
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXTRACTING RULE-BASED DESCRIPTIONS OF ATTEN-
TION FEATURES IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mechanistic interpretability strives to explain model behavior in terms of bottom-up
primitives. The leading paradigm is to express hidden states as a sparse linear
combination of basis vectors, called features. However, this only identifies which
text sequences (exemplars) activate which features; the actual interpretation of fea-
tures usually requires subjective and time-consuming inspection of these exemplars.
This paper advocates for a different solution: rule-based descriptions that match
token patterns in the input and correspondingly increase or decrease the likelihood
of specific output tokens. Specifically, we extract rule-based descriptions of SAE
features trained on the outputs of attention layers. While prior work treats the
attention layers as an opaque box, we describe how it may naturally be expressed
in terms of interactions between input and output features, of which we study three
types: (1) skip-gram rules of the form “[Canadian city] . . . speaks → English”,
(2) absence rules of the form “[Montreal] . . . speaks ̸→ English,” and (3) counting
rules that toggle only when the count of a word exceeds a certain value or the
count of another word. Absence and counting rules are not readily discovered by
inspection of exemplars, where manual and automatic descriptions often identify
misleading or incomplete explanations. We then describe a simple approach to
extract these types of rules automatically from a transformer, and apply it to GPT-2
small. We find that a majority of features may be described well with around 100
skip-gram rules, though absence rules (2) are abundant even as early as the first
layer (in over a fourth of features). We also isolate a few examples of counting rules
(3). This paper lays the groundwork for future research into rule-based descriptions
of features by defining them, showing how they may be extracted, and providing a
preliminary taxonomy of some of the behaviors they represent.

1 INTRODUCTION

Most people in Vancouver speak English.

... [Canadian city] ... speak --> English

... [Montreal] ... speak --> English French

Exemplars unclear: 
Cities? Canada? Languages?

Formal rules

Canada has amazing food!

Montreal speaks French.

Exemplar
inspection

Automatic rule
extraction

Figure 1: SAE features are usually explained
via examplars, which are subjective and hard
to interpret. We approximate them with rules
that promote or suppress the feature.

A growing body of work under the umbrella of mech-
anistic interpretability seeks to dissect and under-
stand the behavior of transformer language models
(LMs). Starting from the investigation of specific
computational motifs like induction heads (Elhage
et al., 2021; Olsson et al., 2022), research in this
area has largely converged to two popular methods
of studying a transformer. First, by isolation of a
“circuit” formed by MLP layers and attention heads
that implements a specific trait (e.g., addition) (Meng
et al., 2022; Geva et al., 2023)—and second, by the
use of Sparse Autoencoders (SAEs) to extract feature
vectors from the transformer hidden states (Bricken
et al., 2023; Huben et al., 2024). The latter has be-
come the predominant paradigm, but the interpreta-
tion of feature vectors still relies on manual (or LM-assisted) inspection of exemplars with high
feature activations (Fig. 1). Such interpretation is subjective and often incomplete or inaccurate.
Polysemanticity (Elhage et al., 2022) of features further frustrates attempts to interpret feature exem-
plars. There have also been some preliminary attempts to extract circuits of SAE features: graphs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Skip-gram rules

Absence rules

In most people speakCanadaIn most people speak

English

Canada

Attention layer

...[Canada/US] ... [speak/talk]

Counting rules

...[Canada/US] ... [speak/talk]

but NOT

...[Montreal]...[speak/talk]

#(...[Canada/US] ... [speak/talk])

>

#(...[Montreal]...[speak/talk])
In most people speakCanada

q = [speak/talk]

k = [Canada/US]

v = [say “English”]

Sparse
feature
vectors

Black-box attention layer
Extract rules as global

explanationsAnalyze sparse feature interactions

Figure 2: Given an attention layer in a transformer language model (left), our goal is to explain each
output feature as an explicit function of input features (center), and provide a global description of
these functions in terms of formal rules (right).

specifying how features from lower layers combine to activate features at higher layers (Marks et al.,
2024; Dunefsky et al., 2024b; Ge et al., 2024; Ameisen et al., 2025). However, these methods have
treated the attention component of the transformer as a constant, explaining how features interact in
a given prompt based on the observed attention pattern, but they do not explain how the attention
pattern itself arises from lower-layer features.

In this paper, we advocate for a different approach—we study the same SAE features as prior work,
but extract inherently interpretable descriptions that take the form of symbolic, human-readable rules.
Our task is to prescribe a framework of rules that is expressive enough to approximate the computation
in a transformer, but also enables efficient extraction of said rules from it. We tackle this challenge in
the context of the attention layers in a transformer. Assuming that one has already extracted features
from the hidden states before and after the attention layer, we express the head’s computation as a
weighted sum over attention between features from one position to another (Figure 2). Each term can
be interpreted as matching a template [a] . . . [b] in the input, and the weights correspond to increasing
or decreasing the likelihood of the corresponding output feature. We identify three types of rules
from these interactions: (1) skip-gram rules of the form “[Canadian city] . . . speaks → English”
that promote “English when the pattern [Canadian city] . . . speaks” is observed, (2) absence rules
“[Montreal] . . . speaks ̸→ English” that suppress the production of English following the pattern, and
(3) count-based rules that arise from competition between rules of the form (1) and (2), and produce
a token only when a certain pattern is more frequent than another. It is noteworthy that absence and
counting rules are not easily discoverable by inspecting exemplars alone.

We present an empirical pipeline to extract these features from SAEs trained on an attention head
automatically. Upon deployment of this pipeline to GPT-2 small (Radford et al., 2019), we find that
skip-gram features already achieve a good approximation of several attention heads—especially in
early layers. We also identify cases where they fail: later layers require longer rules, and we find
sophisticated behaviors such as distractor suppression (where the presence of one feature inhibits
the expected response to another) and counting operations (where outputs depend on the frequency
rather than mere presence of input features). In fact, both behaviors are observed as early as the first
layer—with over a third of skip-gram features being accompanied by at least one distractor. Our
experiments demonstrate clear potential for rule-based features to explain language model behavior.
We hope future research builds on the groundwork laid here to extract a more complete set of rules.

2 BACKGROUND

Transformer language models. The transformer (Vaswani et al., 2017) is a neural network archi-
tecture for processing sequences. It consists of a composition of feed-forward layers, which process
features at a single position in the sequence, and multi-headed attention layers, which combine
information from multiple positions in the sequence. We focus on decoder-only transformer language
models (LMs), which take a sequence of tokens as input and output a probability distribution over the
next token. Our focus in this work is on individual heads in the attention layer, which map a sequence

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of embeddings x1, . . . ,xt ∈ Rdmodel to a sequence y1, . . . ,yt ∈ Rdhead , where the output is given by:

yt =
∑
i≤t

at,iWV xi at,i =
exp(x⊤

t W
⊤
QWKxi)∑

i≤t exp(x
⊤
t W

⊤
QWKxi)

The weights WK ,WQ,WV ∈ Rdhead×dmodel are referred to as the key, query, and value projection
matrices, respectively; at,i denotes the attention from position t to position i; and dhead = dmodel/h,
where h is the number of attention heads per layer.

Sparse autoencoder. Each input xi can be decomposed into a weighted sum over input features1:

xi =

n∑
j=1

fj(xi)dj + x̄i, (1)

where the input activations fj(xi) ≜ σ(xT
i d̃j) ∈ (0, 1) are given by the sigmoid of its projection

along an up-projection vector associated with feature j. We will omit the irreducible error x̄i in
subsequent discussions since our analysis does not depend on it. The vectors dj , d̃j are jointly
trained to minimize a reconstruction loss between the two sides of Equation 1 subject to a sparsity
penalty. Interested readers may refer to, e.g., Bricken et al. (2023) for more details. Similarly, we can
assume that yt has been decomposed into a weighted sum over output features {uj , ũj}nj=1 (with
corresponding output activations).

3 RULE-BASED DESCRIPTIONS OF ATTENTION FEATURES

In this section, we rewrite the computation of an attention head as a weighted sum of terms that
represent the promotion or suppression of output tokens based on interactions of feature pairs. We
then advance an interpretation of this interaction

3.1 DECOMPOSING ATTENTION FEATURES

Expressing output activations in terms of input activations. When is σ(yT
t u) high for an output

feature u? We start by rewriting the output activation in terms of the input activations:

σ(yT
t u) = σ

∑
i≤t

at,ix
T
i W

T
V u

 = σ

 n∑
i≤t
j=1

at,ifj(xi)d
T
j W

T
V u

 ≡ σ

 n∑
i≤t
j=1

at,ifj(xi)d
T
j W

T
V u


(2)

where the attention weights at,i can themselves be expressed in terms of the input activations:

at,i ∝ exp
(
x⊤
t W

⊤
QWKxi

)
= exp

 n∑
j,k=1

fj(xt)fk(xi)d
⊤
j W

⊤
QWKdk

 (3)

For ease of exposition, we introduce the following shorthand notation:

S(j) = d⊤
j W

⊤
V u, A(j, k) = d⊤

j W
⊤
QWKdk.

Interpretation of Equations 2 and 3. Equation 2 tells us that each pair (dj ,u) of input-output
features either promotes or discourages the output to lie along yt, depending on whether the sign
of S(j) is positive or negative. These two cases may be interpreted as rules [dj] . . . [u] → yt or
[dj] . . . [u] ̸→ yt. These rules depend recursively upon the descriptions of dj and u, and are abstract
versions of skip-gram and absence rules. We illustrate these rule types in Figure 3. We call these
output-value rules since they arise from the output-value interaction in Equation 2. Further, the extent
of the promotion or suppression depends on several factors.

1Please note the terminology: we always use input/output embeddings to refer to xi,yt, and features to refer
to dj ,uj . Activations refer to the sigmoid-rectified projections onto d̃j , ũj .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In most people speak

English

Canada
q = [speak/talk]

k = [Canada/US]

v = [say “English”]

Sparse
feature
vectors

Skip-gram rule
...[Canada/US] ... [speak/talk] → English

In , most people speak

French

CanadaMontreal
q = [speak/talk]

Absence rule
...[Montreal] ... [speak/talk] ↛ English

k = [Montreal]

v = [don’t say
“English”]

#(...[Toronto/Vancouver/...] ... [speak/talk])

 >

#(...[Montreal]...[speak/talk])

inPeople ,, and Montreal speak

English

Toronto Vancouver
Counting rule

Figure 3: Attention rules can take different forms, depending on how the input features interact.
Query-key interaction may promote the generation of specific outputs, leading to skip-gram rules
(left). Analogously, suppression leads to absence rules (center). Competition between the two types
may lead to counting rules (right).

1. It depends upon the input activation fj(xi) of tokens xi along feature j. Features more
strongly exhibited by xi affect the output more.

2. It is modulated by the strength of the attention at,i from position t → i. This strength
in turn depends on query-key interactions between features dj and dk. Note that query-
key interaction can modulate the attention score both upward (promotion) and downward
(suppression), and depends on the input activations fj(xi) once again. These correspond to
the skip-gram rule [dk] . . . [dj] → yt and absence rule [dk] . . . [dj] ̸→ yt, respectively.

3. The sum in Equations 3 implies that two different interactions may simultaneously try to
promote and suppress the output yt. This leads to counting rules where the net effect
depends upon the relative counts of two distinct interactions.

We note that Ge et al. (2024) perform a similar analysis of attention in terms of SAE features.
Interestingly, skip-gram and absence rules may surface both through the output-value interaction in
Equation 2 and query-key interaction in Equation 3. Skip-gram rules were also considered by Elhage
et al. (2021).

3.2 EXTRACTING ATTENTION RULES

This subsection makes the notion of skip-gram and absence rules more concrete, and describes a
simple heuristic to find the most salient query-key rules for a given attention head.

Mapping input features to token patterns. Consider the case where the head lies in the first layer
of the transformer. As each input embedding corresponds to a unique token, query-key rules can be
mapped directly to token-level skip-gram absence rules, e.g., “Vancouver ... speaks → English.” On
the other hand, output-value rules depend upon the output feature [u], for which we do not possess a
formal description. We do not ascribe tokens to these features in this paper, but paths forward include
falling back upon exemplar-based descriptions, or iterative refinement of the description based on
the currently identified key-key and query-key features. This approach can also describe attention
features in later layers of an attention-only transformer in terms of skip-gram and absence-rules of
the previous layer. It leads to a growing list of rules with increasing complexity.2 In transformers
with MLP layers, one can obtain approximate (but incomplete) descriptions by ignoring them.

Ranking query-key rules. Now that we have formal descriptions of the query-key interactions,
we wish to find the interactions that maximally contribute to Equation 3. The number of key-query
interactions is quadratic in the size of the input SAE dictionary, and we would like to bring this
number down. We propose two heuristics motivated from magnitude-based and gradient-based
pruning methods, (e.g. Voita et al., 2019; Michel et al., 2019). We first pick the 100 key features j
with the highest values of S(j). Then, for each of these key features j, we pick the 100 query features
maximizing A(j, k), resulting in 10,000 key/query pairs.

2For example, [a] . . . [b] . . . [c] → d.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

101 102 103

Number of terms

0.2

0.4

0.6

0.8
Va

lu
e

Recall

101 102 103

Number of terms

Precision

Method
Weight-based
Importance-based

(a) Average precision and recall

101 102 103

Number of terms

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1

layer
0
2
4
6
8
10

(b) F1 by layer

Figure 4: Precision and recall for predicting binarized activation values using skip-gram rules, as a
function of the maximum number of terms (meaning pairs of key and query features) per output feature.
In Fig. 4a, terms are selected either according to the magnitude of their weights (Weight-based)
or by calculating a gradient-based importance score using a small training set (Importance-based;
see Sec. 4 for more details). Results are averaged over 100 features for each head in GPT-2 small.
Importance-based scoring achieves higher recall with fewer terms, but with lower precision. Fig. 4b
shows the F1 scores by layer, selecting terms according to importance. Higher layers generally have
worse approximation scores and require more terms.

• Weight-based: we simply sort the list of pairs in decreasing order of A(j, k)× S(j).
• Gradient-based: we introduce an auxiliary variable mj,k = 1 for each (j, k) pair, and

redefine A(j, k) = mj,kd
⊤
j W

⊤
QWKdk for use in Equation 3.

We then sort each rule (j, k) in descending order of ∂σ(yT
t u)

∂mj,k
which represents the importance of the

edge k → j for the output feature activation. For a given output feature, there might be multiple
features with positive value scores, and multiple queries that attend to those keys. In that case, we
consider the description of the output feature to be the disjunction

∨N
i ri of the individual rules ri.

4 EXPERIMENTS

In the previous section, we discussed different types of rules that attention heads can express. In this
section, we evaluate how well these rules approximate attention features in practice.

Setup. We train SAEs on the output of every attention head in GPT-2 small (to extract the output
features of Section 3.2). Our training setup follows Kissane et al. (2024), with the exception that we
train SAEs on each attention head individually (rather than training one SAE on the concatenated
outputs). Specifically, we train the SAEs on sequences of 64 tokens from OpenWebText (Gokaslan
et al., 2019), following Kissane et al. (2024). We use pretrained SAEs from Bloom (2024) to extract
input features. For our evaluation, we collect feature activations for 50,000 sequences from the
training data, following Bills et al. (2023). For each attention head, we randomly sample 100 features
that are active in at least 100 sequences. Similar to Foote et al. (2023), we evaluate the rules at the
binary task of predicting whether or not the feature is active for a given prefix, and report precision,
recall, and F1 scores. If the rule does not predict any positive examples, we assign a precision of
1. For each feature, we use the 100 prefixes with the highest activations as positive examples and
randomly sample 100 prefixes with an activation of 0 to serve as negative examples, randomly split
into equal-sized training and evaluation sets. We provide additional details in Appendix A.1.

4.1 SKIP-GRAM RULES

We start by evaluating skip-gram rules, as described in Sec 3.2, comparing weight-based and gradient-
based methods for identifying a small number of key/query pairs for a given output feature. Given a
set of key/query pairs for a particular output feature, we predict that the output feature will be active
for a token xt if there is a query feature q with fq(xt) > 0 and a key feature k with fk(xt′) > 0 for
any t′ ≤ t such that attention-score(q, k) > 0 and value-score(k) > 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

DFA Feature activations

as soon as possible.\n\nIf
that’s his attitude, then

as soon as possible.\n\nIf
that ’s his attitude , then

cremated.\n\nIf a funeral
home is not moving the
body , then

cremated.\n\nIf a funeral
home is not moving the
body, then

your gamedata first.\n\nIf
youwant to take the risk, then

your game data first.\n\nIf
you want to take the
risk , then

(a) Top activating sequences for L0H0.94.

Key Val.
score

Query Attn.
score

If 0.139 _then 0.132
_Then 0.089
_you 0.088

Both 0.108 Ã©n 0.076
pos69 0.074
pos81 0.073

(b) Top scoring key/query pairs.

Figure 5: Sequences that activate a layer-0 attention feature in GPT-2 small (5a) and the highest-
scoring pairs of key and query input features associated with this feature (5b). The three examples can
be explained by the presence of a single skip-gram pattern, ...[If]...[then]; see Section 4.1.

Results. Fig. 4 plots the precision, recall, and F1 for the predicted activations for all features,
aggregating the features from all layers and heads. Fig. 4a shows that skip-grams provide a relatively
good approximation, and improve with additional terms. The gradient-based method for selecting
input features achieves higher recall with fewer terms. This suggests that rule-extraction could be a
feasible approach to explaining transformer features, even using a simplified form of rule. Fig. 4b
shows that higher-layer features tend to have lower approximation scores and require more terms,
which could be due to limitations of the underlying feature decomposition.

Qualitative analysis. Fig. 5 shows an example of an attention output feature from one of the
attention heads in the first layer of GPT-2 small. In Fig. 5a, we show three prefixes that have high
activations for this feature. One column shows the feature activations for each token, and the other
shows the direct feature attribution (DFA), following Kissane et al. (2024). The DFA score for a token
xt′ is the influence of that token on the output feature activation: DFA(xt) = at,t′x

⊤
t′W

⊤
V u, where

u is the SAE encoder vector associated with the output feature and at,t′ is the attention assigned to
position t′ from position t. Fig. 5b shows the highest-scoring pairs of key and query features. Because
the input features are taken at the first layer, we can interpret them by identifying the input tokens that
have the highest feature activations. Consistent with the examples, the highest scoring feature pair
consists of key tokens like “If” and query tokens like “then,” which we can represent as the skip-gram
pattern ...[If]...[then], and expect that the feature activates when this pattern is present in
the sequence. In this example, a single key/query pair explains the majority of the observed behavior.
We show additional examples in Appendix A.4, including a feature that activates in more diverse
contexts (App. Fig. 8b). In this case, we can define the rule as a disjunction of skip-grams, expecting
the feature to fire if the sequence contains any of the skip-grams in the list.

4.2 ABSENCE RULES

Next, we investigate whether our attention features represent “absence rules,” as described in Sec. 3.2.
To find whether a feature encodes an absence rule, for each output feature g, we identify the input
feature k with the highest value score and the input feature q with the highest attention score with k.
Then we check if there is another input feature k′ with attention-score(q, k′) > attention-score(q, k)
and value-score(k′, g) < 0. As a rough estimate, we consider only the highest-scoring k, q pair for
each feature, and check whether there is a distractor key k′.

Results. We find that, for the majority of skip-gram features, there is a distractor feature k′

satisfying the description above (see Appendix Sec. A.4 for the statistics). Fig. 6a shows that a
small but significant number of examples that contain a skip-gram pattern ...[k]...[q] also
contain the distractor key, and Fig. 6b shows that examples containing the distractor key tend to have
lower activations than examples containing only the skip-gram features. To further validate that the
distractor feature k′ suppresses the activation of g, we create a counter-factual dataset as follows:
given a distractor k′, we find the token w′ that maximally activates k′: w′ = argmaxw′∈Vfk′(ew′),
where fk′ is the feature activation for feature k′ in the input SAE and ew′ is the token embedding for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pc
t.

of
 k

/q
 e

xa
m

pl
es

 c
on

ta
in

in
g

k'

(a) Prevalence of inputs with distrac-
tor keys.

0 1 2 3 4 5 6 7 8 9 1011
Layer

0.00

0.02

0.04

0.06

0.08

0.10

Av
g.

 o
ut

pu
t a

ct
iv

at
io

n

Input features
k, q
k, k', q

(b) Avg. activation with and without
distractor keys.

0 1 2 3
Num. distractor tokens inserted

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

Av
g.

 o
ut

pu
t a

ct
iv

at
io

n

(c) Avg. activation after adding dis-
tractor tokens.

Figure 6: Between 5 and 25% of examples that contain the skip-gram pattern ...[k]...[q] also
include a “distractor” feature k′, which attracts attention away from k and suppresses the output
activation (Fig. 6a).Inputs containing k, q, and k′ have lower output feature activations on average
compared to inputs containing only k and q (Fig. 6b). To further validate the effect of k′, we find
inputs that activate the feature and prepend a word that triggers the distractor key, finding that the
output activation is lower as we add more copies of the distracting token (Fig. 6c).

token w′. (We limit this investigation to features in the first attention layer.) Then we find dataset
examples that contain k and q and prepend w′ from one to four times. Fig. 6c plots the average result,
showing that inserting the distractor feature does suppress the output feature. This suggests that, even
though the distractor pattern might occur relatively rarely in naturalistic data, absence rules need to
be taken into account in order to fully characterize the behavior of attention features.

Qualitative analysis. Appendix A.4 includes examples of the absence rules we recover. For
example, Fig. 10 shows a feature with the skip-gram description ...[://]...[com], suggesting
that the feature activates at the end of URLs. However, if the token “twitter” appears in the sequence,
it attracts attention from the key token and suppresses the output feature, meaning that the activation
of this output feature implicitly encodes the absence of the “twitter” feature. The resulting description
resembles the “feature splitting” phenomenon described by Chanin et al. (2024), corresponding to
URLs, except for URLs containing “twitter.”

4.3 COUNTING RULES

The rules discussed above both assume that features can be explained by one-hot attention, where
a query feature attends to a single key feature. However, some attention features might depend on
attending broadly to multiple tokens in a sequence. In particular, attention heads can implement a
“counting” feature that activates as a function of the number of times some input feature k appears in
the sequence (Fig. 3). For example, Weiss et al. (2021) and Liu et al. (2023) present constructions for
how an attention head can count by using a beginning-of-sequence token as a kind of attention sink.
We find that such rules do exist in GPT-2 small, even as early as the first layer (Figure 7). Attention
heads can also use a broad-attention, counting construction to calculate more sophisticated arithmetic
features by using interactions between value embeddings. For example, Yao et al. (2021) show how
an attention head balances parentheses by calculating the difference between the number of open
parentheses and the number of closed parentheses. Understanding attention features might therefore
require understanding how value embeddings interact.

5 DISCUSSION

Feature interactions. The attention score between query token xt and key token xt′ depends on
the sum of a potentially quadratic number of feature interactions. In our analysis, we have assumed
that rules can be defined in terms of a single feature at each token. For example, for the skip-gram
rule ...[k]...[q], we assume that the feature will fire if feature q is active at xt and feature

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Examples

Max activation: 0.7943181991577148
DFA:
<|endoftext|> up I often heard "What, you play video games?! That's so awesome, girls never play video games!", but now when

you tell someone you play video games you'd sooner get the question what kind of games

Feature activations:
<|endoftext|> up I often heard "What, you play video games?! That's so awesome, girls never play video games!", but now when

you tell someone you play video games you'd sooner get the question what kind of games

Max activation: 0.6259156465530396
DFA:
<|endoftext|> as buggy [as newer ones], but we��re more tuned-in at looking for the bugs. I personally remember old PC

games and even old Nintendo games that had tons of bugs. I think the big difference is that the core technology of games

Feature activations:
<|endoftext|> as buggy [as newer ones], but we��re more tuned-in at looking for the bugs. I personally remember old PC

games and even old Nintendo games that had tons of bugs. I think the big difference is that the core technology of games

Max activation: 0.5767968893051147
DFA:
<|endoftext|> best Wear OS games (Android Wear games

Feature activations:
<|endoftext|> best Wear OS games (Android Wear games

Max activation: 0.5089601278305054
DFA:
<|endoftext|> 2-5 in 2012 games decided by a touchdown or less. Similarly poor records in close games

Feature activations:
<|endoftext|> 2-5 in 2012 games decided by a touchdown or less. Similarly poor records in close games

Max activation: 0.5038016438484192
DFA:

rule_examples about:srcdoc

19 of 77 8/5/25, 11:38 AM

Figure 7: Sequences that activate an attention feature from head 10 in layer 0 in GPT-2 small.
The activation tends to be higher when the word “games” appears multiple times in the sequence,
indicating that this feature exhibits a counting rule.

k is activate at xt′ , regardless of the other features active at those tokens. However, the attention
could depend on multiple key/query interactions. As illustration, one way this could arise is due to
positional features. For example, we could imagine that if xt and xt′ have one pair of features with
a positive attention score (e.g. if xt′ = “If” and xt = “then”), and another pair of features with a
negative attention score, if xt′ occurs much earlier in the sequence than xt. Future work is needed
to develop interpretable ways of describing such features, where the rule depends on the balance
between the positive and negative feature interactions at each position.

Underlying feature decomposition. We have aimed to explain attention features in terms of
features from a pre-trained SAE applied to the input layer. However, these features are not necessarily
the best unit of anlaysis for characterizing attention rules. One direction for future work could
be to explore SAE variants, such as transcoders (Dunefsky et al., 2024a) and other variants (e.g.
Gao et al., 2025; Bussmann et al., 2024; Rajamanoharan et al., 2024), or to train SAEs on key and
query embeddings. Perhaps a more promising approach is to develop methods for optimizing the
input feature decomposition jointly with the attention output features, with regularization to favor
shorter rules, or to better align the features with our proposed rule types. Jermyn et al. (2025) report
preliminary work in this direction, which could be adapted to our setting.

Towards understanding the full model. We envision this work as a step towards understanding the
full transformer in terms of rules. Assuming we can accurately describe attention features, one next
step is to characterize how these rules are used to form larger units of computation. These include:
how single-head features combine to form multi-head features (i.e. “attention superposition”; Jermyn
et al., 2023); how features are processed by feed-forward layers—a subject addressed by Dunefsky
et al. (2024a); and how features are composed accross layers (e.g. as in induction heads; Olsson
et al., 2022). This granular, rule-based characterization could be complemented with more abstract
descriptions of higher-level computations, such as natural language.

6 RELATED WORK

Explaining transformer features with SAEs. The first step in the mechanisitic interpretability
pipeline is to decompose dense transformer hidden representation into a dictionary of interpretable
features (e.g. Ameisen et al., 2025). Recent work has made progress towards this goal by using sparse
dictionary-learning methods, in particular sparse auto-encoders (SAEs; e.g. Bricken et al., 2023).
These activating examples can be visualized in a dashboard (Bricken et al., 2023) or summarized

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

automatically by a language model (Bills et al., 2023). However, natural language explanations are
subjective (Huang et al., 2023), and exemplar-based explanations can be illusory if the reference
dataset is not sufficiently diverse (Bolukbasi et al., 2021). Our goal in this work is to explain features
mechanistically, in terms of explicit transformations of input features.

Transformer feature circuits. Our investigation extends a recent line of work on understanding
how SAE features interact to form computational graphs, or “circuits.” The concept of a transformer
circuit was introduced by Elhage et al. (2021), who studied attention-only transformers. Elhage et al.
(2021) proposed decomposing an attention layer into a “key-query” (KQ) circuit, which determines
the attention pattern, and an “output-value” (OV) circuit, which determines how tokens that receive
non-zero attention affect the output features. A similar approach may unearth SAE “feature circuits,”
by identifying the computational graph composed of features that are active for a given prompt (Marks
et al., 2024; Dunefsky et al., 2024a; Ge et al., 2024; Ameisen et al., 2025). Although the attention
pattern depends on the input, these methods treat it as a fixed pattern, allowing a linear decomposition
of a layer’s activations in terms of those of the previous layers. Our goal is to extend the feature-circuit
approach to the attention mechanism itself.

Characterizing attention features. Some work has attempted to characterize attention features in
terms of human-understandable formalisms. Theoretically, some work has attempted to characterize
the kinds of features transformers can express in terms of programs (Weiss et al., 2021), logical
frameworks (e.g. Merrill & Sabharwal, 2023), or formal languages and algebraic automata (Liu et al.,
2023; Yang et al., 2024); see Strobl et al. (2024) for a survey. These approaches have been used to
develop intrinsically interpretable variants of transformers (Friedman et al., 2023), but there has been
relatively little work to use these formalisms to extract rules from black-box transformers. Elhage
et al. (2021) identify some attention motifs, such as the “skip-gram” pattern ...[A]...[B], which
is activated when token B is preceded by token A. We will extend this approach to describe patterns
of SAE features, and consider other, more sophisticated features. Most similar to our work, Ge et al.
(2024) decompose attention scores into interactions between SAE features and provide case studies
illustrating how this approach can be used for local and global analysis of attention behaviors. In this
work, we aim to provide a more general methodology for formalizing and extracting attention rules,
and to evaluate how well these rules can approximate features in an empirical language model.

Rule-based descriptions of neural networks. There has long been interest in extracting formal,
rule-based descriptions of neural networks (Andrews et al., 1995; Jacobsson, 2005; Mekkaoui et al.,
2023). Although rule extraction has seen some success with simpler architectures like RNNs,
extending this approach to transformers presents unique challenges. Unlike RNNs—which can be
understood in terms of finite-state automata or regular expressions (Wang et al., 2018; Weiss et al.,
2018)—the attention layer in transformers enables a richer class of computational patterns that cannot
be captured by traditional formalisms. Works on “transformer programming languages ” (Weiss et al.,
2021; Yang et al., 2024), modal logic (Merrill & Sabharwal, 2023), and circuit complexity (Hahn,
2020; Hao et al., 2022) provide insight into what transformers could learn in theory by enumerating
some classes of languages that transformers provably can or cannot represent. However, they focus
on expressivity bounds rather than serving as interpretability targets—that is, they do not provide
methods to extract rules that describe what a given black-box transformer has learned in practice.

7 CONCLUSION

In this work, we have taken initial steps towards automatically characterizing attention layers with
rules. We outlined some initial formalisms for attention rules, developed methods for rule extraction,
and measured how well these rules can approximate features in an empirical language model. While
relatively simple rules can achieve reasonable approximation quality of some features, we also
identified cases that are more challenging to describe with concise rules. Future work is needed to
extend this approach to cover more types of rules, extract better underlying features, and build on
these features to understand larger units of model computation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6):373–389,
1995.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language
models, 2023.

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of
GPT2 small. https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/
open-source-sparse-autoencoders-for-all-residual-stream, 2024.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for BERT. arXiv preprint arXiv:2104.07143, 2021.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023.

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders, 2024. URL
https://arxiv.org/abs/2412.06410.

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for Absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint
arXiv:2409.14507, 2024.

Dami Choi, Vincent Huang, Kevin Meng, Daniel D. Johnson, Jacob Steinhardt, and Sarah
Schwettman. Scaling automatic neuron description. https://transluce.org/
neuron-descriptions, 2024.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM feature
circuits. In Advances in Neural Information Processing Systems (NeurIPS), 2024a.

Jacob Dunefsky, Philippe Chlenski, Senthooran Rajamanoharan, and Neel Nanda. Case studies in
reverse-engineering sparse autoencoder features by using MLP linearization. Alignment Forum,
2024b.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-
dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition. Transformer Circuits Thread, 2022.

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez. Neuron to
graph: Interpreting language model neurons at scale. arXiv preprint arXiv:2305.19911, 2023.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://arxiv.org/abs/2412.06410
https://transluce.org/neuron-descriptions
https://transluce.org/neuron-descriptions

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=tcsZt9ZNKD.

Xuyang Ge, Fukang Zhu, Wentao Shu, Junxuan Wang, Zhengfu He, and Xipeng Qiu. Auto-
matically identifying local and global circuits with linear computation graphs. arXiv preprint
arXiv:2405.13868, 2024.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In Empirical Methods in Natural Language
Processing (EMNLP), 2023.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. OpenWebText Corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association of Computational Linguistics (TACL), 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association of Computational
Linguistics (TACL), 10:800–810, 2022.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rigorously
assessing natural language explanations of neurons. In Proceedings of the 6th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Networks for NLP, 2023.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In International Conference
on Learning Representations (ICLR), 2024.

Henrik Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and review. Neural
Computation, 17(6):1223–1263, 2005.

Adam Jermyn, Christopher Olah, and Tom Henighan. Attention head superposi-
tion. https://transformer-circuits.pub/2023/may-update/index.html#
attention-superposition, 2023. Accessed: 2025-05-15.

Adam Jermyn, Jack Lindsey, Rodrigo Luger, Nick Turner, Trenton Bricken, Adam Pearce, Callum Mc-
Dougall, Ben Thompson, Jeff Wu, Joshua Batson, Kelley Rivoire, and Christopher Olah. Progress
on attention. https://transformer-circuits.pub/2025/attention-update/
index.html, 2025. Accessed: 2025-05-15.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda.
Interpreting attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In International Conference on Learning Representations (ICLR),
2023.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv
preprint arXiv:2403.19647, 2024.

11

https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://transformer-circuits.pub/2023/may-update/index.html#attention-superposition
https://transformer-circuits.pub/2023/may-update/index.html#attention-superposition
https://transformer-circuits.pub/2025/attention-update/index.html
https://transformer-circuits.pub/2025/attention-update/index.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sara El Mekkaoui, Loubna Benabbou, and Abdelaziz Berrado. Rule-extraction methods from
feedforward neural networks: A systematic literature review. arXiv preprint arXiv:2312.12878,
2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems (NeurIPS), 35:17359–
17372, 2022.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in Neural Information Processing Systems (NeurIPS), 2023.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI, 2019.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with JumpReLU
sparse autoencoders. arXiv preprint arXiv:2407.14435, 2024.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? A survey. Transactions of the Association of Computational Linguistics
(TACL), 12:543–561, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems (NIPS), 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Association for
Computational Linguistics (ACL), 2019.

Qinglong Wang, Kaixuan Zhang, Alexander G Ororbia II, Xinyu Xing, Xue Liu, and C Lee Giles.
An empirical evaluation of rule extraction from recurrent neural networks. Neural Computation,
30(9):2568–2591, 2018.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks
using queries and counterexamples. In International Conference on Machine Learning (ICML),
2018.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like Transformers. In International Conference
on Machine Learning (ICML), pp. 11080–11090. PMLR, 2021.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly
the star-free languages. Advances in Neural Information Processing Systems (NeurIPS), 2024.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages. In Association for Computational Linguistics and
International Joint Conference on Natural Language Processing (ACL-IJCNLP), 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SAE TRAINING DETAILS

As our testbed for extracting attention rules, we train SAEs on the outputs of every attention head
in GPT-2 Small (Radford et al., 2019). Our training setup follows Kissane et al. (2024), with the
difference that we train a separate SAE for each attention head (rather than training an SAE on the
concatenated outputs of all attention heads in each layer). We train SAEs with a dictionary size of
2,048 on 2 billion tokens from OpenWebText (Gokaslan et al., 2019). We train on sequences of 64
tokens each, sampled so that each sequence consists of 64 contiguous tokens from a single document.
SAEs are trained with the Adam optimizer (Kingma & Ba, 2014) with learning rate 0.0012, β1 = 0.9,
and β2 = 0.99, with a batch size of 4,096. Following Kissane et al. (2024), we use use the neuron
re-sampling scheme described by Bricken et al. (2023) to re-initialize neurons that do not fire for
some number of iterations: every 25,000, 50,000, 75,000 and 100,000, neurons that have not fired for
the last 12,500 steps are re-initialized. Each SAE is trained on

Our input features are obtained from an open-source SAE trained on the residual stream of GPT-2
Small (Bloom, 2024), which have a dictionary size of 24,576.

A.2 DATA AND EVALUATION

Collecting feature exemplars. To evaluate rule extraction methods, we collect datasets of input
sequences that activate our attention output features. We follow prior work (e.g Bills et al., 2023;
Choi et al., 2024) and identify exemplars by calculating feature activations for 50,000 sequences
drawn from the same data used to train the SAES. Following Bills et al. (2023), we randomly sample
sequences of 64 tokens, without crossing document boundaries (i.e. each sequence consists of a
contiguous subsequence of a document). We randomly sample 100 features for each attention head,
considering only features that are (1) active in at least 150 input sequences, and (2) inactive in at least
150 input sequences. We create a dataset for each feature by selecting the 150 sequences that contain
the highest activations, and randomly sampling 150 sequences for which the feature is inactive, and
randomly partitioning the positive and negative examples into equal-sized train, validation, and test
sets. We evaluate our rule extraction methods at predicting the activation for a single position t in
each sequence. For positive examples, t is the position with the maximum activation. For negative
examples, t is randomly sampled from (1, 64].

Evaluation. To measure how well rules approximate feature activations, we use a binary evaluation
metric, roughly following Foote et al. (2023). Specifically, our feature datasets consist of an equal
number of positive examples (with activations greater than 0), and negative examples (with activations
equal to 0). Our rule extraction method outputs a scalar value corresponding to the predicted activation
value. We threshold both the actual activation values and the predicted values to correspond to a
positive prediction if the value is greater than 0 and a negative prediction otherwise, and measure the
precision, recall, and F1. In the event that the rule extraction method does not predict any positive
examples, we define the precision as 1.

We adopt this binary evaluation metric for simplicity, and because it is easy to interpret. But binarizing
the feature activations discards potentially meaningful information. Other work on evaluating natural
language explanations of neurons has reported the Spearman correlation between true and predicted
activations (e.g. Bills et al., 2023; Bricken et al., 2023). A second limitation of our evaluation is that
we consider only the examples with the highest activations for a given feature, along with randomly
sampled negative examples. As noted by some prior work (Huang et al., 2023; Gao et al., 2024),
this evaluation favors recall over precision, because we are unlikely to sample inputs that resemble
positive examples but do not activate the feature. One possible approach to include inputs with a
range of activation values. For example, Bricken et al. (2023) divide the activations into quantiles
and evaluate feature simulations within each quantile.

A.3 RULE EXTRACTION

In this section, we provide additional details about our methods for identifying a small number of
input features to use to explain a given output feature, introduced in Section 3.2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

DFA Feature activations

atsun and witnesses re-
ported seeing a matching
vehicle veering off the
highway and stopping

atsun and witnesses re-
ported seeing a matching
vehicle veering off the
highway and stopping

to our source, the new
sports sedan will target
40-something buyers who
hon

to our source, the new
sports sedan will target
40-something buyers who
hon

by Tesla . As part of a
community of Tesla own-
ers, whenever Aut op
ilot

by Tesla. As part of a com-
munity of Tesla owners ,
whenever Autop ilot

(a) Top activating sequences for L0H0.1476.

Key Val.
score

Query Attn.
score

_vehicle 0.145 _sober 0.141
_cruise 0.128
_accelerate 0.126

_vehicles 0.139 _sober 0.122
_cruise 0.11
_instrument 0.109

_truck 0.096 _sober 0.118
_seat 0.097
_Bra 0.097

(b) Top scoring key/query pairs.

Figure 8: Sequences that activate a layer-0 attention feature in GPT-2 small (8a) and the highest-
scoring pairs of key and query input features associated with this feature (8b). This feature activates
in more diverse contexts, and there are more key/query pairs with relatively high scores.

Let yt ∈ Rdhead denote the output of an attention head, and g(yt) = σ(y⊤
t u) denote a single output

feature from an attention-output SAE, where u ∈ Rdhead is the encoder vector associated with feature
g. For a feature i in the input SAE, we define value-score(i) = d⊤

i W
⊤
V u. For any query feature i

and key feature j, we define attention-score(i, j) = d⊤
i W

⊤
QWKdj .

Our input SAEs have a dictionary size of 24, 576, meaning there are potentially 24, 5762 pairs of key
and query features relevant to characterizing a given output feature. We consider two methods for
identifying a small number of input features. For both methods, we first use a weight-based procedure
for identifying a relatively small number of candidate features. First, we pick the 100 key features k
with the highest values of value-score(i). Second, for each of these key features k, we pick the 100
query features maximizing attention-score(q, k), resulting in 10,000 key/query pairs. Then we use
either a weight-based or gradient-based method for selecting a small number of key/query pairs from
the list of candidates. For our weight-based method, we simply the list of pairs in decreasing order of
attention-score(q, k) ∗ value-score(k).

For our gradient-based method, we introduce a mask mi,j = 1 for each pair of query and key features,
and we define a masked attention score attention-score(i, j) = mi,jd

⊤
i W

⊤
QWKdj . We calculate

the feature activations for all of the prefixes in our training set using the masked attention scores,
and calculate the average gradient of the output feature for each mask: dg/dmi,j . We pick the the
key/query pairs with the highest importance scores.

A.4 ADDITIONAL RESULTS

Skip-gram Examples. Fig. 8 shows examples of a feature from a layer-0 attention feature and
the corresponding skip-grams of key and query pairs. Fig. 8a indicates that this feature fires in a
variety of contexts related to automobiles. Compared to the example, illustrated in Fig. 5, this rule is
relatively longer—because it consists of more terms—but it remains relatively simple to understand
because the terms do not interact.

Absence Rule Examples. Fig. 9 shows the percentage of features at each layer for which we can
find a distractor key. We say that a feature has a distractor key if there is a feature k′ such that
value-score(k) < 0 and attention-score(q, k′) > attention-score(q, k), where k and q are the features
maximizing attention-score(q, k) ∗ value-score(k). Fig. 10 shows an example of a feature with such
a distractor key, where q fires on the token “com”, k fires on the token “://”, and k′ fires on the token
“twitter”. The feature normally fires at the end of URLs. If “twitter” appears in the sequence, it
attracts attention away from the “://” token and suppresses the output feature.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
wi

th
 d

ist
ra

ct
or

 k
ey

Figure 9: The percentage of attention output feature that have a distractor key. Many attention output
features are associated with absence rules, with absence rules growing more common at higher layers.

Attention Feature activations

to the interview on
CNBC . com : http ://
video . cn bc . com

to the interview on
CNBC.com: http://
video . cnbc. com

<|endoftext|> \n Ret
weet : http :// twitter .
com

<|endoftext|>\nRetweet:
http://twitter.com

(a) Activating and non-activating sequences for
L0H0.429.

Key Val.
score

Query Attn.
score

:// 0.119 com 0.079
twitter -0.007 com 0.097

(b) Top scoring key/query pair and a distractor key.

Figure 10: An example of a feature exhibiting an absence rule. The output feature is activated when
the input sequence matches the pattern ...[://]...[com], unless the sequence also contains
the distractor feature “twitter”.

15

	Introduction
	Background
	Rule-based Descriptions of Attention Features
	Decomposing attention features
	Extracting Attention Rules

	Experiments
	Skip-gram Rules
	Absence Rules
	Counting rules

	Discussion
	Related Work
	Conclusion
	Appendix
	SAE Training Details
	Data and Evaluation
	Rule Extraction
	Additional Results

