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Abstract

The high instantaneous luminosity of the CERN Large Hadron Collider leads to
multiple proton-proton interactions in the same or nearby bunch crossings (pileup).
Advanced pileup mitigation algorithms are designed to remove this pileup particle
noise and improve the performance of physics observables crucial to the science
goals. This study applies the semi-supervised graph neural network to particle-level
pileup noise removal, by identifying the particles produced from pileup. The graph
neural network is trained on charged particles with well-known labels, which can
be obtained from simulation truth information or measurements from data, and
inferred on neutral particles of which such labeling is missing. This semi-supervised
approach does not depend on the ground truth information from simulation and
thus allows us to perform training directly on real data. The performance with this
approach is found to be consistently better than widely-used domain algorithms
and comparable to a fully supervised training approach. The study serves as the
first attempt at applying semi-supervised learning on pileup mitigation, and opens
up a new direction of fully data-driven pileup mitigation techniques.

1 Introduction

The high instantaneous luminosity of the CERN Large Hadron Collider (LHC) enables studies of the
deep mysteries of our universe, such as the nature of the Higgs boson and dark matter as well as the
origin of the matter-antimatter asymmetry. The enormous amount of data coming from increasing
noisy particle collisions, recorded by increasingly complex detectors, pose various challenges to
the data collection and analysis. Multiple collisions in the same or nearby proton beam crossings
lead to overlapping particle interactions is referred to as pileup (PU). To achieve the desired physics
sensitivity with the LHC data, the PU noise needs to be identified and mitigated effectively in order
to identify signals of interest, i.e., those from the primary interaction associated with the leading
vertex (LV). Various PU mitigation techniques have been developed over the past decade to tackle
this important yet challenging task.

The current widely-used domain algorithms for PU mitigation include SoftKiller (1) and PUPPI (2),
both of which depend on manually designed heuristics. More recently, deep learning (DL) tech-
niques (3; 4; 5; 6) have been applied to extract particle features for the noise removal task. By
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Figure 1: Visualization of the particle distributions in the η − φ space of one event. The four plots
from left to right are with all particles, after PUPPI cleaning, after the GNN trained fully supervised,
and after the GNN trained semi-supervised.

exploring a higher dimensional phase space of particle-level and event-level features with different
network architectures, these DL algorithms are shown to perform better than the classical domain
ones. However, these algorithms are trained with fast simulation datasets, fully supervised with the
knowledge of the LV (signal) and PU (noise) labels as the ground truth information. This approach
has two primary shortfalls: (1) in more realistic simulations and real data, the label information is
harder or impossible to retrieve and define and (2) accurate modeling of the pileup noise interactions
are difficult to obtain, and any discrepancies between simulation and data can lead to additional biases
or performance degradation in downstream physics observable (7; 8; 9).

In this study, we explore a novel approach of applying a semi-supervised machine learning technique
(SSL) in pileup mitigation, taking advantage of the fact that, although LV/PU labels are not available
for all particles, they can be precisely determined for the charged subset of the particles. A graph
neural network (GNN) is firstly trained on labeled charged particles, with the input features from both
labeled charged particles and unlabeled neutral particles. The trained GNN is then inferred on neutral
particles to estimate the probability of each being produced from LV. A randomized feature-masking
technique is developed to handle the features that are not shared by charged and neutral particles. In
contrast to the expert-level fixed form heuristics in SoftKiller and PUPPI, the GNN-based approach
allows a more powerful, flexible, and expressive formula that is purely data-driven with parameters
directly learned from data.

The effectiveness of the SSL approach is studied and confirmed by comparing its performance against
methods with a fully-supervised GNN with the same architecture and the expert-level heuristics. We
conduct our studies in different experimental conditions with different PU/noise levels, and find no
significant performance drop between the fully supervised training and semi-supervised training.
In all cases, the GNNs achieve better performance than the expert-level heuristics. Figure 1 is an
example of one event visualization that shows GNN methods remove PU neutral particles more
effectively than PUPPI. The SSL approach has no dependence on any ground truth information from
simulations, and can be applied directly to real collision data, avoiding data-simulation differences.
Our initial results are promising and encouraging, and we hope to adopt and validate this approach in
the real LHC collision data in the near future.

2 Formulating Pileup Mitigation as a Semi-supervised Learning Problem

Semi-supervised learning (SSL) is a machine learning technique that takes advantage of not only the
training samples but also the features of testing samples to train a model (10). The pileup mitigation
problem can be formulated as an SSL problem by utilizing features of both charged particles (with
labels, for training) and neutral ones (without labels, for testing) given their geometric relationship.
For each proton bunch crossing, multiple charged and neutral particles are produced and scattered in
the pseudorapidity and azimuthal angle η − φ space. Because of the interaction dynamics, particles
from the LV (signal label) tend to be more localized. Therefore, an effective learning procedure of a
model should not only depend on the self features of a particle, but also the features of its neighboring
charged and neutral particles.

To leverage neighboring particle features, one graph is constructed per proton-bunch-crossing event
to establish the relations between particles and their neighbors: Particles are viewed as nodes and two
particles are linked if their distance in the η − φ space, ∆R =

√
(∆η)2 + (∆φ)2, is smaller than

a threshold. ∆R = 0.8 is chosen for the experiments in this study.In practice, multiple events are
collected and processed, and each of them forms a graph.
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Figure 2: A diagram illustrating the SSL model training flow.

There is a particular challenge in pileup mitigation as opposed to traditional SSL problems, where the
training samples (charged particles) and testing samples (neutral particles) may have their specific
features, such as the encoding of particle types. These features can not be naively removed as they
provide useful information to determine neighbors’ labels. To ensure the model trained on charged
particles can be well applied to neutral particles, a dedicated training strategy is needed.

Formally the problem setting is as follows. There are M graphs {G1, · · · , GM}. Each observed
graph contains two types of nodes: charged particles VC and neutral particles VN . For each charged
particle v ∈ VC , both the features xv and its label yv are observed, while for a neutral particle
u ∈ VN , only its features xu are observed. Our goal is to infer the labels of neutral particles. Each
node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. About 10% of charged particles are selected in order
to balance preserving neighboring structures and training convergence/speed. Table 1 includes the
numbers of selected charged LV and PU particles per graph per epoch and the total number of charged
LV and PU particles per graph. The effect of the selected charged LV and PU particles ratio has been
studied by varying it in a certain region around known charged LV and PU particles ratio, and the
effect is found to be small.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like (11; 12; 13), can be
applied to our SSL framework, though we focus on a variant of the gated GNN model (14). Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hkv denote the node v representation at
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nPU
# Particles (in total) # Selected Particles (for training)

Charged LV Charged PU Neutral LV Neutral PU Charged LV Charged PU
80 85± 30 1600± 300 50± 20 800± 140 10 160
140 60± 14 3000± 350 30± 13 1420± 200 6 282

Table 1: The first four columns include the average numbers of four types of particles under different
pileup conditions per graph. The last two columns indicate the number of charged particles being
randomly selected for training per graph per epoch.

k-th layer. The GNN follows

Edge message: muv =
[
hk−1u , hk−1v ,∆ηuv,∆φuv,∆Ruv

]
,

Aggregation: mv =
∑

u∈N(v)guvmuv, where guv = Sigmoid(W1muv + b1)

Node-level gate: qv = Sigmoid(W2[hk−1v ,mv] + b2)

Node update: hkv = ReLU(qv(W3h
k−1
v + b3)) + (1− qv)(W4mv + b4)),

where ∆η,∆φ,∆R are the geometric features that characterize the difference between the
spatial coordinates η, φ of two particles and their distance

√
∆η2 + ∆φ2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.

4 Results

The datasets used in this study are generated using PYTHIA 8.223 (15) and DELPHES 3.3.2 (16).
Two pileup conditions are chosen to be studied: the number of pileup interactions nPU = 80 and
140, where the latter represents a more noisy experimental environment. Table 1 shows the average
numbers of different types of particles under different pileup conditions.

The experiments are designed to demonstrate the effectiveness of the model trained via SSL and its
ability to be adapted to different nPU levels. The model is trained and tested under three scenarios: (a)
training the model on nPU = 80 with inference on nPU = 80, (b) training the model on nPU = 140
with inference on nPU = 140, and (c) training the model on nPU = 80 with inference on nPU = 140.
Experimental settings (a) and (b) are to demonstrate that the model trained on charged particles with
SSL can perform well on neutral particles in testing and work under different nPU levels. Specifically,
the SSL model is compared with the fully supervised model, which has the same architecture but is
trained directly on neutral labels, and with the baseline algorithm PUPPI. Experiment (c) is to check
the adaptation ability of the model in different nPU conditions.

To evaluate the fully supervised model performance, the particles used for training and testing
must come from different events, though this is not necessary in the SSL training. Therefore, for
experiments on nPU = 80, there are 3000/1000/1000 events for training/validation/testing. When
nPU = 140, 1000/400/800 events are used for training/validation/testing. For the nPU = 140 scenario,
there are more particles per event, so the total number of events is reduced to maintain reasonable
memory usage. During training, the model is trained until convergence, which normally takes about
5 epochs.

The testing results demonstrate the success of the model, and are shown in Fig. 3 ROC curves with
AUC scores. In Fig. 3, (a) and (b) both indicate the SSL model outperforms the baseline algorithm
PUPPI (by 7.41% under nPU=80 and 6.22% under nPU=140). Furthermore, the SSL performance
is very similar to the fully-supervised model(decays by 1.41% under nPU=80 and 0.51% under
nPU=140). The comparison between (a) and (c) in Fig. 3 demonstrates the model can adapt between
different nPUs since the model only degrades by 0.22% under SSL from (b) to (c) in Fig. 3.
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Figure 3: The ROC curves for the gated GNN on neutral particles for SSL, fully-supervised learning,
and the domain PUPPI algorithm.
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