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ABSTRACT

Deploying capable and user-aligned LLM-based systems necessitates reliable
evaluation. While LLMs excel in verifiable tasks like coding and mathematics,
where gold-standard solutions are available, adoption remains challenging for sub-
jective tasks that lack a single correct answer. E-commerce Query Rewriting (QR)
is one such problem where determining whether a rewritten query properly cap-
tures the user intent is extremely difficult to figure out algorithmically. In this
work, we introduce OPTAGENT, a novel framework that combines multi-agent
simulations with genetic algorithms to verify and optimize queries for QR. In-
stead of relying on a static reward model or a single LLM judge, our approach
uses multiple LLM-based agents, each acting as a simulated shopping customer,
as a dynamic reward signal. The average of these agent-derived scores serves as
an effective fitness function for an evolutionary algorithm that iteratively refines
the user’s initial query. We evaluate OPTAGENT on a dataset of 1000 real-world
e-commerce queries in five different categories, and we observe an average im-
provement of 21.98% over the original user query and 3.36% over a Best-of-N
LLM rewriting baseline.

1 INTRODUCTION

Large language models (LLMs) are increasingly being used as agents to automate complex tasks
(ZHAO et al., 2023; Chen et al., 2024c), with capabilities enhanced by additional test-time compu-
tation (Zhang et al., 2025; Muennighoff et al., 2025). Their success has been most pronounced in
verifiable domains like mathematics (Shao et al., 2024), coding (Tang et al., 2024), scientific discov-
ery (Kumbhar et al., 2025), reasoning (RRV et al., 2025; Wang et al., 2024), and planning (Parmar
et al., 2025), where the correctness of an output can be unambiguously determined. This verifiability
provides a crisp reward signal, enabling powerful optimization techniques like Self-Taught Reasoner
(STaR) (Zelikman et al., 2022) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024).

However, this paradigm breaks down in numerous real-world applications, such as e-commerce
Query Rewriting (QR), where the goal is to reformulate user queries to match their latent intent, e.g.,
faster shipping or high-quality reviews. Platforms like Amazon and Etsy process millions of user
queries on a daily basis1, where the user’s query is often short, ambiguous, or riddled with typos.
In such domains, the absence of a gold-standard solution renders existing optimization methods
ineffective. While Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022)
utilizes expert annotation, its prohibitive cost and slow pace make it impractical for rapid, iterative
optimization. Techniques such as Reinforcement Learning from AI Feedback (RLAIF) (Lee et al.,
2023) replace this labor-intensive expert annotation with an LLM to evaluate the responses. While
promising, using the “LLM-as-a-Judge” approach is not without its limitations (Li et al., 2023b). A
growing body of research has revealed that a single LLM judge is prone to significant biases (e.g.,
position, verbosity) (Gallegos et al., 2024), a lack of robustness (Chen et al., 2024b), and can be
unreliable (Tian et al., 2023), especially when evaluating complex, multi-faceted criteria.

In this paper, we show that the quality of a solution in such subjective domains is better approximated
not by a single judge, but by a dynamic, simulation-based evaluation. We present an ensemble of

1https://redstagfulfillment.com/how-many-daily-visits-does-amazon-receive
https://www.yaguara.co/etsy-statistics/
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Figure 1: An overview of the OPTAGENT framework in query rewriting for e-commerce applica-
tions. The user’s initial query is passed to the framework, where we first populate the initial gener-
ation with candidate rewrites and then perform evolutionary optimization to search for better query
rewrites. The fitness of each candidate is determined by its performance in a multi-agent simulation
populated by LLM-based shopper agents.

LLM-based agents, acting as simulated users, that can produce a more robust and nuanced reward
signal. We introduce diversity into this agent population through the simple and effective mechanism
of temperature sampling (Balachandran et al., 2025; Renze, 2024). By instantiating each agent
with a different temperature, we encourage a variety of reasoning paths and evaluation perspectives,
allowing the ensemble’s collective judgment to form a rich and multi-faceted evaluation that better
approximates the complexity of true human preference.

Existing QR methods often require vast amounts of historical user interaction data, which may
not be available for new or infrequent (“tail”) queries, and they struggle to optimize for the latent,
subjective quality of such a rewrite. Moreover, recent works (Song et al., 2025; Li et al., 2025) have
shown that RL-based techniques, e.g., GRPO, fail to properly generate diverse outputs, which limits
their performance. On the other hand, evolutionary algorithms have been shown to outperform these
RL-based methods with less compute (Agrawal et al., 2025).

Motivated by these insights, we present OPTAGENT, an agentic framework that couples our agent
simulation-based rewards with evolutionary algorithms to optimize queries in QR. OPTAGENT be-
gins by generating a population of candidate solutions and iteratively refining them by leveraging
LLMs to perform the genetic operators of crossover and mutation directly in natural language, en-
abling a semantically aware exploration of the solution space. The fitness of each query is deter-
mined by its performance in the multi-agent simulation. Our experiments on a dataset of 1000 real
user queries show that OPTAGENT successfully improves the relevance of products by 21.98% over
the user’s original query and outperforms the established baseline of Best-of-N (BoN) using LLMs
by 3.36%, with the largest improvement coming from tail queries (4.50% improvement over BoN).

Contributions. Our contributions are as follows:

1. We design an evaluation mechanism where a multi-agent simulation, populated by LLM
agents with diverse reasoning styles (via temperature sampling), serves as the fitness func-
tion for an evolutionary algorithm.

2. We introduce OPTAGENT, a novel framework that optimizes outputs in e-commerce query
rewriting by replacing static reward functions with a dynamic score derived from a multi-
agent simulation.

3. We provide an empirical validation of OPTAGENT demonstrating a 21.98% improvement
in relevance over user queries and outperforming the Best-of-N LLM baseline by 3.36%.
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2 RELATED WORKS

LLMs as a Judge. With their ability to process natural language and use their internal world mod-
els (Gu et al., 2024; Ge et al., 2024), LLMs have presented a compelling alternative to the traditional
expert-driven evaluation (Li et al., 2023a; Zhu et al., 2023). They have achieved remarkable suc-
cess evaluating responses across diverse domains, ranging from text-generation (Badshah & Sajjad,
2024; Zheng et al., 2023), finance (Brief et al., 2024; Yu et al., 2024), or law (Ma et al., 2024;
Cheong et al., 2024). Moreover, LLMs have become sufficiently flexible to handle multi-modal
inputs (Khattak et al., 2023) and can evaluate multi-modal responses as well (Chen et al., 2024a;
Wu et al., 2024). However, several works have shown these LLM-based evaluators to have bias
(Gallegos et al., 2024; Tan et al., 2024), lack of reliability (Tian et al., 2023), and lack of robustness
(Chen et al., 2024b; Handa et al., 2024). While human judges also exhibit inherent bias (Wu &
Aji, 2023; Parmar et al., 2022; Clark et al., 2021), they are more reliable, especially when multiple
judges evaluate the same problem. Inspired by this, multiple works have used an ensemble of LLMs,
or test-time algorithms to judge a single query, instead of relying on a single LLM (Bermejo, 2024;
Jiang et al., 2024). We use this insight to build multiple multi-modal LLM-based agents that analyze
each query independently, and we then aggregate their scores to get the final score.

Additionally, several works (Brown et al., 2024; Wang et al., 2025b) have shown that using the same
LLM multiple times can output similar responses. Therefore, we vary the temperature for each
agent, a technique known as temperature sampling (Renze, 2024), to ensure different reasoning
paths emerge for each agent. Most importantly, we verify the insight from Liu et al. (2023b) that
fine-grained continuous scores can be achieved from the weighted average of the discrete scores. In
this work, we demonstrate this by using each agent to assign a semantic score, i.e., a classification
of a product as “Fully Relevant”, “Partially Relevant”, or “Irrelevant” for a given query.

Evolutionary Methods. OPTAGENT extends a long tradition of research on evolutionary or ge-
netic programming (Langdon & Poli, 2013), where one repeatedly uses a set of mutation and
crossover operators to evolve a pool of queries or prompts (Yang et al., 2023; Liu et al., 2023a;
Agrawal et al., 2025). Recently, these classical algorithms have been supercharged by LLMs, which
can operate directly on natural language. For instance, evolutionary algorithms have succeeded in
symbolic regression applications (Ma et al., 2022; Schmidt & Lipson, 2009), automated discovery
(Novikov et al., 2025; Cranmer, 2023; Chen et al., 2023), and scheduling (Zhang et al., 2021) prob-
lems. However, a challenge with these methods is the reliance on automated and often objective
evaluation methods, which can be extremely difficult to design for several real-world domains. In
contrast, OPTAGENT leverages a multi-LLM-based agentic simulation for its fitness function.

Query Rewriting for E-Commerce. Query rewriting (QR) has emerged as a critical, indispens-
able component of modern e-commerce search engines. Its primary function is to refine, reformu-
late, and enhance ambiguous or incomplete customer queries into well-formed inputs that can be
more effectively processed by a search and retrieval system. Historically, QR has been approached
by matching with historical data with the use of encoder-only models (Li et al., 2022) instead of
generating new queries. Meanwhile, work done by Zhang et al. (2022) has used Seq2Seq models
for semantic classification. With the rise and potential of LLMs, several works have started to inte-
grate LLMs into their systems. Agrawal et al. (2023) and Dai et al. (2024) have used reinforcement
learning to generate query reformulations by training a generative model to directly optimize the
semantic similarity. Further improvements include using a “session graph” of a user’s search history
to provide a more customizable match based on historic data (Zuo et al., 2022). However, these
methods often require vast amounts of historical user interaction data, which may not be available
for new or infrequent (“tail”) queries, and they struggle to optimize for the latent, subjective quality
of such a rewrite. Our work addresses this gap by proposing a method that does not rely on historical
logs for optimization but instead simulates user preferences to guide the search for better queries,
making it particularly well-suited for the long tail of search queries.

3 OPTAGENT

OPTAGENT is a framework for optimizing Query Rewriting (QR), a domain where evaluation is
extremely challenging due to the subjective and latent nature of human preferences. In this section,

3
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Figure 2: Overview of our OPTAGENT framework for e-commerce query rewriting application. The
blue blocks represent the queries, and the green blocks represent the products listed on the platform.
The user’s initial query is first rephrased multiple times by an LLM, which acts as the initial popula-
tion for our evolutionary framework. The following steps are repeated until the computation budget
is exhausted: 1) Each query is evaluated by our multi-agent simulation, where each agent analyzes
all products and stores their semantic scores in the memory. Then the purchase agent loads all the
products and decides which ones to purchase, along with the total cost. 2) The semantic scores
and the total amount spent constitute the final fitness function for the given query. Top N queries are
passed to the next generation and used as parents to populate the next generation. 3) New queries are
generated via crossover (mixing two parent queries) and mutation (altering a single parent query).

we detail the two primary components of our framework: the multi-agent simulation, which serves
as a fitness function (§3.1) and the genetic algorithm that drives the optimization (§3.2). Figure 2
illustrates the OPTAGENT framework for QR in more detail.

3.1 EVALUATION USING MULTI-AGENT SIMULATION

Traditionally, the quality of the rewritten query in QR is evaluated by measuring the semantic rele-
vance of the rewritten and the original query (Rokon et al., 2024; Liu et al., 2022). Semantic Rele-
vance involves classifying a product into “Fully Relevant”, “Partially Relevant”, or “Irrelevant” for
the given query. Inspired by the rise of the LLM-as-a-judge paradigm, recent works (Sachdev et al.,
2024; Chaudhary et al., 2023) have used LLMs for classifying semantic relevance. Moreover, recent
works have integrated a persona to LLM agents, simulating real-world users (Lu et al., 2025; Wang
et al., 2025a). While these agents exhibit diverse reasoning paths based on their personas, we found
that they also fall into inherent biases, which are undesirable. We detail a case study in Appendix
C.1, which shows how even a benign personality trait can lead to discriminatory behaviors.

Temperature Sampling To overcome persona biases and generate diverse reasoning paths, we
take inspiration from advances in test-time algorithms and implement an ensemble of agents, A =
{a1, a2, ..., aK}, where K is the number of agents. Each agent, ai ∈ A, is initialized not with
a persona but with a unique sampling temperature Ti. A low temperature makes the distribution
sharper, favoring the most probable tokens and leading to more deterministic outputs. A higher
temperature flattens the distribution, increasing the probability of sampling less likely tokens. This
encourages the model to explore different, but still plausible, paths of reasoning and expression
without injecting a pre-defined persona. This is known as temperature sampling (Renze, 2024).
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While this approach doesn’t address the implicit, foundational biases of the base model, it does
reduce the bias generated due to the persona.

Agent Simulation For a given rewritten query q and the original user query q′, each agent ai first
submits q to the shopping platform’s search interface. The agent then parses the first page of search
results, filtering out all sponsored or advertised products, and extracting a list of products Pq =
{p1, p2, ...pN}. For each product pj , it gathers information including the product title, description,
image, price, overall rating, the first four customer reviews, and shipping details. For each product
pj , the agent ai assigns a discrete semantic relevance score, si,j ∈ {−1, 0, 1}, corresponding to
“Irrelevant”, “Partially Relevant”, and “Fully Relevant” respectively, along with the reasoning for
the given label. We detail the prompt used for the agent in Appendix B.1 and a few examples of
scoring done by the agent in Appendix D. After evaluating all products, the agent makes a purchase
decision, identifying a subset of products, Pbuy ⊆ Pq , which it would purchase and calculate the
total raw purchase value, praw. The prompt for this final purchase is illustrated in Appendix B.2.

Fitness Function Formualtion Recent research (Liu et al., 2023b) has demonstrated that utilizing
multiple classifiers can accurately predict a fine-grained, continuous numeric score. Therefore, the
individual judgments are aggregated into a single, continuous fitness score F (q). First, the semantic
score for each product pj is computed by averaging across all agents: sj = 1

K

∑K
i=1 si,j . The raw

purchase value praw is normalized to ensure diminishing returns using an exponential transforma-
tion: n = 1−e−λpraw , where λ is a scaling constant. The final fitness score F (q) is a weighted linear
combination of three objectives, reflecting the multi-faceted goals of a real e-commerce platform:

F (q) = w10 · s10 + wa · sa + wp · n

where s10 is the average semantic score of the top-10 retrieved products, sa is the average semantic
score of all retrieved products, and n is the normalized purchase value. The weights (w10, wa,
wp) allow for tunable control over the optimization’s priorities, such as emphasizing top-of-page
relevance versus overall page quality or sales.

3.2 GENETIC ALGORITHMS FOR OPTAGENT

Genetic Algorithms (GAs) are a class of evolutionary algorithms inspired by the process of natural
selection. These algorithms serve as optimization and search techniques that emulate the process
of natural evolution. The simulation-based fitness function F (q) provides a means to evaluate any
given query. We chose a GA as our optimizer due to the unique challenges of optimizing in a sub-
jective domain. Our fitness score from our agent simulation is a helpful but imperfect guide, which
introduces stochasticity into the optimization process. Our analysis shows a moderate correlation
(Pearson r = 0.552) between the agent scores and human judgments, which means the agent scores
are a useful but “noisy” estimate of a query’s true quality (More details about the human study in
Appendix D). A simple search algorithm, such as greedy hill-climbing, could easily get stuck on a
local optima. A GA, in contrast, is inherently more robust to a noisy environment. Its population-
based search allows it to explore multiple regions of the search space simultaneously, reducing the
risk of premature convergence. To discover high-fitness queries, we use GA that iteratively evolves
the user query. The overall procedure is detailed in Algorithm 1.

Initial Population Generation Initialization policy plays a pivotal role in genetic algorithms be-
cause it can significantly influence the algorithm’s convergence speed and the quality of the final
solution. For OPTAGENT, the initial population P0 is generated by prompting an LLM to create N
diverse, semantically similar versions of the user’s original query qinitial. The prompt used for this
LLM is shared in Appendix B.3.

Fitness Evaluation The fitness F (q) of every query in the current generation’s population Pg is
computed using the multi-agent simulation described in §3.1. We assign the highest weight to the
semantic score of the top-10 products, w10 = 0.5, followed by the semantic score of all products,
wa = 0.4, and finally, on boosting sales, wp = 0.1. This gives us a framework where we make the
products highly relevant to the searched query, with a minor objective of boosting sales.

5
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Figure 3: (Left) Data distribution of all the user queries in our dataset. (Right) Distribution of the
multi-lingual queries.

Selection We employ an elitism strategy to select candidates for the next generation of queries.
The top M = αN queries from Pg , ranked by their fitness scores, are directly passed to the next
generation, Pg+1. This ensures that high-performing solutions are preserved in the next generation.

Crossover To fill the remaining N−M slots in the new population, two parent queries are selected
from the previous generation. With probability pcrossover, they are passed to an LLM prompted to
perform a “crossover” operation, i.e., creating a new child query that intelligently combines mean-
ingful semantic elements from both parents. We illustrate the prompt in Appendix B.4.

Mutation With probability pmutation, a selected query undergoes “mutation”. It is passed to an
LLM with a prompt that instructs it to make a small but meaningful alteration (e.g., using a synonym,
reordering words) to create a new variant. We detail the prompt in Appendix B.5.

The above process repeats for a fixed number of generations, G, or until the coverage criterion is met.
The final output is the query with the highest fitness score found throughout the entire evolutionary
process.

4 EXPERIMENT SETUP

4.1 DATASET

We collected a dataset of 1000 real-world queries submitted by users on the Etsy e-shopping web-
site2. Each query was manually reviewed to ensure that no Personally Identifiable Information (PII)
was present. The dataset is categorized into five distinct classes, as shown in Figure 3, to allow for
fine-grained analysis. Head Queries are high-frequency, popular search terms. They constitute the
top 4% of queries in terms of popularity. Torso Queries are moderately frequent search terms be-
tween 70% and 96% in terms of popularity, while Tail Queries are infrequent queries that constitute
less than 70% in terms of popularity. Fandom Queries are queries related to a particular franchise
(e.g., TV Show or Movies). Multi-Lingual Queries are queries in non-English languages. Out of
150 multi-lingual queries, a majority (60) are in German, followed by French (37). Languages like
Hmong, Turkish, Hindi, or Romanian constitute the “Others” part of multi-lingual queries. Popular
queries tend to contain fewer mistakes and are more friendly to the recommendation systems; how-
ever, a majority of the queries that are searched are unique and infrequent, which make up Torso and
Tail sub-sections of our dataset.

4.2 MODELS AND METRICS

We use Gemini-2.5-Flash (Comanici et al., 2025) and run OPTAGENT with the following specifica-
tions: λ = 0.02, wp = 0.1, w10 = 0.5, wa = 0.4, N = 5, G = 4, α = 0.6, pcrossover = 0.7, and
pmutation = 0.1, as defined in §3. We report the total cost of OPTAGENT in Appendix E. For our
evaluation agent, we use K = 5 agents with temperatures {0.00, 0.25, 0.50, 0.75, 1.00}.

2https://www.etsy.com
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We use F (q) defined in §3.1 as our metric for evaluation. To validate the reliability of our agentic
evaluation, we randomly sampled 287 queries and had them annotated by human experts for seman-
tic relevance. Since, average of semantic scores results in a continuous score, we report the Pearson
correlation between human annotators and our evaluation agent. Our evaluation agent shows a statis-
tically significant positive correlation with human annotations (Pearson r = 0.552, p < 0.001), in-
dicating a moderate and meaningful alignment with human judgment. Notably, due to the subjective
nature of our task, agreement between independent human annotations is also moderate alignment
(Pearson r = 0.532, p < 0.001). Full details of annotation are described in Appendix D.

4.3 BASELINES

We compare OPTAGENTagainst three baselines: 1) User Query: The original, unmodified query
submitted by the user. This serves as our control baseline. 2) LLM-Rewrite: A simple and standard
approach where an LLM is prompted to rewrite the user query. 3) Best-of-N (BoN) Rewrite: This
is an inference-time technique (Snell et al., 2024), where we prompt an LLM to generate 8 (same
average number of queries as OPTAGENT) different candidate rewrites for the query and then use
our multi-agent simulation to evaluate all candidates. The one with the highest score is selected.

5 RESULTS

5.1 PERFORMANCE OF OPTAGENT

Table 1: Mean fitness scores of all methods across different query subsections. OPTAGENT achieves
the highest score in every category, demonstrating robust performance. The percentage improvement
of OPTAGENT over the BoN-Rewrite is shown in parentheses.

Query Subsection Method

User Query LLM-Rewrite BoN-Rewrite OPTAGENT

Head Queries 0.6433 0.5744 0.7493 0.7660 (2.23% ↑)
Torso Queries 0.5741 0.5335 0.7106 0.7377 (3.81% ↑)
Tail Queries 0.4978 0.4841 0.6129 0.6405 (4.50% ↑)

Fandom Queries 0.7328 0.6335 0.7762 0.7969 (2.67% ↑)
Multi-Lingual Queries 0.7189 0.6833 0.8260 0.8547 (3.47% ↑)

All Queries 0.6100 0.5509 0.7199 0.7441 (3.36% ↑)

Table 1 presents the main results across all categories. OPTAGENT consistently achieves the highest
scores, outperforming all baselines. On average, OPTAGENT improves the query fitness by 21.98%
over the original User Query and 3.36% over the BoN-Rewriting.

An interesting trend is that the naive LLM-Rewrite often performs worse than simply using the
original user query. This highlights the non-trivial nature of the QR task, where a single, unguided
rewrite attempt by an LLM can easily misinterpret intent or generate a semantically correct but less
effective query. The substantial improvement of BoN-Rewrite over both User Query (+18.02%) and
LLM-Rewrite demonstrates the critical importance of generating multiple candidates and having a
reliable evaluation mechanism to select the best one. OPTAGENT builds upon this, showing that a
guided evolutionary search can explore the solution space more effectively than simple sampling,
yielding further performance gains.

Performance across Query Subsections The performance of OPTAGENT varies across different
query types. The largest relative improvement from the original query is observed in Tail Queries
(28.67%), followed by Torso Queries (28.50%) and Head Queries (19.07%). Tail queries are sig-
nificantly difficult to optimize using traditional methods because they lack the historical data needed
to learn rewrite patterns. Our result suggests that the exploratory nature of evolutionary search is
especially effective in these data-sparse, high-uncertainty scenarios. Conversely, Fandom Queries
see the smallest improvement (8.74%), likely because users searching for specific franchise-related
items are already quite precise, leaving less room for optimization.
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We observe an average improvement of 18.89% on Multi-Lingual Queries over the user query. Table
2 shows the breakdown for all languages. OPTAGENTprovides consistent improvements across all
languages, with the largest gain in Italian (32.36%). The “Others” category, which includes lower-
resource languages, shows the smallest gain and a negligible improvement over the BoN baseline
(0.49%). This aligns with prior research (Huang et al., 2024), indicating that LLMs exhibit weaker
reasoning capabilities in low-resource languages, suggesting that both the generative and evaluative
capacities of the agents are less effective in these cases.

Table 2: Mean fitness scores for multi-lingual queries. OPTAGENT consistently outperforms base-
lines across different languages. The percentage improvement of OPTAGENT over BoN-Rewrite is
shown in parentheses.

Language Method

User Query LLM-Rewrite BoN-Rewrite OPTAGENT

German 0.7107 0.6331 0.8139 0.8432 (3.59% ↑)
French 0.7343 0.6759 0.8464 0.8721 (3.03% ↑)
Spanish 0.7621 0.7299 0.8780 0.9012 (2.65% ↑)
Dutch 0.7755 0.6837 0.8411 0.8692 (3.34% ↑)
Italian 0.6417 0.7142 0.7960 0.8493 (6.70% ↑)
Others 0.6167 0.5161 0.6901 0.6931 (0.49% ↑)
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Figure 4: Average fitness of the best query in the population
across four generations for each query subsection. Fitness
consistently improves, with diminishing results in the later
generations.

Performance across Generations
Figure 4 illustrates the average fit-
ness of the best query in the pop-
ulation across the four generations
of the evolutionary process. We
observe a consistent increase in fit-
ness with each generation, though the
rate of improvement diminishes over
time, suggesting that the algorithm is
converging towards a good solution.
This demonstrates that the evolution-
ary operators of crossover and muta-
tion are effectively discovering better
queries over time. An analysis of the
fitness components reveals that in the
first generation, 97.26% of the fitness
gain comes from improving the se-
mantic relevance scores. By the final
generation, the contribution from the
normalized purchase value increases
to 5.87%, indicating that the algo-
rithm first prioritizes finding relevant products before fine-tuning to encourage purchasing behavior.
Interestingly, in the case of Fandom Queries, we observe these metrics directly competing against
each other as the purchase value actually decreases for two generations, making an average of 0.2%
decrease and then increasing along with semantic scores in the final generation.

5.2 ABLATION OF OPTAGENT

To better understand the contribution of each component of OPTAGENT, we conduct an ablation
study, the results of which are presented in Table 3. The full OPTAGENT framework serves as our
point of comparison.

Removing the evolutionary operators entirely (which is equivalent to the BoN-Rewrite baseline with
5 different rephrases) results in the largest performance drop of 6.4%, confirming that the guided
search of the genetic algorithm is the most critical component for achieving peak performance.
Further ablation reveals that a major portion of this drop is contributed by the crossover operation
(6.1%), while mutation contributes (0.3%). While both these operators play a major role, crossover
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plays a much bigger role in OPTAGENT compared to mutation, with 83.4% of queries observed
to have lower scores without crossover. We hypothesize that the reduced impact of the mutation
operation is because LLMs, by themselves, are unable to rephrase queries in a meaningful way.
This also explains why BoN-Rewrite baseline underperforms when compared to OPTAGENT.

Table 3: Ablation study of OPTAGENT components on the full dataset. Each row shows the perfor-
mance when a specific component is removed, highlighting its contribution to the final result.

Method Overall Fitness Score ∆ vs. OPTAGENT

OPTAGENT (Full Framework) 0.7441 -
- Evolutionary Operations (i.e., BoN-Rewrite) 0.6965 6.4% ↓
- Crossover 0.6987 6.1% ↓
- Mutation 0.7419 0.3% ↓

5.3 EVALUATION AGENT ANALYSIS
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Figure 5: Probability Distribution of our evalua-
tion agent in selecting products for purchase out
of all listed products. Similar to real users, our
evaluation agent highly prefers products listed in
the beginning compared to products later down
the search results.

We observe a Moderate Agreement between
human annotators and our evaluation agents.
We detail the full human annotation in Ap-
pendix D and detail some examples in Ap-
pendix C. We observe that, in most cases, our
agent makes reasonable deductions; however,
there exist two failure cases. First, for some
products, some information is hidden in inter-
active functionalities (e.g., in dropdown menus)
of the website, which our agent fails to parse.
This is especially relevant in queries where the
user specifies any quality of a product, e.g.,
color or size. Second, we observe instances
where our agent relies too heavily on customer
reviews (or a lack thereof) when rating the
product. This is especially relevant for newer
products that have limited or no reviews, even if
the product itself is relevant to the user’s query.

Finally, we study how our evaluator agent se-
lects products for purchase from all the prod-
ucts listed on the first page of search results. Fig. 5 represents the probability distribution of our
agent in selecting a product from all listed products. We observe that the agent prefers to purchase
the first few products with a much higher probability compared to the last few. Although this is an
observed bias, this behavior is very similar to how real users behave on real e-commerce platforms
(Wang et al., 2023; Collins et al., 2018). Therefore, we believe this makes our evaluation agent more
reliable for simulating real user behavior on e-commerce platforms.

6 CONCLUSION

In this work, we addressed the fundamental challenge of optimizing LLMs in subjective domains
where traditional reward signals are unavailable. We introduced OPTAGENT, a novel framework for
e-commerce query rewriting, that replaces static reward functions with a dynamic fitness evaluation
derived from a multi-agent simulation. By using an ensemble of LLM agents with diverse reasoning
paths, our evaluation creates a rich, nuanced fitness landscape that better captures the complexity
of latent human preference. When coupled with an LLM-powered genetic algorithm, our approach
significantly outperforms strong baselines, particularly for difficult, long-tail queries. Our work
provides a generalizable and scalable blueprint for optimization in the absence of explicit rewards,
opening new avenues for developing more capable and aligned AI systems in a wide range of human-
centric applications.
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REPRODUBILITY STATEMENT

To ensure the reproducibility of our results, we detail OPTAGENT in algorithm 1 and detail the
prompts in Appendix B. We commit to releasing the following upon publication: (1) The com-
plete source code for the OPTAGENT framework, including the implementation of the evolution-
ary algorithm and the multi-agent simulation. (2) The full set of prompts and agent tools used by
the evaluation agents and the genetic operators (crossover and mutation). (3) The dataset of the
e-commerce queries used in our experiments. All experiments were conducted using the Gemini-
2.5-Flash model. The key hyperparameters for the evolutionary algorithm are detailed in §4.2.

ETHICS STATEMENT

The query dataset used in this study was sourced from real user data. We undertook a rigorous man-
ual review process to identify and remove any Personally Identifiable Information (PII) to protect
user privacy. We acknowledge that the LLM agents used in our simulation may inherit biases present
in their training data. Our use of a multi-agent ensemble with diverse temperatures is a deliberate
design choice intended to mitigate the impact of any single agent’s bias by aggregating multiple, var-
ied perspectives. However, the potential for correlated biases across the ensemble remains an area
for future investigation. Furthermore, in accordance with ICLR policy, we disclose that AI assis-
tants, specifically Grammarly for grammar correction and ChatGPT for sentence restructuring and
paraphrasing, were utilized during the preparation of this manuscript. The authors have reviewed,
edited, and take full responsibility for all final content presented in this paper.
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A OPTAGENT ALGORITHM

Algorithm 1 details the overall algorithm for OPTAGENT.

Algorithm 1 OPTAGENT

1: procedure OPTAGENT(qinitial, N,G, α, pcrossover, pmutation)
2: P0 ← INITIALIZE POPULATION(qinitial, N) ▷ Initial Population Generation
3: for g = 0 to G− 1 do ▷ Evolutionary Loop
4: for each q ∈ Pg do
5: F (q)← AGENTIC FITNESS SIMULATION(q) ▷ Fitness Evaluation
6: end for
7: Pg+1 ← Top αN queries from Pg sorted by F (q) ▷ Selection (Elitism)
8: while |Pg+1| < N do ▷ Next Population Generation
9: qparent1 ← SELECT(Pg)

10: if rand() < pcrossover then
11: qparent2 ← SELECT(Pg)
12: qchild ← CROSSOVER(qparent1, qparent2)
13: else
14: qchild ← qparent1
15: end if
16: if rand() < pmutation then
17: qchild ← MUTATE(qchild)
18: end if
19: Add qchild to Pg+1

20: end while
21: end for
22: return best query from PG

23: end procedure

B PROMPTS USED BY OPTAGENT

B.1 EVALUATION ANALYSIS PROMPT

You are a product analyst for Etsy, an online shopping platform. Based on the provided
product image, the searched query, product price, seller information, any available customer
reviews, and shipping/delivery information, give me a detailed analysis of the product.
Analyze the product using analytical thinking and common sense to determine its semantic
relevance to the searched query.

When product price is provided, consider the value proposition and the perceived value
based on quality and features.

When seller information is provided, consider the seller’s reputation and relevance to the
searched query. Some searches may be looking for products from specific sellers or brands.

When customer reviews are provided, use them to gain insights into product quality, user
satisfaction, potential issues, and real-world usage experiences. Consider how the reviews
support or contradict your visual analysis.

When shipping and delivery information is provided, factor in delivery times, shipping
costs, and availability in your analysis. Consider how these logistics aspects might affect
the purchasing decision.

Please provide your analysis in a JSON format with the following keys:
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- “summary”: A comprehensive summary of your overall analysis, including both positive
and negative aspects of the product in relation to the searched query.
- “semantic score”: Select either “HIGHLY RELEVANT”, “SOMEWHAT RELEVANT”,
or “NOT RELEVANT” based on how well the product matches the searched query.

**EXAMPLE INPUT 1**

Searched Query: healthy energy drink
Current Date: May 21

**OUTPUT 1**
{
“summary”: “This product has several positive aspects: it’s affordable at $1.00, the seller
has a high rating with 1,470 reviews, and it can be delivered on May 22 (1 day delivery).
However, the critical issue is that the product is a healthy snack, not a drink, which
completely misses the specific search for a healthy energy drink.”,
“semantic score”: “NOT RELEVANT”
}

**EXAMPLE INPUT 2**

Searched Query: House of Staunton Chess Set
Current Date: June 13

**OUTPUT 2**
{
“summary”: “The product is a high-quality wooden chess set that can be personalized, with
reasonable delivery time (June 15, 2 days from now). On the positive side, it’s made of
quality wood and offers customization. However, there are several drawbacks: only 3 total
reviews providing limited social proof, the price is somewhat high for a chess set, and most
importantly, it is not from the House of Staunton brand as specifically searched for. While
it is a chess set, it doesn’t match the brand requirement.”, “semantic score”: “SOMEWHAT
RELEVANT”
}

**EXAMPLE INPUT 3**

Searched Query: renaissance-style necklace
Current Date: September 10

**OUTPUT 3**
{
“summary”: “This is a high-quality renaissance-style necklace with excellent reviews (500
reviews with high rating) and craftsmanship that perfectly matches the searched query aes-
thetic. The only drawback is the shipping date of September 20, which is more than a
week away. Despite the longer shipping time, the product strongly aligns with the searched
renaissance-style necklace criteria.”,
“semantic score”: “HIGHLY RELEVANT”
}

B.2 FINAL PURCHASE PROMPT

You are making a purchase decision based on the given query and the products. Analyze the
products and make a purchase decision based on analytical thinking and common sense.
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Inputs you will receive:
- The searched query.
- A list of products and their price and a short summary.

Your job:
1. Critically compare the products based on their relevance to the searched query.
2. Decide which product(s) (one or more) should be purchased based on your reasoning.
3. Buy a reasonable number of products, depending on the price and the query. Act like a
real customer.
4. Provide a short, logical justification followed by the list of product names that you want
to purchase.
5. If none of the products should be purchased, explain why and return an empty list of
recommendations.

Return ONLY a valid JSON object with the following structure. Do not include any other
text or comments.

**OUTPUT STRUCTURE**
{
“reasoning”: “<explanation of why you chose or rejected the products>”,
“recommendations”: [
“<product name 1>”,
“<product name 2>”,
...
]
}

B.3 INITIAL POPULATION GENERATION PROMPT

You are an expert at creating variations of shopping queries for e-commerce platforms like
Etsy. Given an original query, generate semantically similar but diverse variations that could
potentially find better or different relevant products.

Guidelines:
- Keep variations relevant to the original intent
- Use synonyms, related terms, and different phrasings
- Consider different product attributes (size, color, style, material)
- Include both broader and more specific versions
- Each variation should be a single line, natural search query
- Variations should be 2-8 words typically
- Return the variations as a JSON list of strings.

B.4 CROSSOVER PROMPT

You are an expert at combining shopping queries to create new, potentially better variations.
Given two parent queries, create a new query that combines the best aspects of both while
maintaining search relevance.

Guidelines:
- The result should be a natural, searchable query
- Combine meaningful elements from both parents
- Keep it concise (2-8 words typically)
- Maintain the original search intent
- Just return the new query, no other text.
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B.5 MUTATION PROMPT

You are an expert at creating subtle variations of shopping queries while maintaining their
core meaning and search intent. You will be given a query and a summarized feedback for
this query. Return the revised query, addressing the feedback.

Guidelines:
- Keep the same general length (don’t make it significantly longer or shorter)
- Maintain the original search intent
- Make small but meaningful changes (synonyms, reordering, slight modifications)
- The result should still be a natural, searchable query
- Just return the revised query, no other text.
- Try to address the feedback in the revised query.

C EXAMPLES

C.1 CASE STUDY OF BIAS IN PERSONA FOR ANALYSIS AGENT

One key problem while using an ensemble of agents is wasted compute if several agents give the
same reasoning. To mitigate this, several works have used personas to add personality to these
agents. While effective, this can introduce undesirable behaviors. We use the personas from (Lu
et al., 2025) and detail one such instance of bias below:

Benign Persona

Persona: Michael

Background:
Michael is a 41-year-old man who has built a successful career in the tech industry,
leveraging his analytical skills and entrepreneurial spirit. Despite his professional accom-
plishments, he remains grounded and values work-life balance, making time for his hobbies
and charitable endeavors.

Demographics:
Age: 41
Gender: Male
Education: Bachelor’s Degree in Computer Science
Profession: Software Engineer, Tech Startup Co-Founder
Income: $150,000

Financial Situation:
As a software engineer and tech startup co-founder, Michael’s income falls within the
$94,001 to $1,000,000 range. He has a strong financial footing, with a healthy savings
account and investments that provide a sense of financial security. While he is mindful of
his spending, he also enjoys the occasional splurge on high-quality items that align with his
personal values and interests.

Shopping Habits:
Michael’s shopping habits reflect his practical yet discerning approach to consumption. He
tends to invest in durable, well-crafted products that will stand the test of time, whether
it’s a high-quality suit for work or a state-of-the-art piece of home electronics. He is also
conscious of his environmental impact and seeks out sustainable and ethical brands when
possible.

Professional Life:
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Michael’s professional life is a source of both fulfillment and inspiration. As a software
engineer, he is constantly learning and pushing the boundaries of his field, working on
innovative projects that solve real-world problems. His involvement in a tech startup allows
him to exercise his entrepreneurial spirit, collaborating with a team to bring their vision to
life.

Personal Style:
Michael’s personal style is understated yet refined. He favors a classic, minimalist aesthetic,
with a wardrobe that consists of well-fitting, high-quality clothing in neutral tones. He
values functionality and comfort, but also appreciates the importance of presenting a
polished and professional appearance. In his free time, he enjoys exploring his creative side
through hobbies like photography and woodworking.

Personal Life:
Outside of his professional pursuits, Michael is an avid outdoorsman, finding solace in activ-
ities like hiking, camping, and mountain biking. He is also deeply invested in his community,
serving on the board of a local non-profit organization that provides educational resources to
underprivileged youth. Michael understands the importance of work-life balance and makes
a conscious effort to maintain strong relationships with his family and close friends.

Racial Bias observed in Evaluation Agent when analyzing a product

The product is a direct match for Michael’s specific search query and is affordably priced
with fast, free shipping and a return policy. However, its origin from China might not
fully align with Michael’s discerning shopping habits, which prioritize ethical sourcing,
high quality, and robust product research. The nature of an ‘action figure’ also might not
perfectly fit his preference for ‘durable, well-crafted’ items that stand the test of time, unless
this is a new or casual interest.

In the above example, since the product is made in China, the LLM incorrectly assumes it is lower
quality or sourced unethically. Since proprietary LLMs are trained to be unbiased, we chose not
to assign a persona to our agent; instead, we rely on varying temperatures to generate different
reasoning paths.

C.2 EVALUATION AGENT EXAMPLES

Below, we detail two instances where our evaluation agent fails:

Interactive Elements For the query “bridesmaid green wine tumbler”, the product description or
image doesn’t highlight green, but is present in the dropdown menu 3, making it a Fully Relevant
product. The following is the agent’s reasoning:

This product is a highly-rated ‘wine tumbler’ with excellent customer satisfaction, ev-
idenced by its 4.8 out of 5-star rating from 917 reviews. Customers praise its overall
quality as bridesmaid gifts. The price of $11.90 is reasonable for such an item, and
the estimated delivery time (10-12 days) is standard. However, the critical issue is
that the searched query ‘bridesmaid green wine tumbler’ strongly implies a search for
the color green. There is no indication that it is available in the color green. While it
is a high-quality wine tumbler, it does not fulfill the color-specific nature of the search query.

Semantic Classification: Partially Relevant

3https://www.etsy.com/listing/1877369188
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Heavy Reliance on Customer Reviews For the query “freida mcfadden”, the product 4 has no
reviews but is a Fully Relevant product for the query. Following is the reasoning and classification
given by the agent:

This product explicitly features ’Freida McFadden’ in its name and displays numerous
book covers by the author in the image, making it highly relevant to the searched query
for the author. It is very affordable at $3.50 for a ‘collection’ and is available via instant
download, which are positive aspects. However, the critical ambiguity lies in the fact that
no customer reviews are provided to clarify the quality of the product, and the generic seller
name ‘KraftyBStudio’ doesn’t offer specific credibility for providing official e-book content.

Semantic Classification: Partially Relevant

D HUMAN ANNOTATION

To validate the effectiveness of our agents acting as judges as a proxy for human judgment, we con-
ducted a human annotation study. This section details the protocol used for collecting and analyzing
human relevance scores.

We recruited multiple graduate students and e-commerce experts for annotation. Annotators were
presented with the query and a corresponding product retrieved by our agent. Annotators could visit
the product on the website to see a more detailed description. The annotator’s task was to evaluate
the semantic relevance of the product given the query.

Annotators were asked to assign a single relevance score on a 3-point Likert scale, based on the
following rubric:

1. Fully Relevant: The product accurately captures the original query, including the user’s
intent.

2. Partially Relevant: The product captures some aspects of the query but may be too broad,
too narrow, or slightly off-topic.

3. Irrelevant: The product significantly misinterprets the query intent and has no connection
to the query. If you see this product among the top search results of the query, you will
think the search function is broken.

A random sample of 287 (query, product) pairs was selected from our test set, stratified across
the different methods and query categories to ensure a representative sample. Each of the 287
pairs was evaluated by two independent annotators. We measured the inter-annotator agreement
using Quadratic Cohen Kappa, a standard metric for reliability with multiple raters. The resulting
agreement was κ = 0.5392, which indicates “Moderate Agreement” and a 64.1% exact match. We
convert the classification labels into +1, 0, and −1 respectively, and the final human score for each
query was taken as the average of the two annotators’ scores.

As reported in the main text (§4.2), we calculated the Pearson correlation coefficient between our
agent-derived fitness scores (F (q)) and the average human relevance scores. The analysis yielded
a statistically significant positive correlation of r = 0.552 (p < 0.001), validating that our agen-
tic simulation serves as a meaningful and moderately strong proxy for human preference in this
subjective task.

E COST OF OPTAGENT

To provide transparency regarding the resources required to run our framework, this section details
the computational cost of optimizing a single query using OPTAGENT. The costs are based on the
experimental setup described in Section 4.2. The total cost is a function of the number of LLM API
calls and the number of tokens processed in each call. Our process for a single query involves:

4https://www.etsy.com/listing/4332712379
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1. Initialization: 1 LLM call to generate the initial population of 5 queries.
2. Evolutionary Loop (4 Generations):

(a) Fitness Evaluation: For each of the 5 queries in a generation’s population, 5 agents
perform an evaluation. This involves each agent making approximately 60 calls to
score individual products on a search results page, followed by 1 call to make a final
purchase decision. This results in 5 queries × 5 agents × (60 product scores + 1
purchase decision) = 1525 LLM calls per generation.

(b) Genetic Operators: To create the next generation, an average of 2 LLM calls are
made for crossover and mutation operations.

This results in a total of approximately 1 + 4 ∗ (1525 + 2) = 6109 LLM calls to optimize a sin-
gle query, with the majority of calls coming from evaluating the quality of the query rather than
optimizing it.

We estimate the token usage based on the prompts detailed in Appendix B and typical product page
content. The pricing for Gemini-2.5-Flash is $0.30 per 1 million input tokens and $2.50 per 1 million
output tokens at the time of our experiments 5. Our Estimated Total Cost per Query: $8, making
the total cost of OPTAGENT on a set of 1000 queries to be ∼ $8k

5Current Pricing: https://ai.google.dev/gemini-api/docs/pricing
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