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ABSTRACT

Few-shot learning is essential in many applications, particularly in tabular do-
mains where the high cost of labeling often limits the availability of annotated
data. To address this challenge, we propose range-limited augmentation for con-
trastive learning in tabular domains. Our augmentation method shuffles or sam-
ples values within predefined feature-specific ranges, preserving semantic consis-
tency during contrastive learning to enhance few-shot classification performance.
To evaluate the effectiveness of our approach, we introduce FESTA (Few-Shot
Tabular classification benchmark), a benchmark consisting of 42 tabular datasets
and 31 algorithms. On this benchmark, contrastive learning with our augmentation
method effectively preserves task-relevant information and significantly outper-
forms existing approaches, including supervised, unsupervised, self-supervised,
semi-supervised, and foundation models. In particular, our method achieves an
average rank of 2.3 out of 31 algorithms in the 1-shot learning scenario, demon-
strating its robustness and effectiveness when labeled data is highly limited. The
benchmark code is available in the supplementary material.

1 INTRODUCTION

In many machine learning applications, obtaining labeled data presents significant challenges due
to the labor-intensive nature of the labeling process (Chapelle et al., 2009). This issue is partic-
ularly relevant in tabular domains, where acquiring labeled data is often expensive and requires
expert knowledge, despite the availability of abundant unlabeled data (Yoon et al., 2020; Nam et al.,
2023b;a; Hegselmann et al., 2023; Han et al., 2024). For instance, during the early stages of the
COVID-19 pandemic, early detection efforts were hindered by the limited availability of labeled
data, such as confirmed cases, despite the abundance of related but unlabeled data (Zhou et al.,
2020). This scarcity underscores the need for few-shot learning techniques that can maximize per-
formance with minimal labeled data.

Given the scarcity of labeled data in tabular domains, contrastive learning has emerged as an ef-
fective strategy to leverage abundant unlabeled data (Bahri et al., 2021; Ucar et al., 2021; Wang &
Sun, 2022; Somepalli et al., 2021). In this approach, we first learn the representations by optimizing
contrastive loss with unlabeled data, then leverage the limited labeled data to train a simple predic-
tion head by optimizing the supervised loss on these learned representations. The performance of
contrastive learning significantly depends on the choice of data augmentations because it directly
controls the information captured by the representations (Chen et al., 2020a; Tian et al., 2020a; Grill
et al., 2020; Lee et al., 2024a). For better representation learning, augmentations should retain task-
relevant information while minimizing the nuisance information (Linsker, 1988; Tian et al., 2020a;
Xiao et al., 2020; Purushwalkam & Gupta, 2020). In other words, augmented views should share
the same task labels after augmentation, while task-irrelevant factors can be perturbed.

Defining data augmentations that preserve task-relevant information is particularly challenging in
tabular data, as it is difficult to assess whether the augmentations maintain the task labels. In contrast,
in domains like images, this process is relatively straightforward; for instance, flipping or resizing
an image does not alter its label in object classification. However, in tabular domains, this clarity is
often unavailable. For example, in a medical dataset where the task is to predict infection status, it is
unclear whether masking or shuffling certain values, such as body temperature, would preserve the
task label without expert knowledge. This uncertainty complicates the design of augmentations that
reliably maintain semantic information in tabular data.
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Figure 1: An overview of our augmentation methods, range-limited shuffling and sampling: Before training,
we define the augmentation ranges for each numerical feature based on the input distribution for a given number
of ranges. During training, we implement shuffling and sampling within the predefined ranges to generate
augmented views. This procedure is applied to all numerical features.

Recent works suggest that grouping nearby samples in the data distribution can significantly improve
downstream task performance in tabular domains. Lee et al. (2024b) demonstrated that pretraining
on unlabeled datasets to predict feature quantization bins can largely improve downstream task per-
formance. Similarly, Wu et al. (2023) proposed using randomized quantization as an augmentation
strategy in contrastive learning, showing that withholding information within quantization bins en-
hances performance across diverse data domains. These findings imply that samples close in the
data distribution can be treated as having the same values to improve tabular representation learn-
ing, possibly due to shared semantics within the same group. Building on this, we hypothesize that
restricting augmentations to specific ranges based on distributional proximity (i.e., proximity within
feature distributions in the training data) will help preserve semantic consistency in tabular data.

Building on our hypothesis, we propose range-limited augmentation methods within a contrastive
learning framework to enhance few-shot classification in tabular data. As illustrated in Figure 1, the
main idea is straightforward: shuffle or sample values within predefined ranges for each feature. By
limiting these ranges, our method aims to maintain semantic consistency between augmented views
and original samples, providing more reliable positive pairs for contrastive learning. This approach
helps reduce the risk of false positives and enhances the model’s ability to learn meaningful invari-
ances. To address the unique characteristics of tabular data, we apply feature-wise transformations
to adjust ranges based on the distribution of each feature to account for different feature scales. In
addition, we conduct quantitative analyses to validate our hypothesis that nearby samples share task
labels, confirming that our range-limited augmentation preserves task-relevant information more
effectively than existing augmentation methods.

To validate the generalizability of our method, we introduce FESTA (Few-Shot Tabular classifica-
tion benchmark), a comprehensive benchmark that evaluates 31 algorithms across 42 public tabular
datasets. FESTA assesses scenarios with only a few number of labeled samples and a large pool
of unlabeled data. The benchmark covers models from various learning paradigms, including su-
pervised, unsupervised, self-supervised, and semi-supervised, and foundation models. To the best
of our knowledge, FESTA is the first and largest benchmark dedicated to few-shot learning in tab-
ular domains, providing a thorough evaluation of algorithmic performance. Our experiments on
the FESTA benchmark demonstrate that our approach significantly improves few-shot classification
performance over existing tabular learning methods, achieving an average rank of 2.3 out of 31
algorithms using only 1-shot labeled data.

In summary, the contributions of this paper are as follows: (1) We propose range-limited augmenta-
tion, a simple yet effective tabular augmentation strategy for contrastive learning. (2) We introduce
FESTA, a comprehensive benchmark for few-shot learning in tabular domains, evaluating 31 algo-
rithms across 42 public datasets. The benchmark code is available in the supplementary material.
(3) Our method consistently and significantly improves few-shot classification performance across
various numbers of labeled samples and datasets.

2 RELATED WORK

Learning with few labeled samples: Prior works on learning with limited labeled data lever-
age unlabeled samples through two main approaches: semi-supervised (Lee et al., 2013; Kim et al.,
2020; Assran et al., 2021; Pham et al., 2021) and self-supervised (Chen et al., 2020b;a; 2021a;
Yue et al., 2021) approaches. Semi-supervised learning often employs pseudo-labeling, where
model predictions on unlabeled data are used as labels during training (Lee et al., 2013). To im-
prove pseudo-labeling quality, recent advancements have introduced momentum networks (Laine &
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Aila, 2016; Tarvainen & Valpola, 2017; Pham et al., 2021) and consistency regularization through
data augmentations (Berthelot et al., 2019b;a; Sohn et al., 2020; Xie et al., 2020). In contrast,
self-supervised learning focuses on learning representations using domain-specific inductive biases,
such as spatial relationships in images and temporal relationships in time-series data, followed by
fine-tuning on the few available labeled samples (Tian et al., 2020b; Perez et al., 2021). Notably,
self-supervised methods have demonstrated strong performance in transductive settings, often out-
performing conventional few-shot learning techniques (Chen et al., 2021b; Nam et al., 2023b). Both
semi-supervised and self-supervised approaches rely heavily on effective data augmentations. Al-
though some augmentations have been developed specifically for tabular data, their effectiveness
in few-shot learning settings remains underexplored. To address this, we introduce range-limited
augmentation tailored for contrastive learning to enhance few-shot classification in tabular data.

Learning with unlabeled samples in tabular domains: Recent efforts have explored leveraging
unlabeled data to enhance model performance in tabular domains when labeled samples are lim-
ited. For instance, Yoon et al. (2020) introduced a self-supervised and semi-supervised framework
using a novel augmentation that masks feature values to train an encoder. Building on this, Bahri
et al. (2021) developed a contrastive learning approach, randomizing feature values based on empir-
ical marginal distributions, while Ucar et al. (2021) proposed multi-view representation learning by
splitting features into subsets. In another direction, Lee et al. (2024b) suggested a pretext task that
predicts bin indices to capture dataset irregularities, with random shuffling improving downstream
performance. Beyond augmentations, Nam et al. (2023b) explored unsupervised meta-learning, us-
ing self-supervised tasks from unlabeled data for few-shot classification. Other recent works (Nam
et al., 2023a; Hegselmann et al., 2023; Han et al., 2024) leveraged large language models (LLMs)
to utilize in-context learning on unlabeled datasets. In our study, we focus on methods that operate
without relying on auxiliary information, such as column descriptions.

Data augmentation in tabular contrastive learning: Data augmentation is essential in con-
trastive learning for generating positive views that enable the model to learn meaningful invariances.
However, unlike image or time-series data with clear spatial or temporal structures, tabular data lacks
such inductive biases, complicating the design of augmentations that both preserve task-relevant
information and introduce useful perturbations. Current augmentation techniques for contrastive
learning in tabular data can be grouped as follows:

• Masking (Yoon et al., 2020; Huang et al., 2020): Randomly mask feature values with a constant.
• Sampling (Bahri et al., 2021): Randomly replace feature values based on their empirical

marginal distributions.
• Shuffling (Huang et al., 2020; Lee et al., 2024b): Shuffle feature values within each feature

column.
• Noise (Nam et al., 2023b): Inject small random noise into selected feature values.
• Subset (Ucar et al., 2021; Wang & Sun, 2022): Divide the input features into multiple subsets.
• CutMix (Somepalli et al., 2021): Combine two samples using a binary mask applied to feature

values.
• MixUp (Somepalli et al., 2021): Linearly interpolate between a sample and a randomly selected

sample from the same batch in the embedding space.
• Random quantization (Wu et al., 2023): Quantize each feature channel into uniform or non-

uniform bins and replace feature values with random constants within these bins.

A detailed description of each augmentation is provided in Supplementary A.3. In this study, we in-
troduce two new augmentation methods aimed at better preserving semantic information to improve
few-shot classification performance in tabular data.

3 FESTA: FEW-SHOT TABULAR CLASSIFICATION BENCHMARK

In this section, we introduce FESTA (Few-Shot Tabular classification benchmark), a comprehensive
benchmark designed to evaluate the performance of few-shot classification algorithms in tabular do-
mains. The benchmark encompasses 42 public datasets and 31 algorithms for a thorough evaluation
of our proposed method, as well as existing approaches. FESTA spans multiple learning paradigms,
including supervised, unsupervised, self-supervised, and semi-supervised learning, and foundation
models, as well as both traditional machine learning and deep learning approaches. By providing
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a diverse range of datasets and algorithms, the benchmark allows for a thorough and systematic
evaluation of few-shot learning performance in tabular domains.

3.1 PROBLEM SETUP: FEW-SHOT SEMI-SUPERVISED CLASSIFICATION

We first describe the problem setup of our interest, the few-shot learning in tabular domains. For-
mally, our goal is to train a neural network classifier fθ : X → Y parameterized by θ where X ⊆ Rd

and Y = {0, 1}C are input and label spaces with C classes, respectively. We assume that we have
a labeled dataset Dl = {xl,i, yl,i}Nl

i=1 ⊆ X × Y and an unlabeled dataset Du = {xu,i}Nu

i=1 ⊆ X for
training the classifier fθ. Following the convention of the few-shot learning, we set Nl = C × S
where S represents the number of labeled samples per class (shots). All data points are drawn from a
distribution p(x, y) in an i.i.d. manner. We do not allow the use of auxiliary information like column
descriptions or additional domain knowledge.

3.2 FESTA: FEW-SHOT TABULAR CLASSIFICATION BENCHMARK

Datasets: We collected 42 public datasets from the OpenML Python library (Vanschoren et al.,
2014), as a subset of the largest tabular learning benchmarks (McElfresh et al., 2023; Salinas &
Erickson, 2023). The selection criteria were: (1) datasets contain at least one numerical feature, and
(2) each class includes more than S samples. The benchmark includes 26 binary and 16 multiclass
classification datasets, with sizes ranging from 180 to over 250,000 samples and feature dimensions
from 4 to 216. Following Nam et al. (2023b), we split each dataset into an 80% training set and
20% test set, with 10% of the unlabeled training data used for validation when necessary. A quantile
transformation is applied to all numerical features for normalization. Categorical features were
determined as those with fewer than 20 unique values (Lee et al., 2024b). No additional labeled data
is used for training or hyperparameter optimization, ensuring the constraints of the few-shot learning
setup. A complete list of datasets is provided in Supplementary A.1.

Baselines: We evaluate a variety of baseline algorithms spanning multiple learning paradigms to
ensure a comprehensive assessment of few-shot learning in tabular data. These include:

• Supervised algorithms: Logistic regression (LR), k-nearest neighbors (kNN), XGBoost (Chen
& Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), LightGBM (Ke et al., 2017), MLP

• Self-supervised algorithms: Reconstruction-based auto-encoder, Binning (Lee et al., 2024b),
SubTab (CL+Subset, (Ucar et al., 2021)), VIME (Yoon et al., 2020), Contrastive learning with
four augmentation methods (CL+Masking/Shuffling/Noise/RQ), SCARF(CL+Sampling, (Bahri
et al., 2021)), SAINT (CL+CutMix+MixUp, (Somepalli et al., 2021))

• Semi-supervised algorithms: VIME (Yoon et al., 2020), Pseudo-label (Lee et al., 2013) with six
augmentation methods (PL+Masking/Shuffling/Noise/RQ/Sampling/CutMix), Auto-Encoder,
ICT (Verma et al., 2022), Mean Teacher (Tarvainen & Valpola, 2017)

• Unsupervised meta-learning algorithm: STUNT (Nam et al., 2023b)
• Foundation models: TabPFN (Hollmann et al., 2022), HyperFast (Bonet et al., 2024)

In addition to these baselines, our benchmark includes two self-supervised learning methods incor-
porating our new data augmentation techniques. Due to the limited number of labeled samples for
training and validation, we directly apply the best setups for each model as reported in the original
papers, without tuning hyperparameters. For self-supervised learning algorithms, we primarily use
logistic regression as the evaluation protocol in the manuscript, as it shows the best performance
across datasets. Alternative evaluation methods, including k-nearest neighbors, linear evaluation,
and fine-tuning, are also available in the benchmark, with full details provided in Supplementary C.1.
Following Nam et al. (2023b), a 2-layer MLP is used as the classifier fθ for most deep learning al-
gorithms if there is no specific architecture is provided in the original papers. Detailed descriptions
and configurations for each algorithm are provided in Supplementary A.2.

Evaluation: For each dataset and algorithm, we use 50 different data splits to evaluate perfor-
mance. We evaluate accuracy for S ∈ {1, 5} across all datasets, but AUROC and log loss results are
also available in the benchmark.

4 RANGE-LIMITED AUGMENTATION FOR FEW-SHOT TABULAR LEARNING

In this study, we leverage contrastive learning framework to make effective use of unlabeled data
for few-shot learning. Specifically, we train an encoder on unlabeled data to learn representations
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that capture useful invariances through data augmentations, followed by training a simple prediction
head (e.g., logistic regression) on the limited labeled data. The performance of contrastive learning
heavily depends on data augmentations, as they control the information captured by the representa-
tions (Chen et al., 2020a; Tian et al., 2020a; Grill et al., 2020; Lee et al., 2024a). Effective augmen-
tations should retain task-relevant information while reducing nuisance factors (Linsker, 1988; Tian
et al., 2020a; Xiao et al., 2020; Purushwalkam & Gupta, 2020), ensuring augmented views share the
same task labels.

However, tabular data lacks clear inductive biases, making it challenging to design augmentations
that preserve task-relevant information. For example, masking or shuffling values can disrupt se-
mantic relationships and lead to false positive pairs, hindering contrastive learning from capturing
meaningful invariances. Recently, several studies found that grouping nearby samples based on
their proximity in the data distribution can improve the downstream task performance. Lee et al.
(2024b) found that pretraining to predict feature quantization bins, rather than raw values, improves
downstream task performance, while Wu et al. (2023) used randomized quantization to make fea-
ture values constant within the same bins as an augmentation strategy. These findings suggest that
samples close in the data distribution benefit from being treated similarly during training, potentially
due to shared semantics within each group. Building on this, we hypothesize that restricting aug-
mentations to predefined ranges based on distributional proximity can better preserve task-relevant
information, thereby enhancing few-shot classification.

Range-limited augmentation: The main idea is straightforward: we shuffle or sample values
within predefined ranges for each feature. As shown in Figure 1, each feature is divided into b ranges,
ensuring that each range contains an equal number of observations (Wu et al., 2023; Lee et al.,
2024b). For a given input sample x, we generate an augmented view x′ based on the augmentation
ranges Bj = {Bj1, Bj2, . . . , Bjb} for each feature j ∈ [1, d], where each range Bjk = (βmin

jk , βmax
jk ]

is defined by its boundaries.

• Range-limited shuffling: We shuffle the values within the same range. For the i-th sample of
the j-feature, xi,j ∈ Bjk, the augmented value is sampled from the set of values within the same
range: x′

i,j ∼ {v|v ∈ x·,j and v ∈ Bjk}.

• Range-limited sampling: We sample values from a uniform distribution bounded by the range
limits. For the i-th sample of the j-feature, xi,j ∈ Bjk, the augmented value is drawn as x′

i,j ∼
U(βmin

jk , βmax
jk ).

The range-limited augmentation is applied to randomly selected cells in each sample, controlled by
a hyperparameter called the selection ratio, p ∈ [0, 1]. Specifically, a Bernoulli distribution with
probability p generates a masking vector m ∈ {0, 1}d of the same size as x. The final transformed
sample is generated as xaug. = m⊙ x′ + (1−m)⊙ x.

Overall framework: Our framework follows a conventional self-supervised learning pipeline.
We first train an encoder by optimizing a SimCLR-like contrastive loss (Chen et al., 2020a) on unla-
beled data, using range-limited augmentation to generate positive pairs. After pretraining, a logistic
regression prediction head is trained on top of the frozen encoder using the few labeled samples
available. Consistent with prior works (Yoon et al., 2020; Bahri et al., 2021; Nam et al., 2023b), the
encoder is trained for 1000 epochs with early stopping, and we set p = 0.3 throughout our study. For
both range-limited shuffling and sampling, we fix the number of ranges b as 4 throughout our study.
This choice maintains a balance between preserving task-relevant information and computational
efficiency. (See Section 6.2 for a detailed empirical analysis.)

4.1 ANALYSIS OF TASK-RELEVANT INFORMATION PRESERVED BY AUGMENTATION
METHODS

Evaluating how well augmentation preserves task-relevant information is challenging in tabular do-
mains, as the labeling process often requires additional steps or expert knowledge. To address this
challenge, we use a pretrained neural classifier fθ with near-perfect test accuracy as a proxy for the
ground-truth labeling process. This classifier is trained on the original training samples (without
augmentation) and evaluated on transformed test samples. It is considered as a reliable proxy when
it achieves over 95% accuracy on the original test samples, which we observe in a subset of eight
datasets within our benchmark. Using this proxy, we test our hypothesis that range-limited augmen-
tation preserves task-relevant information more effectively than six previous augmentation methods:
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Figure 2: Comparison of usable information (Left) and representation invariance score (Middle, Right) across
different augmentation methods and augmentation strengths: Most augmentations tend to reduce both metrics
as augmentation strength increases, indicating a loss of task-relevant information. In contrast, range-limited
augmentations consistently preserve high levels of both metrics across all augmentation strengths, outperform-
ing other methods and demonstrating their efficacy in retaining task-relevant information.

masking, shuffling, sampling, noise, CutMix, and RQ, across varying augmentation strengths. Here,
augmentation strength refers to how many cells are affected by the augmentation function, such
as the selection ratio p for masking, shuffling, sampling, noise, CutMix, and our method, or the
quantization scale for RQ.

To evaluate which augmentation is better to preserve task-relevant information than others, we mea-
sure two metrics on the representation Z from the penultimate layer of fθ. The classifier fθ, trained
without augmentations, serves as a proxy to assess how much task-relevant information is retained
in Z for transformed test datasets.

• Usable information (Kleinman et al., 2020): It quantifies the relevant information in Z, the
representation of augmented inputs, for predicting the target label Y . It is defined as I(Z;Y ) =
H(Y ) − LCE(p(y|z), q(y|z)), where H(Y ) is the entropy of Y , and LCE is the cross-entropy
loss between the predicted distribution q(y|z) and the true distribution p(y|z). A higher value
indicates that the representation Z retains more relevant information to predict target label Y ,
thereby the augmentation preserves task-relevant information well.

• Representation Invariance Score (RIS) (Goodfellow et al., 2009; Purushwalkam & Gupta, 2020):
RIS measures the consistency of Z under augmentations based on Y . It is calculated as the
average consistency of the activation patterns across the top-K units of Z for each class. A higher
RIS suggests that an augmentation maintains consistent activation patterns in the representations
Z for the same task label Y , thereby preserving task-relevant information more effectively than
augmentations that disrupt these patterns.

Figure 2 shows the effect of augmentation strength on usable information and RIS across various
augmentation methods. Most augmentations exhibit a clear decline in both metrics as augmenta-
tion strength increases, suggesting a disruption in retaining task-relevant information, while RQ
maintains consistently low levels for both metrics, potentially due to a sensitivity to even minor
transformations. In contrast, range-limited augmentations – both shuffling and sampling – maintain
robust performance across all strengths. They consistently preserve high levels of usable information
and RIS, indicating that task-relevant information is well-retained even at higher augmentation lev-
els. These results demonstrate the efficacy of our range-limited methods in preserving task-relevant
information while maintaining consistent representations across varying augmentation strengths.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate how our range-limited augmentation
methods improve few-shot classification performance on the FESTA benchmark. Performance is
evaluated on 50 random splits per dataset, with results reported as averages and standard deviations.
(Full results are available in the FESTA benchmark and are also provided in the zip file included in
the supplementary materials during the review process.) All experiments are performed on a single
NVIDIA GeForce RTX 3090. Our results show that our methods consistently and significantly out-
perform existing approaches, including supervised, unsupervised, self-supervised, semi-supervised,
and foundation models. These findings underscore the importance of preserving task-relevant infor-
mation during contrastive learning to enhance few-shot classification performance.

For few-shot classification, we assess performance under 1-shot and 5-shot scenarios, where one or
five labeled samples per class are available. As summarized in Table 1, we found that unsupervised,
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Table 1: Experimental results on the FESTA benchmark: We evaluate each algorithm’s performance on 50
different data splits per dataset and report the average accuracy and standard deviation. The average rank is
calculated based on average accuracy across datasets. The “Wins” column indicates how often each algorithm
achieves the highest average accuracy for a dataset, with ties counted. The best-performing algorithm for each
number of labeled samples (1-shot and 5-shot) and metric is highlighted in bold. Since TabPFN is incompatible
with large datasets, we also compare results on a subset of smaller datasets, indicated by . Despite modifying
only the augmentation module, our method significantly outperforms other baselines.

Shots 1 5

Model Accuracy (%) Rank Wins Accuracy (%) Rank Wins

Supervised

LR 48.569±15.525 9.262±4.949 1 57.567±17.385 9.881±6.978 0
kNN 49.116±14.499 9.095±4.482 0 54.210±16.135 17.167±6.522 0
XGBoost 41.328±23.757 18.167±11.144 9 57.199±15.312 15.119±7.409 1
CatBoost 48.345±16.045 10.095±7.091 6 59.522±18.330 10.429±7.847 4
LightGBM 41.689±23.240 18.119±11.123 9 50.267±19.893 20.500±10.639 6
MLP 48.269±15.224 9.643±4.405 0 57.996±17.592 10.333±5.937 1

Semi-Supervised

VIME 41.505±13.492 21.238±8.310 1 50.944±15.019 20.333±6.362 0
Auto-Encoder 47.353±15.744 12.119±7.249 1 57.020±18.396 12.048±6.953 1
ICT 44.576±13.655 16.690±8.236 0 50.926±18.658 18.881±7.164 0
MeanTeacher 45.527±13.861 15.952±6.604 1 54.422±16.269 17.500±6.302 1
PL+Masking 43.987±13.905 18.571±6.232 0 55.180±17.561 14.690±6.798 0
PL+Sampling 43.690±13.977 20.500±6.452 0 53.515±17.484 17.571±6.275 0
PL+Shuffling 43.610±13.634 20.405±6.073 0 52.924±17.565 18.310±7.220 0
PL+Noise 43.417±13.824 20.714±5.148 0 53.006±17.369 17.738±7.408 0
PL+RQ 44.698±14.577 17.524±6.812 0 54.084±17.878 16.143±6.906 0
PL+CutMix 43.212±13.488 21.786±6.437 0 53.085±17.063 18.524±6.751 0

Unsup. Meta STUNT 46.955±15.471 13.381±7.119 1 53.412±16.903 15.095±8.720 2

Foundation HyperFast 47.798±13.615 14.732±6.565 0 59.772±18.736 8.310±6.119 3

Self-supervised

Reconstruction 33.414±16.978 27.810±2.957 0 32.816±17.381 28.976±2.136 0
Binning 34.564±17.248 27.071±4.474 0 34.114±16.994 28.238±4.029 0
VIME 35.999±17.520 26.476±3.833 0 36.428±18.166 27.405±3.328 0
SubTab (CL+Subset) 36.264±17.614 26.190±3.921 0 36.680±18.005 28.262±2.548 0
SCARF (CL+Sampling) 48.830±14.716 11.024±5.470 0 59.170±16.073 12.262±5.579 1
SAINT (CL+CutMix+MixUp) 45.191±18.857 16.143±7.863 1 50.768±20.715 18.571±8.279 2
CL+Masking 48.114±14.885 11.714±4.815 0 56.787±17.365 14.333±5.011 0
CL+Shuffling 49.091±14.899 10.524±5.379 1 59.373±16.233 11.238±6.084 0
CL+Noise 49.076±14.881 10.738±5.747 1 59.394±16.263 11.167±5.725 1
CL+RQ 47.153±16.012 12.929±5.242 0 55.882±18.437 13.381±5.780 0
CL+Range-limited Shuffling 51.972±15.243 2.310±1.405 16 61.921±16.641 3.857±3.302 16
CL+Range-limited Sampling 50.640±14.759 4.857±2.455 2 60.647±16.315 7.738±4.580 0

Self-supervised CL+Range-limited Shuffling 52.670±15.038 2.303±1.447 13 60.827±16.523 3.636±3.525 14
CL+Range-limited Sampling 51.284±14.534 4.848±2.563 2 59.610±16.214 7.727±4.824 0

Foundation TabPFN 48.216±13.631 14.727±6.256 1 60.421±15.921 6.394±4.815 3

self-supervised, and semi-supervised models do not consistently outperform supervised baselines in
both setups, despite access to large amounts of unlabeled data. This suggests that current few-shot
learning techniques cannot effectively leverage unlabeled data to capture task-relevant dependencies.

However, substituting the augmentation module in a self-supervised framework with our range-
limited augmentation yields significant performance improvements in both 1-shot and 5-shot sce-
narios. Specifically, our method achieves an average rank of 2.3 out of 31 algorithms in the 1-shot
setup, highlighting the critical role of preserving task-relevant information during contrastive learn-
ing for enhancing few-shot classification across various datasets. While our approach incurs a slight
increase in training time due to the overhead of range-limited augmentations, it achieves superior
performance with only a minimal additional cost compared to more complex architectures like trans-
formers. Additional details on training time can be found in Supplementary C.2.

While most methods use MLP-based architectures, transformer-based models like SAINT and
TabPFN are included for comparison. Interestingly, no consistent advantage of transformer archi-
tectures over MLPs is observed in few-shot settings, suggesting that model architecture alone does
not indicate better performance when labels are scarce.

Surprisingly, contrastive learning with range-limited augmentation outperforms foundation models
such as TabPFN and HyperFast, both trained on large-scale tabular datasets, while our approach
is trained on a single dataset. Since TabPFN has constraints to use, including sample size, feature
dimension, and number of classes, we compared the effectiveness of our method with TabPFN on
a subset of the FESTA benchmark consisting of 33 datasets, in the bottom three lines of Table 1.
Importantly, both foundation models require a small number of labeled samples for inference, such
as to construct the attention maps and determine model weights. Our approach demonstrates an
average accuracy improvement of 4.19% over TabPFN and 3.95% over HyperFast in the 1-shot
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setting, even though the foundation models leverage large-scale datasets and complex architectures,
whereas our method employs a simple 2-layer MLP trained on a single dataset. This underscores
the importance of augmentations that preserve task-relevant information, enabling effective learning
of latent relationships in tabular data without relying solely on large-scale training.

Among our methods, range-limited shuffling consistently outperforms range-limited sampling.
A similar trend is observed when comparing the performance of CL+Shuffling with SCARF
(CL+Sampling). These results suggest that generating augmented views with values already present
in the dataset can be more beneficial than sampling new values for tabular representation learning.
Nonetheless, range-limited sampling proves to be highly competitive, outperforming all other few-
shot learning techniques in the benchmark. This result highlights the superiority of range-limited
augmentations in enhancing few-shot classification.

6 DISCUSSION

We have observed that our method significantly improves few-shot classification performance across
a wide range of datasets. In this section, we present additional experiments, with evaluations con-
ducted on 10 random splits per dataset, to further investigate the advantages of our approach.

6.1 INCREASING THE NUMBER OF LABELED SAMPLES

Figure 3: Experimental results increas-
ing the number of labeled samples: Our
method (CL+Range-limited shuffling) consis-
tently achieves superior performance with an
increased number of shots.

Beyond the original evaluation with the number of la-
beled samples Nl = S × C and S ∈ {1, 5}, we ex-
amine the performance of top-performing algorithms
from Table 1 as the number of shots increases. As
summarized in Figure 3, all algorithms perform bet-
ter with an increasing number of labeled samples. In-
terestingly, the 5-shot performance of our method is
comparable to that of other algorithms with 10 or more
shots, and its superiority persists even as the number of
shots increases. These results highlight the ability of
our method to effectively capture task-relevant infor-
mation, demonstrating superior downstream task per-
formance even as the number of shots increases.

6.2 ABLATION STUDY: SELECTION RATIO AND THE NUMBER OF RANGES

(a) Selection ratio p (b) Number of ranges b

Figure 4: Ablation results showing the effect of (a) varying
the selection ratio p across different augmentation strategies
and (b) varying the number of ranges b for range-limited
augmentations.

In this study, we fixed the selection ratio
p = 0.3 and the number of ranges b = 4
for our augmentation methods, using op-
timal hyperparameters for other augmen-
tation techniques as suggested in their re-
spective papers. However, as demonstrated
in Section 4.1, augmentation strength af-
fects the amount of shared task-relevant in-
formation between views. This strength is
controlled by the hyperparameter p in our
methods as well as other augmentations like
masking, shuffling, sampling, and noise,
where p defines the proportion of cells augmented.

To evaluate the effect of p, we conducted experiments exclusively on augmentation methods that
use p as a hyperparameter, as summarized in Figure 4a. Our results show that our range-limited
augmentation consistently achieves superior performance across different values of p, indicating its
robustness to varying augmentation strengths. In contrast, other methods degrade in performance
as p increases, consistent with the findings in Section 4.1. In particular, the worst performance of
CL+Range-limited augmentation even outperforms the best performance of all other CL+Aug meth-
ods, underscoring the robustness of our approach regardless of the choice of p. These observations
highlight the critical role of preserving task-relevant information for effective contrastive learning.

In addition, we examined how the number of ranges b affects the performance of range-limited
augmentations when p = 0.3. While preserving task-relevant information is crucial, generating
diverse views (Wang & Isola, 2020) and reducing task-irrelevant information (Xiao et al., 2020) also

8
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Table 2: Experimental results for few-shot regression tasks: Performance is evaluated using the average root-
mean squared error (RMSE) across three datasets. Our method consistently outperforms baseline algorithms,
demonstrating better generalization with limited labeled samples in regression tasks.

OpenML ID 1-shot 5-shot

XGBoost MLP Ours (Shuffling) Ours (Sampling) XGBoost MLP Ours (Shuffling) Ours (Sampling)

194 1.839 1.541 1.537 1.530 1.621 1.601 1.539 1.541
44133 66.534 51.107 51.077 51.095 54.777 53.022 51.066 51.061
566 771.539 765.045 762.104 762.100 826.758 807.124 762.098 762.101

can contribute to better representations in contrastive learning. Increasing b helps maintain task-
relevant information by narrowing the augmentation ranges, but at the cost of reduced diversity. In
Figure 4b, we empirically found that setting b = 4 provides an optimal balance, ensuring sufficient
preservation of task-relevant information while maintaining diverse views. However, any choice
of b > 1 outperforms the best performance of all other CL+Aug methods, reducing the need for
extensive tuning of b to achieve strong performance.

6.3 FEW-SHOT REGRESSION TASKS

While our primary focus has been on few-shot learning in classification tasks, our method also can
be applied to regression tasks. As in the classification setting, we first train the encoder network
without label information and subsequently adapt a prediction head using a few labeled samples,
optimizing the supervised loss function, which in this case is the mean squared error (MSE). Since
logistic regression is not suitable for regression, we employ a single linear layer for evaluation
(i.e., linear evaluation). We evaluated our method on three datasets from OpenML (Vanschoren
et al., 2014) and measured performance based on the average root mean squared error (RMSE). For
comparison, we examine two supervised baselines, XGBoost and MLP, which have demonstrated
strong performance in classification tasks and are applicable to regression tasks. As summarized
in Table 2, our method achieves superior performance by a substantial margin, demonstrating its
effectiveness in regression tasks as well.

6.4 SEMI-SUPERVISED LEARNING

Figure 5: Experimental results for dif-
ferent augmentation methods in pseudo-
label-based semi-supervised learning: Our
method, range-limited shuffling, outper-
forms other augmentation strategies in the
semi-supervised learning context.

Data augmentation plays a crucial role not only in self-
supervised learning but also in semi-supervised learning.
In tabular semi-supervised learning (Yoon et al., 2020), a
supervised loss is optimized with a few labeled samples,
while an unsupervised loss is simultaneously optimized
with unlabeled samples. For unlabeled samples, pseudo-
labels are often generated from original samples and used
as supervised targets for augmented samples. In this set-
ting, preserving task-relevant information also can be im-
portant, as the representations from the original and aug-
mented samples should correspond to the same target la-
bel. To investigate the effectiveness of range-limited shuf-
fling in a semi-supervised learning context, we compare
six pseudo-label-based semi-supervised learning methods
that differ only in their choice of augmentation. The results, shown in Figure 5, present the aver-
age accuracy for the 5-shot setup. Our augmentation method outperforms all other augmentation
strategies, indicating its potential advantage in semi-supervised learning.

7 CONCLUSION

In this study, we introduced range-limited augmentation methods tailored for few-shot learning
in tabular domains. Through comprehensive evaluation on the FESTA benchmark, we demon-
strated that our approach significantly outperforms existing methods. By effectively preserving
task-relevant information during contrastive learning, our range-limited augmentations improve rep-
resentation learning and enhance few-shot classification performance, even when labeled data is
scarce. While our focus was on preserving task-relevant information, reducing nuisance factors also
plays a crucial role in the design of effective data augmentations. Additionally, our work primarily
addressed augmentation methods for numerical features and did not consider augmentations specifi-
cally designed for categorical features. We hope that our study can serve as a valuable starting point
for future exploration in developing augmentation methods that balance both preserving meaningful
information and mitigating nuisance factors.
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Ethics Statement: This study presents range-limited augmentation techniques to enhance few-
shot learning for tabular data. Our research does not involve human subjects or personally identi-
fiable information, minimizing direct ethical concerns related to privacy or data misuse. However,
as our methodologies are evaluated on open-source datasets, we have ensured that all data used is
publicly available, properly cited, and compliant with OpenML licensing (CC-BY license). Our ap-
proach could be applied across a range of domains, potentially including sensitive applications such
as healthcare or finance. While our methods are designed to improve generalizability and robustness,
any application to such sensitive domains should consider the ethical implications, including fair-
ness, transparency, and unintended biases in model performance. Moreover, we acknowledge that
advancements in model performance can have both positive and potentially harmful applications,
and we encourage the responsible use of this technology in alignment with ethical AI principles.

Reproducibility Statement: To ensure the reproducibility of our results, we have provided com-
prehensive details on the datasets, experimental setups, and baselines in the main text and supple-
mentary materials. The full list of datasets and their descriptions is available in Supplementary A.1,
while the detailed algorithm configurations, hyperparameters, and architecture settings are described
in Supplementary A.2 and A.3. All experiments were conducted with a single NVIDIA GeForce
RTX 3090, as specified in the paper. We also provide the code for implementing our augmentation
methods and benchmarking across multiple baselines and datasets. This code and results, along
with any additional instructions for reproducing the experiments, will be submitted as a zip file in
the supplementary materials during the review process.
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SUPPLEMENTARY MATERIALS

A BENCHMARK AND EXPERIMENTAL SETUP DETAILS

In this study, we introduce a comprehensive few-shot tabular classification benchmark, called
FESTA, encompassing 42 public datasets and 31 algorithms. All datasets can be easily loaded from
OpenML (Vanschoren et al., 2014) Python library (CC-BY license) with data IDs. The benchmark
codes are available in the .zip file for review process, and it will be publicly available in GitHub
repository. To implement the baseline algorithms, we follow the optimal setups as reported in the
original papers or code repositories, ensuring the constraints of the few-shot learning setup. If there
is no specific description about the choice of deep learning architectures, we use a 2-layer MLP with
the layer widths as 1024, following Nam et al. (2023b). More detailed description and setups are
provided as follows.

A.1 DATASETS

Our benchmark encompasses a comprehensive collection of 42 datasets, all of which are publicly ac-
cessible through the OpenML Python library (Vanschoren et al., 2014). All datasets from OpenML
are provided under the CC-BY license, which implies that the data is publicly available and has
been shared with the appropriate consent and ethical considerations. OpenML ensures that datasets
shared on their platform comply with their data-sharing guidelines, which include obtaining neces-
sary consent where applicable.

We provide a detailed list with corresponding OpenML dataset IDs for quick ref-
erence as follows. Each dataset can be loaded by inserting the dataset IDs in
openml.datasets.get_dataset(DATASET_ID).

• 22, 54, 1063, 1067, 12, 18, 23, 59, 188, 307, 1043, 1459, 1475, 1489, 1492, 1497, 1503, 4153,
40499, 44125, 44131, 45062, 44157, 1462, 44160, 29, 37, 53, 49, 1504, 1494, 41143, 44126,
40981, 41168, 44091, 44158, 44123, 44090, 40922, 44161, 45714

The benchmark includes 26 binary and 16 multiclass classification datasets. As shown in Figure 6,
data sizes ranges from 180 to over 250,000 samples and feature dimensions ranges from 4 to 216.

Figure 6: A statistical overview of FESTA benchmark: Each dot represents a dataset, with the x-axis showing
data size and the y-axis representing feature dimension.

A.2 BASELINES

We provide brief explanations of the considered baselines and the hyperparameters of the baselines.
If there is no specific description for the hyperparameters in the original paper or the official code
repository, we utilize the common setup of using AdamW optimizer (Loshchilov & Hutter, 2017)
with learning rate 1e−3 and batch size of 100, ReLU activation, and 100 epochs with 2-layer MLP,
following the setup of (Nam et al., 2023b). For all baselines, the detailed configurations are available
in config/ directory in the benchmark repository.

For our method, CL+Range-limited augmentations, we follow the default setup of 2-layer MLP with
early stopping as summarized in the main text. All CL+Aug methods follow the training setup of
Bahri et al. (2021), and we set b = 4 and p = 0.3 throughout our study.
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A.2.1 SUPERVISED ALGORITHMS

In supervised algorithms, we train the model using only Nl = S×C samples, where S is the number
of shots, and C is the number of classes.

Logistic regression: We utilize the default settings of the scikit-learn implementation.

k-nearest neighbors: We utilize the default settings of the scikit-learn implementation. As de-
fault, we set k as same as the number of shots S for each task.

XGBoost: XGBoost (Chen & Guestrin, 2016) is an optimized distributed gradient boosting
method designed to be highly efficient, flexible, and portable. We adopt the default hyperparam-
eters provided in the XGBoost python library, with the following exceptions: n_estimators as
2000, max_depth as 10, and eta as 0.001, allowing for deeper trees and slower learning.

CatBoost: CatBoost (Prokhorenkova et al., 2018) is a fast, scalable, and high-performance gra-
dient boosting on decision trees. We use the default hyperparameter setting in the CatBoost python
library, modifying n_estimators to 2000, depth to 10, and eta to 0.001 to match the settings
of XGBoost.

LightGBM: LightGBM (Ke et al., 2017) is a highly efficient gradient boosting framework de-
signed for fast and accurate performance, using a histogram-based algorithm. We use the de-
fault hyperparameter setting in the LightGBM python library but set n_estimators as 2000,
max_depth as 10, and eta as 0.001, consistent with XGBoost and CatBoost for fair comparison.

MLP: Following Nam et al. (2023b), we use a 2-layer MLP with hidden size of 1024. A dropout
rate of 0.1 is applied for regularization, as recommended by Gorishniy et al. (2021). For training,
we employ a cosine annealing scheduler to adjust the learning rate, as used in Lee et al. (2024b).

A.2.2 SELF-SUPERVISED ALGORITHMS

In self-supervised algorithms, we leverage both labeled and unlabeled datasets without using label
information for pre-training. Once pre-training is completed, we evaluate the learned representations
or the encoder network by adding an additional prediction head on top, using four evaluation strate-
gies: (1) Logistic regression (LR): A simple classifier is trained on the representations learned dur-
ing pre-training; (2) k-nearest neightbors (kNN): The representations are evaluated using k-nearest
neighbors, with k set to match the number of shots S for each task; (3) Linear Evaluation: The
encoder network is frozen, and the representations are evaluated by training a single linear layer to
predict the target labels for 100 epochs; (4) Fine-tuning: The encoder network is further trained with
a few labeled samples to optimize the cross-entropy loss for 100 epochs. Each evaluation strategy
is implemented using only a few labeled samples, and the resulting accuracy is assessed on the full
labeled test datasets. As detailed in Section C.1, we found that the LR evaluation protocol consis-
tently provides the best accuracy across various datasets and self-supervised algorithms. Therefore,
in the main text, we report results primarily using the LR evaluation protocol.

SubTab: SubTab (Ucar et al., 2021) transforms tabular learning into a multi-view representation
problem by dividing input features into multiple subsets. We follow the best configurations of the
original paper, including the number of subset as 4 and batch size as 256. Detailed configuration
can be found in config/subtab.yaml.

SCARF: SCARF (Bahri et al., 2021) is a contrastive learning framework that generates positive
views by corrupting a random subset of features through sampling. We follow the best configura-
tions of the original paper, including corruption rate as 0.6. Detailed configuration can be found in
config/scarf.yaml.

CL+Aug: Following the setup of Bahri et al. (2021), we replace the augmentation modules to
generate positive pairs during contrastive learning. We experiment with four augmentation methods:
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masking, shuffling, noise, and RQ, using a selection ratio p of 0.3 and a quantization scale (number
of bins) of 10. Detailed configuration can be found in config/ssl[AugName].yaml.

Binning: Binning (Lee et al., 2024b) is a representation learning framework that predicts feature
quantization bins instead of raw feature values, enhancing learning through reconstruction-based
tasks. We follow the best configurations of the original paper, including the number of bins as 20.
Detailed configuration can be found in config/sslbinning.yaml.

Reconstruction: We explore a simple reconstruction-based self-supervised learning method by
predicting the raw feature values. The setup follows that of Lee et al. (2024b), with the only change
being the objective function, defined as the mean squared error (MSE) between predicted and raw
feature values. Detailed configuration can be found in config/sslrecon.yaml.

VIME: VIME (Yoon et al., 2020) introduces a self-supervised pretext task that involves esti-
mating mask vectors from corrupted data, in addition to the reconstruction task. We follow the
best configurations of the original paper, including the masking ratio as 0.3 and loss weights as 1.
Detailed configuration can be found in config/sslvime.yaml.

SAINT: SAINT (Somepalli et al., 2021) uses attention over both rows and columns and employs
augmentation techniques like CutMix in the input space and MixUp in the latent space. We follow
the best configurations of the original paper, including CutMix ratio as 0.1 and hybrid attention.
Detailed configuration can be found in config/saint.yaml.

A.2.3 SEMI-SUPERVISED ALGORITHMS

In tabular semi-supervised learning (Yoon et al., 2020), a supervised loss is optimized with a few
labeled samples, while an unsupervised loss is simultaneously optimized with unlabeled samples.

VIME: VIME (Yoon et al., 2020) defines a consistency loss as the mean squared error between
original samples and their reconstructions from corrupted and masked samples with unlabeled sam-
ples. We follow the best configurations of the original paper, including the loss weight as 1 and
learning steps as 1000. Detailed configuration can be found in config/semivime.yaml.

Pseudolabels: For unlabeled samples, pseudo-labels are often generated from original samples
and used as supervised targets for augmented samples (Lee et al., 2013). We implement various
tabular augmentation methods to generate these augmented samples. We use a default 2-layer MLP
network as the classifier, and the detailed configuration for each augmentation can be found in
config/pseudolabel-[AugName].yaml.

Mean Teacher: Mean Teacher (Tarvainen & Valpola, 2017) is semi-supervised learning method
which uses the consistency loss between the teacher output and student output. The teacher
model weights are updated as an exponential moving average of the student weights. We use
a default 2-layer MLP network as the classifier, and the detailed configuration can be found in
config/meanteacher.yaml.

Interpolation Consistency Training (ICT): ICT (Verma et al., 2022) is a semi-supervised learn-
ing method uses mean teacher framework while student parameters are updated to encourage the
consistency between the output of mixed samples and the mixed output of the samples. We use
the default 2-layer MLP network as the classifier, and the detailed configuration can be found in
config/ict.yaml.

Auto-encoders: Auto-encoders use a reconstruction loss as the unsupervised regularization dur-
ing training. We use the default 2-layer MLP network as the classifier, and the detailed configuration
can be found in config/ae.yaml.
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A.2.4 FOUNDATION MODELS

Recent efforts in tabular domains have focused on developing foundation models trained on large-
scale synthetic or real-world datasets.

TabPFN: TabPFN (Hollmann et al., 2022) is a Prior-Data Fitted Network (PFN) trained offline
on synthetic datasets drawn from a prior that incorporates ideas from causal reasoning and favors
simple structural causal models. However, TabPFN is limited to small tabular datasets, specifically
those with fewer than 1000 training examples, 100 features, and 10 classes. For inference, a small
set of labeled samples is required to construct the attention map for the specific dataset. We utilize
the pretrained model weights and fit only the attention map during inference.

HyperFast: HyperFast (Bonet et al., 2024) is a hypernetwork designed for efficient classification
of tabular data, capable of handling large-scale datasets. For pretraining, HyperFast utilize 70 real-
world tabular datasets from OpenML library. During inference, labeled samples are used to generate
dataset-specific target network weights. We utilize the pretrained model weights to produce these
dataset-specific weights for accurate inference.

A.2.5 UNSUPERVISED META-LEARNING ALGORITHMS

STUNT: STUNT (Nam et al., 2023b) generates diverse few-shot tasks by treating randomly cho-
sen columns as target labels and employs a meta-learning scheme to learn generalizable knowledge
through these constructed tasks. We follow the best configurations from the original paper, including
setting the number of queries to 15 and using noise augmentation with a noise level of 0.1. Although
STUNT allows the use of additional labeled datasets for validation, we do not utilize any additional
labeled data during training. Detailed configurations can be found in config/stunt.yaml.

A.3 AUGMENTATIONS

We provide the detailed descriptions for each augmentation methods suggested in the previous stud-
ies. For the hyperparameters of each method, we follow the best configuration reported in the
original papers.

Masking (Yoon et al., 2020; Huang et al., 2020) : This method randomly masks a subset of
feature values in the data by replacing them with a constant (typically zero). The hyperparameter is
the selection ratio p, which determines the proportion of features to mask for each sample. In this
study, we set the default selection ratio p as 0.3.

Sampling (Bahri et al., 2021) : In the sampling approach, the selected feature values are replaced
with values sampled from their empirical marginal distributions. This preserves the statistical prop-
erties of the original data but randomizes individual values. The hyperparameter is the selection
ratio p, which controls the fraction of features to be replaced by sampled values. In this study, we
set the default selection ratio p as 0.3.

Shuffling (Huang et al., 2020; Lee et al., 2024b) : Shuffling involves randomly permuting the
selected feature values within each feature column. The hyperparameter is the selection ratio p,
which determines the proportion of feature values to be shuffled. In this study, we set the default
selection ratio p as 0.3.

Noise (Nam et al., 2023b) : Noise augmentation involves adding small random noise to a subset
of feature values. The random noise is sampled from a Gaussian distribution with the mean as 0
and standard deviation of η. The hyperparameters are the selection ratio p and noise level η. In this
study, we set the default selection ratio p as 0.3 and η as 0.1.

Subset (Ucar et al., 2021; Wang & Sun, 2022) : The subset approach divides the input features
into multiple subsets to generate different views of the data for multi-view representation learning.
The hyperparameters is the number of subsets. In this study, we set this value as 4.
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CutMix (Somepalli et al., 2021) : CutMix generates a new sample by combining two samples
in the raw data space. A binary mask, determined by a combination ratio, specifies which features
from the original sample are retained and which are replaced by corresponding features from a paired
sample in the batch. The hyperparameter is the combination ratio. In this study, we set this value as
0.1.

MixUp (Somepalli et al., 2021) : MixUp augmentation linearly interpolates between a given
sample and a randomly selected sample from the same batch in the embedding space. The hyperpa-
rameter is the combination ratio. In this study, we set this value as 0.2.

Random quantization (Wu et al., 2023) : Random quantization discretizes feature values by
grouping them into bins, either uniformly or non-uniformly, and then sampling values randomly
within each bin. The hyperparameter is the quantization scales, corresponding to the number of
bins. In this study, we set this value as 10 per feature.

B RANGE-LIMITED AUGMENTATION

For a better understanding of our augmentation method, we provide a pseudo-code for implementa-
tion as follows.

Algorithm 1 Self-Supervised Learning with Range-limited Augmentation

Require: Unlabeled dataset D, number of predefined ranges per feature b, probability of augmen-
tation p, number of training epochs T , encoder network f , projection head g, optimizer

Ensure: Trained encoder f
1: Define augmentation ranges
2: for each feature j in D do
3: Split the feature values into b quantiles
4: Define ranges Bj = {Bj,1, Bj,2, . . . , Bj,b}, where Bj,i = (βmin

j,i , β
max
j,i ] is the i-th range of the

j-th feature
5: end for
6: for epoch = 1 to T do
7: Sample mini-batch of samples {xk}Nk=1 from D
8: Generate augmented views
9: for each sample xk in mini-batch do

10: for each feature j in xk do
11: Draw a Bernoulli sample mk,j ∼ Bernoulli(p)
12: if mk,j = 1 then
13: Augment xk,j using range-limited augmentation:
14: if Shuffling mode then
15: Shuffle values within the range Bj,i containing xk,j

16: else if Sampling mode then
17: Sample a new value from U(βmin

j,i , β
max
j,i )

18: end if
19: end if
20: end for
21: end for
22: Compute contrastive loss
23: Obtain representations zk = g(f(xk)) and augmented views z′k = g(f(x′

k))
24: Compute contrastive loss Lcontrastive(zk, z

′
k)

25: Update parameters
26: Use optimizer to update parameters of f and g to minimize Lcontrastive
27: end for
28: Return trained encoder f
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C ADDITIONAL RESULTS

In this study, we conduct extensive experiments on the FESTA benchmark, which includes 42 public
datasets and 31 algorithms, evaluated over 50 random data splits and two different number of shots.
This results in more than 100,000 scenarios tested based on accuracy, AUROC, and log loss. For
clarity, we present the average accuracy, average ranks, and number of wins in the main text. Full
results for individual scenarios are available in the FESTA benchmark, with a zip file included in the
supplementary materials during the review process.

C.1 FULL RESULTS FOR VARIOUS EVALUATION PROTOCOLS IN SELF-SUPERVISED
ALGORITHMS

Table 3: Full results for various evaluation protocols in self-supervised algorithms: Once pre-training is com-
pleted, we evaluate the learned representations or the encoder network by adding an additional prediction head
on top, using four evaluation strategies: (1) Logistic regression (LR): A simple classifier is trained on the
representations learned during pre-training; (2) k-nearest neightbors (kNN): The representations are evaluated
using k-nearest neighbors, with k set to match the number of shots S for each task; (3) Linear Evaluation: The
encoder network is frozen, and the representations are evaluated by training a single linear layer to predict the
target labels for 100 epochs; (4) Fine-tuning: The encoder network is further trained with a few labeled samples
to optimize the cross-entropy loss for 100 epochs. Each evaluation strategy is implemented using only a few
labeled samples, and the resulting accuracy is assessed on the full labeled test datasets. Due to the superior
performance of LR across diverse datasets and algorithms, we report the accuracy with the LR prediction head
in the main text.

Model Evaluation protocol 1-shot accuracy (%) 5-shot accuracy (%)

Reconstruction LR 33.414±16.978 32.816±17.381
Binning LR 34.564±17.248 34.114±16.994
VIME LR 35.999±17.520 36.428±18.166
SubTab (CL+Subset) LR 36.264±17.614 36.680±18.005
SCARF (CL+Sampling) LR 48.830±14.716 59.170±16.073
SAINT (CL+CutMix+MixUp) LR 45.191±18.857 50.768±20.715
CL+Masking LR 48.114±14.885 56.787±17.365
CL+Shuffling LR 49.091±14.899 59.373±16.233
CL+Noise LR 49.076±14.881 59.394±16.263
CL+RQ LR 47.153±16.012 55.882±18.437
CL+Range-limited Shuffling LR 51.972±15.243 61.921±16.641
CL+Range-limited Sampling LR 50.640±14.759 60.647±16.315

Reconstruction kNN 33.333±17.006 32.956±17.448
Binning kNN 34.573±17.252 34.292±17.301
VIME kNN 36.072±17.400 36.365±17.970
SubTab (CL+Subset) kNN 36.205±17.647 36.482±17.867
SCARF (CL+Sampling) kNN 48.489±14.990 53.177±16.507
SAINT (CL+CutMix+MixUp) kNN 45.592±18.562 48.992±19.947
CL+Masking kNN 48.118±14.734 53.053±16.532
CL+Shuffling kNN 48.781±15.060 53.558±16.449
CL+Noise kNN 48.819±14.965 53.628±16.448
CL+RQ kNN 47.314±15.806 51.906±17.335
CL+Range-limited Shuffling kNN 50.188±14.683 55.387±16.438
CL+Range-limited Sampling kNN 49.938±14.548 55.250±16.339

Reconstruction Linear evaluation 32.081±17.428 32.354±17.347
Binning Linear evaluation 32.222±17.391 32.226±17.426
VIME Linear evaluation 32.106±17.455 32.075±17.455
SubTab (CL+Subset) Linear evaluation 32.031±17.519 32.086±17.499
SCARF (CL+Sampling) Linear evaluation 36.550±17.880 36.431±17.787
SAINT (CL+CutMix+MixUp) Linear evaluation 36.821±17.891 36.843±17.890
CL+Masking Linear evaluation 36.647±17.991 36.722±17.914
CL+Shuffling Linear evaluation 36.766±18.211 36.728±18.026
CL+Noise Linear evaluation 36.498±17.762 36.759±18.056
CL+RQ Linear evaluation 36.502±17.934 36.352±17.881
CL+Range-limited Shuffling Linear evaluation 36.699±17.957 36.514±17.949
CL+Range-limited Sampling Linear evaluation 36.262±17.815 36.627±17.867

Reconstruction Fine-tuning 32.127±17.454 32.232±17.402
Binning Fine-tuning 32.182±17.442 32.186±17.460
VIME Fine-tuning 31.947±17.558 31.981±17.537
SubTab (CL+Subset) Fine-tuning 32.402±17.311 32.462±17.293
SCARF (CL+Sampling) Fine-tuning 36.938±18.309 36.815±18.205
SAINT (CL+CutMix+MixUp) Fine-tuning 36.441±17.857 36.506±17.878
CL+Masking Fine-tuning 36.788±18.121 36.794±18.117
CL+Shuffling Fine-tuning 36.858±18.026 36.719±18.074
CL+Noise Fine-tuning 36.865±18.313 36.747±18.032
CL+RQ Fine-tuning 37.023±18.360 37.214±18.222
CL+Range-limited Shuffling Fine-tuning 36.989±18.137 36.701±18.234
CL+Range-limited Sampling Fine-tuning 36.852±18.169 36.841±18.212
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C.2 COMPUTATIONAL EFFICIENCY ON TRAINING TIME

Table 4: We provide the average training time for each algorithm, all implemented on a single NVIDIA
GeForce RTX 3090. While our approach incurs a slight increase in training time due to the overhead from
range-limited augmentations, this increase is minimal compared to the significant performance improvements
observed. Moreover, our approach remains efficient even when compared to more complex architectures like
transformers. Notably, the training time does not scale directly with increasing b, indicating that the choice of
b has a limited effect on computational cost. We also note that inference time remains unaffected as long as the
classifier architecture is unchanged.

Shots 1 5

Model Fitting time per epoch (secs) Epochs Fitting Time (secs) Fitting time per epoch (secs) Epochs Fitting Time (secs)

Supervised

LR - - 0.006±0.009 - - 0.011±0.034
kNN - - 0.002±0.003 - - 0.002±0.002
XGBoost - - 0.531±0.397 - - 0.547±0.645
CatBoost - - 15.789±89.569 - - 29.178±106.585
LightGBM - - 1.703±9.417 - - 6.304±36.666
MLP 0.013 100 1.301±0.078 0.014 100 1.392±0.212

Semi-Supervised

VIME - 1000 steps 14.733±7.297 - 1000 steps 14.760±6.932
AE 1.521 100 152.064±347.450 1.547 100 154.710±348.220
ICT 0.215 100 21.521±46.982 0.226 100 22.571±44.978
MeanTeacher 0.537 100 53.671±131.578 0.490 100 48.950±113.615
PL+Masking 1.092 20 21.847±49.487 1.138 20 22.749±50.598
PL+Sampling 1.108 20 22.158±50.377 1.118 20 22.353±49.625
PL+Shuffling 1.712 20 34.245±74.334 1.734 20 34.670±75.218
PL+Noise 1.716 20 34.310±75.265 1.727 20 34.534±74.287
PL+RQ 1.333 20 26.652±60.823 1.400 20 27.854±63.031
PL+CutMix 1.375 20 27.500±63.558 1.417 20 28.337±64.607

Unsup. Meta STUNT - 10000 steps (Early stop) 16.842±45.128 - 10000 steps (Early stop) 12.907±25.712

Foundation HyperFast - - 29.837±2.246 - - 30.553±2.591

Self-supervised

Reconstruction 1.757 23.619±13.703 41.366±115.109 1.742 23.000±12.949 40.057±103.712
Binning 1.813 23.738±13.791 43.044±96.760 1.710 25.190±14.484 43.071±107.028
VIME 1.572 10 15.719±27.034 1.303 10 13.028±24.221
SubTab (CL+Subset) 0.783 20 15.659±30.695 0.770 20 15.385±29.777
SCARF (CL+Sampling) 1.692 12.667±6.038 21.428±51.663 1.596 13.976±6.816 22.310±62.295
SAINT (CL+CutMix+MixUp) 5.363 50 268.140±604.555 5.300 50 264.983±616.131
CL+Masking 0.942 19.310±11.081 18.183±36.874 0.921 17.381±8.258 16.000±35.271
CL+Shuffling 2.094 19.619±8.856 41.092±111.074 2.117 21.381±10.305 45.271±116.111
CL+Noise 2.139 18.595±11.350 39.779±106.031 2.481 19.762±9.961 49.037±131.432
CL+RQ 1.925 6.643±2.959 12.786±30.661 1.296 8.048±5.912 10.428±18.567
CL+Range-limited Shuffling 4.685 23.333±9.511 109.311±287.777 5.128 23.905±10.251 122.580±331.106
CL+Range-limited Shuffling (b = 2) 3.429 24.571±10.821 84.260±188.626 4.572 22.714±9.733 103.855±290.444
CL+Range-limited Sampling 5.187 22.524±8.889 116.823±303.076 6.189 26.405±9.976 163.426±419.510
CL+Range-limited Sampling (b = 2) 6.056 24.881±10.425 150.684±458.117 6.063 24.333±9.125 147.537±391.090

Self-supervised CL+Range-limited Shuffling 4.321 22.576±10.234 97.554±228.756 4.874 24.727±11.263 120.517±307.538
CL+Range-limited Sampling 5.880 24.212±10.710 142.355±359.792 6.422 24.515±12.481 157.434±417.885

Foundation TabPFN - - 0.001±0.000 - - 0.001±0.000
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