

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXTRACTING RULE-BASED DESCRIPTIONS OF ATTENTION FEATURES IN TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Mechanistic interpretability strives to explain model behavior in terms of bottom-up primitives. The leading paradigm is to express hidden states as a sparse linear combination of basis vectors, called features. However, this only identifies which text sequences (exemplars) activate which features; the actual interpretation of features usually requires subjective and time-consuming inspection of these exemplars. This paper advocates for a different solution: *rule-based descriptions* that match token patterns in the input and correspondingly increase or decrease the likelihood of specific output tokens. Specifically, we extract rule-based descriptions of SAE features trained on the outputs of *attention* layers. While prior work treats the attention layers as an opaque box, we describe how it may naturally be expressed in terms of interactions between input and output features, of which we study three types: (1) skip-gram rules of the form “[Canadian city] … speaks → English”, (2) absence rules of the form “[Montreal] … speaks $\not\rightarrow$ English,” and (3) counting rules that toggle only when the count of a word exceeds a certain value or the count of another word. Absence and counting rules are not readily discovered by inspection of exemplars, where manual and automatic descriptions often identify misleading or incomplete explanations. We then describe a simple approach to extract these types of rules automatically from a transformer, and apply it to GPT-2 small. We find that a majority of features may be described well with around 100 skip-gram rules, though absence rules (2) are abundant even as early as the first layer (in over a fourth of features). We also isolate a few examples of counting rules (3). This paper lays the groundwork for future research into rule-based descriptions of features by defining them, showing how they may be extracted, and providing a preliminary taxonomy of some of the behaviors they represent.

1 INTRODUCTION

A growing body of work under the umbrella of *mechanistic interpretability* seeks to dissect and understand the behavior of transformer language models (LMs). Starting from the investigation of specific computational motifs like induction heads (Elhage et al., 2021; Olsson et al., 2022), research in this area has largely converged to two popular methods of studying a transformer. First, by isolation of a “circuit” formed by MLP layers and attention heads that implements a specific trait (e.g., addition) (Meng et al., 2022; Geva et al., 2023)—and second, by the use of Sparse Autoencoders (SAEs) to extract feature vectors from the transformer hidden states (Bricken et al., 2023; Huben et al., 2024). The latter has become the predominant paradigm, but the interpretation of feature vectors still relies on manual (or LM-assisted) inspection of exemplars with high feature activations (Fig. 1). Such interpretation is subjective and often incomplete or inaccurate. Polysemy (Elhage et al., 2022) of features further frustrates attempts to interpret feature exemplars. There have also been some preliminary attempts to extract circuits of SAE features: graphs

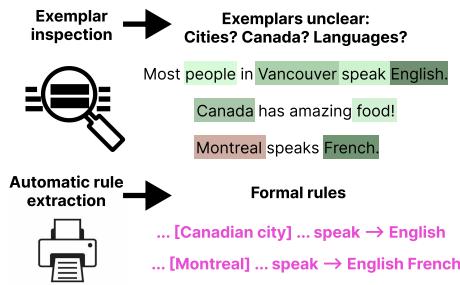


Figure 1: SAE features are usually explained via exemplars, which are subjective and hard to interpret. We approximate them with *rules* that promote or suppress the feature.

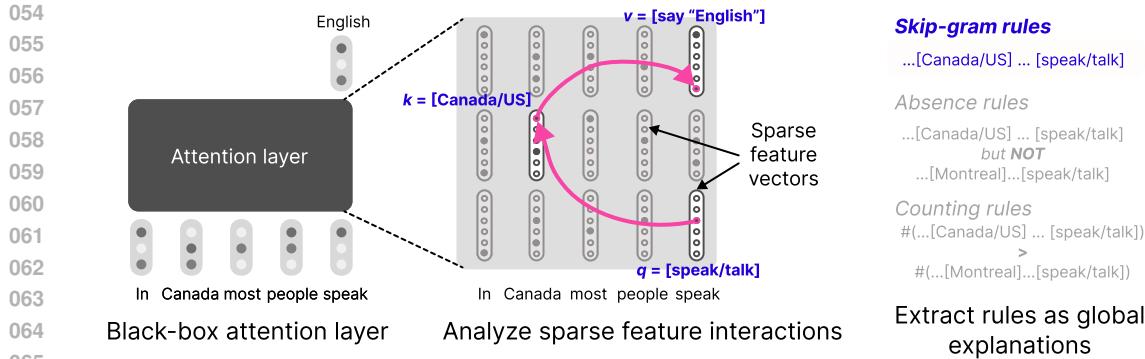


Figure 2: Given an attention layer in a transformer language model (*left*), our goal is to explain each output feature as an explicit function of input features (*center*), and provide a global description of these functions in terms of formal rules (*right*).

specifying how features from lower layers combine to activate features at higher layers (Marks et al., 2024; Dunefsky et al., 2024b; Ge et al., 2024; Ameisen et al., 2025). However, these methods have treated the attention component of the transformer as a constant, explaining how features interact in a given prompt based on the observed attention pattern, but they do not explain how the attention pattern itself arises from lower-layer features.

In this paper, we advocate for a different approach—we study the same SAE features as prior work, but extract inherently interpretable descriptions that take the form of *symbolic, human-readable rules*. Our task is to prescribe a framework of rules that is expressive enough to approximate the computation in a transformer, but also enables efficient extraction of said rules from it. We tackle this challenge in the context of the attention layers in a transformer. Assuming that one has already extracted features from the hidden states before and after the attention layer, we express the head’s computation as a weighted sum over attention between features from one position to another (Figure 2). Each term can be interpreted as matching a template $[a] \dots [b]$ in the input, and the weights correspond to increasing or decreasing the likelihood of the corresponding output feature. We identify three types of rules from these interactions: (1) *skip-gram rules* of the form “[Canadian city] … speaks \rightarrow English” that promote “English” when the pattern “[Canadian city] … speaks” is observed, (2) *absence rules* “[Montreal] … speaks $\not\rightarrow$ English” that suppress the production of English following the pattern, and (3) *count-based rules* that arise from competition between rules of the form (1) and (2), and produce a token only when a certain pattern is more frequent than another. It is noteworthy that absence and counting rules are not easily discoverable by inspecting exemplars alone.

We present an empirical pipeline to extract these features from SAEs trained on an attention head automatically. Upon deployment of this pipeline to GPT-2 small (Radford et al., 2019), we find that skip-gram features already achieve a good approximation of several attention heads—especially in early layers. We also identify cases where they fail: later layers require longer rules, and we find sophisticated behaviors such as distractor suppression (where the presence of one feature inhibits the expected response to another) and counting operations (where outputs depend on the frequency rather than mere presence of input features). In fact, both behaviors are observed as early as the first layer—with over a third of skip-gram features being accompanied by at least one distractor. Our experiments demonstrate clear potential for rule-based features to explain language model behavior. We hope future research builds on the groundwork laid here to extract a more complete set of rules.

2 BACKGROUND

Transformer language models. The transformer (Vaswani et al., 2017) is a neural network architecture for processing sequences. It consists of a composition of feed-forward layers, which process features at a single position in the sequence, and multi-headed attention layers, which combine information from multiple positions in the sequence. We focus on decoder-only transformer language models (LMs), which take a sequence of tokens as input and output a probability distribution over the next token. Our focus in this work is on individual heads in the attention layer, which map a sequence

108 of embeddings $\mathbf{x}_1, \dots, \mathbf{x}_t \in \mathbb{R}^{d_{\text{model}}}$ to a sequence $\mathbf{y}_1, \dots, \mathbf{y}_t \in \mathbb{R}^{d_{\text{head}}}$, where the output is given by:
 109

$$110 \quad \mathbf{y}_t = \sum_{i \leq t} a_{t,i} \mathbf{W}_V \mathbf{x}_i \quad a_{t,i} = \frac{\exp(\mathbf{x}_t^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{x}_i)}{\sum_{i \leq t} \exp(\mathbf{x}_t^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{x}_i)}$$

$$111$$

$$112$$

113 The weights $\mathbf{W}_K, \mathbf{W}_Q, \mathbf{W}_V \in \mathbb{R}^{d_{\text{head}} \times d_{\text{model}}}$ are referred to as the *key*, *query*, and *value* projection
 114 matrices, respectively; $a_{t,i}$ denotes the *attention* from position t to position i ; and $d_{\text{head}} = d_{\text{model}}/h$,
 115 where h is the number of attention heads per layer.

116 **Sparse autoencoder.** Each input \mathbf{x}_i can be decomposed into a weighted sum over *input features*¹:
 117

$$118 \quad \mathbf{x}_i = \sum_{j=1}^n f_j(\mathbf{x}_i) \mathbf{d}_j + \bar{\mathbf{x}}_i, \quad (1)$$

$$119$$

$$120$$

121 where the *input activations* $f_j(\mathbf{x}_i) \triangleq \sigma(\mathbf{x}_i^\top \tilde{\mathbf{d}}_j) \in (0, 1)$ are given by the sigmoid of its projection
 122 along an up-projection vector associated with feature j . We will omit the irreducible error $\bar{\mathbf{x}}_i$ in
 123 subsequent discussions since our analysis does not depend on it. The vectors $\mathbf{d}_j, \tilde{\mathbf{d}}_j$ are jointly
 124 trained to minimize a reconstruction loss between the two sides of Equation 1 subject to a sparsity
 125 penalty. Interested readers may refer to, e.g., Bricken et al. (2023) for more details. Similarly, we can
 126 assume that \mathbf{y}_t has been decomposed into a weighted sum over *output features* $\{\mathbf{u}_j, \tilde{\mathbf{u}}_j\}_{j=1}^n$ (with
 127 corresponding *output activations*).
 128

129 3 RULE-BASED DESCRIPTIONS OF ATTENTION FEATURES

$$130$$

131 In this section, we rewrite the computation of an attention head as a weighted sum of terms that
 132 represent the promotion or suppression of output tokens based on interactions of feature pairs. We
 133 then advance an interpretation of this interaction
 134

135 3.1 DECOMPOSING ATTENTION FEATURES

$$136$$

137 **Expressing output activations in terms of input activations.** When is $\sigma(\mathbf{y}_t^\top \mathbf{u})$ high for an output
 138 feature \mathbf{u} ? We start by rewriting the output activation in terms of the input activations:
 139

$$140 \quad \sigma(\mathbf{y}_t^\top \mathbf{u}) = \sigma \left(\sum_{i \leq t} a_{t,i} \mathbf{x}_i^\top \mathbf{W}_V^\top \mathbf{u} \right) = \sigma \left(\sum_{\substack{i \leq t \\ j=1}}^n a_{t,i} f_j(\mathbf{x}_i) \mathbf{d}_j^\top \mathbf{W}_V^\top \mathbf{u} \right) \equiv \sigma \left(\sum_{\substack{i \leq t \\ j=1}}^n a_{t,i} f_j(\mathbf{x}_i) \mathbf{d}_j^\top \mathbf{W}_V^\top \mathbf{u} \right) \quad (2)$$

$$141$$

$$142$$

$$143$$

$$144$$

145 where the attention weights $a_{t,i}$ can themselves be expressed in terms of the input activations:
 146

$$147 \quad a_{t,i} \propto \exp(\mathbf{x}_t^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{x}_i) = \exp \left(\sum_{j,k=1}^n f_j(\mathbf{x}_t) f_k(\mathbf{x}_i) \mathbf{d}_j^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{d}_k \right) \quad (3)$$

$$148$$

$$149$$

150 For ease of exposition, we introduce the following shorthand notation:
 151

$$152 \quad \mathcal{S}(j) = \mathbf{d}_j^\top \mathbf{W}_V^\top \mathbf{u}, \quad \mathcal{A}(j, k) = \mathbf{d}_j^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{d}_k.$$

$$153$$

154 **Interpretation of Equations 2 and 3.** Equation 2 tells us that each pair $(\mathbf{d}_j, \mathbf{u})$ of input-output
 155 features either promotes or discourages the output to lie along \mathbf{y}_t , depending on whether the sign
 156 of $\mathcal{S}(j)$ is positive or negative. These two cases may be interpreted as rules $[\mathbf{d}_j] \dots [\mathbf{u}] \rightarrow \mathbf{y}_t$ or
 157 $[\mathbf{d}_j] \dots [\mathbf{u}] \not\rightarrow \mathbf{y}_t$. These rules depend recursively upon the descriptions of \mathbf{d}_j and \mathbf{u} , and are abstract
 158 versions of **skip-gram** and **absence** rules. We illustrate these rule types in Figure 3. We call these
 159 output-value rules since they arise from the output-value interaction in Equation 2. Further, the extent
 160 of the promotion or suppression depends on several factors.

161 ¹Please note the terminology: we always use input/output *embeddings* to refer to $\mathbf{x}_i, \mathbf{y}_t$, and *features* to refer
 162 to $\mathbf{d}_j, \mathbf{u}_j$. *Activations* refer to the sigmoid-rectified projections onto $\tilde{\mathbf{d}}_j, \tilde{\mathbf{u}}_j$.

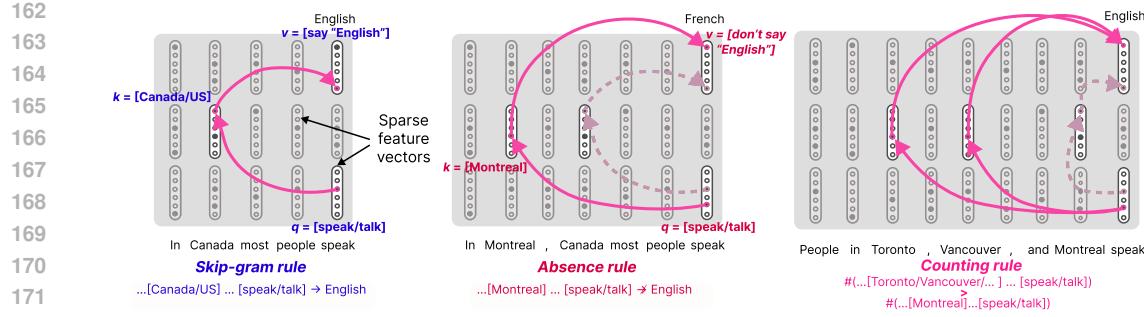


Figure 3: Attention rules can take different forms, depending on how the input features interact. Query-key interaction may promote the generation of specific outputs, leading to *skip-gram* rules (left). Analogously, suppression leads to *absence* rules (center). Competition between the two types may lead to *counting* rules (right).

1. It depends upon the input activation $f_j(\mathbf{x}_i)$ of tokens \mathbf{x}_i along feature j . Features more strongly exhibited by \mathbf{x}_i affect the output more.
2. It is modulated by the strength of the attention $a_{t,i}$ from position $t \rightarrow i$. This strength in turn depends on *query-key* interactions between features \mathbf{d}_j and \mathbf{d}_k . Note that query-key interaction can modulate the attention score both upward (promotion) and downward (suppression), and depends on the input activations $f_j(\mathbf{x}_i)$ once again. These correspond to the skip-gram rule $[\mathbf{d}_k] \dots [\mathbf{d}_j] \rightarrow \mathbf{y}_t$ and absence rule $[\mathbf{d}_k] \dots [\mathbf{d}_j] \not\rightarrow \mathbf{y}_t$, respectively.
3. The sum in Equations 3 implies that two different interactions may simultaneously try to promote and suppress the output \mathbf{y}_t . This leads to **counting rules** where the net effect depends upon the relative counts of two distinct interactions.

We note that [Ge et al. \(2024\)](#) perform a similar analysis of attention in terms of SAE features. Interestingly, skip-gram and absence rules may surface both through the output-value interaction in Equation 2 and query-key interaction in Equation 3. Skip-gram rules were also considered by [Elhage et al. \(2021\)](#).

3.2 EXTRACTING ATTENTION RULES

This subsection makes the notion of skip-gram and absence rules more concrete, and describes a simple heuristic to find the most salient query-key rules for a given attention head.

Mapping input features to token patterns. Consider the case where the head lies in the first layer of the transformer. As each input embedding corresponds to a unique token, query-key rules can be mapped directly to token-level skip-gram absence rules, e.g., “*Vancouver* ... *speaks* → *English*.” On the other hand, output-value rules depend upon the output feature $[\mathbf{u}]$, for which we do not possess a formal description. We do not ascribe tokens to these features in this paper, but paths forward include falling back upon exemplar-based descriptions, or iterative refinement of the description based on the currently identified key-key and query-key features. This approach can also describe attention features in later layers of an attention-only transformer in terms of skip-gram and absence-rules of the previous layer. It leads to a growing list of rules with increasing complexity.² In transformers with MLP layers, one can obtain approximate (but incomplete) descriptions by ignoring them.

Ranking query-key rules. Now that we have formal descriptions of the query-key interactions, we wish to find the interactions that maximally contribute to Equation 3. The number of key-query interactions is quadratic in the size of the input SAE dictionary, and we would like to bring this number down. We propose two heuristics motivated from magnitude-based and gradient-based pruning methods, (e.g. [Voita et al., 2019](#); [Michel et al., 2019](#)). We first pick the 100 key features j with the highest values of $\mathcal{S}(j)$. Then, for each of these key features j , we pick the 100 query features maximizing $\mathcal{A}(j, k)$, resulting in 10,000 key/query pairs.

²For example, $[a] \dots [b] \dots [c] \rightarrow d$.

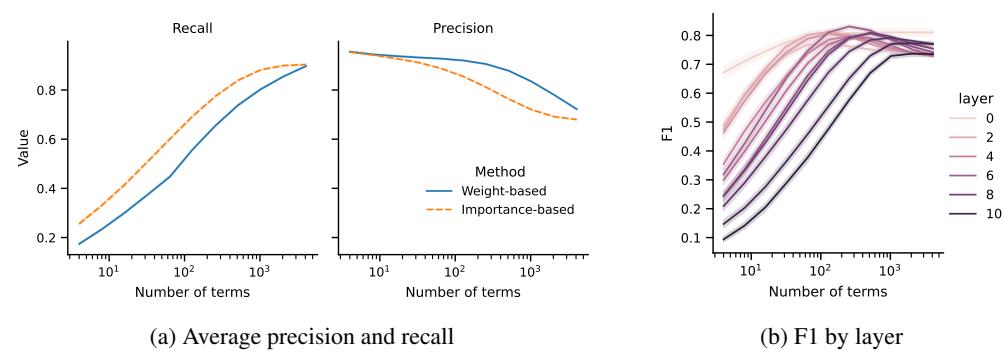


Figure 4: Precision and recall for predicting binarized activation values using skip-gram rules, as a function of the maximum number of terms (meaning pairs of key and query features) per output feature. In Fig. 4a, terms are selected either according to the magnitude of their weights (*Weight-based*) or by calculating a gradient-based importance score using a small training set (*Importance-based*; see Sec. 4 for more details). Results are averaged over 100 features for each head in GPT-2 small. Importance-based scoring achieves higher recall with fewer terms, but with lower precision. Fig. 4b shows the F1 scores by layer, selecting terms according to importance. Higher layers generally have worse approximation scores and require more terms.

- Weight-based: we simply sort the list of pairs in decreasing order of $\mathcal{A}(j, k) \times \mathcal{S}(j)$.
- Gradient-based: we introduce an auxiliary variable $m_{j,k} = 1$ for each (j, k) pair, and redefine $\mathcal{A}(j, k) = m_{j,k} \mathbf{d}_j^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{d}_k$ for use in Equation 3.

We then sort each rule (j, k) in descending order of $\frac{\partial \sigma(\mathbf{y}_t^\top \mathbf{u})}{\partial m_{j,k}}$ which represents the importance of the edge $k \rightarrow j$ for the output feature activation. For a given output feature, there might be multiple features with positive value scores, and multiple queries that attend to those keys. In that case, we consider the description of the output feature to be the disjunction $\bigvee_i^N r_i$ of the individual rules r_i .

4 EXPERIMENTS

In the previous section, we discussed different types of rules that attention heads can express. In this section, we evaluate how well these rules approximate attention features in practice.

Setup. We train SAEs on the output of every attention head in GPT-2 small (to extract the output features of Section 3.2). Our training setup follows Kissane et al. (2024), with the exception that we train SAEs on each attention head individually (rather than training one SAE on the concatenated outputs). Specifically, we train the SAEs on sequences of 64 tokens from OpenWebText (Gokaslan et al., 2019), following Kissane et al. (2024). We use pretrained SAEs from Bloom (2024) to extract input features. For our evaluation, we collect feature activations for 50,000 sequences from the training data, following Bills et al. (2023). For each attention head, we randomly sample 100 features that are active in at least 100 sequences. Similar to Foote et al. (2023), we evaluate the rules at the binary task of predicting whether or not the feature is active for a given prefix, and report precision, recall, and F1 scores. If the rule does not predict any positive examples, we assign a precision of 1. For each feature, we use the 100 prefixes with the highest activations as positive examples and randomly sample 100 prefixes with an activation of 0 to serve as negative examples, randomly split into equal-sized training and evaluation sets. We provide additional details in Appendix A.1.

4.1 SKIP-GRAM RULES

We start by evaluating skip-gram rules, as described in Sec 3.2, comparing weight-based and gradient-based methods for identifying a small number of key/query pairs for a given output feature. Given a set of key/query pairs for a particular output feature, we predict that the output feature will be active for a token \mathbf{x}_t if there is a query feature q with $f_q(\mathbf{x}_t) > 0$ and a key feature k with $f_k(\mathbf{x}_{t'}) > 0$ for any $t' \leq t$ such that $\text{attention-score}(q, k) > 0$ and $\text{value-score}(k) > 0$.

DFA	Feature activations
as soon as possible.\n\nIf that's his attitude, then	as soon as possible.\n\nIf that's his attitude, then
cremated.\n\nIf a funeral home is not moving the body , then	cremated.\n\nIf a funeral home is not moving the body, then
your game data first.\n\nIf you want to take the risk, then	your game data first.\n\nIf you want to take the risk, then

(a) Top activating sequences for L0H0.94.

Key	Val. score	Query	Attn. score
If	0.139	_then	0.132
		_Then	0.089
		_you	0.088
Both	0.108	Ā@n	0.076
		pos69	0.074
		pos81	0.073

(b) Top scoring key/query pairs.

Figure 5: Sequences that activate a layer-0 attention feature in GPT-2 small (5a) and the highest-scoring pairs of key and query input features associated with this feature (5b). The three examples can be explained by the presence of a single skip-gram pattern, $\dots [\text{If}] \dots [\text{then}]$; see Section 4.1.

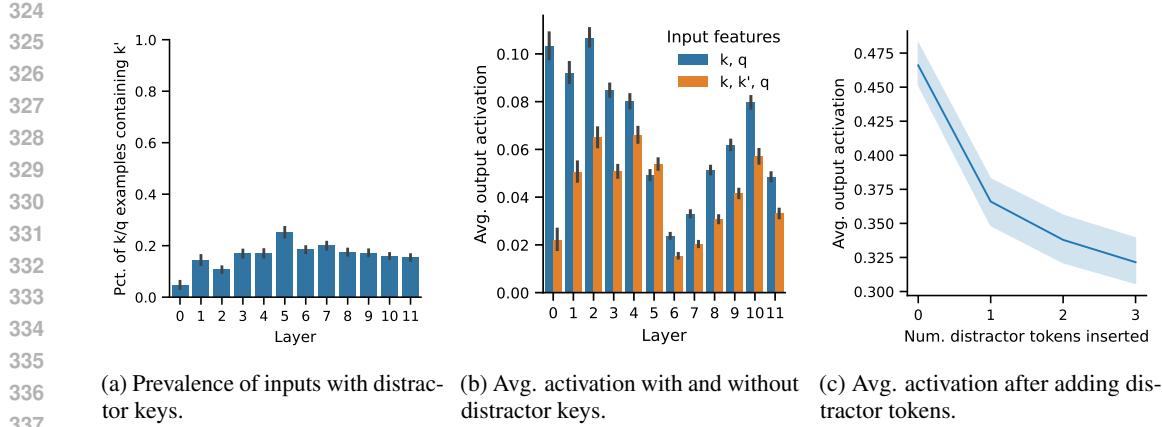
Results. Fig. 4 plots the precision, recall, and F1 for the predicted activations for all features, aggregating the features from all layers and heads. Fig. 4a shows that skip-grams provide a relatively good approximation, and improve with additional terms. The gradient-based method for selecting input features achieves higher recall with fewer terms. This suggests that rule-extraction could be a feasible approach to explaining transformer features, even using a simplified form of rule. Fig. 4b shows that higher-layer features tend to have lower approximation scores and require more terms, which could be due to limitations of the underlying feature decomposition.

Qualitative analysis. Fig. 5 shows an example of an attention output feature from one of the attention heads in the first layer of GPT-2 small. In Fig. 5a, we show three prefixes that have high activations for this feature. One column shows the feature activations for each token, and the other shows the direct feature attribution (DFA), following Kissane et al. (2024). The DFA score for a token $\mathbf{x}_{t'}$ is the influence of that token on the output feature activation: $\text{DFA}(\mathbf{x}_t) = a_{t,t'} \mathbf{x}_{t'}^\top \mathbf{W}_V^\top \mathbf{u}$, where \mathbf{u} is the SAE encoder vector associated with the output feature and $a_{t,t'}$ is the attention assigned to position t' from position t . Fig. 5b shows the highest-scoring pairs of key and query features. Because the input features are taken at the first layer, we can interpret them by identifying the input tokens that have the highest feature activations. Consistent with the examples, the highest scoring feature pair consists of key tokens like “If” and query tokens like “then,” which we can represent as the skip-gram pattern $\dots [\text{If}] \dots [\text{then}]$, and expect that the feature activates when this pattern is present in the sequence. In this example, a single key/query pair explains the majority of the observed behavior. We show additional examples in Appendix A.4, including a feature that activates in more diverse contexts (App. Fig. 8b). In this case, we can define the rule as a disjunction of skip-grams, expecting the feature to fire if the sequence contains any of the skip-grams in the list.

4.2 ABSENCE RULES

Next, we investigate whether our attention features represent “absence rules,” as described in Sec. 3.2. To find whether a feature encodes an absence rule, for each output feature g , we identify the input feature k with the highest value score and the input feature q with the highest attention score with k . Then we check if there is another input feature k' with $\text{attention-score}(q, k') > \text{attention-score}(q, k)$ and $\text{value-score}(k', g) < 0$. As a rough estimate, we consider only the highest-scoring k, q pair for each feature, and check whether there is a distractor key k' .

Results. We find that, for the majority of skip-gram features, there is a distractor feature k' satisfying the description above (see Appendix Sec. A.4 for the statistics). Fig. 6a shows that a small but significant number of examples that contain a skip-gram pattern $\dots [k] \dots [q]$ also contain the distractor key, and Fig. 6b shows that examples containing the distractor key tend to have lower activations than examples containing only the skip-gram features. To further validate that the distractor feature k' suppresses the activation of g , we create a counter-factual dataset as follows: given a distractor k' , we find the token w' that maximally activates k' : $w' = \text{argmax}_{w' \in \mathcal{V}} f_{k'}(\mathbf{e}_{w'})$, where $f_{k'}$ is the feature activation for feature k' in the input SAE and $\mathbf{e}_{w'}$ is the token embedding for



(a) Prevalence of inputs with distractor keys. (b) Avg. activation with and without distractor keys. (c) Avg. activation after adding distractor tokens.

Figure 6: Between 5 and 25% of examples that contain the skip-gram pattern $\dots [k] \dots [q]$ also include a “distractor” feature k' , which attracts attention away from k and suppresses the output activation (Fig. 6a). Inputs containing k, q , and k' have lower output feature activations on average compared to inputs containing only k and q (Fig. 6b). To further validate the effect of k' , we find inputs that activate the feature and prepend a word that triggers the distractor key, finding that the output activation is lower as we add more copies of the distracting token (Fig. 6c).

token w' . (We limit this investigation to features in the first attention layer.) Then we find dataset examples that contain k and q and prepend w' from one to four times. Fig. 6c plots the average result, showing that inserting the distractor feature does suppress the output feature. This suggests that, even though the distractor pattern might occur relatively rarely in naturalistic data, absence rules need to be taken into account in order to fully characterize the behavior of attention features.

Qualitative analysis. Appendix A.4 includes examples of the absence rules we recover. For example, Fig. 10 shows a feature with the skip-gram description $\dots [:/] \dots [\text{com}]$, suggesting that the feature activates at the end of URLs. However, if the token “twitter” appears in the sequence, it attracts attention from the key token and suppresses the output feature, meaning that the activation of this output feature implicitly encodes the absence of the “twitter” feature. The resulting description resembles the “feature splitting” phenomenon described by Chanin et al. (2024), corresponding to URLs, except for URLs containing “twitter.”

4.3 COUNTING RULES

The rules discussed above both assume that features can be explained by one-hot attention, where a query feature attends to a single key feature. However, some attention features might depend on attending broadly to multiple tokens in a sequence. In particular, attention heads can implement a “counting” feature that activates as a function of the number of times some input feature k appears in the sequence (Fig. 3). For example, Weiss et al. (2021) and Liu et al. (2023) present constructions for how an attention head can count by using a beginning-of-sequence token as a kind of attention sink. We find that such rules do exist in GPT-2 small, even as early as the first layer (Figure 7). Attention heads can also use a broad-attention, counting construction to calculate more sophisticated arithmetic features by using interactions between value embeddings. For example, Yao et al. (2021) show how an attention head balances parentheses by calculating the difference between the number of open parentheses and the number of closed parentheses. Understanding attention features might therefore require understanding how value embeddings interact.

5 DISCUSSION

Feature interactions. The attention score between query token x_t and key token $x_{t'}$ depends on the sum of a potentially quadratic number of feature interactions. In our analysis, we have assumed that rules can be defined in terms of a single feature at each token. For example, for the skip-gram rule $\dots [k] \dots [q]$, we assume that the feature will fire if feature q is active at x_t and feature

```

378     Max activation: 0.7943181991577148
379     DFA:
380     <|endoftext|> up I often heard "What, you play video games?! That's so awesome, girls never play video games!", but now when
381     you tell someone you play video games you'd sooner get the question what kind of games
382     Feature activations:
383     <|endoftext|> up I often heard "What, you play video games?! That's so awesome, girls never play video games!", but now when
384     you tell someone you play video games you'd sooner get the question what kind of games
385     Max activation: 0.6259156465530396
386     DFA:
387     <|endoftext|> as buggy [as newer ones], but we◆re more tuned-in at looking for the bugs. I personally remember old PC
388     games and even old Nintendo games that had tons of bugs. I think the big difference is that the core technology of games
389     Feature activations:
390     <|endoftext|> as buggy [as newer ones], but we◆re more tuned-in at looking for the bugs. I personally remember old PC
391     games and even old Nintendo games that had tons of bugs. I think the big difference is that the core technology of games
392     Max activation: 0.5767968893051147
393     DFA:
394     <|endoftext|> best Wear OS games (Android Wear games
395     Feature activations:
396     <|endoftext|> best Wear OS games (Android Wear games

```

Figure 7: Sequences that activate an attention feature from head 10 in layer 0 in GPT-2 small. The activation tends to be higher when the word “games” appears multiple times in the sequence, indicating that this feature exhibits a counting rule.

k is activate at $\mathbf{x}_{t'}$, regardless of the other features active at those tokens. However, the attention could depend on multiple key/query interactions. As illustration, one way this could arise is due to positional features. For example, we could imagine that if \mathbf{x}_t and $\mathbf{x}_{t'}$ have one pair of features with a positive attention score (e.g. if $\mathbf{x}_{t'}$ = “If” and \mathbf{x}_t = “then”), and another pair of features with a negative attention score, if $\mathbf{x}_{t'}$ occurs much earlier in the sequence than \mathbf{x}_t . Future work is needed to develop interpretable ways of describing such features, where the rule depends on the balance between the positive and negative feature interactions at each position.

Underlying feature decomposition. We have aimed to explain attention features in terms of features from a pre-trained SAE applied to the input layer. However, these features are not necessarily the best unit of analysis for characterizing attention rules. One direction for future work could be to explore SAE variants, such as transcoders (Dunefsky et al., 2024a) and other variants (e.g. Gao et al., 2025; Bussmann et al., 2024; Rajamanoharan et al., 2024), or to train SAEs on key and query embeddings. Perhaps a more promising approach is to develop methods for optimizing the input feature decomposition jointly with the attention output features, with regularization to favor shorter rules, or to better align the features with our proposed rule types. Jermyn et al. (2025) report preliminary work in this direction, which could be adapted to our setting.

Towards understanding the full model. We envision this work as a step towards understanding the full transformer in terms of rules. Assuming we can accurately describe attention features, one next step is to characterize how these rules are used to form larger units of computation. These include: how single-head features combine to form multi-head features (i.e. “attention superposition”; Jermyn et al., 2023); how features are processed by feed-forward layers—a subject addressed by Dunefsky et al. (2024a); and how features are composed across layers (e.g. as in induction heads; Olsson et al., 2022). This granular, rule-based characterization could be complemented with more abstract descriptions of higher-level computations, such as natural language.

6 RELATED WORK

Explaining transformer features with SAEs. The first step in the mechanistic interpretability pipeline is to decompose dense transformer hidden representation into a dictionary of interpretable features (e.g. Ameisen et al., 2025). Recent work has made progress towards this goal by using sparse dictionary-learning methods, in particular sparse auto-encoders (SAEs; e.g. Bricken et al., 2023). These activating examples can be visualized in a dashboard (Bricken et al., 2023) or summarized

432 automatically by a language model (Bills et al., 2023). However, natural language explanations are
 433 subjective (Huang et al., 2023), and exemplar-based explanations can be illusory if the reference
 434 dataset is not sufficiently diverse (Bolukbasi et al., 2021). Our goal in this work is to explain features
 435 mechanistically, in terms of explicit transformations of input features.

436
 437 **Transformer feature circuits.** Our investigation extends a recent line of work on understanding
 438 how SAE features interact to form computational graphs, or “circuits.” The concept of a transformer
 439 circuit was introduced by Elhage et al. (2021), who studied attention-only transformers. Elhage et al.
 440 (2021) proposed decomposing an attention layer into a “key-query” (KQ) circuit, which determines
 441 the attention pattern, and an “output-value” (OV) circuit, which determines how tokens that receive
 442 non-zero attention affect the output features. A similar approach may unearth SAE “feature circuits,”
 443 by identifying the computational graph composed of features that are active for a given prompt (Marks
 444 et al., 2024; Dunefsky et al., 2024a; Ge et al., 2024; Ameisen et al., 2025). Although the attention
 445 pattern depends on the input, these methods treat it as a fixed pattern, allowing a linear decomposition
 446 of a layer’s activations in terms of those of the previous layers. Our goal is to extend the feature-circuit
 447 approach to the attention mechanism itself.

448
 449 **Characterizing attention features.** Some work has attempted to characterize attention features in
 450 terms of human-understandable formalisms. Theoretically, some work has attempted to characterize
 451 the kinds of features transformers can express in terms of programs (Weiss et al., 2021), logical
 452 frameworks (e.g. Merrill & Sabharwal, 2023), or formal languages and algebraic automata (Liu et al.,
 453 2023; Yang et al., 2024); see Strobl et al. (2024) for a survey. These approaches have been used to
 454 develop intrinsically interpretable variants of transformers (Friedman et al., 2023), but there has been
 455 relatively little work to use these formalisms to extract rules from black-box transformers. Elhage
 456 et al. (2021) identify some attention motifs, such as the “skip-gram” pattern . . . [A] . . . [B], which
 457 is activated when token B is preceded by token A. We will extend this approach to describe patterns
 458 of SAE features, and consider other, more sophisticated features. Most similar to our work, Ge et al.
 459 (2024) decompose attention scores into interactions between SAE features and provide case studies
 460 illustrating how this approach can be used for local and global analysis of attention behaviors. In this
 461 work, we aim to provide a more general methodology for formalizing and extracting attention rules,
 462 and to evaluate how well these rules can approximate features in an empirical language model.

463
 464 **Rule-based descriptions of neural networks.** There has long been interest in extracting formal,
 465 rule-based descriptions of neural networks (Andrews et al., 1995; Jacobsson, 2005; Mekkaoui et al.,
 466 2023). Although rule extraction has seen some success with simpler architectures like RNNs,
 467 extending this approach to transformers presents unique challenges. Unlike RNNs—which can be
 468 understood in terms of finite-state automata or regular expressions (Wang et al., 2018; Weiss et al.,
 469 2018)—the attention layer in transformers enables a richer class of computational patterns that cannot
 470 be captured by traditional formalisms. Works on “transformer programming languages” (Weiss et al.,
 471 2021; Yang et al., 2024), modal logic (Merrill & Sabharwal, 2023), and circuit complexity (Hahn,
 472 2020; Hao et al., 2022) provide insight into what transformers could learn in theory by enumerating
 473 some classes of languages that transformers provably can or cannot represent. However, they focus
 474 on expressivity bounds rather than serving as interpretability targets—that is, they do not provide
 475 methods to extract rules that describe what a given black-box transformer has learned in practice.

476 7 CONCLUSION

477
 478 In this work, we have taken initial steps towards automatically characterizing attention layers with
 479 rules. We outlined some initial formalisms for attention rules, developed methods for rule extraction,
 480 and measured how well these rules can approximate features in an empirical language model. While
 481 relatively simple rules can achieve reasonable approximation quality of some features, we also
 482 identified cases that are more challenging to describe with concise rules. Future work is needed to
 483 extend this approach to cover more types of rules, extract better underlying features, and build on
 484 these features to understand larger units of model computation.

486 REFERENCES
487

488 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
489 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
490 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
491 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
492 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
493 computational graphs in language models. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.
494

495 Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of techniques for
496 extracting rules from trained artificial neural networks. *Knowledge-Based Systems*, 8(6):373–389,
497 1995.

498 Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
499 Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language
500 models, 2023.

501 Joseph Bloom. Open source sparse autoencoders for all residual stream layers of
502 GPT2 small. <https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream>, 2024.

503

504 Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
505 Wattenberg. An interpretability illusion for BERT. *arXiv preprint arXiv:2104.07143*, 2021.

506

507 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
508 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
509 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
510 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
511 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
512 learning. *Transformer Circuits Thread*, 2023.

513

514 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders, 2024. URL
515 <https://arxiv.org/abs/2412.06410>.

516

517 David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
518 for Absorption: Studying feature splitting and absorption in sparse autoencoders. *arXiv preprint*
519 *arXiv:2409.14507*, 2024.

520

521 Dami Choi, Vincent Huang, Kevin Meng, Daniel D. Johnson, Jacob Steinhardt, and Sarah
522 Schwettman. Scaling automatic neuron description. <https://translue.org/neuron-descriptions>, 2024.

523

524 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM feature
525 circuits. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024a.

526

527 Jacob Dunefsky, Philippe Chlenski, Senthooran Rajamanoharan, and Neel Nanda. Case studies in
528 reverse-engineering sparse autoencoder features by using MLP linearization. Alignment Forum,
2024b.

529

530 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
531 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
532 Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
533 Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
534 mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.

535

536 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
537 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
538 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
539 superposition. *Transformer Circuits Thread*, 2022.

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez. Neuron to
graph: Interpreting language model neurons at scale. *arXiv preprint arXiv:2305.19911*, 2023.

540 Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. In *Advances in*
 541 *Neural Information Processing Systems (NeurIPS)*, 2023.

542

543 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 544 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint*
 545 *arXiv:2406.04093*, 2024.

546 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 547 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth*
 548 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tcsZt9ZNKD>.

549

550 Xuyang Ge, Fukang Zhu, Wentao Shu, Junxuan Wang, Zhengfu He, and Xipeng Qiu. Automatically
 551 identifying local and global circuits with linear computation graphs. *arXiv preprint*
 552 *arXiv:2405.13868*, 2024.

553

554 Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
 555 associations in auto-regressive language models. In *Empirical Methods in Natural Language*
 556 *Processing (EMNLP)*, 2023.

557 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. OpenWebText Corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

558

559 Michael Hahn. Theoretical limitations of self-attention in neural sequence models. *Transactions of*
 560 *the Association of Computational Linguistics (TACL)*, 8:156–171, 2020.

561

562 Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
 563 formers: Perspectives from circuit complexity. *Transactions of the Association of Computational*
 564 *Linguistics (TACL)*, 10:800–810, 2022.

565

566 Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rigorously
 567 assessing natural language explanations of neurons. In *Proceedings of the 6th BlackboxNLP*
 568 *Workshop: Analyzing and Interpreting Neural Networks for NLP*, 2023.

569

570 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 571 autoencoders find highly interpretable features in language models. In *International Conference*
 572 *on Learning Representations (ICLR)*, 2024.

573

574 Henrik Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and review. *Neural*
 575 *Computation*, 17(6):1223–1263, 2005.

576

577 Adam Jermyn, Christopher Olah, and Tom Henighan. Attention head superposi-
 578 tion. <https://transformer-circuits.pub/2023/may-update/index.html#attention-superposition>, 2023. Accessed: 2025-05-15.

579

580 Adam Jermyn, Jack Lindsey, Rodrigo Luger, Nick Turner, Trenton Bricken, Adam Pearce, Callum Mc-
 581 Dougall, Ben Thompson, Jeff Wu, Joshua Batson, Kelley Rivoire, and Christopher Olah. Progress
 582 on attention. <https://transformer-circuits.pub/2025/attention-update/index.html>, 2025. Accessed: 2025-05-15.

583

584 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 585 *arXiv:1412.6980*, 2014.

586

587 Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda.
 588 Interpreting attention layer outputs with sparse autoencoders. *arXiv preprint arXiv:2406.17759*,
 589 2024.

590

591 Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
 592 learn shortcuts to automata. In *International Conference on Learning Representations (ICLR)*,
 593 2023.

594

595 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
 596 feature circuits: Discovering and editing interpretable causal graphs in language models. *arXiv*
 597 *preprint arXiv:2403.19647*, 2024.

594 Sara El Mekkaoui, Loubna Benabbou, and Abdelaziz Berrado. Rule-extraction methods from
 595 feedforward neural networks: A systematic literature review. *arXiv preprint arXiv:2312.12878*,
 596 2023.

597 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 598 associations in GPT. *Advances in Neural Information Processing Systems (NeurIPS)*, 35:17359–
 599 17372, 2022.

600 William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. *Advances
 601 in Neural Information Processing Systems (NeurIPS)*, 2023.

602 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? *Advances in
 603 Neural Information Processing Systems (NeurIPS)*, 2019.

604 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 605 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 606 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 607 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 608 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.

609 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 610 models are unsupervised multitask learners. *OpenAI*, 2019.

611 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 612 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with JumpReLU
 613 sparse autoencoders. *arXiv preprint arXiv:2407.14435*, 2024.

614 Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
 615 can transformers express? A survey. *Transactions of the Association of Computational Linguistics
 616 (TACL)*, 12:543–561, 2024.

617 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 618 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing
 619 Systems (NIPS)*, 2017.

620 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 621 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In *Association for
 622 Computational Linguistics (ACL)*, 2019.

623 Qinglong Wang, Kaixuan Zhang, Alexander G Ororbia II, Xinyu Xing, Xue Liu, and C Lee Giles.
 624 An empirical evaluation of rule extraction from recurrent neural networks. *Neural Computation*,
 625 30(9):2568–2591, 2018.

626 Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks
 627 using queries and counterexamples. In *International Conference on Machine Learning (ICML)*,
 628 2018.

629 Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like Transformers. In *International Conference
 630 on Machine Learning (ICML)*, pp. 11080–11090. PMLR, 2021.

631 Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly
 632 the star-free languages. *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

633 Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
 634 can process bounded hierarchical languages. In *Association for Computational Linguistics and
 635 International Joint Conference on Natural Language Processing (ACL-IJCNLP)*, 2021.

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**
649650 **A.1 SAE TRAINING DETAILS**
651652 As our testbed for extracting attention rules, we train SAEs on the outputs of every attention head
653 in GPT-2 Small (Radford et al., 2019). Our training setup follows Kissane et al. (2024), with the
654 difference that we train a separate SAE for each attention head (rather than training an SAE on the
655 concatenated outputs of all attention heads in each layer). We train SAEs with a dictionary size of
656 2,048 on 2 billion tokens from OpenWebText (Gokaslan et al., 2019). We train on sequences of 64
657 tokens each, sampled so that each sequence consists of 64 contiguous tokens from a single document.
658 SAEs are trained with the Adam optimizer (Kingma & Ba, 2014) with learning rate 0.0012, $\beta_1 = 0.9$,
659 and $\beta_2 = 0.99$, with a batch size of 4,096. Following Kissane et al. (2024), we use the neuron
660 re-sampling scheme described by Bricken et al. (2023) to re-initialize neurons that do not fire for
661 some number of iterations: every 25,000, 50,000, 75,000 and 100,000, neurons that have not fired for
662 the last 12,500 steps are re-initialized. Each SAE is trained on663 Our input features are obtained from an open-source SAE trained on the residual stream of GPT-2
664 Small (Bloom, 2024), which have a dictionary size of 24,576.665 **A.2 DATA AND EVALUATION**
666667 **Collecting feature exemplars.** To evaluate rule extraction methods, we collect datasets of input
668 sequences that activate our attention output features. We follow prior work (e.g Bills et al., 2023;
669 Choi et al., 2024) and identify exemplars by calculating feature activations for 50,000 sequences
670 drawn from the same data used to train the SAEs. Following Bills et al. (2023), we randomly sample
671 sequences of 64 tokens, without crossing document boundaries (i.e. each sequence consists of a
672 contiguous subsequence of a document). We randomly sample 100 features for each attention head,
673 considering only features that are (1) active in at least 150 input sequences, and (2) inactive in at least
674 150 input sequences. We create a dataset for each feature by selecting the 150 sequences that contain
675 the highest activations, and randomly sampling 150 sequences for which the feature is inactive, and
676 randomly partitioning the positive and negative examples into equal-sized train, validation, and test
677 sets. We evaluate our rule extraction methods at predicting the activation for a single position t in
678 each sequence. For positive examples, t is the position with the maximum activation. For negative
679 examples, t is randomly sampled from $(1, 64]$.680 **Evaluation.** To measure how well rules approximate feature activations, we use a binary evaluation
681 metric, roughly following Foote et al. (2023). Specifically, our feature datasets consist of an equal
682 number of positive examples (with activations greater than 0), and negative examples (with activations
683 equal to 0). Our rule extraction method outputs a scalar value corresponding to the predicted activation
684 value. We threshold both the actual activation values and the predicted values to correspond to a
685 positive prediction if the value is greater than 0 and a negative prediction otherwise, and measure the
686 precision, recall, and F1. In the event that the rule extraction method does not predict any positive
687 examples, we define the precision as 1.688 We adopt this binary evaluation metric for simplicity, and because it is easy to interpret. But binarizing
689 the feature activations discards potentially meaningful information. Other work on evaluating natural
690 language explanations of neurons has reported the Spearman correlation between true and predicted
691 activations (e.g. Bills et al., 2023; Bricken et al., 2023). A second limitation of our evaluation is that
692 we consider only the examples with the highest activations for a given feature, along with randomly
693 sampled negative examples. As noted by some prior work (Huang et al., 2023; Gao et al., 2024),
694 this evaluation favors recall over precision, because we are unlikely to sample inputs that resemble
695 positive examples but do not activate the feature. One possible approach to include inputs with a
696 range of activation values. For example, Bricken et al. (2023) divide the activations into quantiles
697 and evaluate feature simulations within each quantile.698 **A.3 RULE EXTRACTION**
699700 In this section, we provide additional details about our methods for identifying a small number of
701 input features to use to explain a given output feature, introduced in Section 3.2.

DFA	Feature activations
atsun and witnesses reported seeing a matching vehicle veering off the highway and stopping	atsun and witnesses reported seeing a matching vehicle veering off the highway and stopping
to our source, the new sports sedan will target 40-something buyers who hon	to our source, the new sports sedan will target 40-something buyers who hon
by Tesla . As part of a community of Tesla owners, whenever Autopilot	by Tesla. As part of a community of Tesla owners , whenever Autopilot ilot

(a) Top activating sequences for L0H0.1476.

Key	Val. score	Query	Attn. score
_vehicle	0.145	_sober	0.141
		_cruise	0.128
		_accelerate	0.126
_vehicles	0.139	_sober	0.122
		_cruise	0.11
		_instrument	0.109
_truck	0.096	_sober	0.118
		_seat	0.097
		_Bra	0.097

(b) Top scoring key/query pairs.

Figure 8: Sequences that activate a layer-0 attention feature in GPT-2 small (8a) and the highest-scoring pairs of key and query input features associated with this feature (8b). This feature activates in more diverse contexts, and there are more key/query pairs with relatively high scores.

Let $\mathbf{y}_t \in \mathbb{R}^{d_{\text{head}}}$ denote the output of an attention head, and $g(\mathbf{y}_t) = \sigma(\mathbf{y}_t^\top \mathbf{u})$ denote a single output feature from an attention-output SAE, where $\mathbf{u} \in \mathbb{R}^{d_{\text{head}}}$ is the encoder vector associated with feature g . For a feature i in the input SAE, we define value-score(i) = $\mathbf{d}_i^\top \mathbf{W}_V^\top \mathbf{u}$. For any query feature i and key feature j , we define attention-score(i, j) = $\mathbf{d}_i^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{d}_j$.

Our input SAEs have a dictionary size of 24,576, meaning there are potentially $24,576^2$ pairs of key and query features relevant to characterizing a given output feature. We consider two methods for identifying a small number of input features. For both methods, we first use a weight-based procedure for identifying a relatively small number of candidate features. First, we pick the 100 key features k with the highest values of value-score(i). Second, for each of these key features k , we pick the 100 query features maximizing attention-score(q, k), resulting in 10,000 key/query pairs. Then we use either a weight-based or gradient-based method for selecting a small number of key/query pairs from the list of candidates. For our weight-based method, we simply the list of pairs in decreasing order of attention-score(q, k) * value-score(k).

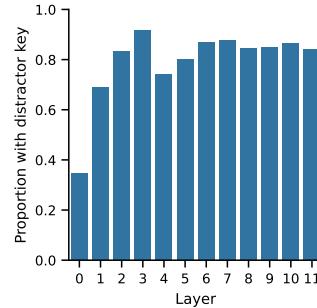
For our gradient-based method, we introduce a mask $m_{i,j} = 1$ for each pair of query and key features, and we define a masked attention score attention-score(i, j) = $m_{i,j} \mathbf{d}_i^\top \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{d}_j$. We calculate the feature activations for all of the prefixes in our training set using the masked attention scores, and calculate the average gradient of the output feature for each mask: $dg/dm_{i,j}$. We pick the the key/query pairs with the highest importance scores.

A.4 ADDITIONAL RESULTS

Skip-gram Examples. Fig. 8 shows examples of a feature from a layer-0 attention feature and the corresponding skip-grams of key and query pairs. Fig. 8a indicates that this feature fires in a variety of contexts related to automobiles. Compared to the example, illustrated in Fig. 5, this rule is relatively longer—because it consists of more terms—but it remains relatively simple to understand because the terms do not interact.

Absence Rule Examples. Fig. 9 shows the percentage of features at each layer for which we can find a *distractor key*. We say that a feature has a distractor key if there is a feature k' such that value-score(k) < 0 and attention-score(q, k') > attention-score(q, k), where k and q are the features maximizing attention-score(q, k) * value-score(k). Fig. 10 shows an example of a feature with such a distractor key, where q fires on the token “com”, k fires on the token “://”, and k' fires on the token “twitter”. The feature normally fires at the end of URLs. If “twitter” appears in the sequence, it attracts attention away from the “://” token and suppresses the output feature.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773



774 Figure 9: The percentage of attention output feature that have a distractor key. Many attention output
775 features are associated with absence rules, with absence rules growing more common at higher layers.
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790

Attention	Feature activations
to the interview on CNBC . com : http://video . cn bc . com	to the interview on CNBC.com: http://video. cn.bc. com
<endoftext> \n Retweet : http://twitter . com	<endoftext>\nRetweet: http://twitter.com

798 (a) Activating and non-activating sequences for
799 L0H0.429.

800 Figure 10: An example of a feature exhibiting an absence rule. The output feature is activated when
801 the input sequence matches the pattern . . . [: / /] . . . [com], unless the sequence also contains
802 the distractor feature “twitter”.
803

804
805
806
807
808
809

Key	Val. score	Query	Attn. score
://	0.119	com	0.079
twitter	-0.007	com	0.097

804 (b) Top scoring key/query pair and a *distractor* key.
805