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ABSTRACT

Artistic style transfer is a crucial task that aims to transfer the artistic style of a
style image to a content image, generating a new image with preserved content
and a distinct style. With the advancement of image generation methods, sig-
nificant progress has been made in artistic style transfer. However, the existing
methods face two key challenges: 1) style ambiguity, due to inadequate definition
of style, making it difficult to transfer certain style attributes; ii) content nonre-
straint, the lack of effective constraint information causes stylistic features of the
content, such as color and texture, to seriously influence content preservation ef-
fectiveness. To address this challenges, improving the quality of style transfer
while ensuring effective content preservation, we propose SDCP, Style Decom-
position and Content Preservation for Artistic Style Transfer, to achieve effective
style transfer through style decomposition and content preservation. First, dis-
tinguishing from previous work, we propose a style decomposing module that
effectively represents style based on three basic attributes (brushstrokes, color,
and texture) enabling clear style definition. Second, we design a content preserv-
ing module that employs line drawings as constraints to discard style elements
while preserving content, utilizing cross-modal alignment to preserving semantic.
Finally, all representations are injected into the denoising U-Net through a con-
ditional injection mechanism. Quantitative and qualitative experiments are con-
ducted to demonstrate that SDCP outperforms the current state-of-the-art models.

1 INTRODUCTION

Artistic style transfer aims to transfer the artistic style of a style image to a content image and
achieve content preservation, generating a new artistic style image, which is important in the field
of computer vision and graphics. The key challenge lies in how to achieve effective style feature
transfer while maintaining the content unchanged. Traditional methods [Zhang et al| (2022} 2024)
using generative models (Goodfellow et al.|(2014); [Vaswani| (2017) have made a lot of progress. In
recent years, breakthroughs in large-scale diffusion models in the field of image generation have
inspired more and more style transfer methods [Xu et al| (2025)); [Chung et al| (2024);
(2024)); [Zhang et al.| (2023c) to adopt pre-trained Stable Diffusion models Rombach et al| (2022).
Although these methods show some promising results, the ambiguity in defining style prevents
the effective extraction of its fundamental attributes, thereby hindering the effectiveness of style
transfer. Furthermore, they lack effective constraints on content, resulting in insufficient preservation
of content details and certain semantic deviations.

First, the results of style transfer ... StyleSSP StvleShot
lack complete style attributes (tex- BP™<& =L S T=== sy
tures, colors, and brushstrokes)
(2024). Previous methods
only perform ambiguous style rep-
resentation, resulting in inaccurate
style expression and omission of
some basic style attributes. Specif-
ically, StyleID [Chung et al.|(2024) Figure 1: Style ambiguity. The results of StyleID, StyleShot,
treats the style image as two latent and StyleSSP show that style transfer is less effective. Lower
spaces (K, V), resulting in imper- ArtFID indicates better style.
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fect style decoupling effects, which are insufficient for constructing style. StyleSSP Xu et al.| (2025)
employs the whole embedding from the style image encoder’s output for style injection, resulting
in leakage of the final content and poor content preservation. Styleshot/Gao et al | performs
multi-level extraction of style, which effectively mitigates the influence of the content in the style
image but also disrupts the fundamental attributes of the style. For example, as shown in Fig. [I]
StyleSSP is ineffective in color transfer, with the result showing a predominantly
green tone, which is inconsistent with the multi-tone colors (yellow, blue, white, and green) of the
style image. StyleShot|Gao et al| underperforms in texture, which differs significantly from
the texture of the style image. StyleID|Chung et al.|(2024) performs poorly in terms of brushstrokes,
which are a characteristic feature of Van Gogh’s paintings.

Second, due to the lack of
content structure and semantic
constraints, many methods face
challenges in preserving con-
tent structure and maintaining
original semantic consistency.
StyleID Chung et al.| (2024) em-
ploys only a simple latent space
(Q) as the representation of con-

tent without imposing any con-  Fjgure 2: Content nonrestraint. The results of StyleID are de-
straints on it. However, during ficient in content details. The lower LPIPS [Zhang et al| (2018),

the reversal process, it is suscep-  the better the content is preserved.
tible to the influence of the latent

spaces from style injection. As shown in Fig. 2] the letters “CITY OF WESTMINSTER” are clearly
displayed in the content image, but the image generated by StyleID [Chung et al.| (2024) is unable to
view these words.

Content Ours

i - ; , -
Style LPIPS:0.47 - T LPIPS:0.50

To address the two challenges, we design a style decomposing module for style mining and a content
preservation module for content details preserving. Firstly, for style mining, we decompose style
attribute embeddings from three perspectives: textures, colors, and brushstrokes. For colors, we
calculate color redundancy to obtain embeddings; for textures, we employ singular value sharing to
obtain texture representations specific to grayscale and real images; for brushstrokes, we propose to
use quadratic Bézier curves to approximate brushstroke information in artworks simulating paint-
ing brushstrokes to obtain important brushstroke features (length, width, and maximum curvature).
Secondly, for content preserving, we propose to use line drawings as structure constraint for con-
tent, as line drawings lack stylistic interference and preserve content details. To accomplish that, we
design a line drawing generation method that extracts detailed content information from the content
image while discarding its stylistic information. Additionally, we enhance semantic constraints by
introducing content text and performing cross-modal alignment using Q-former (2023D).
Finally, to ensure that the denoising U-Net [Ronneberger et al.| (2015) effectively adapts to the in-
jection of style and content embeddings, we propose a conditional injection mechanism based on
the cross-attention mechanism, using a denoising U-Net as the base model, to effectively combine
style and content embeddings for generating new images. The main contributions of this paper are
as follows:

* We propose a novel framework called SDCP, as shown in Fig. [3] which enhances style
transfer quality while content preservation, leading to more accurate style representation
and cleaner content extraction.

* We propose a style decomposing module that captures the key features of style through
three style properties: brushstroke, color, and texture. This solves problem of style ambi-
guity and enables effective artistic style transfer.

* We design a content preserving module that effectively preserves content through structural
and semantic constraints, overcoming the content nonrestraint issue.

* In regard to automated and manual evaluation metrics, extensive empirical evaluations
demonstrate both qualitatively and quantitatively that our method significantly improves
the quality of artistic style transfer.
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Figure 3: The overview of our proposed SDCP. It contains three parts, (a) content preserving mod-
ule, which carves the content details and discards the original style of the content image, (b) style
decomposing module, which reconstructs image style from three perspectives, namely colors, tex-
tures, and brushstrokes, (¢) condition injecting mechanism, which implements combination of style
and content conditions.

2 RELATED WORK

GAN-Based Methods. A large number of studies|Zhu et al.|(2017));Liu et al.|(2018)); Karras|(2019);
Li et al (2020); [Xu et al (2021)); [Zhang et al.| (2022) have broadened the application of GANs
Goodfellow et al.|(2014) while addressing specific challenges in style transfer. Significant progress
Zhang et al.[(2022) has also been made in enhancing style transfer results through contrastive learn-
ing methods. A notable example is CAST [Zhang et al.| (2022), which uses contrastive learning to
directly encode style codes from image features. This approach improves style distribution learn-
ing, leading to enhanced stylization quality and consistency. Although GAN-based methods were
earliest started to be applied to the field of style transfer, the unstable training and the necessity of
supervised labeling for assistance are still large challenges.

Transformer-Based Methods. StyleFormer[Wu et al | effectively solves the common content
representation bias problem in traditional neural style transfer methods by integrating style library
generation. StyTr? utilizes two independent encoders to generate domain-specific
content and style sequences. In addition, S2ZWAT [Zhang et al| (2024) achieves a finer and more effi-
cient style transfer with a hierarchical vision attention transformer. Overall, many transformer-based
Zhang et al.| (2023al); [Li et al.| (2023¢)); [Liu et al.| (2024) methods are excellent for style transfer. Still,
because transformer was designed to associate contextual semantic information, it makes final result
carry content semantic information about style images.

Diffusion-Based Methods. Diffusion [Rombach et al.| (2022) has attracted a great deal of attention
since its appearance in the field of image generation. The same phenomenon has occurred in the
field of artistic style transfer. InST [Zhang et al.| (2023c)) derives directly from a single simplified
style conversion process and improves the quality and efficiency of the generated images without
the requirement of complex textual descriptions. DEADiff (2024) achieves high-fidelity,
controllable image style transfer by explicitly decoupling and reassigning content and style features
in the latent space of the diffusion process. Its core lies in the “dual-path cross-attention” mech-
anism, which can precisely inject arbitrary style details while maintaining the content structure.
StyleID |Chung et al.| (2024) is a training-free method for fine-tuning large-scale diffusion models,
thus simplifying the process and improving efficiency. In general, InST [Zhang et al.| (2023¢) and
StyleID [Chung et al.| (2024)) are not able to maintain their content efficiently due to multiple noisy
interferences (style images and text prompts) during the reversal process.
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3 PROPOSED METHOD

3.1 PRELIMINARIES

Diffusion Model. LDM [Rombach et al.|(2022) is a perceptual compression model based on DDPM
(2020) to access an efficient and low-dimensional latent space to reduce computational cost.
The fundamental idea is to define a Markov chain that gradually transforms a data sample into pure
noise, and then train a neural network to approximate the reverse dynamics in order to recover the
original data distribution (2020). LDM consists of two main processes: diffusion process
(forward process) and denoising process (reverse process). To be specific, given data sampled from
q(zo), the forward diffusion process is defined as a sequence of Gaussian transitions:

q(@e | 4-1) = N (24 /1 = Bewe—y, Bed), (1)

where {$3;}1, is a variance schedule controlling the noise intensity at each step. As t — T,
the distribution of x7 approaches an isotropic Gaussian, which makes sampling from the terminal
distribution straightforward. Importantly, this process admits a closed-form expression that directly
relates x; to the initial clean sample xg:

q(z¢ | wo) = N(%% Vagxg, (1— C_Vt)I), (2)

witha; =1 — 5 and &y = Hizl a,. This forward process progressively injects noise into the data
until all structure and features are lost, which can be closely approximated by A/ (0, T).

The generative reverse process is parameterized as another Gaussian transition:
po(zi—1 | @) = N (z4—1; po(xe, 1), So(x,1)), 3

where 119 and ¥ are predicted by a neural network (UNet or Transformer) with learnable param-
eters f. Since the true reverse posterior is intractable, the model is trained to approximate it by
minimizing a variational bound. A practical simplification, introduced in (2020), shows
that the objective reduces to predicting the added noise € with a mean squared error loss:

L(0) =E,qo tcmno.) [ lle — €a(ze, )17 ] 4)
3.2 STYLE DECOMPOSING MODULE

Inspired by vector line art

Picasso

(2021)), we believe that brushstroke s
characteristics in artistic style im- Sion ok cezanne

VanGogh

ages are an important attribute of
style features, which were often over-
looked in previous work. Specif-
ically, different artists exhibit dis-
tinct brushstroke characteristics. As
shown in Fig. [ we see the differ-
ences in the brushstrokes of these five
painters. Picasso: Points are concen-
trated in shorter, thinner, and lower-
curvature regions, reflecting his geo-
metric and minimalist lines; Seurat:
High-curvature, short brushstrokes
are prominent, consistent with his
pointillist style; Monet: Brushstrokes
are relatively wide with moderate
curvature, reflecting his fluid and
soft Impressionist style; Cezanne:
Distribution is relatively compact,
showcasing his structured and repet-
itive brushstroke patterns; Van Gogh:
Brushstrokes are the largest, thick-
est, and highest in curvature, aligning
with his wild lines.

Seurat

Curvature (c)

Figure 4: The figure shows the distribution of strokes
extracted from the works of five painters (Picasso, Seu-
rat, Monet, Cezanne, and Van Gogh) projected into three-
dimensional space based on three attributes: stroke length
(1), width (w), and curvature (c).
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Brushstrokes Extraction. We elaborate the detailed process of stroke feature extraction. First,
LineDraw is used to o enerate the line drawing of the style image. Then, the linedrawing vectorisation
method Mo et al. is used to obtain all strokes B = {(B;,w;)}¥ in the image. Specifically,
each stroke B; is approxnnated using a quadratic Bézier curve, defined by three points P¢, P}, and
P}, where w; represents the width of the stroke. B; = (1 — 7)?P} + 27(1 — 7) P} + 72 P}, where
7 € [0,1], Py and P, are the start and end points, P, is the control point, and N is the total number
of strokes. As shown in Fig. [i] we aim to construct the stroke distribution for each style image,
which requires three basic elements: length, maximum curvature, and width.

According to Graveson [Gravesen| (1997) approximate arc length Lapprox calculation method, the
curve length depends on the chord length Lj,.q (the distance between the start and end points) and
the polygon length L.yoq (the distance between each point and the control point)

Loty + 2Lchor
Lapprox = M7 (5)

where Lchord = ||P2 — PO||7Lpoly = ||P1 — P()” + ||P2 — PlH
Similarly, the arc length ; of B; can be represented as

121 = Poll + [|1P5 — Pi]| +2[|P; — Foll

i =
3

(6)

The curvature of B; is defined as: x(7) = W where Bl(t) = 2[(1 — 7)(P{ — P}) +

T(Pi — P})|,BY(t) = 2(Pi — 2P} + P}). Bl(r) varies with changes in 7. When || B} (7)|| =

0, B/ (7) reaches its minimum value, and thus «(7) reaches its maximum value. Therefore, the

maximum curvature of B; is

(Po — Pi) - (P5 — 2P} + Fy)
1P; — 2P + Pi|P

)

C; =

Each stroke B; can be represented by an attribute vector v; = (I;, w;, ¢;), and all strokes in a style
image can be represented by a V' € R3*Y_ Therefore, we can model the stroke style as a trivariate
normal distribution v ~ Ny (u,X), where p and ¥ are the mean and variance of the matrix V,
respectively. Finally, the stroke style embedding Ej,.s is obtained by sampling from A (1, 33).

Colors Extraction. Inspired by the color additivity in the text prompt space (2023), we
believe that color additivity in the image space holds true as well (2023). The essence of
color feature extraction lies in how to decouple the content and texture semantics of style images,
isolating only the color features. We adopt an approach to achieve color decoupling. First, we con-
vert the style image to grayscale (GS), such that GS(Ig) retains the content and texture semantics
while discarding all colors distributions. Then, we employ the CLIP image encoder to encode the
original image Is and GS(Ig). Finally, the color attributes can be represented as,

E.r = Enc(Ig) — Enc(GS(Ig)). (8)

Textures Extraction. For
texture extraction, we also
adopt  grayscale processing
to eliminate the influence of
color. However, it causes
interference from grey tones
when extracting textures. To
overcome this limitation, we
concatenate embeddings  of
grayscale image Enc(GS(Is))
and average grayscale image
Enc(AVG(GS(Is))), the latter
carrying overall greyscale tone.
The initial texture embedding is
represented as, Figure 5: Examples of SVD. Smaller MS-SWD [He et al.| (2024

indicates smaller color distances between the style and the result.

Content ) Style ) Baseline +SVD

5
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E;.,. = Concat(Enc(GS(Is)), Enc(AVG(GS(Ig))))- )
Inspired by previous work |Li et al.| (2024), we observe that the singular values of Ej, repre-

sent the shared information between the two grayscale images, i.e., the grayscale tones. Next,

we use singular value decomposition to capture the texture information, E;., = UXV”, where
Y = diag(og,01,--- ,0n;). To suppress the influence of grey tone on texture features, we

constrained all singular values, i.e., & = oe °. Then, we update F;., = U iVT, where

3= diag(69,01,- -+ ,0n;). Some examples are shown in the Fig Ultimately, the style em-
bedding of style image [g is defined as:
Eg = COnCCLt(Eb7-S, Eiex, Eclr)- (10)

3.3 CONTENT PRESERVING MODULE

In order to achieve content preser-
vation and better acquire delicate
content details of content images,
we design two content constraint
paradigms.

Semantic Gr(T)
Module |

cLp Gn
|
cLIp

Depth Module <==> DepthLoss

Cycle Consistency
= Loss

&= Adversarial Loss

Semantic Loss

Domain R (Real) r Domain L (Line) [

BFW
3

b e

A
1(Gg(1))
() D 6o
G Gg(r) G
i [0} ‘

G, (D

Structure Constraint. Unlike pre-
vious work, we use line drawings of
the content rather than whole content
images as the content structure. The
structure of the content image can be
effectively represented by line draw-
ings, which minimize stylistic inter- ;
ference. To extract clear and detailed 3
line drawings of content, we design
a line drawing generation method
called LineDraw. In detail, as shown
in Fig. [6] LineDraw accomplishes
transformation of an image from a
real domain to a line drawing through
a generator Gp, on the contrary, Gy, generates a corresponding real image. LineDraw mainly con-
tains depth module, cycle consistency module, semantic module, and adversarial module.

Gg(r) Domain L (Line) [

Adversarial Module

—b| b,

Cycle Consistency Module

Figure 6: The workflow of our proposed LineDraw.

Depth module aims at obtaining more depth information of a real image r, i.e., the content image
I-. We recognize that depth maps often represent shapes as well as contours of individual entities
in an image well. Therefore, we design a depth map generator Gp and a depth loss constraint Lgeptp,
such that line drawings generated by G carry depth information. Since, many of existing datasets
Lin et al.[(2014); [Tan et al.| (2018)) lack corresponding depth maps, we follow the previous model
Miangoleh et al.[(2021) as depth map model F'. Depth map F(r) generated by F' is pseudo ground
truth map for only training purposes. In addition, due to the domain gap between line drawings and
depth maps, we did not directly use line drawings from Gp, as input to Gp directly, but first extracted
line drawing features using I [Szegedy et al.| (2016)) before obtaining depth maps from Gp. This is
due to the fact that features within earlier layers are more beneficial for transfer learning |Kornblith
et al.[(2020). Our depth constraint objective is Depth Loss:

Laep = 190 (1(Gr(r))) = F(r)l3- (1D

Cycle consistency module is designed to balance distribution between different domains of gener-
ated images. Image translation cycle should be able to bring images back to original images [Zhu
et al.|(2017), i.e., » — Gr(r) — L(Ggr(r)) — 7 ~ r. Consequently, our goal for cycle consistency
constraint is Cycle Consistency Loss:

Leye = |GL(Gr(r) = rll3 + 1GR(GL(1) — 5.

Adversarial module is designed to train a maximal-minimal game for generator G and discriminator

D under adversarial objective |(Goodfellow et al.| (2014)), and our adversarial constraint objective is

Adversarial Loss:

Ladv = B r[DR(1)*] + Eior[(1 — Dr(G()))?] + Bier[DL(1)?] + By k(1 — DL(Gr(r)))7).
(13)

(12)
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Semantic module aims to maintain semantic consistency between line drawings and real images
leveraging CLIP Radford et al. (2021) embeddings. We employ a pre-trained visual coder Enc
Radford et al|(2021) to encode semantic information of real images and line drawings separately.
Thus, our semantic constraint goal is Semantic Loss:

Lsmn = ||ETLC(gR(T)) — ETLC(T‘)”; (14)

Ultimate loss for LineDraw is specified as follows:

L= )\depLdep + Acychyc + )\adeadv + AsemLsem' (15)

As a summary, given a content image I, it is directly encoded as a latent spatial representation Z;
by a pre-trained diffusion model SD on the one hand, and on the other hand, line drawing LD ()
is passed through the CLIP image encoder Enc, yielding the content embedding F. .

Semantic Constraint. Inspired by DEADIff Qi et al.| (2024) and BLIP-Diffusion |Li et al.| (2023a),
we aim to obtain a more complete content-centric representation from the line drawing. Therefore,
we introduce a Q-former Li et al.|(2023b)) mechanism that enhances the content-semantic represen-
tation of line drawings through cross-modal interaction alignment. Its input includes a learnable
query variable, captions (text describing the content image /) corresponding to the content dataset
(i.e., MSCOCO), and the content embedding E.,;. Finally, its output is a query embedding vector
E¢ aligned with the text.

3.4 CONDITION INJECTING MECHANISM

In order to support style embedding and con-
tent embedding as conditions for the denoising z E__. we | — E
U-Net, we propose a conditional joint mecha-

nism based on cross-attention, inspired by the e e
IP-Adapter|Ye et al.[(2023). ﬁ
Q ZWQ 6 Embg Wif - IxC O—® Softmax ®—
= (16) () —
7 LxC HWxC

K = Concat((EcWE), (EsWE)), 17
V = Concat((EcWY), (EsWY)),  (18) s, — -

KT | wE | — ...
Z"" = Softmax( ¢ d V. (19) w ] e
Vg

Figure 7: Condition injecting mechanism.

As shown in Fig. it consists of four trainable linear layers WX, W& WYX WY to combine
E¢ and Eg. Subsequently, the attention mechanism is utilized to form new latent space variables
z™" Unlike previous works, cross-attention is no longer used to align cross-modal features but to
combine different image embeddings within the same modality.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

Experimental settings. In the inference stage, we use a pre-trained Stable Diffusion model Rom-
bach et al.| (2022)) (version 1.5), with time step T'=50. All experiments are implemented in Pytorch
on an NVIDIA RTX 4090 GPU. We set the weighting trade-off parameters of loss functions as fol-
lows: Agep = 10, Aeye = 0.1, Aggo = 1, Asemn, = 10. For specific experiment details on our method,
please refer to the supplementary materials.

Dataset. We utilize WikiArt Phillips & Mackintosh| (2011) as style images and MSCOCO [Lin et al.
(2014) as content images. We randomly sample 40 style images from WikiArt and 20 content im-
ages from MSCOCO.

Evaluation Metrics. We use three metrics (i.e., FID, LPIPS, and ArtFID) to demonstrate the style
transfer performance of our model. Frechet Inception Distance (FID) |[Heusel et al.| (2017) is used
to measure the overall similarity between a style image and a stylized content image, with smaller
values representing fewer semantic features of the style image that the stylized content image pos-
sesses. Learned Perceptual Image Patch Similarity (LPIPS)|Zhang et al.| (2018)) is used to estimate
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the average perceptual distance between a content image and a stylized content image. We adopt a
metric that exclusively evaluates the overall style transfer performance, ArtFID [Wright & Ommer|
(2022). Overall, for artistic style transfer, FID and ArtFID are used to measure the similarity be-
tween the stylized result and the style image (style fidelity), LPIPS is used to measure similarity
between the stylized result and the content image (content fidelity).

4.2 QUANTITATIVE COMPARISONS

Automatic Metric Comparisons.

o Models Backbone ArtFID| FID| LPIPS|
In general, for artistic style trans- Ours Diffusion  29.6137 19.1558  0.4603
fer, FID and ArFID are used 0 i jogSp  Diffusion  41.6647 27.2383  0.4754
measure the similarity betweenthe  gijehot  Diffusion  43.6397  24.4324  0.7159
stylized result and the style im- g1y Diffusion  39.5329 252136  0.5081
age (style fidelity), while LPIPS is  npohaST  Mamba 355372 20.8257  0.6282
used to measure the similarity be-  GOWAT  Transformer 417495 26.0384  0.5440
tween the stylized result and the InST Diffusion  44.1601 24.6718  0.7202
content image (content fidelity).  cAp_ysT GAN 51.5054 39.5442  0.2703
Our method achieves excellent re- CAST GAN 404869 251618  0.5475
sults on all three metrics. How- g orp2 ransformer  39.0501  24.0271  0.5603

ever, it is worth noting that in Ta-
ble [l CAP-VST has the highest
LPIPS value. As shown in Fig. 0]
the images it generates have a low

Table 1: Quantitative comparisons of SOTA models. Bold font
indicates optimal scores.

degree of stylization but a high degree of content preservation (i.e., high LPIPS), but the lowest
scores on the style metrics (ArtFID, FID). This demonstrates that the metrics we selected are con-

sistent with the visual effects.

User Preference Study. Since the evaluation
of style transfer performance involves a consid-
erable degree of subjective judgment, we con-
ducted a user preference study (4 questions,
each with 3 options) to quantitatively evaluate
our method, with 30 volunteers participating in
the study. Specifically, we invite each partici-
pant to select the method name corresponding
to the best stylized result in each of the four
dimensions: content preservation, colors trans-
fer, textures transfer, and brushstrokes transfer
(method names are anonymised). The results of
the user preference study are shown in Figure[8]
For style, our method outperforms other meth-
ods in terms of color, brushstrokes, and tex-
ture. Regarding content preserving, our method
achieves the same level as the current state-of-
the-art method StyleSSP.

StyleSSP

80%

Ours
StyelD

06.67% StyleSSP

o
I}
by
X

60%

40%

36.66%  36.67%

6.67% 26.67%

10.00%

Colors
Transfer

20% 16.67% 16.66%

0%

Brushstrokes
Transfer

Textures
Transfer

Content
Preservation

Figure 8: User preference study. We report the
overall preference score comparing our method to
selected alternatives across three transfer tasks.

AT InST CAP-VSTNet CAST
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4.3 QUALITATIVE COMPARISONS

These compared models are classified into four categories according to backbone, Diffusion-based
models: StyleSSP Xu et al.| (2025)), StyleID |Chung et al.|(2024), StyleShot|Gao et al.[(2024), InST
Zhang et al.|(2023c), Transformer-based models: S2WAT [Zhang et al./(2024), StyTR? Deng et al.|
(2022), GAN-based models: CAP-VSTNet [Wen et al|(2023), CAST Zhang et al. (2022), Mamba-
based model: MambaST Botti et al.| (2024). More results are provided in the appendix.

Qualitative comparisons are presented in Fig. [0} Although some diffusion-based baseline methods
capture partial style information, such as StyleSSP retaining color style and StyleID identifying
simple textures, results from the last row show that these methods struggle to extract brushstroke
information within the style image. Other baseline methods acquire richer style information but
lack effective content preservation, e.g., StyleShot and InST. Compared to GAN-based methods
(CAST and CAP-VST), we observe that their generated output retains content more effectively, but
it also carries more style information related to the content. Regarding Transformer-based methods
(S2WAT and StyTR?), we note that they can’t effectively transfer style to the result.

4.4 ABLATION STUDY

In this section, we present ablation stud-
ies results for two aspects of our method:
i) the impact of style decompsing, ii) the
impact of content preservation.

Content Style Full Model w/o CD w/o SR

Style decomposing. As shown in Fig.
[12] without the style decomposing mod-
ule, synthesized results differ significantly
from the style image in terms of brush-
strokes, colors, and textures. At the same
time, ArtFID and FID have increased in
Table 2] which also verifies the fact that
the style decomposition module is benefi-
cial for style transfer.

Content preservation. As shown in Fig. Figure 10: Visualization results of ablation study.
@ when the content preservation module is removed (i.e., without content embedding), the model
results exhibit severe content loss and style-content hallucinations in terms of content preservation.
For example, the results in the first row show that the black-and-white cat face on the left is no
longer clear, and the ears disappear. Additionally, its high LPIPS value further validates the decline
in content preservation.

Furthermore, to better analyze the Model ArtFID] FID] LPIPS]
impact of each embedding on the Full Model 296137 19.1558 0.4693
Stylized results Wlthln the Style de- W/O CD 353061 193646 07337
composition module, we conducted w/o SR 369621 245107  0.5080
ablation studies for the three at- w/o Colors 36.1546 222108  0.5576
tributes: Colors, Textures, and Brush- w/o Textures  34.1693 21,5332 0.5164

strokes.  Quantitative results show 0 Brychsirokes  35.5861  20.5885  0.6483
that all three attribute embeddings

have a significant impact on the over-
all style. More ablation studies are
available in appendix.

Table 2: Various quantitative results of ablation experi-
ments.

5 CONCLUSION

In this paper, we propose SDCP, a new framework for artistic style transfer. We discover two key
challenges in style transfer methods: style ambiguity and content nonrestraint. To address these
challenges, we introduce two key components: (1) style decomposition to achieve clearer style
representation, (2) content preservation to effectively preserve content details. Experimental results
demonstrate that SDCP effectively reduces the loss of original content while showing excellent
style transfer performance. Comparative experiments show that our method outperforms relevant
baselines both qualitatively and quantitatively. Future work can explore more complex artistic styles
to further enhance style transfer across diverse scenarios and improve lightweight solutions.
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A LLM USAGE STATEMENT

A large language model (LLM) was used solely for language polishing. The LLM did not contribute
to the research design, development of methods, data analysis, or the formulation of conclusions.
All scientific claims, results, and interpretations in this paper are entirely the responsibility of the
authors.

B DETAILED ANALYSIS OF TEXTURES EXTRACTION

Inspired by soft-weighted regularization |L1 et al.| (2024)), we use SVD to extract texture style from
Ef... We construct an embedding matrix E},, = [Enc(GS(Is)), Enc(AVG(GS(Is)))] from

tex* tex

the image encoder in CLIP, where Enc(AVG(GS(Ig))) is actually a grayscale image encoding
(derived from the style grayscale map). We utilize SVD,

E:ex =Usv” (20)
where ¥ = diag(og, 01, -, onj), and here o, represents the value of the n-th row and j-th column

in the ¥ matrix.

Then, to suppress grayscale information, we introduced soft weighting regularization for each sin-
gular value.

6c=o0e? (21)

To visually demonstrate the SVD Embi,. v -

process, we illustrate the specific di- I
mensional changes of the singular seeenes . DN

value decomposition at the top of Fig. sereees .

[[1l Additionally, in Fig. [T1] we vi- O VR R MO
sualize the changes in the X matrix i mam

Emb},, Embey

before and after soft-weighted regu-
larization. Finally, the bottom of Fig. m m UsyT ‘ UsVT m m
E shows the style results before and —_— _—

after soft weight regularization. We

find that Equation 2 is effective in
weakening the grayscale effect.

3 Matrix

Y Matrix N R
Visualization

C DETAILED ANALYSIS Visualization
OF ABLATION STUDY

In this section, we supplement the ab-

lation studies presented in the paper.

Specifically, we conduct both quali-

tative and quantitative ablation stud- ~ Stylized Result
ies on linedraw, Q-former, and three

attribute embeddings.

Stylized Result

As shown in Fig. [I2]and Tab. [3] in Figure 11: The workflow of singular value decomposition
terms of colors, when without color and soft weight regularization.

embedding, the cat’s color aligns with the color of the content image. When lacking brushstroke
information, Van Gogh’s unique style (short, dense brushstrokes) cannot be effectively transferred.
In terms of texture, when texture embedding is absent, the brushstrokes are not rendered perfectly.
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Content Styl Full Model w/0 Linedrawing w/0 Q-former

w/0 Textures w/o Colors w/0 Brushstrokes

Figure 12: Visualization results of ablation experiments.

Additionally, as shown in the Tab. [3] these three style attributes play a crucial role in the final style
transfer. In terms of content, the combination of Q-former and line drawings significantly improves

the overall content retention.

Model ArtFID] FID]  LPIPS|

Full Model 29.6137 19.1558 0.4693
w/o LineDraw 35.4829  20.1107  0.6808
w/o Q-former 35.2667 20.0021 0.6792

w/o Colors 36.1546 22.2108 0.5576

w/o Textures 34.1693  21.5332 0.5164
w/o Brushstrokes  35.5861  20.5885 0.6483

Table 3: Various quantitative results of ablation experiments.

D DETAILS OF LINEDRAW METHOD

In this section, we provide more details about LineDraw,
mainly containing the network architecture of the method.
In addition, we show experimental results for the method.

D.1 DATASETS

We randomly selected 10,000 images from MSCOCO
as the real image training dataset. We adopt
14,914 sketch images from the Anime Sketch Colorization
PairEltraining dataset as our line drawing training dataset.

D.2 ABLATION STUDY

The ablation study is conducted targeting the losses of the
proposed depth module and semantic module as shown in
Fig. [T4] From left to right are the content images (from
MSCOCO[Lin et al.|(2014)), the results of the variant model
without Lgepep, the results of the variant model without
Lgem, and the results of the full model. By comparing the
2" and lastest columns, it can be seen that Lgeptr, makes
the general outline of the objects in the image clearer, such
as the outline of the shape of a fish. By comparing the 3™
and lastest column, it can be seen that L.,,, makes the de-
tails of the objects in the image richer, e.g., the eyes of the
fish are portrayed.

Real Depth Prediction  Pseudo-Truth

Figure 13: The depth prediction re-
sults by Gp are compared to pseudo-
ground truth results.

'https://www.kaggle.com/datasets/ktacbum/anime-sketch-colorization-pair
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In addition, we show the generation results of the proposed depth map of Gp and compare it with
the pseudo-ground truth results (by F'Miangoleh et al| (2021)), as shown in Fig. [T3] The experiment
proves that our trained depth map generator G p, although not able to fully achieve the effect of F, is
able to basically portray the contour of the objective entity in the image, which plays a well-assisting
role in the overall line drawing map generation.

Content w/o Lgep w/0 Lo Full Model

Figure 14: Various variants results of the ablation study on LineDraw.

Real Image PiDiNet Chan et al TEED DexiNed FLUX LineDraw

Figure 15: Qualitative comparison of line drawing generation results.
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D.3 QUALITATIVE COMPARISON

We compare the line drawing generation results of our proposed LineDraw and baselines (FLUX
Labs et al.|(2025)), ControlNet|Zhang et al.[(2023b)), TEED Soria et al.|(2023a), DexiNed Soria et al.
(2023b)), Chan et al|Chan et al.|(2022)), and PiDiNet|Su et al.|(2021))). As shown in Fig. @ although
Chan et al. can display some contours, there is insufficient detail. In addition, TEED captures better
detail, but it also introduces more noise data (i.e., noise points). Unlike these methods, our method
neither introduces noise data that affects the semantic expression of line drawings nor compromises
reliable detail information.

D.4 NETWORK ARCHITECTURES

The generator network G use the encoder-decoder architecture with 3 residual blocks He et al.
(2016). The discriminator networks D and Dj are according to PatchGAN [Isola et al.| (2017).
We show the architecture details of G i as shown in Table [Z_f] and the specific architecture of Gp as
shown in Table

Layer Type Padding Kernel Size Stride Normalization Activation Input, Output

Conv2d 0 7 x7 1 InstanceNorm ReLU 3,64
Conv2d 1 3x3 2 InstanceNorm RelLU 64,128
Conv2d 1 3x3 2 InstanceNorm RelLU 128,256
ResidualBlock 1 3x3 1 InstanceNorm ReLU 256,256
ResidualBlock 1 3x3 1 InstanceNorm RelLU 256,256
ResidualBlock 1 3x3 1 InstanceNorm ReLU 256,256
ConvTranspose2d 1 3x3 2 InstanceNorm ReLU 256,128
ConvTranspose2d 1 3x3 2 InstanceNorm RelLU 128,64

Conv2d 1 7 x7 1 InstanceNorm Sigmod 64,1

Table 4: Network Architecture of G.

Layer Type Padding Kernel Size Stride Normalization Activation Input,Qutput

Conv2d 4 7 x7 1 BatchNorm RelLU 768,512
ConvTranspose2d 0 4 x4 2 BatchNorm ReLU 512,256
ResidualBlock 1 3x3 1 BatchNorm ReLU 256,256
ResidualBlock 1 3x3 1 BatchNorm RelLU 256,256
ResidualBlock 1 3x3 1 BatchNorm ReLU 256,256
ResidualBlock 1 3x3 1 BatchNorm ReLU 256,256
ResidualBlock 1 3x3 1 BatchNorm RelLU 256,256
ResidualBlock 1 3x3 1 BatchNorm ReLU 256,256
ResidualBlock 1 3x3 1 BatchNorm ReLU 256,256
ResidualBlock 1 3x3 1 BatchNorm RelLU 256,256
ResidualBlock 1 3x3 1 BatchNorm ReLU 256,256
ConvTranspose2d 1 3x3 2 BatchNorm ReLU 256,128
ConvTranspose2d 1 3x3 2 BatchNorm ReLU 128,64
ConvTranspose2d 1 3x3 2 BatchNorm ReLU 64,64
Conv2d 3 7 x7 1 BatchNorm RelLU 64,3

Table 5: Network Architecture of G p.

E EXPERIMENTAL DETAILS

E.1 IMPLEMENTATION DETAILS

During the training phase, only the Q-former [Li et al| (2023b) and four linear layers
WE WE WY, W) need to be updated. All experiments are implemented using NVIDIA RTX
4090 GPUs on PyTorch. The model consists of 16 cross-attention layers, which are numbered from
1 to 16 in order from input to output. Layers 5 to 9 are defined as coarse layers for content embed-
ding, while the remaining layers are considered fine layers for style embedding. The image encoder
for CLIP|Radford et al.|(2021)) uses the ViT-L/14 version, and the number of learnable query tokens
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in the Q-former is 16. Additionally, to enable the Q-former to converge quickly, we utilize the pre-

trained model from BLIP-Diffusion (2023a). We use AdamW [Loshchilov et al| (2017) as

the optimizer with a learning rate of 1 e-4 and train for 1,000 iterations.

For training the Q-former, we use all image-text pairs from the MSCOCO dataset Lin et al| (2014),
but since the image-text correspondence in this dataset is one-to-many, it is not conducive to cross-
modal semantic alignment. Therefore, for each image, we only used one text caption as the unique
image-text pair for training.

E.2 ADDITIONAL EXPERIMENTAL RESULTS

Color Distribution Comparison: Style vs. Stylized Results

Red Channel Green Channel Blue Channel
0.008 N 0.010 D — . h —_
o \ ~ I\ Style 0.03 I Style
’ '\ - - Ours ll| - - Ours
0.006 y 0.008 | - Stylessp i ——- StyleSSP
> > - 20.02 1 —_
B \ £ 0.006 . StylelD £ H \‘ StylelD
$ 0.004 \ S : S [
o 0 0.004 ]
- - Ours . || \ 0.00 0.01 :
— \
0.002 StyleSSP I‘ \ 0.002 1'
/ == StylelD A\
0.000 . y , r T ’ 0.000 r r r r 0.00 . T T T
0 50 100 150 200 250 0 50 100 150 200 250 o} 50 100 150 200

Pixel Intensity Pixel Intensity Pixel Intensity

Content Style StyleSSP Ours StylelD

Figure 16: Comparison of color distribution in style transfer examples.

Color transfer comparison. We supplement with an example of color transfer in the image, com-
paring the stylized results with the color distribution curve of the style image, as shown in Fig. [16]
Considering the red, green, and blue color channels, we conclude that the color distribution curve of
our results is more similar to the style image.

More experimental results. We have presented more stylized image results. Due to the large sam-
ple size, we are unable to display all 800 stylized images, but the 40 style images are all presented.
These stylized images are primarily derived from renowned artists such as Berthold Morisot, Ed-
vard Munch, Ernst Ludwig Kirchner, Jackson Pollock, Monet, Nicholas Roerich, Pablo Picasso,
Paul Cézanne, Paul Gauguin, Samuel Peploe, Vincent van Gogh, Wassily Kandinsky, etc.
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Figure 17: More experimental results of different styles.
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Style

Content
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Figure 18: More experimental results of different styles.
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Figure 19: More experimental results of different styles.

20



Under review as a conference paper at ICLR 2026

Figure 20: More experimental results of different styles.

21



Under review as a conference paper at ICLR 2026

Style

Content

Figure 21: More experimental results of different styles.
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Figure 22: More experimental results of different styles.
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Figure 23: More experimental results of different styles.

24



	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Style Decomposing Module
	Content Preserving Module
	Condition Injecting Mechanism

	Experiments
	Implement Details
	Quantitative Comparisons
	Qualitative Comparisons
	Ablation Study

	Conclusion
	LLM Usage Statement
	Detailed Analysis of Textures Extraction
	Detailed Analysis of Ablation Study
	Details of LineDraw Method
	Datasets
	Ablation Study
	Qualitative Comparison
	Network Architectures

	Experimental Details
	Implementation Details
	Additional Experimental Results


