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Abstract
Currently, automated canopy stress classification for field
crops rely on single-perspective, two-dimensional (2D) pho-
tographs, typically top view imaging via UAV. However, plant
stress symptoms may appear throughout the canopy, and a
single viewpoint photograph may not capture the entire region
affected by the stress. Recent developments in efficient, large
scale, 3D point cloud capture of agricultural fields open up
the possibility of more comprehensive stress identification
and rating. We hypothesized that utilizing the 3D point cloud
will allow multi-perspective construction of plant canopy, and
subsequent training of more accurate plant stress identification
and its rating in field. We utilize a RGB 3D point cloud of a
field where a diversity panel of soybean under Iron Deficiency
chlorosis (IDC) stress was grown. We explore both multiview
projection as well as area-preserving map projection methods
to obtain parameterized 2D images depicting the complete 3D
canopy surface. This approach allowed us to create models
agnostic to canopy size/shape, while allowing us to leverage
pretrained deep learning models – trained on 2D image data.
Our preliminary results are promising, and we continue to fine-
tune these machine learning pipelines for classifying plant
stress expression.

Introduction
Plant stress classification is crucial in ensuring a good yield.
Soybean, a major crop contributing significantly to the over-
all production in the United States often suffers from Iron
Deficiency Chlorosis (IDC) when grown on soil with high
pH. This deficiency causes a significant decline in the yield
and quality of the crop. Traditionally, IDC ratings were per-
formed manually, by evaluating stress symptoms across the
canopy. However, this method is subjective, labor-intensive,
and prone to inter- and intra-rater inaccuracy (Singh et al.
2021). Recently, automated high-throughput stress classifi-
cation algorithms have been created using single viewpoint,
predominantly top view RGB (Naik et al. 2017), multispec-
tral, and hyperspectral images of the canopy. This method
is reliable, but under performs when the stress expression is
on the lower part of the plant canopy, or other regions that
cannot be easily imaged using aerial imaging platforms.

Three-dimensional scanners are used in current plant phe-
notyping systems (Jin et al. 2021; Paulus 2019). These scan-
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ners are capable of capturing a three-dimensional point cloud
of the canopy, as well as RGB and hyperspectral data. De-
pending on the time of imaging, one can construct reasonably
dense point clouds of the complete canopy and thus provide
more views of the canopy compared to conventional UAS
based orthomosiaced images. We argue that such 3D point
cloud data – from 3D scanners, or from 3D point cloud recon-
structions from multi-view 2D images — are better inputs
for stress classification algorithms.

Our objective is to utilize these 3D point cloud data into
well-developed 2D image/stress classification models. Ad-
ditionally, we ensure that the stress rating is based only on
color and texture rather than shape and size of the canopy
by utilizing ideas from projective geometry and cartography.
Specifically, we project the 3D point cloud onto a unit sphere
to ensure that the dataset is made agnostic to shape and size.
Subsequently, we utilize area-preserving projections used
in cartography to map the 3D surface to 2D images. These
2D images are then used to train pre-trained deep neural
networks.

Methods
We employ multiple views projection and map projection
methods to represent the 3D point clouds in 2D.

Multi-View Projection
Multi-view projection of the point cloud data of a canopy are
obtained at eight different angles. There are two approaches
to utilize these multiple views. The first approach uses feature
vectors obtained from each of the views and concatenates
them and feeds it to a classifier to predict the IDC labels as
implemented in Su et al 2015 (Su et al. 2015). The second
approach involves, (a) stacking multiple views to form a
single image, (b) obtaining a 2D cylindrical projection of the
3D point cloud and feeding it to a pre-trained image classifier.

Multi-view Convolutional Neural Networks (MVCNN)
MVCNN in Su et. al. 2015’s paper uses multiple views of
a 3D point cloud for classification. An existing architecture
like ResNet is used as the base block to extract features
from each of the 8 views and a classifier block is built on
top of it. Multiple base blocks are created for each view.
The base block is loaded with weights trained on a large
dataset like ImageNet. Transfer learning has proved to be



Figure 1: Architecture of MVCNN classifier

helpful in problems with datasets that are similar to ours that
contain only a few images for training. These feature maps
are concatenated to form the input to the classifier block. To
make the model invariant to the order in which the views
are fed into the network, an average view pooling layer is
used. The training phase involves training only the classifier
block while keeping the weights of the base block fixed and
unfreezing all the weights later to train both the blocks. The
class imbalance issue is addressed by using class weights.
The weight for each class is the reciprocal of the number
of instances of each class. The architecture of MVCNN is
depicted in Figure 1.

Map projection and Composite single view
Equidistant and Equal Area Projections: Map projec-
tions involve transforming a 3D globe to a 2D world map.
Depending on the type of projection, either the area of the
points or the distance between points is distorted while pre-
serving the other. For the same purpose, the given point cloud
(Figure 2) is projected onto the surface of the unit sphere as
mentioned in Karara et. al. 2021’s implementation (Karara,
Hajji, and Poux 2021). The points are normalized to fit into
a unit sphere before projecting. The line that passes through
the point in the normalized point cloud and the center of the
unit sphere intersects with a point on its surface. Finding the
points of intersection of every point in the canopy gives the
spherical projection of the point cloud as shown in Figure
3. The cartesian coordinates are converted to spherical coor-
dinates. The transformed point cloud is projected into a 2D
plane using a variety of cylindrical map projections.

(a) Equirectangular projection The converted spherical
coordinates on one axis correspond to the longitude while
the other corresponds to the latitude of the equirectangular
projection of the point cloud as depicted in Figure 4. This
projection preserves the distance between any two points on
the sphere’s surface but distorts the area of the points.

(b) Cassini projection (wik 2021a) The unit sphere is ro-
tated to be oriented along its meridian rather than its equator.
Equirectangular projection is applied on the rotated sphere to
obtain this equidistant projection. The latitude and longitude
of spherical coordinates, φ and λ respectively are mapped
to cartesian coordinates x and y of 2D projection using the
equation below.

Figure 2: Point cloud of canopy

Figure 3: Point cloud projection on unit sphere

x= sin−1(cos(φ) * sin(λ))
y= tan−1(tan(φ)/cos(λ))

The resultant projection is shown in Figure 5.
(c) Lambert projection (wik 2021b) Lambert projection is

an area preserving cylindrical projection where the distortion
of area increases from the equator towards the poles. Gall
Peters is a derivative of Lambert projection which produces
lesser distortion than the original. The projection equations
below produce the projection shown in Figure 6. φ and λ are
the latitude and longitude coordinates whereas λc represents
the central meridian

x=λ - λc

y=sin(φ)

Concatenated Views: The eight views taken from different
angles are stacked vertically into two rows to form a single
image as shown in Figure 7.

The obtained projections are used with existing architec-
tures liked ResNet, VGG etc. which are pretrained to obtain
IDC classification scores. Class weights are used for the class
imbalance.



Figure 4: Equidistant equirectangular projection

Figure 5: Cassini equidistant projection

Dataset

The entire field with soybean canopies was scanned on seven
different days to get seven registered point cloud data scans.
The scans are processed, and the ground pixels are sepa-
rated from the canopy pixels and the individual canopies
are segmented from the field. The segmented canopies are
indexed by row and column numbers. The indexed canopies
are mapped to the plot map to assign the canopies to the re-
spective IDC classes. The original 20-point scale IDC ratings
are binned into 5 classes. There is a class imbalance, and it
is overcome by using class weights during training of the
classifier. A total of 1150 soybean canopies mapped with
their stress ratings are obtained from the scans.

IDC occurs when the soil has a higher pH which decreases
the solubility of iron and consequently reduces the intake of
active iron by the leaves and causes chlorosis. Stress class
1 indicates no chlorosis and leaves of the canopy are green;
2 indicates plants with slight yellowing of upper leaves; 3
indicates plants with interveinal chlorosis in the upper leaves;
4 indicates plants having leaves with interveinal chlorosis
and stunting growth; and 5 indicates plants with extreme
chlorosis, stunted growth, and necrosis in the new leaves.

Figure 6: Lambert equal-area projection

Figure 7: Concatenated views of point cloud projections

Results
Using the multiple views of the point cloud, we were able to
successfully run the MVCNN framework. We are currently
working on hyper-parameter tuning to achieve the desired
accuracy. Different cylindrical projections obtained would
be used for training an image classifier and their predictions
from the classifiers would be compared against each other
to identify the projection that works best for identifying the
IDC severity.

Conclusions
We proposed classification using 3D image data that encloses
complete information about the canopy with well-known 2D
image classifiers to leverage its benefits as it is more widely
studied. Different methods like MVCNN, projection-based
methods that have reported reasonable accuracies in applica-
tions deployed in the past were outlined with its methodol-
ogy. Using these models to automate the prediction of IDC
scores would save human effort, time, and the error due to
human bias introduced during FVR to a great extent. Making
use of 3D data that contains more information that its 2D
counterpart is expected to improve the performance of the
classification model and hence better accuracy in prediction.
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