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Abstract

Anomaly detection is crucial for developing reliable and robust Machine Learning meth-
ods. Commonly, anomaly detection methods assume access to only normal samples during
training, while at test time, the objective is to discriminate between normal and anoma-
lous samples. Recently, the field has seen a surge in new methods, reporting impressive
performances on various benchmarks. The default evaluation procedure for many of these
methods, however, implicitly assumes a homogeneous normal class. In this paper, we inves-
tigate how recent methods perform under varying degrees of heterogeneity of the normal
class. We find that even state-of-the-art methods struggle under non-homogeneous normal-
ity, exhibiting deteriorating performance as the heterogeneity of the normal class increases,
even when increasing the amount of training data. Our results highlight the importance of
evaluating anomaly detection techniques on a broader set of normal classes, encouraging
future research to address this crucial aspect.
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Introduction

Figure 1: AUROC boxplots of evaluation of
SOTA when varying the normal class hetero-
geneity kn.

Anomaly Detection (AD) refers to the task
of detecting samples that deviate from a
given concept of normality (Ruff et al.,
2021). In AD, we assume having access to
a training set containing only normal sam-
ples. The task is then to learn a model
that can discriminate between normal and
anomalous samples at test time, without
having seen any data besides normal sam-
ples (Schölkopf et al., 2001; Ruff et al.,
2018). A popular approach to evaluating
methods in this setting is using a classi-
fication dataset and assembling a training
dataset consisting of samples from only one
class (Ruff et al., 2021; Han et al., 2022). Samples from that class in the test set then
belong to the normal class, while all other samples serve as anomalies. However, defining
the normal class to be only a single class of a classification dataset leads to the inherent
assumption of a homogeneous normal class, neglecting the fact that the normal class may
itself be heterogeneous in its nature. We challenge this assumption and evaluate some of
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the most popular AD methods by aggregating kn classes of the original dataset into a new
heterogeneous normal class. Further, we demonstrate that the performance of all evaluated
methods consistently decreases, when increasing the level of heterogeneity in the normal
class, despite providing a larger training set.

Experiment

In our experiment, we evaluate three SOTA self-supervised AD methods: Geom (Golan
and El-Yaniv, 2018), GOAD (Bergman and Hoshen, 2019), and CSI (Tack et al., 2020)
under varying degrees of heterogeneity in the normal class. To do this, we apply the kn-
classes-in evaluation with the CIFAR-10 dataset (Krizhevsky and Hinton, 2009). In short,
we aggregate kn classes of the training set into one heterogeneous normal class and use this
as the AD training set. Samples from the remaining 10 − kn classes serve as anomalies at
test time. We measure AD performance in terms of the Area Under the Receiver-Operating
Characteristic (AUROC). For more details, we refer to Appendix B.

Results. For each method, we do 10 runs of the kn-classes-in evaluation, where 1 ≤
kn ≤ 9. To make runs consistent across methods, we use the same 10 sets of classes for every
kn across all methods. As can be seen in Figure 1, increasing the level of heterogeneity in
the normal class consistently decreases the performance across all methods. In addition,
the variance across different runs increases when increasing kn. In other words, increasing
the heterogeneity of the normal class decreases the robustness of the methods. Geom
and GOAD learn to predict geometric image transformations during training. They then
leverage the confidence of the predictions to detect anomalies at test time. We conjecture
that, especially for these models, increasing the number of samples and diversity in the
training set increases the (undesired) generalization to anomalies. As a consequence, these
models perform worse on AD when increasing normal heterogeneity. CSI extends previous
work by incorporating a classifier for rotations into their objective as a regularizer. The
full CSI objective builds on the NT-Xent loss of SimCLR (Chen et al., 2020), encouraging
the model to learn latent representations for each individual sample based on instance-level
clustering. Further, the CSI anomaly score builds on the nearest-neighbor distance to the
representations of training samples (see also Appendix C). In this case, it is harder to argue
as to why we see the results in Figure 1, and more work is required to fully understand why
heterogeneous normal classes may pose a challenge for AD.

Conclusion

In this work, we proposed to extend the standard evaluation protocol of AD on classification
datasets to better reflect potential heterogeneity in the normal class. We applied the kn-
classes-in evaluation to three of the most popular methods for AD. Not only did we find that
none of the evaluated methods are robust to normal class heterogeneity, but we even found
that each of the methods’ performances steadily decreased when increasing heterogeneity.
We are optimistic that our findings motivate future work to investigate this phenomenom
further, and encourage authors to evaluate their methods under normal class heterogeneity
when developing new AD methods.
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Broader Impact Statement

The evaluation of AD methods on heterogeneous normal classes may have implications
across diverse domains such as cybersecurity, finance, healthcare, and industrial systems.
Encouraging future work to evaluate AD methods on more heterogeneous normality can
enhance their reliability and effectiveness. Hence, we contribute to the advancement of
the field of AD and the development of more trustworthy and resilient machine learning
systems.

Reproducibility Statement

We ran our experiments by adapting the official GitHub repositories of Geom1, GOAD2, and
CSI3. The results of our experiments can be reproduced by changing the definition of normal
and anomalous classes according to Appendix B.2, running the CIFAR-10 experiment of the
respective code-base with the default parameters, and aggregating the resulting AUROC
metrics of each run.
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Appendix A. Related Work

In recent years, a vast number of deep-learning methods have been developed to address
AD. A popular direction is to try to learn the distribution of the normal samples directly,
consequently detecting anomalies as samples within low probability regions (Zhai et al.,
2016; You et al., 2019; Baur et al., 2019). However, some recent works have cast doubt on
the feasibility of such an approach (Nalisnick et al., 2018; Le Lan and Dinh, 2021). Other
works reformulate the problem as a discriminative task, either by directly learning decision
boundaries around the given normal class (Schölkopf et al., 2001; Tax and Duin, 2004; Ruff
et al., 2018) or by defining an auxiliary pre-text task and defining an anomaly score using
the resulting model to discriminate between normal and anomalous samples at test time
(Golan and El-Yaniv, 2018; Hendrycks et al., 2019; Tack et al., 2020).

More recently, many methods have started to assume access to pretrained models (Reiss
et al., 2021; Cohen et al., 2022; Cohen and Avidan, 2022). Such approaches operate in a
slightly different scenario than standard AD, as there may be exposure to anomalies through
the pretraining dataset. Hence, such methods are only applicable to domains where there
exist sufficiently large public datasets that allow for pretraining on a larger scale. Further,
there have been many other works exploring methods under a slight modification of the
standard assumptions, such as assuming there is a small set of labeled anomalies (Hendrycks
et al., 2018; Ruff et al., 2019; Liznerski et al., 2022), contaminated training datasets (Qiu
et al., 2022; Perini et al., 2023), or active learning settings where one is allowed to request
the label for a few samples (Li et al., 2023).

Appendix B. Experiments

B.1 Dataset

Within the scope of this paper, we consider AD methods on images, where the correspond-
ing one-class CIFAR-10 dataset (Krizhevsky and Hinton, 2009) has become a staple for
evaluation (Ruff et al., 2018; Golan and El-Yaniv, 2018; Perera et al., 2019; Tack et al.,
2020; Mirzaei et al., 2022; Liznerski et al., 2022).

B.2 Evaluation

In the following, we describe our kn-classes-in evaluation approach in more detail. Consider
a classification dataset with samples (xi, yi), where yi ∈ C = {c0, . . . , ck−1} and C is the set
of all k = |C| classes of the dataset. We propose building a training set X = {xi|yi ∈ C},
where we call C ⊂ C the normal set. Intuitively, a sample is normal if its label is part of
the kn = |C| classes in the normal set. Otherwise, a sample is considered anomalous. For
kn = 1, we recover the original one-class AD evaluation, whereas, for kn > 1, we increase
the heterogeneity of the normal class. Note that increasing kn also increases the amount
of training data, which should give models with bigger kn an advantage over the ones with
smaller kn. To make runs consistent across different methods, we ensure we take the same
10 normal sets across all methods. For each run i with normal sets of size kn, we chose

C
(i)
kn

= {cj%10|i ≤ j < i + kn}, i. e., we enumerate all classes starting at class ci and wrap
around to the beginning if i + kn ≥ 10. Note that Ruff et al. (2021) mention a similar
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Figure 2: CSI Score distributions of normal and anomalous samples for different values of
kn. The score distribution of normal samples stays similar across different heterogeneity
levels, whereas the anomalous score distributions start to align with the normal ones for
higher kn.

procedure (ka-classes-out) in their review paper, but do not evaluate any methods with
this protocol. To the best of our knowledge, most existing AD papers apply this evaluation
with kn = 1 (ka = k − 1), assuming heterogeneous anomalies but homogeneous normal
classes.

B.3 Metrics

To determine whether a given sample is anomalous or not at test time, most common AD
methods do not directly provide a prediction of whether a sample xi is anomalous or not.
Instead, they return an anomaly score s(xi) ∈ R, which stands for the ”normality” of a
sample. We can then threshold this score with some threshold τ , such that s(xi) < τ means
xi is normal, and anomalous otherwise (or vice versa, depending on the scores’ definition).
As such, threshold-independent metrics such as AUROC or the Area under the Precision-
Recall Curve (AUPR) are common choices for evaluating AD methods. Determining the
optimal threshold is a whole different topic, as choosing the threshold is often dependent
on whether sensitivity or specificity is more important for a given application. Further, as
AD settings often deal with heavy class imbalances, AUROC is the most popular metric
for evaluation, as the random model and constant predictions result in a score of 0.5,
independent of class balance. This property is crucial for our experiment, since varying the
heterogeneity in the normal class results in a shift of class balance at test time, making it
hard to interpret metrics such as AUPR where random performance would change depending
on the value of kn.
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Table 1: CSI anomaly score means and standard deviations of all normal and anomalous
samples across different levels of heterogeneity. While the score of normal samples stays
approximately the same on average, the scores of anomalies almost doubles on average when
increasing the heterogeneity.

kn=2 kn=3 kn=4 kn=5 kn=6 kn=7 kn=8 kn=9

Normal 1.76±0.88 1.78±0.91 1.78±0.91 1.79±0.91 1.8±0.93 1.81±0.94 1.82±0.94 1.82±0.96

Anomalous 0.45±0.43 0.49±0.46 0.54±0.47 0.61±0.5 0.67±0.52 0.78±0.58 0.87±0.61 0.9±0.63

Appendix C. CSI score distributions under heterogeneous normal classes

In this subsection, we investigate the score distributions of CSI, the most consistent of the
three methods, in a bit more detail. We aggregate the normal and anomalous scores of all
10 runs for different values of kn, and compare the respective distributions over scores in
Figure 2 and their corresponding moments in Table 1. Note that CSI defines the score such
that bigger values correspond to more normal samples. For smaller values of kn, the score
distributions still seem to follow the observations made in the original paper. Anomalies get
a consistent, low score, whereas normal samples get more diverse scores as can be seen in
Table 1. Tack et al. (2020) suggest that anomalies get mapped to representations closer to
the origin, which results in smaller and less diverse scores, whereas normal representations
are further from the origin, resulting in more variability in their scores. However, increasing
kn seems to result in more variability and, on average, higher scores of anomalous samples.
The models used by CSI seem to start learning to represent any sample further from the
origin when there is more diversity and samples in the training set, leading to a decrease in
performance as anomalous and normal scores start to align.
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