trained.pth` and
 1007 `model_dq_trained.pth`). In the canonical wave-form system, the continuous-time dynamics
 1008 are $\dot{q} = \partial H / \partial p$ and $\dot{p} = -\partial H / \partial q$; we therefore define $\widehat{dq}(p, q) := \hat{g}_p(p, q)$ and $\widehat{dp}(p, q) :=$
 1009 $-\hat{g}_q(p, q)$. Boundary handling follows the PDE module used during training (Dirichlet by default
 1010 in our code), and the time step Δt is read from the dataset metadata.

1011 **Displacement reconstruction (rollout).** Given two initial frames (p_0, q_0) and (p_1, q_1) on \mathcal{Z} , we
 1012 reconstruct the entire displacement trajectory $\{q_t\}_{t=2}^T$ by iterating an explicit, symplectic first-order
 1013 update (vectorized over $z \in \mathcal{Z}$):

$$1014 \quad q_{t+1} = q_t + \Delta t \widehat{dq}(p_t, q_t), \quad p_{t+1} = p_t + \Delta t \widehat{dp}(p_t, q_t), \quad t = 1, \dots, T-1.$$

1015 In practice, we: (i) load the GP-dPHS checkpoints and the dataset item containing *initial* two frames
 1016 (`p_init`, `q_init`); (ii) standardize/unstandardize using the same statistics as training; (iii) loop
 1017 the update above for $T-2$ steps; (iv) enforce the boundary condition after each step. The recon-
 1018 structed displacement is the sequence $\{q_t\}$.

1020 **How this appears in the codebase.** Data are formatted as four channels (`p_full`, `p_init`,
 1021 `q_full`, `q_init`) by the dataset scripts (`create_string_dataset_v5.py`). The GP
 1022 models are defined and loaded from `train_gp_phs_v35.py`, while the port-Hamiltonian resi-
 1023 duals and utilities reside in `pde.py` and `residuals_string.py`. The diffusion model
 1024 (`unet_model.py` with sampling utilities in `denoising_utils.py/main.py`) consumes the
 1025 same conditioning (`p_init`, `q_init`) to generate trajectory samples that are evaluated against
 the ground truth produced by the GP-dPHS simulator.

1026
1027 **Validation protocol.** We validate two aspects: (A) the *physics fidelity* of GP-dPHS rollouts; (B)
1028 the *data efficiency and accuracy* of the diffusion model trained on GP-dPHS trajectories.

1029 **1. GP-dPHS accuracy.** For a set of random initializations, compare $\{q_t\}$ reconstructed by
1030 the GP-dPHS integrator to the reference simulator (same grid and Δt). Report MSE scores.

1071
1072 **Figure 8: Validation of GP-dPHS performance and PHDME performance.** The left column is the
1073 ground-truth dynamics generated by A.1, the middle column is the forecast made by the proposed
1074 method, and the last column is the GP-dPHS prediction based on the initial conditions. Key take-
1075 away: Both GP-dPHS and PHDME have learned the correct dynamic patterns, but not 100% perfect.
1076 The red residual comparison figures show the differences, notice that the magnitude of the residual
1077 is very low.

1078 **2. Reconstruction of the displacement using the generated states.** Train the diffusion
1079 model in using the state and state derivatives of the system, which is the key to getting

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

rid of the exact function of movements. We want to validate that the proposed method can reconstruct the displacement over time by using the predicted state.

Figure 9: This is the reconstruction based on the derivative field, the blue line is the movement (displacement) of the soft string system using a faithful physics simulator. The red dot line is the one reconstructed based on the derivative field using the rollout that has been mentioned above. Key takeaway: The state and state derivative method is applicable to the physics-informed machine learning.

Notes for exact reproducibility. Use the saved checkpoints `model_dp_trained.pth` and `model_dq_trained.pth`; read `metadata.json` for Δt , grid size, and normalization; ensure the same boundary operator as in training; and keep the discretization identical to the equations above so that the reconstruction and training distributions match. You can run the `train_gp-phs-v35.py` file to get the GIF of the reconstruction over time.

A.7 REPRESENTATION LEARNING OF PHDME

Instantiation of the physics-informed loss and uncertainty weighting. Equation (4) in the main text uses an abstract physics regularizer $\tilde{\mathcal{R}}_{\text{phys}}$ with a generic normalization factor $|\Omega|$. In our implementation, this abstract notation is instantiated as a variance-weighted residual over the discrete spatiotemporal grid and the training mini-batch.

For each denoised prediction $\hat{\mathbf{A}}^{(0)} = f_{\theta}([\mathbf{A}^{(m)}, \mathbf{c}_{\text{init}}], m)$ at diffusion step m , the model outputs two fields on a regular one-dimensional grid,

$$p_{\theta}(t_i, x_j), \quad q_{\theta}(t_i, x_j) \in \mathbb{R}, \quad i = 0, \dots, N_t - 1, \quad j = 0, \dots, N_x - 1,$$

where p_{θ} and q_{θ} are the predicted momentum and strain for the string, and N_t, N_x are the numbers of temporal and spatial grid points. During training we process a mini-batch of size B , so that the discrete domain actually used inside the code is

$$\Omega_{\text{st}} = \{1, \dots, B\} \times \{0, \dots, N_t - 1\} \times \{0, \dots, N_x - 1\}, \quad |\Omega_{\text{st}}| = BN_tN_x,$$

and the abstract factor $1/|\Omega|$ in equation (4) is implemented as an average over all elements of Ω_{st} .

The GP-dPHS module exposes a Hamiltonian-based representation of the state through the learned energy gradients

$$\delta_{\mathbf{x}} \hat{H}(p, q) = \begin{bmatrix} \mu_p(p, q) \\ \mu_q(p, q) \end{bmatrix},$$

1134 where μ_p and μ_q denote the GP posterior means for $\partial E/\partial p$ and $\partial E/\partial q$, respectively. Specializing
 1135 the distributed port-Hamiltonian structure to the one-dimensional string yields the continuous
 1136 dynamics
 1137

$$1138 \quad \partial_t p(x, t) = \partial_x \mu_q(p(x, t), q(x, t)), \quad \partial_t q(x, t) = \partial_x \mu_p(p(x, t), q(x, t)).$$

1139 On the discrete grid, we approximate derivatives using second-order finite differences. Let Δt and
 1140 Δx denote the time and space steps. For each batch index b , time index i , and spatial index j , the
 1141 discrete time derivatives of the predicted fields are
 1142

$$1143 \quad \Delta_t p_\theta^b(i, j) \approx \frac{p_\theta^b(t_{i+1}, x_j) - p_\theta^b(t_{i-1}, x_j)}{2 \Delta t}, \quad \Delta_t q_\theta^b(i, j) \approx \frac{q_\theta^b(t_{i+1}, x_j) - q_\theta^b(t_{i-1}, x_j)}{2 \Delta t},$$

1145 with forward and backward stencils used for $i = 0$ and $i = N_t - 1$. Spatial derivatives of the GP
 1146 energy gradients are defined analogously,
 1147

$$1148 \quad \Delta_x \mu_q^b(i, j) \approx \frac{\mu_q^b(t_i, x_{j+1}) - \mu_q^b(t_i, x_{j-1})}{2 \Delta x}, \quad \Delta_x \mu_p^b(i, j) \approx \frac{\mu_p^b(t_i, x_{j+1}) - \mu_p^b(t_i, x_{j-1})}{2 \Delta x},$$

1150 again with one-sided stencils at the spatial boundaries $j = 0$ and $j = N_x - 1$. Given these discrete
 1151 operators, the local port-Hamiltonian residuals at $(b, i, j) \in \Omega_{\text{st}}$ are
 1152

$$1153 \quad r_p^b(i, j) = \Delta_t p_\theta^b(i, j) - \Delta_x \mu_q^b(i, j), \quad r_q^b(i, j) = \Delta_t q_\theta^b(i, j) - \Delta_x \mu_p^b(i, j).$$

1154 Because the GP-dPHS is Bayesian, it also provides predictive variances for the energy gradients. At
 1155 each point (b, i, j) we obtain
 1156

$$1157 \quad \sigma_q^2(b, i, j) = \text{Var}[\partial E/\partial q \mid p_\theta^b(t_i, x_j), q_\theta^b(t_i, x_j)], \quad \sigma_p^2(b, i, j) = \text{Var}[\partial E/\partial p \mid p_\theta^b(t_i, x_j), q_\theta^b(t_i, x_j)],$$

1158 from the GP posterior. To obtain an uncertainty measure for the spatial derivatives $\Delta_x \mu_q$ and $\Delta_x \mu_p$,
 1159 the implementation propagates these variances through the finite-difference stencil. For example,
 1160 the variance of the central-difference approximation to $\partial_x(\partial E/\partial q)$ at an interior spatial index j is
 1161 approximated as
 1162

$$1163 \quad \sigma_{q,x}^2(b, i, j) \approx \frac{\sigma_q^2(b, i, j+1) + \sigma_q^2(b, i, j-1)}{4 \Delta x^2},$$

1164 with analogous expressions for $\sigma_{q,x}^2$ and $\sigma_{p,x}^2$ at the boundaries and for the $\partial E/\partial p$ channel. These
 1165 quantities are computed in the code as `var_dEdq_dx` and `var_dEdp_dx`.
 1166

1167 The uncertainty-aware physics loss used in all string experiments is then
 1168

$$1169 \quad \tilde{\mathcal{R}}_{\text{phys}}(\hat{\mathbf{A}}^{(0)}; \mathbf{c}_{\text{init}}) = \frac{1}{|\Omega_{\text{st}}|} \sum_{(b, i, j) \in \Omega_{\text{st}}} \left(w_q(b, i, j) |r_p^b(i, j)|^2 + w_p(b, i, j) |r_q^b(i, j)|^2 \right) + \lambda_{\text{bc}} B(p_\theta, q_\theta; \mathbf{c}_{\text{init}}),$$

1170 where $B(\cdot; \mathbf{c}_{\text{init}})$ is the boundary and conditioning penalty described in Section A.5, and the weights
 1171

$$1173 \quad w_q(b, i, j) = \frac{1}{\sigma_{q,x}^2(b, i, j) + \varepsilon}, \quad w_p(b, i, j) = \frac{1}{\sigma_{p,x}^2(b, i, j) + \varepsilon},$$

1172 are inverse variances with a small numerical stabilizer $\varepsilon > 0$. In the actual implementation this
 1173 expression is computed as the mean over Ω_{st} , that is, the factor $1/|\Omega|$ in equation (4) is concretely
 1174

$$1178 \quad \frac{1}{|\Omega_{\text{st}}|} = \frac{1}{BN_t N_x},$$

1180 and the per-point weights w_p, w_q are derived from the GP posterior variance at each grid location.
 1181

1182 From a representation-learning perspective, the GP-dPHS defines a Hamiltonian energy represen-
 1183 tation $\delta_x \hat{H}$ on the space of string states. The uncertainty-weighted residual above encourages the
 1184 denoiser’s predi

1185 A central component of PHDME is the use of Gaussian Processes to learn the energy representation
 1186 of the distributed port-Hamiltonian string system from limited data. Unlike purely data-driven mod-
 1187 els that fit trajectories directly, our GP-dPHS surrogates approximate the underlying gradients of the
 1188 Hamiltonian, dE/dp and dE/dq , providing a structured representation aligned with physical laws.

1188
 1189 **Learning energy gradients.** The training data consist of spatiotemporal fields of momentum p
 1190 and strain q generated from the wave system. From these, we compute integrated derivatives that
 1191 serve as training targets for the GP models. Two Gaussian Processes are trained jointly: one learns
 1192 the mapping $(p, q) \mapsto dE/dp$ and the other $(p, q) \mapsto dE/dq$, thereby embedding the system into
 1193 an implicit energy functional. This construction encodes the Hamiltonian structure directly into the
 1194 representation space.

1195 **Visualization of learned surfaces.** Figure 10 show the learned GP surfaces for dE/dp and
 1196 dE/dq , respectively, overlaid with the training data. Even with only 1640 training data points drawn
 1197 from a single Hamiltonian-consistent trajectory, the GP recovers smooth and coherent energy gradi-
 1198 ents across the (p, q) domain. This confirms that the representation is not tied to specific trajectories,
 1199 but generalizes across state space.

1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215 Figure 10: GP-learned representation of dE/dp and dE/dq (partial derivative of energy) with train-
 1216 ing data points. The limited observations lie on the surface of the GP plane, indicating the correct
 1217 and smooth energy representation of the system.

1218
 1219
 1220 **Correctness of the PHDME prediction.** To verify that the proposed PHDME respects the learned
 1221 Hamiltonian structure, we compute the Hamiltonian energy of both the ground-truth solution and
 1222 the PHDME prediction for each generated trajectory using $H(p, q) = \int (p^2 + q^2)/2 dx$. Figure 11
 1223 shows a representative test sample: the energy curve of the PHDME prediction (red, dotted) almost
 1224 perfectly overlaps with the ground-truth ODE solver (black, solid), stays strictly positive, and does
 1225 not exhibit any artificial growth over time. Since the underlying string simulator does not include an
 1226 explicit damping term, the theoretically correct behavior is energy conservation; numerically, this
 1227 manifests as an energy profile that is effectively constant and at most weakly non-increasing due
 1228 to discretization error. The close match between the two curves indicates that PHDME does not

1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240 Figure 11: PHDME follows the same non-increasing Hamiltonian profile as the simulator, demon-
 1241 strating adherence to the underlying physics.

1242 inject spurious energy and its latent representation faithfully follows the same Hamiltonian law as
 1243 the governing dPHS, rather than merely fitting snapshots in a purely data–driven manner.
 1244

1245 **Role in PHDME.** These GP-learned energy gradients form the backbone of the physics-informed
 1246 diffusion model. Instead of constraining the generative model with explicit PDE coefficients,
 1247 PHDME leverages the GP posterior as a flexible representation of admissible energy functionals.
 1248 During diffusion training, the GP structure enters the physics loss to guide denoising steps toward
 1249 physically consistent dynamics. This tight coupling ensures that the learned latent dynamics reflect
 1250 both data evidence and energy-based physics, enabling sharper generalization to unseen conditions.
 1251

1252 A.8 CONFORMAL PREDICTION, EXCHANGEABILITY, AND EMPIRICAL DIAGNOSTICS.

1253 There are two stages of uncertainty quantification setting in proposed PHDME pipeline, one is the
 1254 deep prior uncertainty based on GP-dPHS to inform the training process of the data uncertainties,
 1255 the other is calibrated conformal prediction. We equip PHDME with split conformal prediction
 1256 on the scalar trajectory error in order to obtain distribution-free uncertainty sets for the learned
 1257 spatio–temporal representation.
 1258

1259 **Conformal prediction based on exchangeability.** Conformal calibration is performed
 1260 on a held out subset of the synthetic PDE dataset that is not used for training the
 1261 diffusion model. The calibration and test subsets are constructed by random splitting
 1262 of the same simulator generated corpus and are then processed by the same evalua-
 1263 tion pipeline, so that the underlying pairs (c_{init}, A^*) are i.i.d. and hence exchangeable
 1264 across both splits. In `evaluate_conformal_prediction_fast.py`, each batch pro-
 1265 vides tensors of shape $(B, 4, X, T)$; for a given initial condition the conditioning channels
 1266 $[A^{(0)}, c_{\text{init}}]$ are repeated M times along the batch dimension, and the optimized sampler
 1267 `DenoisingDiffusionLite.p.sample_loop` is run once with i.i.d. Gaussian noise initial-
 1268 ization of shape $(BM, 2, X, T)$, producing M stochastic samples that are conditionally independent
 1269 and identically distributed given the initial condition. The resulting mean squared error scores are
 1270 computed over space and time for each draw, stored as a flat array of length $N \times M$. We treat these
 1271 scores as an exchangeable sequence when computing overall coverage and per trajectory coverage
 1272 statistics. The conformal boundary $\tau_{1-\alpha}$ is obtained beforehand by running a separate calibration
 1273 script that sets $\tau_{1-\alpha}$ to the empirical $(1 - \alpha)$ quantile of the calibration scores. See 12 for the main
 1274 experiment details we choose $\alpha = 0.1$ and $M = 100$, which yields 10 000 draws on both calibration
 1275

1294 Figure 12: Calibration and test MSE distributions with the fixed conformal boundary $\tau_{1-\alpha}$. Key
 1295 takeaway: The calibrated score strictly holds for an on-the-fly unseen test set, where the test set data
 is never seen in the calibration set.

1296 and test sets, and the summary file reports an overall coverage of 90.01% on calibration and 95.00%
 1297 on the held out test trajectories, indicating a slightly conservative predictor on unseen data.
 1298

1299 **Conformal prediction coverage analysis.** Figure 13 visualizes how well our conformal prediction
 1300 bands are calibrated across a range of target coverages. The horizontal axis shows the nominal
 1301 coverage level $1 - \alpha$ used when constructing the bands, and the vertical axis reports the empirical
 1302 coverage, that is, the fraction of trajectories whose ground-truth paths fall inside the predicted bands.
 1303 The red dashed diagonal corresponds to perfect calibration, where empirical and nominal coverages
 1304 coincide. Blue circles denote results on the calibration set used to fit the conformal threshold and
 1305 lie almost exactly on this diagonal, confirming that the procedure is implemented correctly. Green
 1306 squares show performance on a disjoint test set: the curve remains close to the diagonal and is
 1307 consistently above it, indicating that our intervals are slightly conservative but never under-cover.
 1308 In particular, at the target level $1 - \alpha = 0.9$ the empirical test coverage is around 0.95, demon-
 1309 strating that the conformal layer generalizes to unseen trajectories and provides reliable uncertainty
 1310 quantification for PHDME forecasts.

1311
 1312 Figure 13: Take-away: The conformal prediction bands are well calibrated and slightly conservative,
 1313 reliably achieving at least the desired coverage on unseen test trajectories.
 1314

1315 A.9 NEURALODE BASELINE ANALYSIS

1316 In our experiments, NeuralODE (Chen et al., 2018) serves as a purely data-driven baseline that
 1317 has no access to the underlying Hamiltonian or PDE structure. The model parameterizes a latent
 1318 vector field and is trained only to minimize prediction error on observed trajectories, without any
 1319 physics-informed regularization or constraints. As a consequence, NeuralODE can only leverage
 1320 the limited set of initial conditions and time horizons present in the training split; it cannot exploit
 1321 knowledge of conserved quantities or boundary conditions to interpolate or extrapolate beyond this
 1322 regime. We therefore evaluate it on a more challenging setting where the test trajectories, including
 1323 the real-world spring dataset, exhibit different initial displacements and modal compositions from
 1324 those seen during training.

1325 **Visualization of the trained NeuralODE.** To verify that the baseline is properly optimized, Figure
 1326 14 visualizes NeuralODE rollouts on a representative trajectory drawn from the training distribution.
 1327 Each panel shows a space-time heat map of the momentum field p and configuration field
 1328 q , comparing ground truth (left) with NeuralODE predictions (right). Along both spatial and
 1329 temporal axes, the predicted wave fronts, phases, and amplitudes closely match the reference solution,
 1330 indicating that the latent ODE has learned a good representation of the dynamics for the specific
 1331 initial conditions it was trained on. Quantitatively, this corresponds to low reconstruction error and

1350 qualitatively smooth, coherent patterns, confirming that the failure modes discussed below are not
 1351 due to underfitting.
 1352

Figure 14: NeuralODE accurately reconstructs the training-distribution trajectory, with predicted p and q fields closely matching the ground-truth patterns for seen initial conditions.

1370

1371 **Comparison between NeuralODE and PHDME** Figure 15 reports the same visualization for an
 1372 unseen test trajectory with a different initial condition and energy level. In this regime, NeuralODE
 1373 collapses: the predicted p and q fields quickly saturate to nearly constant values, lose the oscillatory
 1374 structure present in the ground truth, and fail to capture the spatial propagation of the wave. The
 1375 learned latent dynamics clearly do not generalize across initial conditions, despite performing well
 1376 on the training distribution. In contrast, PHDME, shown in Figure 16, produces a rollout for the
 1377 same unseen initial condition whose space–time pattern closely aligns with the ground truth in both
 1378 phase and amplitude. This suggests that the Hamiltonian-informed latent representation learned by
 1379 PHDME captures invariants that transfer across initial conditions, whereas the purely data-driven
 1380 NeuralODE representation overfits to the finite set of observed trajectories and lacks the inductive
 1381 bias needed for robust out-of-distribution generalization.

Figure 15: NeuralODE fails on the unseen initial conditions during test time. The same prediction
 of PHDME is on the next page.

1397

1398

1399

1400

1401

1402

1403

Figure 16: Credit to the physics-informed structure, the proposed PHDME makes relatively close predictions on the unseen initial condition.

A.10 FUTHER DISCUSSION AND LIMITATIONS

Limitations under extreme scales. While the GP-based representation is robust to moderate data scarcity, it exhibits limitations when the dynamics evolve near extremely small state magnitudes. In these regimes, the training data provide only sparse coverage of the (p, q) space, and the GP posterior surfaces tend to flatten, resulting in poor approximation of the true energy gradients. Consequently, when the diffusion model is conditioned on such representations, generated samples may fail to capture fine-scale oscillatory behavior. This effect is visible in the tails of the learned surfaces, where variance grows and predictions become less structured.

Relative performance. Despite these limitations, PHDME consistently outperforms non-physics baselines and ablated variants. Even when extreme scales introduce local inaccuracies, the GP-informed energy representation provides global structural regularization, preventing the generative process from drifting into unphysical states. As a result, the model produces sharper and more reliable forecasts on average, while the baselines either overfit to data trajectories or violate physical constraints. Thus, although failure cases exist at vanishingly small state magnitudes, the method achieves overall superior representation quality and downstream predictive performance.

Figure 17: Under extremely small scale, the performance of the method may be compromised.

Method	100 samples	1,000 samples	10,000 samples	Avg. speed (s/sample)
GP-dPHS	4:40	1:06:40	11:23:20	4.1
PHDME	20s	3:21	33:23	0.2

Table 2: Generation speed comparison between GP-dPHS and PHDME. Reported time to generate different numbers of samples and the corresponding average. The PHDME is measured on a standard grid with 50 diffusion steps, while GP-dPHS is evaluated at a 640 square grid to give good derivative output. Otherwise, the long-horizon rollout of GP-dPHS would compromise the accuracy.

1458 **Ablation: Selecting GP-dPHS as the Deep Prior.** To isolate the benefit of using a GP-dPHS as
1459 the guiding prior for the diffusion model, we conduct a controlled ablation in which we replace the
1460 GP-dPHS energy-gradient models with an oracle quadratic Hamiltonian estimator. Using the *same*
1461 training data, we perform linear regression to obtain $\partial H/\partial p$ and $\partial H/\partial q$, which corresponds exactly
1462 to fitting a global quadratic Hamiltonian. Even under this favorable assumption for the baseline,
1463 the GP-dPHS prior achieves a markedly lower MSE (0.1818 compared to 0.2967), indicating that
1464 nonparametric learning of variational derivatives provides a substantially stronger inductive bias
1465 than enforcing a fixed quadratic form. This observation aligns with the broader motivation of our
1466 method: in realistic settings, the Hamiltonian is unknown and seldom quadratic, so prescribing a
1467 closed-form energy is both restrictive and brittle. GP-dPHS instead learns a flexible representation
1468 of the underlying energy landscape, offering a more informative and generalizable deep prior for
1469 physics-informed diffusion models.
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511