
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FUTUREFILL: FAST GENERATION FROM CONVOLU-
TIONAL SEQUENCE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the challenge of efficient auto-regressive generation in sequence pre-
diction models by introducing FutureFill—a method for fast generation that ap-
plies to any sequence prediction algorithm based on convolutional operators. Our
approach reduces the generation time requirement from quadratic to quasilinear
relative to the context length. Additionally, FutureFill requires a prefill cache
sized only by the number of tokens generated, which is smaller than the cache
requirements for standard convolutional and attention-based models. We validate
our theoretical findings with experimental evidence demonstrating correctness and
efficiency gains in a synthetic generation task.

1 INTRODUCTION

Large Transformer models Vaswani et al. (2017) have become the method of choice for sequence
prediction tasks such as language modeling and machine translation. Despite their success, they face
a key computational limitation: the attention mechanism, their core innovation, incurs a quadratic
computational cost during training and inference. This inefficiency has spurred interest in alternative
architectures that can handle long sequences more efficiently.

Convolution-based sequence prediction models Li et al. (2022); Poli et al. (2023); Agarwal et al.
(2023); Fu et al. (2024) have emerged as strong contenders, primarily due to their ability to leverage
the Fast Fourier Transform (FFT) for near-linear scaling with sequence length during training. These
models build upon the advancements in State Space Models (SSMs), which have shown promise
in modeling long sequences across diverse modalities Gu et al. (2021a); Dao et al. (2022); Gupta
et al. (2022); Orvieto et al. (2023); Poli et al. (2023); Gu & Dao (2023). Convolutional models
offer a more general framework than SSMs because they can represent any linear dynamical system
(LDS) without being constrained by the dimensionality of hidden states Agarwal et al. (2023). This
flexibility has led to recent developments that theoretically and empirically handle longer contexts
more effectively. Notable among these are Spectral State Space Models or Spectral Transform Units
(STUs) Agarwal et al. (2023), which use spectral filtering algorithms Hazan et al. (2017; 2018) to
transform inputs into better-conditioned bases for long-term memory. Another approach is Hyena
Poli et al. (2023), which learns implicitly parameterized Markov operators. Both methods exploit
the duality between time-domain convolution and frequency-domain multiplication to accelerate
prediction via the FFT.

While SSMs and recurrent models benefit from fast inference times independent of sequence length,
making them attractive for large-scale language modeling, convolutional models have been hindered
by slower token generation during inference. The best-known result for generating tokens with
convolutional models is quadratic in sequence length—comparable to attention-based models (see
Massaroli et al. (2024) Lemma 2.1). This limitation has prompted research into distilling state-space
models from convolutional models Massaroli et al. (2024), but such approximations lack compre-
hensive understanding regarding their approximation gaps due to the broader representational ca-
pacity of convolutional models.

In this paper, we address the problem of exact auto-regressive generation from given convolutional
models, significantly improving both the generation time and cache size requirements. We present
our main results in two settings:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1. Generation from Scratch: When generating L tokens from scratch, we demonstrate that
long convolutional sequence predictors can generate these tokens in total time O(L log2 L)
with total memory O(L). This improves upon previous methods that require O(L2) time
for generation. We further provide a memory-efficient version wherein the total runtime
increases to O(L3/2

√
log(L)) but the memory requirement is bounded by O(

√
L logL).

2. Generation with Prompt: When generating K tokens starting from a prompt of length
L, we show that the total generation time is O(L logL + K log2 K) with a cache size
requirement of O(K). Previously, the best-known requirements for convolutional models
were a total generation time bounded by O(L logL+LK+K2) and a cache size bounded
by O(L) (Massaroli et al., 2024).

Importantly, our results pertain to provably exact generation from convolutional models without re-
lying on any approximations. Moreover, our methods are applicable to any convolutional model,
regardless of how it was trained. The following table compares our algorithm with a standard exact
implementation of convolution. We also provide a comparison of the time and cache size require-
ments for exact computation in attention-based models.

Method Runtime Memory

Standard Conv L2 L
Standard Attn. L2 L

EpochedFF (ours) L3/2
√
logL

√
L logL

ContinuousFF (ours) L log2 L L

(a) Comparison for generating L tokens from scratch.
Runtime is in asymptotic notation, i.e. O(·) is omitted for
brevity.

Prefill+Genertation Generation
Runtime Cache Size

LK + L logL+K2 L
L2 +KL L

L logL+K3/2
√
logK K

L logL+K log2 K K

(b) Comparison for generating K tokens starting
from a prompt of length L, runtime and cache-
size are in asymptotic notation, i.e. O(·) is omit-
ted for brevity.

Our results for generation from convolutional models are based on building efficient algorithms for
an online version of the problem of computing convolutions. In this problem, the algorithm is tasked
to compute the convolution of two sequences u ∗ϕ, however the challenge is to release iteratively at
time t the value of [u ∗ϕ]t, where the sequence ϕ is fully available to the algorithm but the sequence
u streams in one-coordinate at a time.

While the FFT algorithm allows for an O(L logL)-time offline algorithm for the convolution of two
L-length sequences, whether a similar result exists for the online model was not known. Naively,
since [u∗ϕ]t = ⟨u1:t, ϕt:1⟩, the total output can be computed in time O(L2). In this paper we demon-
strate using repeated calls to appropriately constructed FFT-subroutines to compute the future effect
of past tokens (a routine we call FutureFill), one can compute the convolution in the online model
with a total computational complexity of O(L log2(L)), nearly matching its offline counterpart and
significantly improving over the naive algorithm which was the best known (Massaroli et al., 2024).

It is worth noting that the naive algorithm for computing online convolution, albeit slow, does not
require any additional memory other than the memory used for storing the sequences v, w. Such
memory is often a bottleneck in practical sequence generation settings and is referred to as the size
of the generation cache. For context the size of the generation cache for attention models is O(L),
i.e. proportional to the length of the prefill-context and the generation length. We further show that
when generating from convolutional models, one can construct a trade-off for the computational
complexity (i.e. flops) and memory (i.e. generation cache size) using the FutureFill sub-routine. We
highlight two points on this trade-off spectrum via two algorithmic setups both employing FutureFill.
We detail this trade-off in Table 1.

1.1 RELATED WORK

State space models and convolutional sequence prediction. Recurrent neural networks have
been revisited in the recent deep learning literature for sequential prediction in the form of state
space models (SSM), many of whom can be parameterized as convolutional models. Gu et al. (2020)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Algorithm Computational Memory (Generation
Complexity (Flops) Cache-Size)

Naive O(L2) O(1)
Epoched-FutureFill (ours) O(L3/2 logL) O(

√
L)

Continuous-FutureFill (ours) O(L log2 L) O(L)

Table 1: Comparison of results for Online convolution.

propose the HiPPO framework for continuous-time memorization, and shows that with a special
class of system matrices A (HiPPO matrices), SSMs have the capacity for long-range memory. Later
work Gu et al. (2021b;a); Gupta et al. (2022); Smith et al. (2023) focus on removing nonlinearities
and devising computationally efficient methods that are also numerically stable. To improve the
performance of SSMs on language modeling tasks Dao et al. (2022) propose architectural changes
as well as faster FFT algorithms with better hardware utilization, to close the speed gap between
SSMs and Transformers. Further investigation in Orvieto et al. (2023) shows that training SSM is
brittle in terms of various hyperparameters. Various convolutional models have been proposed for
sequence modelling, see e.g. Fu et al. (2023); Li et al. (2022); Shi et al. (2023a). These papers
parameterize the convolution kernels with specific structures. The Hyena architecture was proposed
in Poli et al. (2023) and distilling it into a SSM was studied in Massaroli et al. (2024). Other
studies in convolutional models include LongConv Fu et al. (2023) and SGConv Li et al. (2022)
architectures, as well as multi-resolution convolutional models Shi et al. (2023b).

Spectral filtering. A promising technique for learning in linear dynamical systems with long
memory is called spectral filtering put forth in Hazan et al. (2017). This work studies online pre-
diction of the sequence of observations yt, and the goal is to predict as well as the best symmetric
LDS using past inputs and observations. Directly learning the dynamics is a non-convex optimiza-
tion problem, and spectral filtering is developed as an improper learning technique with an efficient,
polynomial-time algorithm and near-optimal regret guarantees. Different from regression-based
methods that aim to identify the system dynamics, spectral filtering’s guarantee does not depend on
the stability of the underlying system, and is the first method to obtain condition number-free regret
guarantees for the MIMO setting. Extension to asymmetric dynamical systems was further studied
in Hazan et al. (2018). Spectral filtering is particularly relevant to this study since it is a convo-
lutional model with fixed filters. Thus, our results immidiately apply to this technique and imply
provable regret bounds with guaranteed running time bounds in the online learning model which
improve upon state of the art.

Online learning and regret minimization in sequence prediction. The methodology of online
convex optimization, see e.g. Hazan et al. (2016), applies to sequences prediction naturally. In
this setting, a learner iteratively predicts, and suffers a loss according to an adversarially chosen
loss function. Since nature is assumed to be adversarial, statistical guarantees are not applicable,
and performance is measured in terms of regret, or the difference between the total loss and that
of the best algorithm in hindsight from a class of predictors. This is a particulary useful setting
for sequential prediction since no assumption about the sequence is made, and it leads to robust
methods. Sequential prediction methods that apply to dynamical systems are more complex as they
incorporate the notion of a state. Recently the theory of online convex optimization has been applied
to learning in dynamical systems, and in this context, the spectral filtering methodology was devised.
See Hazan & Singh (2022) for an introduction to this area.

2 SETTING

2.1 ONLINE CONVOLUTIONS

Notation: For an input sequence {ut} we denote by u1:t the sequence of inputs u1, ..., ut. For any
i ≤ j let ui:j denote the sub-sequence ui, ui+1, . . . uj . When i > j, ui:j denotes the subsequence
uj:i in reverse order. Thus ut:1 represents the sequence in reverse order. We also denote [k] =
{1, 2, ..., k} as a set of k natural numbers. Given a multi-dimensional sequence u1 . . . ut where
each ui ∈ Rd and given a vector v ∈ Rt, for brevity of notation we overload the definition of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

inner products by defining y = ⟨v, u1:t⟩ with y ∈ Rd as yj =
∑t

i=1 vi · [ui]j ∈ R. That is the
inner-product along the time dimension is applied on each input dimension separately.

Convolution: The convolution operator between two vectors u, ϕ ∈ Rt outputs a sequence of
length t whose element at any position s ∈ [t] 1 is defined as

[u ∗ ϕ](s) =
s∑

i=1

uiϕs+1−i = ⟨u1:s, ϕs:1⟩. (1)

A classical result in the theory of algorithms is that given two vectors u, ϕ ∈ Rt, their convolution
can be computed in time O(t log t), using the FFT algorithm.

Online Convolution: We consider the problem of performing the convolution u ∗ ϕ when one of
the sequences ϕ is fully available to the model, however the other sequence u streams in, i.e. the
element ut is made available to the model at the start of round t, at which point it is expected to
release the output [u ∗ ϕ]t. This model of online convolution is immediately relevant to the online
auto-regressive generation of tokens from a convolutional sequence model as the output token at time
t becomes the input for the next round and hence is only available post generation. In this setting,
the sequence u corresponds to generated tokens and the sequence ϕ corresponds to the convolutional
filter which the model has full access to. We further detail the setup of sequence generation in the
next subsection.

2.2 SEQUENCE PREDICTION:

In sequence prediction, the input is a sequence of tokens denoted u1, ..., ut, ..., where ut ∈ Rdin .
The predictor’s task is to generate a sequence ŷ1, ..., ŷt, ..., where ŷt ∈ Rdout is generated after
observing u1, ..., ut−1. The output yt is observed after the predictor generates ŷt. The quality of the
prediction is measured by the distance between the predicted and observed outputs according to a
loss function ℓt(ŷt, yt), for example the mean square error ∥ŷt − yt∥2.

2.3 ONLINE SEQUENCE PREDICTION

In the online sequence prediction setting, an online learner iteratively sees an input ut and has to
predict output ŷt, after which the true output yt is revealed. The goal is to minimize error according
to a given Lipschitz loss function ℓt(yt, ŷt). In online learning it is uncommon to assume that the
true sequence was generated by the same family of models as those learned by the learner. For this
reason the metric of performance is taken to be regret. Given a class of possible predictors, the goal
is to minimize regret w.r.t. these predictors. For example, a linear predictor predicts according to
the rule

πM1:k,N1:l
(u1:t, y1:t−1) =

k∑
i=1

Miut−i +

l∑
j=1

Njyt−j .

The performance of a prediction algorithm A is measured by regret, or difference in total loss, vs. a
class of predictors

∏
, such as that of linear predictors, e.g.

RegretT (A) =
T∑

t=1

ℓt(yt, ŷ
A
t)− min

π∈
∏

T∑
t=1

ℓt(yt, ŷ
π
t).

This formulation is valid for online sequence prediction of any signal. We are particularly interested
in signals that are generated by dynamical systems. A time-invariant linear dynamical system is
given by the dynamics equations

xt+1 = Axt +But + wt, yt = Cxt +Dut + ζt,

where xt is the (hidden) state, ut is the input or control to the system, and yt is the observation. The
terms wt, ζt are noise terms, and the matrices A,B,C,D are called the system matrices. A linear

1This definition corresponds to the valid mode of convolution in typical implementations of convolution
e.g. scipy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

dynamical predictor with parameters A,B,C,D predicts according to

πABCD(u1:t, y1:t−1) =

t−1∑
i=1

CAi−1But−i +Dut.

The best such predictor for a given sequence is also called the optimal open loop predictor, and it is
accurate if the signal is generated by a LDS without noise.

2.4 AUTO-REGRESSIVE SEQUENCE GENERATION FROM A PROMPT

Another mode of sequence prediction with large language models being its core use-case is that
of auto-regressive sequence generation starting from a prompt. Herein the sequence model has to
generate a specified number of tokens given a certain context. This is depicted in Figure 1. The
setting of auto-regressive generation from a prompt consists of two stages, the prefill stage and the
decode stage. During the prefill stage, the model ingests the context vector and generates a cache
that stores information required in the decode stage.

In the decode stage, the model takes the cache and the most recently generated token as input and
generates the next output token. Then the cache is updated with the most recent input token. We
denote the generation length at the decode stage with K. In contrast to pre-training, where the model
takes in a training sequence and predicts the next token, in the prefill generation setting the model
only has access to the cache and the most recent token when making a prediction.

Figure 1: Auto-regressive sequence generation from a prompt.

2.5 ABSTRACTING CONVOLUTIONAL SEQUENCE PREDICTION

We define a convolutional sequence prediction model to be given by a filter, which is a vector
denoted by ϕ ∈ RL where L is considered the context length of the model. It takes as an input a
sequence u, and outputs a prediction sequence. The above definition can be extended to multiple
filter channels and nonlinearities, as we elaborate below with different examples. Formally, a single
output in the predicted sequence using a convolutional sequence model is given by

ŷt = ⟨ϕ, ut:t−L⟩. (2)
This paradigm captures several prominent convolutional sequence models considered in the litera-
ture. We highlight some of them below. The online convolution technique proposed by us can be
used with all the models below in straightforward manner leading to generation time improvement
from O(L2) to O(L log2 L).

State Space Models Discrete state space models such as those considered in Gu et al. (2021a)
have shown considerable success/adoption for long range sequence modelling. A typical state space
model can be defined via the following definition of a Linear Dynamical System (LDS)

xt = Axt−1 +But, yt = Cxt +Dut (3)
where u, y are the input and output sequences and A,B,C,D are the learned parameters. Various
papers deal with specifications of this model including prescriptions for initialization (Gu et al.,
2020), diagonal versions (Gupta et al., 2022), gating (Mehta et al., 2023) and other effective sim-
plifications (Smith et al., 2023). All these models can be captured via a convolutional model by
noticing that the output sequence y in (3) can be written as

y = ϕ ∗ u+Du

where the filter ϕ takes the form ϕi = CAi−1B. Thus a convolutional sequential model with learn-
able filters ϕ generalizes these state space models. However, SSM are more efficient for generation
and require only constant time for generating a token, where the constant depends on the size of the
SSM representation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

LongConv/SGConv. The LongConv (Fu et al., 2023) and SGConv (Li et al., 2022) architectures,
exploit the above connection and propose direct regularizations of the kernel to bias them towards
kernels representing a state space model.

Spectral Transform Units. The STU architecture was proposed in Agarwal et al. (2023) based
on the technique of spectral filtering for linear dynamical systems (Hazan et al., 2017; 2018). These
are basically convolutional sequence models based on carefully constructed filters that are not data
dependent. Rather, let ϕ1, ..., ϕk be the first k eigenvectors of the Hankel matrix HL given by

HL =

∫ 1

0

µαµ
⊤
αdα ∈ RL×L, µα = (α− 1)[1, α, α2, .., αL−1].

Then the STU outputs a prediction according to the following rule 2 ŷt =
∑k

i=1 Mi⟨ϕi, ut:t−L⟩,
where ϕi are the eigenvectors as above and M1:k are learned projection matrices. The STU ar-
chitecture is particularly appealing for learning in dynamical systems with long context, as it has
theoretical guarantees for this setting, as spelled out in Agarwal et al. (2023).

Hyena. The Hyena architecture proposed in Poli et al. (2023), sequentially applies convolutions
and element-wise products alternately. Formally, given an input u1:T , N + 1 linear projections
v, x1, . . . xN of the input are constructed (similar to the q, k, v sequence in self-attention). The
hyena operator as a sequence of convolution with learnable filters h1 . . . hN is then given by

y = xN ·
(
hN ∗

(
xN−1 ·

(
hN−1 ∗ (. . .)

)))
.

3 EFFICIENT ONLINE CONVOLUTIONS USING FUTUREFILL

We begin by introducing a simple convenient primitive which we call FutureFill, which forms the
crucial building block of our algorithms. Intuitively FutureFill corresponds to computing the contri-
bution of the current and prevoiusly generated tokens on the future tokens yet to be generated. For
a convolutional model (and unlike attention) this contribution can be efficiently determined without
even having generated the future tokens. Here onwards, for brevity of notation for any v ∈ Rt, we
assume vj = 0 for any j ≤ 0 or any j > t. Formally, given two sequences v ∈ Rt1 , w ∈ Rt2 we
define FutureFill(v, w) ∈ Rt2−1 as 3

∀s ∈ [t2 − 1] [FutureFill(v, w)]s =

t2−s∑
i=1

vt1−i+1 · ws+i.

Figure 2: FutureFill operation between an input sequence and a convolutional filter.

Figure 2 depicts the FutureFill operation between an input sequence and a convolutional filter. Con-
ceptually, [FutureFill(v, w)]s is the contribution of the input v of length t1 to the output [v ∗ w] at
position t1 + s. The FFT algorithm for convolutions can easily be extended to compute the Future-
Fill as well in time at most O((t1 + t2) log(t1 + t2)). For example the full mode of a standard conv

2more precisely, there are additional linear and constant terms depending on the exact filters used, such as
ŷt = ŷt−2 +

∑3
i=1 M

u
i ut+1−i +

∑k
i=1 Mi⟨ϕi, ut:t−L⟩, see Agarwal et al. (2023) for more details.

3recall that we denote [x] = {1 . . . x}.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

implementation (e.g. scipy) can be used to compute FutureFill in the following way under Python
slicing convention (exclusive of the last index)

FutureFill(v, w) = scipy.linalg.conv(v, w, mode=full)[t_1:t_1+t_2-1]

To leverage FutureF ill into an efficient way to generate tokens from a convolutional model, con-
sider the following simple proposition that follows from the definition of convolution.
Proposition 1. Given two vectors a, b ∈ Rt, we have that

∀t1, s ∈ [t] [a ∗ b]s =
{
[a1:t1 ∗ b1:t1]s if s ≤ t1
[at1+1:t ∗ b1:t−t1]s−t1 + [FutureFill(a1:t1 , b)]s−t1 otherwise

We provide a proof of the proposition in the appendix. We use the above proposition to design
efficient algorithms for online convolution.

3.1 EPOCHED-FUTUREFILL: EFFICIENT ONLINE CONVOLUTIONAL PREDICTION

When computing online convolutions, the FutureFill routine allows for the efficient pre-computation
for the effect of past tokens on future tokens. We leverage this property towards online convolution
via the Epoched-FutureFill procedure outlined in Algorithm 1.

Algorithm 1 Epoched-FutureFill: Efficient Online Convolutional Prediction

1: Input: Convolutional filter ϕ ∈ RL. Input sequence u ∈ RL, streaming one coordinate every
round. K, the epoch length.

2: Set τ = 1. Set FutureFill cache C ∈ RK to 0.
3: for t = 1, 2, ..., L do
4: Receive ut.
5: Compute and output ŷt =

∑τ
j=1 ut+1−j · ϕj + Cτ

6: if τ = K then
7: Compute FutureFill cache C ∈ RK defined as Cj = [FutureFill(u1:t, ϕ1:t+K)]j .
8: τ ← 1
9: else

10: τ ← τ + 1
11: end if
12: end for

Figure 3: Illustration for Algorithm 1

In the following lemma we state and prove the properties that Epoched-FutureFill enjoys. The
theorem provides a trade-off between the additional memory overhead and total runtime incurred
by the algorithm. In particular, the runtime in this tradeoff is optimized when the total memory is
O(
√
L logL) leading to a total runtime of O(L3/2

√
logL).

Theorem 2. Algorithm 1 computes the online convolution of sequences with length L and runs in
total time O

(
L2 logL

K +KL
)

with a total additional memory requirement of O(K). In particular

setting K =
√
L logL, we get that Algorithm 1 computes online convolution in O(L3/2

√
logL)

total time and O(
√
L logL) memory.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Proof. Since the proof of correctness is mainly careful accounting the contributions for various
indices, we provide it in the appendix. We prove the running time bounds below. The running time
consists of two components as follows:

1. Every iteration, line 5 is executed. One term, Cτ , has already been computed and saved in
line 7. We can retrieve it in time O(1). The other term is a sum of τ products, which can
be computed in time τ .

2. Every K iterations, we execute line 7 and update the terms in the cache. The FutureFill
operation can be computed via the FFT taking at most O(L logL) time.

The overall running time is computed by summing over the L iterations. In each block of K itera-
tions, we apply FFT exactly once, and hence the total computational complexity is

L

K

(
L logL+

K∑
τ=1

τ

)
= O

(
L2 logL

K
+KL

)
= O

(
L3/2

√
logL

)
,

where the last equality holds when the cache size K is chosen to minimize the sum, i.e. K =√
L logL.

3.2 CONTINUOUS-FUTUREFILL: QUASILINEAR ONLINE CONVOLUTIONAL PREDICTION

In this section we provide a procedure that significantly improves upon the runtime of Epoched-
FutureFill. Our starting point is Proposition 1, which implies that, to compute the convolution
between two sequences we can break the sequences at any point, compute the convolution between
the corresponding parts and stitch them together via a FutureFill computation. This motivates the
following Divide and Conquer algorithm to compute the convolution of two sequences a, b ∈ RL

• Recursively compute a1:L/2 ∗ b1:L/2, aL/2+1:t ∗ b1:L/2.

• Output the concatenation of a1:L/2 ∗b1:L/2 and (aL/2+1:t ∗b1:L/2)+FutureFill(a1:L/2, b).

Since FutureFill for L length sequences can be computed in time O(L logL) via the FFT, it can be
seen via the standard complexity calculation for a divide and conquer algorithm that the computa-
tional complexity of the above algorithm in total is O(L log2 L). As an offline algorithm, this is
naturally worse than the computational complexity of FFT itself, however as we show in the fol-
lowing, the advantage of the above algorithm is that it can be executed in an online fashion, i.e. the
tokens can be generated as the input streams in, with the same computational complexity.

We provide a formal description of the algorithm in Algorithm 2. We note that the formal description
of the above algorithm essentially serializes the sequence of operations involved in the above divide
and conquer procedure by their chronological order. For high-level intuition we encourage the reader
to maintain the divide and conquer structure when understanding the algorithm. The algorithm
proceeds as follows: at each time step, ŷt = ⟨u1:t, ϕt:1⟩ is returned as a sum of Ct, the cache that
stores the contribution from past tokens, and ut · ϕ1, the contribution from token ut. In Line 7,
the algorithm then computes the contribution of tokens ut−2k(t)+1:t to positions t+ 1, . . . , t+ 2k(t)

of [u ∗ ϕ]. Finally, we add the output of FutureFill to the existing cache C to accumulate the
contributions. In Figure 4, we provide an execution flow for the algorithm for convolving two
sequences of length 8 highlighting each FutureFill operation that is computed.

In the following theorem we prove a running time bound for Algorithm 2. We provide the proof of
correctness in the appendix, as it boils down to accounting of contribution from various parts.

Theorem 3. Algorithm 2 computes the online convolution of sequences with length L and runs in
total time O(L log2(L)) with a total additional memory requirement of O(L).

Proof. As can be seen from the algorithm for every generated token the most expensive operation is
the FutureFill computed in Line 6 so we bound the total runtime of that operation. Note that at any
time t, the cost of FutureFill operation is O((1∨ k(t)) · 2k(t)), where a∨ b denotes the max of a and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 4: Quasilinear Online Convolution using FutureFill: Figure shows the execution flow for
Algorithm 2 for convolving 8-length sequences. The input sequence u streams in an online fashion
and the filter ϕ is fully available to the algorithm. The colors are representative of the size of the
FutureFill operations performed and the time t (also appropriately color-coded) highlights when the
FutureFill operations were performed.

b. Summing this over every time step t we get,
L∑

t=1

(1∨k(t))2k(t) =
⌊logL⌋∑
k=0

|{t : k(t) = k}|(1∨k)2k ≤ L+

⌊logL⌋∑
k=1

2⌊logL⌋−k+1·k2k ≤ 3L

⌊logL⌋∑
k=1

k ≤ 3L log2 L.

Thus the total runtime of the algorithm is bounded by O(L log2 L).

Algorithm 2 Continuous-FutureFill: Quasilinear Generation From Convolutional Models

1: Input: Convolutional filter ϕ ∈ RL. Input sequence u ∈ RL, streaming one coordinate every
round.

2: Set b = ⌊logL⌋. Set FutureFill cache C ∈ RL to 0.
3: for t = 1 . . . L do
4: Receive ut. Output ŷt = Ct + ut · ϕ1.
5: Let k(t) be the highest power of 2 that divides t, i.e. k = max{i ∈ [b] : t mod 2i = 0}.
6: Compute FF = FutureFill(ut−2k(t)+1:t, ϕ1:2k(t)+1)

7: Set Ci = Ci + FFi−t ∀ i ∈ [t+ 1, t+ 2k(t)]
8: end for
9:

4 FAST AUTO-REGRESSIVE SEQUENCE GENERATION FROM A PROMPT

In this section we consider the problem setting of auto-regressively generating K tokens starting
from a given prompt of length L. For convolutional models specifically we define an abstract version
of the problem as follows, given a prompt vector p ∈ RL and a convolutional filter ϕ ∈ RL+K 4, the
aim is to iteratively generate the following sequence of tokens

ŷt = ⟨ŷ1:t−1, ϕt−1:1⟩+ ⟨p1:L, ϕt+L−1:t⟩ =
t−1∑
j=1

ŷt−j · ϕj +

t+L−1∑
j=t

pt+L−jϕj .

4the assumption of the filter being larger than L+K is without loss of generality as it can be padded with
0s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

As can be seen from the above definition the expected output is an online convolution where the in-
put sequence u has a prefix of the prompt p and the input sequence is appended by the most recently
generated output by the model (i.e. auto-regressive generation). We note that we only consider the
convolution part of a convolutional model (eg. STU) above for brevity and other parts like further
projection of the tokens etc can be appropriately added. As mentioned the above model naturally
fits into online convolution and the following algorithm delineates the method to use ContinuousFu-
tureFill (Algorithm 2) for the above problem.

Algorithm 3 Fast auto-regressive sequence generation from a prompt using FutureFill

1: Input: K > 0, L > 0, prompt p1:L, convolutional filter ϕ ∈ RL+K .
2: Set up a FutureFill cache C ∈ RK as C ← FutureFill(p, ϕ).
3: Set up the online convolution algorithm (Algorithm 6) with filter ϕ and sequence length K, i.e.
A ← ContinuousFutureFill(ϕ).

4: Running candidate token y ← 0.
5: for t = 1, ...,K do
6: Output ŷt ← Ct + y.
7: Generate next token candidate y ← A(ŷt).
8: end for

The correctness of the algorithm is immediate via the properties of FutureFill and ContinousFuture-
Fill. The following corollary bounding running time also follows easily from Theorem 3.
Corollary 4. Algorithm 3 when supplied with a prompt of sequence length L, generates K tokens
in total time O(L logL+K log2 (L+K)) using a total cache of size O(K).

5 EXPERIMENTS

In this section, we use a convolutional model that generates tokens in an online fashion to verify
our results. We experimentally evaluate Epoched-FutureFill (Algorithm 1) which has a runtime
of O(L3/2

√
logL) and Continuous-FutureFill (Algorithm 2) which has a runtime of O(L log2 L)

against the naive implementation which has a runtime of O(L2) when generating L tokens from
scratch. For increasing values of L, we measure the time S(L) it takes for a single layer to generate
L tokens. In Figures 5 and 6 we plot the amortized step time S(L)/L and total generation time
S(L), respectively, as functions of L. We see the behavior that is expected: the naive decoder
runs in amortized O(L) per step, while our methods achieve sublinear and logarithmic decoding
complexities respectively.

Figure 5: Average number of seconds per
step when generating L tokens, as a function
of L.

Figure 6: Total number of seconds to gener-
ate L tokens, as a function of L.

Due to differences in hardware acceleration, inference pipeline implementation, and other engineer-
ing details, it would be difficult to present timing results with a properly-optimized setup. On large
decoding platforms involving prefill caching, these variations only become more complicated. We
opted to time things for one layer on CPU in a simple online decoding loop with a large number of
tokens to make the asymptotic gains clear.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral state space models. arXiv
preprint arXiv:2312.06837, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Tri Dao, Daniel Y Fu, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri Eyuboglu, Armin Thomas, Ben-
jamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-
quadratic gemm-based architecture. Advances in Neural Information Processing Systems, 36,
2024.

Daniel Y Fu, Elliot L Epstein, Eric Nguyen, Armin W Thomas, Michael Zhang, Tri Dao, Atri Rudra,
and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling. arXiv
preprint arXiv:2302.06646, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1474–1487.
Curran Associates, Inc., 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=RjS0j6tsSrf.

Elad Hazan and Karan Singh. Introduction to online nonstochastic control. arXiv preprint
arXiv:2211.09619, 2022.

Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral filtering.
In Advances in Neural Information Processing Systems, pp. 6702–6712, 2017.

Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general
linear dynamical systems. In Advances in Neural Information Processing Systems, pp. 4634–
4643, 2018.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon, Cliff
Young, and David Patterson. A domain-specific supercomputer for training deep neural networks.
Communications of the ACM, 63(7):67–78, 2020.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Y Isabel Liu, Windsor Nguyen, Yagiz Devre, Evan Dogariu, Anirudha Majumdar, and Elad Hazan.
Flash stu: Fast spectral transform units. arXiv preprint arXiv:2409.10489, 2024.

Stefano Massaroli, Michael Poli, Dan Fu, Hermann Kumbong, Rom Parnichkun, David Romero,
Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, et al. Laughing hyena distillery:
Extracting compact recurrences from convolutions. Advances in Neural Information Processing
Systems, 36, 2024.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. In The Eleventh International Conference on Learning Representations,
2023.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jiaxin Shi, Ke Alexander Wang, and Emily Fox. Sequence modeling with multiresolution convo-
lutional memory. In International Conference on Machine Learning, pp. 31312–31327. PMLR,
2023a.

Jiaxin Shi, Ke Alexander Wang, and Emily B. Fox. Sequence modeling with multiresolution convo-
lutional memory, 2023b. URL https://arxiv.org/abs/2305.01638.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

12

https://arxiv.org/abs/2305.01638

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A UPDATED EXPERIMENTS SECTION AND DETAILS

In this section, we employ a convolutional sequence prediction model that generates tokens in an
online fashion to verify our results. We experimentally evaluate Epoched-FutureFill (Algorithm
1) which has a runtime of O(K3/2

√
logK) and Continuous-FutureFill (Algorithm 2) which has a

runtime of O(K log2 K) against the naive implementation of convolution which has a runtime of
O(K2) when generating K tokens from scratch. We also provide a comparison with a self-attention
based Transformer model (with a standard implementation of KV cache and with the same hidden
dimension, number of layers and commensurately chosen other parameters, see next subsection for
complete details on these models)

For increasing values of K, we measure the time it takes for the model to generate K tokens from
scratch (i.e. no prompt provided). In Figure 7 we plot the amortized step time the total generation
time , as functions of K. We see the behavior that is expected: the naive decoder runs in total time
O(K2) per step, similar to the decoder for transformer while our method EpochedFutureFill is able
to achieve a significant sub-quadratic improvement.

Figure 7: Total time for generating K tokens, as a function of K.

A.1 EXPERIMENT DETAILS

For our experiments we consider a two layer model with either multi-headed self-attention layers
(referred to as Transformer) or the STU layers (referred to as convolutional network). The hidden
dimension (d) of the network is fixed to be 32 with the number of heads fixed to be 4 and the
key/value size kept at 8. The networks contain standard implementations of residual connections,
layer-norms and a feed-forward (FFN) layer in between every layer. The FFN layer used in the
experiments is the FFNGeGLU layer proposed in Shazeer (2020). For the attention layers we employ
a standard implementation of KV-cache for efficiency (i.e. caching the KV values for previously
generated token for every layer).

For the STU layer we use the tensored-approximation experimented upon in Liu et al. (2024). Note
that during inference for the tensored-approximation of STU, the layer maintains as parameters two
matrices Minput ∈ Rd×d and Mfilters ∈ R(K)×d, where K is the number of generated tokens and d is
the hidden dimensionality. We provide a detailed equation describing the exact operation performed
by the STU layer in generating the kth token below. Let x1 . . . xK be the embeddings of tokens
generated in online manner, i.e. when generating the kth token only the embeddings x1 . . . xk−1 are
available to the model. The generated token sequence follows the following implicit equation

[xk . . . x1] =
[
Mfilters ∗

(
Minputs[xk−1 . . . x1]

)]
1:k

.

The above convolution operation is over d−dimensional sequences which is implemented as d 1-
dimensional convolutions performed along each dimension. Since we have equated the hidden di-
mensionality of the network across all our settings, we can see that, naively computed, the number
of flops per token of both the self-attention model as well as the convolutional model are of the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

same order which is also observed in the experiments. The next section provides details on how to
leverage FutureFill based online convolution algorithms for the STU layer which we implement in
our experiments.

Finally all our experiments are implemented in Jax Bradbury et al. (2018) were performed on a
single Google TPUv2 machine (Jouppi et al. (2020)).

B FAST ONLINE CONVOLUTIONAL PREDICTION

The techniques for online convolution can naturally be applied to online prediction using a convolu-
tional model. We demonstrate this use case via its application to the STU architecture proposed in
Agarwal et al. (2023) based on the spectral filtering algorithm (Hazan et al., 2017).

B.1 CASE STUDY: FAST ONLINE SPECTRAL FILTERING

We illustrate in more detail how the method works for the STU model in Algorithm 4. It improves
the total running time from O(L2) of the original spectral filtering algorithm from Hazan et al.
(2017) to O(L log2 L) while maintaining the same regret bound.

Algorithm 4 Efficient Spectral Filtering via FutureFill

1: Input: K > 0, L > 0.
2: Set variables {M1

1 . . .M1
K ∈ Rdout×din ← 0} and set {ϕ1 . . . ϕK} as the largest eigenvectors

of HL, the Hankel matrix corresponding to length-L sequences.
3: Initialize K OnlineConvolution modules, one for each filter {Ak(ϕk)}Kk=1.
4: for t = 1, 2, ..., L do
5: Receive input token ut.
6: for k = 1, 2, . . .K do
7: Fk ← Ak(ϕk)(ut).
8: end for
9: Compute and predict ŷt =

∑K
k=1 M

t
kFk.

10: Observe yt, suffer loss ℓt(M t
1:k) = ∥yt − ŷt∥2, and update M t+1

1:k ← ∇ℓt(M t
1:k).

11: end for

The main claim regarding the performance of Algorithm 4 follows directly from Theorems 2 and 3
and is as follows.

Corollary 5. Algorithm 4 with sequence length L guarantees the same regret bound as spectral
filtering (Hazan et al., 2017) with context length L. Furthermore its computational complexity
based on the online convolution module used are as follows:

• If using EpochedFutureFill(Algorithm 1): Runtime - O(L3/2
√
logL), Memory -

O(
√
L logL).

• If using ContinuousFutureFill(Algorithm 2): Runtime - O(L log2 L), Memory - O(L).

C MISSING PROOFS

Proof of Proposition 1. Note that by definition, [a ∗ b]s =
∑s

i=1 aibs+1−i. We now consider the
two cases: for s ≤ t1, we have that

[a1:t1 ∗ b1:t1]s =
s∑

i=1

aibs+1−i = [a ∗ b]s.

For the case when t ≥ s > t1, we have that

[at1+1:t ∗ b1:t−t1]s−t1 =

s−t1∑
i=1

at1+ibs−t1+1−i =

s∑
i=t1+1

aibs+1−i,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

where the last equality follows by redefining i = t1 + i. Further we have that

[FutureFill(a1:t1 , b)]s−t1 =

t−s+t1∑
i=1

at1−i+1 · bs−t1+i =

t1∑
i=1

at1−i+1 · bs−t1+i =

t1∑
i=1

ai · bs+1−i,

where the second last equality follows by noting that aj is assumed to be 0 for all j ≤ 0 and the
last equality follows by redefining i = t1 − i+ 1. Overall putting the two together we get that

[at1+1:t∗b1:t−t1]s−t1+[FutureFill(a1:t1 , b)]s−t1 =

t1∑
i=1

ai·bs+1−i+

t1∑
i=1

ai·bs+1−i =

s∑
i=1

ai·bs+1−i = [a∗b]s.

This finishes the proof.

Proof of correctness for Algorithm 1. Consider any time t and the output ŷt. Let t′ ≤ t be the last
time when Line 7 was executed, i.e. FutureFill was computed. By definition t′ = t − τ . Note the
following computations.

ŷt =
τ∑

j=1

ut+1−j · ϕj + Cτ =

τ∑
j=1

ut+1−j · ϕj + [FutureFill(u1:t′ , ϕ1:t′+K)]τ

=

τ∑
j=1

ut+1−j · ϕj +

t′+K−τ∑
j=1

ut′−j+1 · ϕτ+j

=

τ∑
j=1

ut+1−j · ϕj +

t′∑
j=1

ut′−j+1 · ϕτ+j

=

τ∑
j=1

ut+1−j · ϕj +

t−τ∑
j=1

ut−τ−j+1 · ϕτ+j

=

τ∑
j=1

ut+1−j · ϕj +

t∑
j=τ+1

ut−j+1 · ϕj = [u ∗ ϕ]t

Proof of correcteness for Algorithm 2. We will focus on showing that Ct =
∑t

i=2 ut+1−iϕi. Since
the output is Ct + ut · ϕ1, this will suffice for the proof. For brevity of the proof and without loss
of generality we will assume L is a power of 2. For cleaner presentation for the sth coordinate of
vector v we will use the notation vs and v[s] interchanegably in this section.

We first introduce some definitions for convenience in this section. Given an index i ≤ L we define
its decomposition {i1, i2 . . . im} as the unique sequence of numbers ≤ logL such that following
holds

i1 > i2 > i3 . . . and i =
∑
j

2ij .

These indices correspond to the ones in a logL-bit representation of i. Note that k(i) as defined
in the algorithm is equal to im. Further we define the cumulants of i as the following sequence of
numbers {i′1, i′2 . . .} satisfying

i′τ =

τ∑
j=1

2ij .

Thus we have that i′1 < i′2 < . . . i′m = i. We now prove the following lemma which specifies when
the FutureFill cache gets updated in an execution of the algorithm.

Lemma 6. Given an index i ≤ L, consider its decomposition {i1, i2 . . . im} and cumulants
{i′1, i′2 . . . i′m} as defined above. It holds that the value of Ci+1 is updated (as in Line 8 in the
algorithm) only when t is one of {i′1, i′2 . . . i′m}.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A direct consequence of the above lemma is that given any index i we have that the value of Ci+1

is not updated after time step i. Further using the decomposition {i1, i2 . . . im} and cumulants
{i′1, i′2 . . . i′m} of i and the update equations for C (Line 8), we have that final value of Ci+1 is given
by the following,

Ci+1 =

m∑
j=1

FutureFill(u[i′j − 2ij + 1 : i′j], ϕ[1 : 2ij+1])[i+ 1− i′j]

=

m∑
j=1

2ij∑
k=1

u[i′j − k + 1] · ϕ[i+ 1− i′j + k]

=

m∑
j=1

i′j∑
r=i′j−2ij+1

u[r] · ϕ[i+ 1− r + 1]

=

i∑
r=1

u[r] · ϕ[i+ 1− r + 1]

Thus the output of the algorithm for any i, satisfies

ŷi+1 = Ci+1+ui+1 ·ϕ1 =

i∑
r=1

u[r]·ϕ[i+1−r+1]+ui+1 ·ϕ1 =

i+1∑
r=1

u[r]·ϕ[i+1−r+1] = [u∗ϕ]i+1.

This proves the requisite. We finally provide a proof of Lemma 6 to finish the proof.

Proof of Lemma 6. By the definition of the algorithm, to be able to update Ci+1 at some time t <
i+ 1 it must be the case that

i+ 1 ∈ [t+ 1, t+ 2k(t)].

Consider some t and its decomposition {t1, t2 . . . tn} and cumulants {t′1, t′2 . . . t′n}. By the definition
of the update in Line 8, we have that at time t we only update indices i + 1 for which i has the
sequence {t′1, t′2 . . . t′n−1} in its decomposition as a prefix. It can then be seen that for a given
number i, the only such numbers are its cumulants, i.e. {i′1 . . . i′m} which finishes the proof.

16

	Introduction
	Related Work

	Setting
	Online Convolutions
	Sequence Prediction:
	Online sequence prediction
	Auto-regressive Sequence Generation from a Prompt
	Abstracting Convolutional Sequence Prediction

	Efficient Online Convolutions using FutureFill
	Epoched-FutureFill: Efficient Online Convolutional Prediction
	Continuous-FutureFill: Quasilinear Online Convolutional Prediction

	Fast Auto-regressive Sequence Generation from a Prompt
	Experiments
	Updated Experiments Section and Details
	Experiment Details

	Fast Online Convolutional Prediction
	Case Study: Fast Online Spectral Filtering

	Missing Proofs

