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ABSTRACT

We address the challenge of efficient auto-regressive generation in sequence pre-
diction models by introducing FutureFill—a method for fast generation that ap-
plies to any sequence prediction algorithm based on convolutional operators. Our
approach reduces the generation time requirement from quadratic to quasilinear
relative to the context length. Additionally, FutureFill requires a prefill cache
sized only by the number of tokens generated, which is smaller than the cache
requirements for standard convolutional and attention-based models. We validate
our theoretical findings with experimental evidence demonstrating correctness and
efficiency gains in a synthetic generation task.

1 INTRODUCTION

Large Transformer models Vaswani et al. (2017) have become the method of choice for sequence
prediction tasks such as language modeling and machine translation. Despite their success, they face
a key computational limitation: the attention mechanism, their core innovation, incurs a quadratic
computational cost during training and inference. This inefficiency has spurred interest in alternative
architectures that can handle long sequences more efficiently.

Convolution-based sequence prediction models Li et al. (2022); Poli et al. (2023); Agarwal et al.
(2023); Fu et al. (2024) have emerged as strong contenders, primarily due to their ability to leverage
the Fast Fourier Transform (FFT) for near-linear scaling with sequence length during training. These
models build upon the advancements in State Space Models (SSMs), which have shown promise
in modeling long sequences across diverse modalities Gu et al. (2021a); Dao et al. (2022); Gupta
et al. (2022); Orvieto et al. (2023); Poli et al. (2023); Gu & Dao (2023). Convolutional models
offer a more general framework than SSMs because they can represent any linear dynamical system
(LDS) without being constrained by the dimensionality of hidden states Agarwal et al. (2023). This
flexibility has led to recent developments that theoretically and empirically handle longer contexts
more effectively. Notable among these are Spectral State Space Models or Spectral Transform Units
(STUs) Agarwal et al. (2023), which use spectral filtering algorithms Hazan et al. (2017; 2018) to
transform inputs into better-conditioned bases for long-term memory. Another approach is Hyena
Poli et al. (2023), which learns implicitly parameterized Markov operators. Both methods exploit
the duality between time-domain convolution and frequency-domain multiplication to accelerate
prediction via the FFT.

While SSMs and recurrent models benefit from fast inference times independent of sequence length,
making them attractive for large-scale language modeling, convolutional models have been hindered
by slower token generation during inference. The best-known result for generating tokens with
convolutional models is quadratic in sequence length—comparable to attention-based models (see
Massaroli et al. (2024) Lemma 2.1). This limitation has prompted research into distilling state-space
models from convolutional models Massaroli et al. (2024), but such approximations lack compre-
hensive understanding regarding their approximation gaps due to the broader representational ca-
pacity of convolutional models.

In this paper, we address the problem of exact auto-regressive generation from given convolutional
models, significantly improving both the generation time and cache size requirements. We present
our main results in two settings:
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1. Generation from Scratch: When generating L tokens from scratch, we demonstrate that
long convolutional sequence predictors can generate these tokens in total time O(L log2 L)
with total memory O(L). This improves upon previous methods that require O(L2) time
for generation. We further provide a memory-efficient version wherein the total runtime
increases to O(L3/2

√
log(L)) but the memory requirement is bounded by O(

√
L logL).

2. Generation with Prompt: When generating K tokens starting from a prompt of length
L, we show that the total generation time is O(L logL + K log2 K) with a cache size
requirement of O(K). Previously, the best-known requirements for convolutional models
were a total generation time bounded by O(L logL+LK+K2) and a cache size bounded
by O(L) (Massaroli et al., 2024).

Importantly, our results pertain to provably exact generation from convolutional models without re-
lying on any approximations. Moreover, our methods are applicable to any convolutional model,
regardless of how it was trained. The following table compares our algorithm with a standard exact
implementation of convolution. We also provide a comparison of the time and cache size require-
ments for exact computation in attention-based models.

Method Runtime Memory

Standard Conv L2 L
Standard Attn. L2 L

EpochedFF (ours) L3/2
√
logL

√
L logL

ContinuousFF (ours) L log2 L L

(a) Comparison for generating L tokens from scratch.
Runtime is in asymptotic notation, i.e. O(·) is omitted for
brevity.

Prefill+Genertation Generation
Runtime Cache Size

LK + L logL+K2 L
L2 +KL L

L logL+K3/2
√
logK K

L logL+K log2 K K

(b) Comparison for generating K tokens starting
from a prompt of length L, runtime and cache-
size are in asymptotic notation, i.e. O(·) is omit-
ted for brevity.

Our results for generation from convolutional models are based on building efficient algorithms for
an online version of the problem of computing convolutions. In this problem, the algorithm is tasked
to compute the convolution of two sequences u ∗ϕ, however the challenge is to release iteratively at
time t the value of [u ∗ϕ]t, where the sequence ϕ is fully available to the algorithm but the sequence
u streams in one-coordinate at a time.

While the FFT algorithm allows for an O(L logL)-time offline algorithm for the convolution of two
L-length sequences, whether a similar result exists for the online model was not known. Naively,
since [u∗ϕ]t = ⟨u1:t, ϕt:1⟩, the total output can be computed in time O(L2). In this paper we demon-
strate using repeated calls to appropriately constructed FFT-subroutines to compute the future effect
of past tokens (a routine we call FutureFill), one can compute the convolution in the online model
with a total computational complexity of O(L log2(L)), nearly matching its offline counterpart and
significantly improving over the naive algorithm which was the best known (Massaroli et al., 2024).

It is worth noting that the naive algorithm for computing online convolution, albeit slow, does not
require any additional memory other than the memory used for storing the sequences v, w. Such
memory is often a bottleneck in practical sequence generation settings and is referred to as the size
of the generation cache. For context the size of the generation cache for attention models is O(L),
i.e. proportional to the length of the prefill-context and the generation length. We further show that
when generating from convolutional models, one can construct a trade-off for the computational
complexity (i.e. flops) and memory (i.e. generation cache size) using the FutureFill sub-routine. We
highlight two points on this trade-off spectrum via two algorithmic setups both employing FutureFill.
We detail this trade-off in Table 1.

1.1 RELATED WORK

State space models and convolutional sequence prediction. Recurrent neural networks have
been revisited in the recent deep learning literature for sequential prediction in the form of state
space models (SSM), many of whom can be parameterized as convolutional models. Gu et al. (2020)
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Algorithm Computational Memory (Generation
Complexity (Flops) Cache-Size)

Naive O(L2) O(1)
Epoched-FutureFill (ours) O(L3/2 logL) O(

√
L)

Continuous-FutureFill (ours) O(L log2 L) O(L)

Table 1: Comparison of results for Online convolution.

propose the HiPPO framework for continuous-time memorization, and shows that with a special
class of system matrices A (HiPPO matrices), SSMs have the capacity for long-range memory. Later
work Gu et al. (2021b;a); Gupta et al. (2022); Smith et al. (2023) focus on removing nonlinearities
and devising computationally efficient methods that are also numerically stable. To improve the
performance of SSMs on language modeling tasks Dao et al. (2022) propose architectural changes
as well as faster FFT algorithms with better hardware utilization, to close the speed gap between
SSMs and Transformers. Further investigation in Orvieto et al. (2023) shows that training SSM is
brittle in terms of various hyperparameters. Various convolutional models have been proposed for
sequence modelling, see e.g. Fu et al. (2023); Li et al. (2022); Shi et al. (2023a). These papers
parameterize the convolution kernels with specific structures. The Hyena architecture was proposed
in Poli et al. (2023) and distilling it into a SSM was studied in Massaroli et al. (2024). Other
studies in convolutional models include LongConv Fu et al. (2023) and SGConv Li et al. (2022)
architectures, as well as multi-resolution convolutional models Shi et al. (2023b).

Spectral filtering. A promising technique for learning in linear dynamical systems with long
memory is called spectral filtering put forth in Hazan et al. (2017). This work studies online pre-
diction of the sequence of observations yt, and the goal is to predict as well as the best symmetric
LDS using past inputs and observations. Directly learning the dynamics is a non-convex optimiza-
tion problem, and spectral filtering is developed as an improper learning technique with an efficient,
polynomial-time algorithm and near-optimal regret guarantees. Different from regression-based
methods that aim to identify the system dynamics, spectral filtering’s guarantee does not depend on
the stability of the underlying system, and is the first method to obtain condition number-free regret
guarantees for the MIMO setting. Extension to asymmetric dynamical systems was further studied
in Hazan et al. (2018). Spectral filtering is particularly relevant to this study since it is a convo-
lutional model with fixed filters. Thus, our results immidiately apply to this technique and imply
provable regret bounds with guaranteed running time bounds in the online learning model which
improve upon state of the art.

Online learning and regret minimization in sequence prediction. The methodology of online
convex optimization, see e.g. Hazan et al. (2016), applies to sequences prediction naturally. In
this setting, a learner iteratively predicts, and suffers a loss according to an adversarially chosen
loss function. Since nature is assumed to be adversarial, statistical guarantees are not applicable,
and performance is measured in terms of regret, or the difference between the total loss and that
of the best algorithm in hindsight from a class of predictors. This is a particulary useful setting
for sequential prediction since no assumption about the sequence is made, and it leads to robust
methods. Sequential prediction methods that apply to dynamical systems are more complex as they
incorporate the notion of a state. Recently the theory of online convex optimization has been applied
to learning in dynamical systems, and in this context, the spectral filtering methodology was devised.
See Hazan & Singh (2022) for an introduction to this area.

2 SETTING

2.1 ONLINE CONVOLUTIONS

Notation: For an input sequence {ut} we denote by u1:t the sequence of inputs u1, ..., ut. For any
i ≤ j let ui:j denote the sub-sequence ui, ui+1, . . . uj . When i > j, ui:j denotes the subsequence
uj:i in reverse order. Thus ut:1 represents the sequence in reverse order. We also denote [k] =
{1, 2, ..., k} as a set of k natural numbers. Given a multi-dimensional sequence u1 . . . ut where
each ui ∈ Rd and given a vector v ∈ Rt, for brevity of notation we overload the definition of
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inner products by defining y = ⟨v, u1:t⟩ with y ∈ Rd as yj =
∑t

i=1 vi · [ui]j ∈ R. That is the
inner-product along the time dimension is applied on each input dimension separately.

Convolution: The convolution operator between two vectors u, ϕ ∈ Rt outputs a sequence of
length t whose element at any position s ∈ [t] 1 is defined as

[u ∗ ϕ](s) =
s∑

i=1

uiϕs+1−i = ⟨u1:s, ϕs:1⟩. (1)

A classical result in the theory of algorithms is that given two vectors u, ϕ ∈ Rt, their convolution
can be computed in time O(t log t), using the FFT algorithm.

Online Convolution: We consider the problem of performing the convolution u ∗ ϕ when one of
the sequences ϕ is fully available to the model, however the other sequence u streams in, i.e. the
element ut is made available to the model at the start of round t, at which point it is expected to
release the output [u ∗ ϕ]t. This model of online convolution is immediately relevant to the online
auto-regressive generation of tokens from a convolutional sequence model as the output token at time
t becomes the input for the next round and hence is only available post generation. In this setting,
the sequence u corresponds to generated tokens and the sequence ϕ corresponds to the convolutional
filter which the model has full access to. We further detail the setup of sequence generation in the
next subsection.

2.2 SEQUENCE PREDICTION:

In sequence prediction, the input is a sequence of tokens denoted u1, ..., ut, ..., where ut ∈ Rdin .
The predictor’s task is to generate a sequence ŷ1, ..., ŷt, ..., where ŷt ∈ Rdout is generated after
observing u1, ..., ut−1. The output yt is observed after the predictor generates ŷt. The quality of the
prediction is measured by the distance between the predicted and observed outputs according to a
loss function ℓt(ŷt, yt), for example the mean square error ∥ŷt − yt∥2.

2.3 ONLINE SEQUENCE PREDICTION

In the online sequence prediction setting, an online learner iteratively sees an input ut and has to
predict output ŷt, after which the true output yt is revealed. The goal is to minimize error according
to a given Lipschitz loss function ℓt(yt, ŷt). In online learning it is uncommon to assume that the
true sequence was generated by the same family of models as those learned by the learner. For this
reason the metric of performance is taken to be regret. Given a class of possible predictors, the goal
is to minimize regret w.r.t. these predictors. For example, a linear predictor predicts according to
the rule

πM1:k,N1:l
(u1:t, y1:t−1) =

k∑
i=1

Miut−i +

l∑
j=1

Njyt−j .

The performance of a prediction algorithm A is measured by regret, or difference in total loss, vs. a
class of predictors

∏
, such as that of linear predictors, e.g.

RegretT (A) =
T∑

t=1

ℓt(yt, ŷ
A
t )− min

π∈
∏

T∑
t=1

ℓt(yt, ŷ
π
t ).

This formulation is valid for online sequence prediction of any signal. We are particularly interested
in signals that are generated by dynamical systems. A time-invariant linear dynamical system is
given by the dynamics equations

xt+1 = Axt +But + wt, yt = Cxt +Dut + ζt,

where xt is the (hidden) state, ut is the input or control to the system, and yt is the observation. The
terms wt, ζt are noise terms, and the matrices A,B,C,D are called the system matrices. A linear

1This definition corresponds to the valid mode of convolution in typical implementations of convolution
e.g. scipy.
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dynamical predictor with parameters A,B,C,D predicts according to

πABCD(u1:t, y1:t−1) =

t−1∑
i=1

CAi−1But−i +Dut.

The best such predictor for a given sequence is also called the optimal open loop predictor, and it is
accurate if the signal is generated by a LDS without noise.

2.4 AUTO-REGRESSIVE SEQUENCE GENERATION FROM A PROMPT

Another mode of sequence prediction with large language models being its core use-case is that
of auto-regressive sequence generation starting from a prompt. Herein the sequence model has to
generate a specified number of tokens given a certain context. This is depicted in Figure 1. The
setting of auto-regressive generation from a prompt consists of two stages, the prefill stage and the
decode stage. During the prefill stage, the model ingests the context vector and generates a cache
that stores information required in the decode stage.

In the decode stage, the model takes the cache and the most recently generated token as input and
generates the next output token. Then the cache is updated with the most recent input token. We
denote the generation length at the decode stage with K. In contrast to pre-training, where the model
takes in a training sequence and predicts the next token, in the prefill generation setting the model
only has access to the cache and the most recent token when making a prediction.

Figure 1: Auto-regressive sequence generation from a prompt.

2.5 ABSTRACTING CONVOLUTIONAL SEQUENCE PREDICTION

We define a convolutional sequence prediction model to be given by a filter, which is a vector
denoted by ϕ ∈ RL where L is considered the context length of the model. It takes as an input a
sequence u, and outputs a prediction sequence. The above definition can be extended to multiple
filter channels and nonlinearities, as we elaborate below with different examples. Formally, a single
output in the predicted sequence using a convolutional sequence model is given by

ŷt = ⟨ϕ, ut:t−L⟩. (2)
This paradigm captures several prominent convolutional sequence models considered in the litera-
ture. We highlight some of them below. The online convolution technique proposed by us can be
used with all the models below in straightforward manner leading to generation time improvement
from O(L2) to O(L log2 L).

State Space Models Discrete state space models such as those considered in Gu et al. (2021a)
have shown considerable success/adoption for long range sequence modelling. A typical state space
model can be defined via the following definition of a Linear Dynamical System (LDS)

xt = Axt−1 +But, yt = Cxt +Dut (3)
where u, y are the input and output sequences and A,B,C,D are the learned parameters. Various
papers deal with specifications of this model including prescriptions for initialization (Gu et al.,
2020), diagonal versions (Gupta et al., 2022), gating (Mehta et al., 2023) and other effective sim-
plifications (Smith et al., 2023). All these models can be captured via a convolutional model by
noticing that the output sequence y in (3) can be written as

y = ϕ ∗ u+Du

where the filter ϕ takes the form ϕi = CAi−1B. Thus a convolutional sequential model with learn-
able filters ϕ generalizes these state space models. However, SSM are more efficient for generation
and require only constant time for generating a token, where the constant depends on the size of the
SSM representation.
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LongConv/SGConv. The LongConv (Fu et al., 2023) and SGConv (Li et al., 2022) architectures,
exploit the above connection and propose direct regularizations of the kernel to bias them towards
kernels representing a state space model.

Spectral Transform Units. The STU architecture was proposed in Agarwal et al. (2023) based
on the technique of spectral filtering for linear dynamical systems (Hazan et al., 2017; 2018). These
are basically convolutional sequence models based on carefully constructed filters that are not data
dependent. Rather, let ϕ1, ..., ϕk be the first k eigenvectors of the Hankel matrix HL given by

HL =

∫ 1

0

µαµ
⊤
αdα ∈ RL×L, µα = (α− 1)[1, α, α2, .., αL−1].

Then the STU outputs a prediction according to the following rule 2 ŷt =
∑k

i=1 Mi⟨ϕi, ut:t−L⟩,
where ϕi are the eigenvectors as above and M1:k are learned projection matrices. The STU ar-
chitecture is particularly appealing for learning in dynamical systems with long context, as it has
theoretical guarantees for this setting, as spelled out in Agarwal et al. (2023).

Hyena. The Hyena architecture proposed in Poli et al. (2023), sequentially applies convolutions
and element-wise products alternately. Formally, given an input u1:T , N + 1 linear projections
v, x1, . . . xN of the input are constructed (similar to the q, k, v sequence in self-attention). The
hyena operator as a sequence of convolution with learnable filters h1 . . . hN is then given by

y = xN ·
(
hN ∗

(
xN−1 ·

(
hN−1 ∗ (. . .)

)))
.

3 EFFICIENT ONLINE CONVOLUTIONS USING FUTUREFILL

We begin by introducing a simple convenient primitive which we call FutureFill, which forms the
crucial building block of our algorithms. Intuitively FutureFill corresponds to computing the contri-
bution of the current and prevoiusly generated tokens on the future tokens yet to be generated. For
a convolutional model (and unlike attention) this contribution can be efficiently determined without
even having generated the future tokens. Here onwards, for brevity of notation for any v ∈ Rt, we
assume vj = 0 for any j ≤ 0 or any j > t. Formally, given two sequences v ∈ Rt1 , w ∈ Rt2 we
define FutureFill(v, w) ∈ Rt2−1 as 3

∀s ∈ [t2 − 1] [FutureFill(v, w)]s =

t2−s∑
i=1

vt1−i+1 · ws+i.

Figure 2: FutureFill operation between an input sequence and a convolutional filter.

Figure 2 depicts the FutureFill operation between an input sequence and a convolutional filter. Con-
ceptually, [FutureFill(v, w)]s is the contribution of the input v of length t1 to the output [v ∗ w] at
position t1 + s. The FFT algorithm for convolutions can easily be extended to compute the Future-
Fill as well in time at most O((t1 + t2) log(t1 + t2)). For example the full mode of a standard conv

2more precisely, there are additional linear and constant terms depending on the exact filters used, such as
ŷt = ŷt−2 +

∑3
i=1 M

u
i ut+1−i +

∑k
i=1 Mi⟨ϕi, ut:t−L⟩, see Agarwal et al. (2023) for more details.

3recall that we denote [x] = {1 . . . x}.
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implementation (e.g. scipy) can be used to compute FutureFill in the following way under Python
slicing convention (exclusive of the last index)

FutureFill(v, w) = scipy.linalg.conv(v, w, mode=full)[t_1:t_1+t_2-1]

To leverage FutureF ill into an efficient way to generate tokens from a convolutional model, con-
sider the following simple proposition that follows from the definition of convolution.
Proposition 1. Given two vectors a, b ∈ Rt, we have that

∀t1, s ∈ [t] [a ∗ b]s =
{
[a1:t1 ∗ b1:t1 ]s if s ≤ t1
[at1+1:t ∗ b1:t−t1 ]s−t1 + [FutureFill(a1:t1 , b)]s−t1 otherwise

We provide a proof of the proposition in the appendix. We use the above proposition to design
efficient algorithms for online convolution.

3.1 EPOCHED-FUTUREFILL: EFFICIENT ONLINE CONVOLUTIONAL PREDICTION

When computing online convolutions, the FutureFill routine allows for the efficient pre-computation
for the effect of past tokens on future tokens. We leverage this property towards online convolution
via the Epoched-FutureFill procedure outlined in Algorithm 1.

Algorithm 1 Epoched-FutureFill: Efficient Online Convolutional Prediction

1: Input: Convolutional filter ϕ ∈ RL. Input sequence u ∈ RL, streaming one coordinate every
round. K, the epoch length.

2: Set τ = 1. Set FutureFill cache C ∈ RK to 0.
3: for t = 1, 2, ..., L do
4: Receive ut.
5: Compute and output ŷt =

∑τ
j=1 ut+1−j · ϕj + Cτ

6: if τ = K then
7: Compute FutureFill cache C ∈ RK defined as Cj = [FutureFill(u1:t, ϕ1:t+K)]j .
8: τ ← 1
9: else

10: τ ← τ + 1
11: end if
12: end for

Figure 3: Illustration for Algorithm 1

In the following lemma we state and prove the properties that Epoched-FutureFill enjoys. The
theorem provides a trade-off between the additional memory overhead and total runtime incurred
by the algorithm. In particular, the runtime in this tradeoff is optimized when the total memory is
O(
√
L logL) leading to a total runtime of O(L3/2

√
logL).

Theorem 2. Algorithm 1 computes the online convolution of sequences with length L and runs in
total time O

(
L2 logL

K +KL
)

with a total additional memory requirement of O(K). In particular

setting K =
√
L logL, we get that Algorithm 1 computes online convolution in O(L3/2

√
logL)

total time and O(
√
L logL) memory.

7
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Proof. Since the proof of correctness is mainly careful accounting the contributions for various
indices, we provide it in the appendix. We prove the running time bounds below. The running time
consists of two components as follows:

1. Every iteration, line 5 is executed. One term, Cτ , has already been computed and saved in
line 7. We can retrieve it in time O(1). The other term is a sum of τ products, which can
be computed in time τ .

2. Every K iterations, we execute line 7 and update the terms in the cache. The FutureFill
operation can be computed via the FFT taking at most O(L logL) time.

The overall running time is computed by summing over the L iterations. In each block of K itera-
tions, we apply FFT exactly once, and hence the total computational complexity is

L

K

(
L logL+

K∑
τ=1

τ

)
= O

(
L2 logL

K
+KL

)
= O

(
L3/2

√
logL

)
,

where the last equality holds when the cache size K is chosen to minimize the sum, i.e. K =√
L logL.

3.2 CONTINUOUS-FUTUREFILL: QUASILINEAR ONLINE CONVOLUTIONAL PREDICTION

In this section we provide a procedure that significantly improves upon the runtime of Epoched-
FutureFill. Our starting point is Proposition 1, which implies that, to compute the convolution
between two sequences we can break the sequences at any point, compute the convolution between
the corresponding parts and stitch them together via a FutureFill computation. This motivates the
following Divide and Conquer algorithm to compute the convolution of two sequences a, b ∈ RL

• Recursively compute a1:L/2 ∗ b1:L/2, aL/2+1:t ∗ b1:L/2.

• Output the concatenation of a1:L/2 ∗b1:L/2 and (aL/2+1:t ∗b1:L/2)+FutureFill(a1:L/2, b).

Since FutureFill for L length sequences can be computed in time O(L logL) via the FFT, it can be
seen via the standard complexity calculation for a divide and conquer algorithm that the computa-
tional complexity of the above algorithm in total is O(L log2 L). As an offline algorithm, this is
naturally worse than the computational complexity of FFT itself, however as we show in the fol-
lowing, the advantage of the above algorithm is that it can be executed in an online fashion, i.e. the
tokens can be generated as the input streams in, with the same computational complexity.

We provide a formal description of the algorithm in Algorithm 2. We note that the formal description
of the above algorithm essentially serializes the sequence of operations involved in the above divide
and conquer procedure by their chronological order. For high-level intuition we encourage the reader
to maintain the divide and conquer structure when understanding the algorithm. The algorithm
proceeds as follows: at each time step, ŷt = ⟨u1:t, ϕt:1⟩ is returned as a sum of Ct, the cache that
stores the contribution from past tokens, and ut · ϕ1, the contribution from token ut. In Line 7,
the algorithm then computes the contribution of tokens ut−2k(t)+1:t to positions t+ 1, . . . , t+ 2k(t)

of [u ∗ ϕ]. Finally, we add the output of FutureFill to the existing cache C to accumulate the
contributions. In Figure 4, we provide an execution flow for the algorithm for convolving two
sequences of length 8 highlighting each FutureFill operation that is computed.

In the following theorem we prove a running time bound for Algorithm 2. We provide the proof of
correctness in the appendix, as it boils down to accounting of contribution from various parts.

Theorem 3. Algorithm 2 computes the online convolution of sequences with length L and runs in
total time O(L log2(L)) with a total additional memory requirement of O(L).

Proof. As can be seen from the algorithm for every generated token the most expensive operation is
the FutureFill computed in Line 6 so we bound the total runtime of that operation. Note that at any
time t, the cost of FutureFill operation is O((1∨ k(t)) · 2k(t)), where a∨ b denotes the max of a and

8
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Figure 4: Quasilinear Online Convolution using FutureFill: Figure shows the execution flow for
Algorithm 2 for convolving 8-length sequences. The input sequence u streams in an online fashion
and the filter ϕ is fully available to the algorithm. The colors are representative of the size of the
FutureFill operations performed and the time t (also appropriately color-coded) highlights when the
FutureFill operations were performed.

b. Summing this over every time step t we get,
L∑

t=1

(1∨k(t))2k(t) =
⌊logL⌋∑
k=0

|{t : k(t) = k}|(1∨k)2k ≤ L+

⌊logL⌋∑
k=1

2⌊logL⌋−k+1·k2k ≤ 3L

⌊logL⌋∑
k=1

k ≤ 3L log2 L.

Thus the total runtime of the algorithm is bounded by O(L log2 L).

Algorithm 2 Continuous-FutureFill: Quasilinear Generation From Convolutional Models

1: Input: Convolutional filter ϕ ∈ RL. Input sequence u ∈ RL, streaming one coordinate every
round.

2: Set b = ⌊logL⌋. Set FutureFill cache C ∈ RL to 0.
3: for t = 1 . . . L do
4: Receive ut. Output ŷt = Ct + ut · ϕ1.
5: Let k(t) be the highest power of 2 that divides t, i.e. k = max{i ∈ [b] : t mod 2i = 0}.
6: Compute FF = FutureFill(ut−2k(t)+1:t, ϕ1:2k(t)+1)

7: Set Ci = Ci + FFi−t ∀ i ∈ [t+ 1, t+ 2k(t)]
8: end for
9:

4 FAST AUTO-REGRESSIVE SEQUENCE GENERATION FROM A PROMPT

In this section we consider the problem setting of auto-regressively generating K tokens starting
from a given prompt of length L. For convolutional models specifically we define an abstract version
of the problem as follows, given a prompt vector p ∈ RL and a convolutional filter ϕ ∈ RL+K 4, the
aim is to iteratively generate the following sequence of tokens

ŷt = ⟨ŷ1:t−1, ϕt−1:1⟩+ ⟨p1:L, ϕt+L−1:t⟩ =
t−1∑
j=1

ŷt−j · ϕj +

t+L−1∑
j=t

pt+L−jϕj .

4the assumption of the filter being larger than L+K is without loss of generality as it can be padded with
0s

9
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As can be seen from the above definition the expected output is an online convolution where the in-
put sequence u has a prefix of the prompt p and the input sequence is appended by the most recently
generated output by the model (i.e. auto-regressive generation). We note that we only consider the
convolution part of a convolutional model (eg. STU) above for brevity and other parts like further
projection of the tokens etc can be appropriately added. As mentioned the above model naturally
fits into online convolution and the following algorithm delineates the method to use ContinuousFu-
tureFill (Algorithm 2) for the above problem.

Algorithm 3 Fast auto-regressive sequence generation from a prompt using FutureFill

1: Input: K > 0, L > 0, prompt p1:L, convolutional filter ϕ ∈ RL+K .
2: Set up a FutureFill cache C ∈ RK as C ← FutureFill(p, ϕ).
3: Set up the online convolution algorithm (Algorithm 6) with filter ϕ and sequence length K, i.e.
A ← ContinuousFutureFill(ϕ).

4: Running candidate token y ← 0.
5: for t = 1, ...,K do
6: Output ŷt ← Ct + y.
7: Generate next token candidate y ← A(ŷt).
8: end for

The correctness of the algorithm is immediate via the properties of FutureFill and ContinousFuture-
Fill. The following corollary bounding running time also follows easily from Theorem 3.
Corollary 4. Algorithm 3 when supplied with a prompt of sequence length L, generates K tokens
in total time O(L logL+K log2 (L+K)) using a total cache of size O(K).

5 EXPERIMENTS

In this section, we use a convolutional model that generates tokens in an online fashion to verify
our results. We experimentally evaluate Epoched-FutureFill (Algorithm 1) which has a runtime
of O(L3/2

√
logL) and Continuous-FutureFill (Algorithm 2) which has a runtime of O(L log2 L)

against the naive implementation which has a runtime of O(L2) when generating L tokens from
scratch. For increasing values of L, we measure the time S(L) it takes for a single layer to generate
L tokens. In Figures 5 and 6 we plot the amortized step time S(L)/L and total generation time
S(L), respectively, as functions of L. We see the behavior that is expected: the naive decoder
runs in amortized O(L) per step, while our methods achieve sublinear and logarithmic decoding
complexities respectively.

Figure 5: Average number of seconds per
step when generating L tokens, as a function
of L.

Figure 6: Total number of seconds to gener-
ate L tokens, as a function of L.

Due to differences in hardware acceleration, inference pipeline implementation, and other engineer-
ing details, it would be difficult to present timing results with a properly-optimized setup. On large
decoding platforms involving prefill caching, these variations only become more complicated. We
opted to time things for one layer on CPU in a simple online decoding loop with a large number of
tokens to make the asymptotic gains clear.
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A UPDATED EXPERIMENTS SECTION AND DETAILS

In this section, we employ a convolutional sequence prediction model that generates tokens in an
online fashion to verify our results. We experimentally evaluate Epoched-FutureFill (Algorithm
1) which has a runtime of O(K3/2

√
logK) and Continuous-FutureFill (Algorithm 2) which has a

runtime of O(K log2 K) against the naive implementation of convolution which has a runtime of
O(K2) when generating K tokens from scratch. We also provide a comparison with a self-attention
based Transformer model (with a standard implementation of KV cache and with the same hidden
dimension, number of layers and commensurately chosen other parameters, see next subsection for
complete details on these models)

For increasing values of K, we measure the time it takes for the model to generate K tokens from
scratch (i.e. no prompt provided). In Figure 7 we plot the amortized step time the total generation
time , as functions of K. We see the behavior that is expected: the naive decoder runs in total time
O(K2) per step, similar to the decoder for transformer while our method EpochedFutureFill is able
to achieve a significant sub-quadratic improvement.

Figure 7: Total time for generating K tokens, as a function of K.

A.1 EXPERIMENT DETAILS

For our experiments we consider a two layer model with either multi-headed self-attention layers
(referred to as Transformer) or the STU layers (referred to as convolutional network). The hidden
dimension (d) of the network is fixed to be 32 with the number of heads fixed to be 4 and the
key/value size kept at 8. The networks contain standard implementations of residual connections,
layer-norms and a feed-forward (FFN) layer in between every layer. The FFN layer used in the
experiments is the FFNGeGLU layer proposed in Shazeer (2020). For the attention layers we employ
a standard implementation of KV-cache for efficiency (i.e. caching the KV values for previously
generated token for every layer).

For the STU layer we use the tensored-approximation experimented upon in Liu et al. (2024). Note
that during inference for the tensored-approximation of STU, the layer maintains as parameters two
matrices Minput ∈ Rd×d and Mfilters ∈ R(K)×d, where K is the number of generated tokens and d is
the hidden dimensionality. We provide a detailed equation describing the exact operation performed
by the STU layer in generating the kth token below. Let x1 . . . xK be the embeddings of tokens
generated in online manner, i.e. when generating the kth token only the embeddings x1 . . . xk−1 are
available to the model. The generated token sequence follows the following implicit equation

[xk . . . x1] =
[
Mfilters ∗

(
Minputs[xk−1 . . . x1]

) ]
1:k

.

The above convolution operation is over d−dimensional sequences which is implemented as d 1-
dimensional convolutions performed along each dimension. Since we have equated the hidden di-
mensionality of the network across all our settings, we can see that, naively computed, the number
of flops per token of both the self-attention model as well as the convolutional model are of the
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same order which is also observed in the experiments. The next section provides details on how to
leverage FutureFill based online convolution algorithms for the STU layer which we implement in
our experiments.

Finally all our experiments are implemented in Jax Bradbury et al. (2018) were performed on a
single Google TPUv2 machine (Jouppi et al. (2020)).

B FAST ONLINE CONVOLUTIONAL PREDICTION

The techniques for online convolution can naturally be applied to online prediction using a convolu-
tional model. We demonstrate this use case via its application to the STU architecture proposed in
Agarwal et al. (2023) based on the spectral filtering algorithm (Hazan et al., 2017).

B.1 CASE STUDY: FAST ONLINE SPECTRAL FILTERING

We illustrate in more detail how the method works for the STU model in Algorithm 4. It improves
the total running time from O(L2) of the original spectral filtering algorithm from Hazan et al.
(2017) to O(L log2 L) while maintaining the same regret bound.

Algorithm 4 Efficient Spectral Filtering via FutureFill

1: Input: K > 0, L > 0.
2: Set variables {M1

1 . . .M1
K ∈ Rdout×din ← 0} and set {ϕ1 . . . ϕK} as the largest eigenvectors

of HL, the Hankel matrix corresponding to length-L sequences.
3: Initialize K OnlineConvolution modules, one for each filter {Ak(ϕk)}Kk=1.
4: for t = 1, 2, ..., L do
5: Receive input token ut.
6: for k = 1, 2, . . .K do
7: Fk ← Ak(ϕk)(ut).
8: end for
9: Compute and predict ŷt =

∑K
k=1 M

t
kFk.

10: Observe yt, suffer loss ℓt(M t
1:k) = ∥yt − ŷt∥2, and update M t+1

1:k ← ∇ℓt(M t
1:k).

11: end for

The main claim regarding the performance of Algorithm 4 follows directly from Theorems 2 and 3
and is as follows.

Corollary 5. Algorithm 4 with sequence length L guarantees the same regret bound as spectral
filtering (Hazan et al., 2017) with context length L. Furthermore its computational complexity
based on the online convolution module used are as follows:

• If using EpochedFutureFill(Algorithm 1): Runtime - O(L3/2
√
logL), Memory -

O(
√
L logL).

• If using ContinuousFutureFill(Algorithm 2): Runtime - O(L log2 L), Memory - O(L).

C MISSING PROOFS

Proof of Proposition 1. Note that by definition, [a ∗ b]s =
∑s

i=1 aibs+1−i. We now consider the
two cases: for s ≤ t1, we have that

[a1:t1 ∗ b1:t1 ]s =
s∑

i=1

aibs+1−i = [a ∗ b]s.

For the case when t ≥ s > t1, we have that

[at1+1:t ∗ b1:t−t1 ]s−t1 =

s−t1∑
i=1

at1+ibs−t1+1−i =

s∑
i=t1+1

aibs+1−i,
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where the last equality follows by redefining i = t1 + i. Further we have that

[FutureFill(a1:t1 , b)]s−t1 =

t−s+t1∑
i=1

at1−i+1 · bs−t1+i =

t1∑
i=1

at1−i+1 · bs−t1+i =

t1∑
i=1

ai · bs+1−i,

where the second last equality follows by noting that aj is assumed to be 0 for all j ≤ 0 and the
last equality follows by redefining i = t1 − i+ 1. Overall putting the two together we get that

[at1+1:t∗b1:t−t1 ]s−t1+[FutureFill(a1:t1 , b)]s−t1 =

t1∑
i=1

ai·bs+1−i+

t1∑
i=1

ai·bs+1−i =

s∑
i=1

ai·bs+1−i = [a∗b]s.

This finishes the proof.

Proof of correctness for Algorithm 1. Consider any time t and the output ŷt. Let t′ ≤ t be the last
time when Line 7 was executed, i.e. FutureFill was computed. By definition t′ = t − τ . Note the
following computations.

ŷt =
τ∑

j=1

ut+1−j · ϕj + Cτ =

τ∑
j=1

ut+1−j · ϕj + [FutureFill(u1:t′ , ϕ1:t′+K)]τ

=

τ∑
j=1

ut+1−j · ϕj +

t′+K−τ∑
j=1

ut′−j+1 · ϕτ+j

=

τ∑
j=1

ut+1−j · ϕj +

t′∑
j=1

ut′−j+1 · ϕτ+j

=

τ∑
j=1

ut+1−j · ϕj +

t−τ∑
j=1

ut−τ−j+1 · ϕτ+j

=

τ∑
j=1

ut+1−j · ϕj +

t∑
j=τ+1

ut−j+1 · ϕj = [u ∗ ϕ]t

Proof of correcteness for Algorithm 2. We will focus on showing that Ct =
∑t

i=2 ut+1−iϕi. Since
the output is Ct + ut · ϕ1, this will suffice for the proof. For brevity of the proof and without loss
of generality we will assume L is a power of 2. For cleaner presentation for the sth coordinate of
vector v we will use the notation vs and v[s] interchanegably in this section.

We first introduce some definitions for convenience in this section. Given an index i ≤ L we define
its decomposition {i1, i2 . . . im} as the unique sequence of numbers ≤ logL such that following
holds

i1 > i2 > i3 . . . and i =
∑
j

2ij .

These indices correspond to the ones in a logL-bit representation of i. Note that k(i) as defined
in the algorithm is equal to im. Further we define the cumulants of i as the following sequence of
numbers {i′1, i′2 . . .} satisfying

i′τ =

τ∑
j=1

2ij .

Thus we have that i′1 < i′2 < . . . i′m = i. We now prove the following lemma which specifies when
the FutureFill cache gets updated in an execution of the algorithm.

Lemma 6. Given an index i ≤ L, consider its decomposition {i1, i2 . . . im} and cumulants
{i′1, i′2 . . . i′m} as defined above. It holds that the value of Ci+1 is updated (as in Line 8 in the
algorithm) only when t is one of {i′1, i′2 . . . i′m}.
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A direct consequence of the above lemma is that given any index i we have that the value of Ci+1

is not updated after time step i. Further using the decomposition {i1, i2 . . . im} and cumulants
{i′1, i′2 . . . i′m} of i and the update equations for C (Line 8), we have that final value of Ci+1 is given
by the following,

Ci+1 =

m∑
j=1

FutureFill(u[i′j − 2ij + 1 : i′j ], ϕ[1 : 2ij+1])[i+ 1− i′j ]

=

m∑
j=1

2ij∑
k=1

u[i′j − k + 1] · ϕ[i+ 1− i′j + k]

=

m∑
j=1

i′j∑
r=i′j−2ij+1

u[r] · ϕ[i+ 1− r + 1]

=

i∑
r=1

u[r] · ϕ[i+ 1− r + 1]

Thus the output of the algorithm for any i, satisfies

ŷi+1 = Ci+1+ui+1 ·ϕ1 =

i∑
r=1

u[r]·ϕ[i+1−r+1]+ui+1 ·ϕ1 =

i+1∑
r=1

u[r]·ϕ[i+1−r+1] = [u∗ϕ]i+1.

This proves the requisite. We finally provide a proof of Lemma 6 to finish the proof.

Proof of Lemma 6. By the definition of the algorithm, to be able to update Ci+1 at some time t <
i+ 1 it must be the case that

i+ 1 ∈ [t+ 1, t+ 2k(t)].

Consider some t and its decomposition {t1, t2 . . . tn} and cumulants {t′1, t′2 . . . t′n}. By the definition
of the update in Line 8, we have that at time t we only update indices i + 1 for which i has the
sequence {t′1, t′2 . . . t′n−1} in its decomposition as a prefix. It can then be seen that for a given
number i, the only such numbers are its cumulants, i.e. {i′1 . . . i′m} which finishes the proof.
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