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ABSTRACT

Low-Rank Adaptation (LoRA) and its variants have been widely applied in
parameter-efficient fine-tuning of large language models. However, most existing
approaches assign the same rank to all modules, which limits the representational
capacity and adaptation flexibility of the finetuned model. Inspired by interfer-
ence theory in human learning, which posits that forgetting outdated knowledge
while allocating more resources to relevant new knowledge facilitates better learn-
ing, we propose the Dynamic rank re-Allocation method (DaRA). In DaRA, the
rank of each module represents a direction in the parameter space, analogous to
a knowledge component. During warm-up, DaRA allocates the same rank to all
modules, allowing the model to form a coarse understanding of the task. After-
wards, DaRA reallocates ranks by discarding less useful directions from unimpor-
tant modules (outdated knowledge) and assigning more ranks to important mod-
ules (new knowledge). This dynamic adjustment mirrors the human learning pro-
cess described by interference theory. Extensive experiments across diverse model
architectures and downstream tasks demonstrate that DaRA consistently outper-
forms existing baselines.

1 INTRODUCTION

In recent years, the emergence of large-scale pre-trained models on general-domain corpora (Brown
et al.| [2020; |OpenAlL [2023; [Touvron et al., [2023alb; Bai et al.| [2023; [Mesnard et al., [2024; [Zeng
et al., [2023) has firmly established the pretrain—fine-tune paradigm as the dominant framework for
natural language processing and multimodal learning. Alongside this trend, parameter-efficient fine-
tuning (PEFT) methods (Li & Liang} [2021}; [Liu et al., 2022} [Houlsby et al., 2019} Hu et al.} [2022)
have emerged, enabling models to adapt to downstream tasks by updating only a small fraction of
parameters while keeping the majority frozen. Among various PEFT methods, Low-Rank Adap-
tation (LoRA) (Hu et al. 2022)) was proposed early and has become one of the most influential
approaches. LoRA is based on the intuition that parameter updates during fine-tuning often lie in
a low-dimensional subspace. It reparameterizes the update matrices as the product of two low-rank
matrices, thereby drastically reducing the number of trainable parameters while maintaining per-
formance comparable to full fine-tuning. Thanks to its simplicity, efficiency, and architecture-free
design, LoRA has been widely adopted in diverse domains, including language modeling (Hu et al.,
2022), multimodal learning (Microsoft et al [2025)), and recommender systems (Zhu et al.| [2024),
and has quickly become one of the most cited PEFT methods.

Most existing approaches allocate the same rank to all modules, which restricts the representa-
tional capacity and adaptation flexibility of the finetuned model. From our observations during
full-parameter fine-tuning and LoRA, not only do different modules within the same model exhibit
different optimal ranks, but even the same model may require different ranks when trained on dif-
ferent datasets. This suggests that it is unreasonable to predefine a fixed rank allocation for each
module in advance. A more practical strategy is to start with an initial allocation of ranks, and then
dynamically reallocate them during training. Although some prior works have considered rank vari-
ation (Zhang et al.l [2023bja)), they only explore one-sided changes—either rank reduction or rank
increase—rather than true reallocation across modules. Moreover, these studies do not explicitly
target the problem of redistributing ranks among modules. Rank-decreasing methods, inspired by
pruning, primarily aim to lower the number of parameters while retaining performance, but they
ignore the potential benefit of reallocating ranks and are strictly constrained by the upper bound of
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the initial rank. Conversely, rank-increasing methods provide module-specific adjustments, but their
training process is fundamentally limited by the initially low-rank matrices, often leading to training
instability.

To address the above limitations, we draw inspiration from interference theory in human learning
and propose a dynamic rank reallocation method (DaRA). Interference theory suggests that when
learning a new task, humans must first suppress or forget useless prior knowledge before effectively
acquiring new knowledge. Analogously, in DaRA, the rank of each module is viewed as a direc-
tion in the parameter space. During the warm-up stage, DaRA first allocates the same rank to all
modules, enabling the model to form a coarse understanding of the task. It then reallocates ranks
by discarding less important directions from unimportant modules (forgetting outdated knowledge)
and allocating new directions to critical modules to capture more task-relevant information (acquir-
ing new knowledge). To make this process efficient, we introduce a lightweight metric (Diao et al.,
2023)) to assess the relative importance of modules and guide the reallocation. This method mirrors
the human learning mechanism of forgetting and reinforcing, thus improving both adaptability and
performance.

Our contributions are summarized as follows:

* Motivated by interference theory in human learning and empirical observations from full-
parameter fine-tuning, we propose DaRA, a dynamic rank reallocation method. DaRA unifies
rank decrease and rank increase, enabling modules to first share a uniform rank during warm-up
and then adaptively reallocate ranks.

* We introduce a lightweight metric to efficiently assess module importance and guide the realloca-
tion process, enabling effective parameter reallocation without additional gradient computation.

» Through extensive experiments across multiple architectures and downstream tasks, we demon-
strate that DaRA achieves consistent improvements over existing PEFT baselines, offering
superior adaptability and performance under the same parameter budgets.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT) (Li & Liang, 2021} [Liu et al., [2022; [Houlsby et al.,
2019; Hu et al., [2022) has gained increasing attention as a way to reduce the computational and
storage costs of adapting large pre-trained models. Existing PEFT methods can be broadly cat-
egorized into selective and additive approaches. Selective methods update only a subset of the
original model parameters, such as BitFit (Zaken et al.|[2022), which tunes only bias terms, or Fish-
Mask (Sung et al.| 2021)), which selects parameters based on Fisher information, thereby reducing
trainable parameters but sometimes at the cost of sub-optimal performance. Additive methods, in-
cluding Adapters (Houlsby et al.,|2019), LoRA (Hu et al., [2022)), Prefix-Tuning (Li & Liang, |2021)),
and related variants, introduce small trainable modules into the model, allowing efficient fine-tuning
without additional inference overhead. Hybrid approaches (Mao et al., [2022; |Lawton et al., [2023))
further combine these strategies, often incorporating parameter sharing or pruning, to exploit redun-
dancy in PEFT modules and achieve better performance under limited parameter budgets. Overall,
PEFT enables flexible and efficient adaptation of large models while maintaining competitive accu-
racy with significantly fewer trainable parameters.

Low-Rank Adaptation (LoRA) (Hu et al.}, 2022) belongs to the second category of PEFT methods,
i.e., additive approaches, which introduce low-rank trainable modules into the model for efficient
fine-tuning without adding inference overhead. LoRA and its variants have received widespread
attention and inspired various research directions to improve their expressive capacity and adapt-
ability. For instance, [Zhang et al.| (2023b) employ SVD decomposition and prune less significant
singular values for more efficient updates; Hyeon-Woo et al.| (2022) focus on low-rank Hadamard
products in federated learning; [Liu et al.| (2024) utilize orthogonal factorization when fine-tuning
diffusion models; Renduchintala et al.| (2024) leverage weight tying to further reduce trainable pa-
rameters; |Yeh et al.[(2024) introduce a unified LoRA family framework for Stable Diffusion; [Ponti
et al.| (2023) select different combinations of LoRA modules via a routing function for different
tasks; and |Kopiczko et al.| (2024) implement learnable scaling vectors to adjust shared pairs of
frozen random matrices across layers.

Among these methods, some specifically focus on enhancing the rank of LoRA modules to improve
expressiveness. For example, KronA (Edalati et al.| 2022) increases the module rank via Kronecker
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Figure 1: Module Rank Contribution and Rank Change Trend. The subplots (a) and (b) show
the module rank of the OPT-125M(Zhang et all [2022)) model on the Winogrande (Sakaguchi et al)
[2020) dataset and the normalization across different checkpoints for the same module, respectively,

while (c) and (d) correspond to the results of DeBERTaV3-base (He et al.|[2023) on the CoLA (Wang]
2019) dataset.

products, and Efficient Learning with Sine-Activated Low-Rank Matrices boosts
rank using sine-based activations. These approaches generally increase the rank uniformly across
all modules, lacking flexible allocation for different modules. To address this, some methods ex-
plore dynamic rank adjustment: AdaLoRA (Zhang et al., 2023b) reduces ranks based on module
importance to save parameters, while IncreLoRA (Zhang et al., [2023a)) increases ranks to achieve
module-specific allocation. However, previous methods still suffer from certain limitations: ap-
proaches that uniformly increase ranks across all modules ignore the heterogeneous importance of
different modules, while methods that only decrease or only increase ranks restrict the flexibility
and expressiveness of LoRA. To overcome these issues, our work introduces dynamic rank realloca-
tion (DaRA), which is more flexible and expressive than single-direction rank adjustment methods.
Moreover, DaRA can be combined with strategies that uniformly increase ranks across all modules
to further enhance parameter-efficient fine-tuning.

3 ANALYSIS OF FULL-PARAMETER FINE-TUNING AND LORA

To further demonstrate the effectiveness of our method and the rationale for allocating different
ranks to different modules, we conduct experiments under both full-parameter fine-tuning (FFT)
and LoRA-based fine-tuning.

3.1 RANK DYNAMICS IN FULL-PARAMETER FINE-TUNING

FFT Formulation: Let M denote a pretrained model with parameter set © = {Wy, Ws, ..., W, }.
Fine-tuning (FT) refers to the process of adapting M on a downstream dataset by updating a subset
of parameters ©’ C O. In particular, when ©’ = ©, i.e., all parameters are updated, the process is
referred to as full-parameter fine-tuning (FFT).

To better understand the learning patterns of different modules under FFT, we conduct experiments
on multiple models across various datasets to trace the rank evolution of each module. To achieve
this, we measure the effective rank of module updates during training as follows.

Analysis Method: Let W € R%** denote the pretrained weight in set © and W} denote its weight
after the ¢-th training step. The module-wise update is computed as:

AW} =W - W) (D

To find the effective rank of each weight, we apply singular value decomposition (SVD) on AW}:

AW} = Utsi(vhT )

where X! = diag(oq,09,. .., Omin(d,k)) contains the singular values. Given a threshold 7, the
effective rank r* of the module at step ¢ is defined as the number of singular values whose normalized
contribution exceeds 7:



Under review as a conference paper at ICLR 2026

min(d,k) o
rl = 1 L o>r 3)
Z Zj 0j

=1

where 1(-) is the indicator function. This measure captures the number of dominant directions
contributing significantly to the module’s weight update at each training step.

Results and Analysis: The rank 7? of different modules across training steps is visualized in
[ure T] In[Figure 1] (b) and (d), we show how the ranks of different modules evolve over
the course of training, while (a) and (c) present a normalized visualization of
ranks for all modules at a single checkpoint, mapped to the range [0, 1]. Each row corresponds
to a specific checkpoint, and each column represents a particular module. The results reveal sig-
nificant differences in rank dynamics among modules: some modules exhibit gradually increasing
rank during training, while others remain rank or slightly decrease. This non-uniform distribution
of rank dynamics indicates that different modules contribute unevenly to the overall model expres-
siveness during FT, providing valuable insights for subsequent adaptive rank allocation strategies in
LoRA-based PEFT methods.

3.2 MODULE IMPORTANCE OF LORA

LoRA Formulation: LoRA models the weight update AW; of a pre-trained weight matrix W €
RI*k g5 a product of two low-rank matrices B € RY%" and A € R"™%* je.,

W) =W+ AW; = W + BA (4)

where r < min(d, k) is the rank. In standard practice, the same rank r is allocated uniformly to all
LoRA modules in the model.

Experimental Setup: To investigate the effect of
module-specific rank allocation, we conducted experi-
ments on the OPT model under a fixed total rank budget
and varied which modules were fine-tuned. The evalu-
ation was performed on SST-2 and Winogrande. The
modules we examined include the query (Q), key (K),
value (V), and output (O) projections in the attention
mechanism, as well as the two fully connected layers in
the FNN (FC1, FC2), along with their combinations. Figure 2: Parameter Size vs. Per-
This setup represents an extreme form of rank allo- formance between Different Modules.
cation, where some modules are assigned a rank of 0 Tuning different modules results in differ-
while others receive allocated ranks. ent performance.

Results and Analysis: Our experiments show that in the optimal modules to fine-tune
vary across different models and datasets. In some cases, fine-tuning only the query and value
projections can achieve high performance with relatively low overhead, while in other cases, fine-
tuning only the projection layers yields the best results with minimal parameter cost. Moreover, the
effectiveness of fine-tuning FC1 and FC2 differs across datasets. These results highlight that uniform
rank allocation across all modules may not be optimal, and that considering module-specific rank
allocation is crucial for maximizing the effectiveness of LoRA under a limited total rank budget.

Ratio of Performance
Ratio of Parameter Size

4 METHOD

As observed in[section 3| the optimal rank of different modules varies across models and datasets,
making it difficult to predefine the optimal rank for each module. A representative example is LoRA,
which follows a predefined allocation strategy and assumes that all modules share the same optimal
rank. This assumption is clearly unrealistic. To address this, we propose a compromise: we first
allocate the same initial rank to all modules, and then reallocate ranks during training based on
the behavior of the corresponding parameters. The distinction between the predefined allocation
paradigm and our reallocation paradigm is illustrated in [Figure 3]
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Figure 3: Differences between DaRA and Allocation LoRA, and the Analogy to Human Learn-
ing. The left figure illustrates the difference between DaRA and predefined rank allocation, showing
that this is only one component of the DaRA method, while the right figure presents the analogy be-
tween the method and human learning.

4.1 RANK ALLOCATION

At the beginning of training, our method allocates the same initial rank to all modules, following
the common practice in existing LoRA-based approaches. This uniform allocation ensures a fair
starting point where each module is granted equal expressive capacity, avoiding premature bias
toward certain directions. During this warm-up phase, the model explores the parameter space
under balanced conditions before adaptive reallocation begins.

LoRA can be equivalently formulated by representing A and B as collections of vectors:

A:[alva’Qa"'aaT]v B:[blabQ;“-abT]; (5)
with a; € R%n :b; € Rout, can then be further expanded as:
W=wO tw +ws+--+w, =W +bTa; +0Lay +--- +bLa,, (6)

where w; is a rank-1 matrix obtained by the outer product of b; and a;.

For the subsequent reallocation of ranks, we introduce a learnable scaling factor \; for each compo-
nent w;:

W =W 4+ 3 Nw; = WO +3 " \b] as, (7)
i=1 i=1

where each )\; is updated via backpropagation. The sequence \; reflects the relative importance
of different directions, allowing the model to adjust capacity dynamically by emphasizing or sup-
pressing specific rank components. In this way, although all modules start with identical ranks, their
effective contributions gradually diverge as \; values evolve, leading to a more adaptive and fine-
grained parameter re-allocation. To make this formulation more compact, we rewrite the update in
matrix form. Let A = diag(A1, A2, ..., A.), then the update can be written compactly as:

AW = BAA. ®)

To further ensure that each component w; captures distinct directions in the parameter space, we
impose an orthogonality regularization on A and B:

R(A,B)=||ATA-1I||% +||B"B—1I||%, 9)

where [ is the identity matrix. This reduces dependencies between rank components and ensures
that \; modulates contributions of diverse and independent directions—analogous to the orthogonal
bases U, V' in singular value decomposition (SVD).

In practice, this SVD-inspired triplet structure (B, A, A) replaces the original LoRA matrix, with
A stored as a one-dimensional tensor, introducing only r additional parameters per module. This
design keeps the formulation compact while enabling more expressive and flexible adaptation.

4.2 RANK REALLOCATION

To determine which modules have redundant ranks that should be pruned and which modules are
important and deserve more rank allocation, we introduce the PQ Index (PQI) from the pruning
literature, a lightweight metric for measuring parameter sparsity. The definition is as follows:
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Definition 1 (PQ Index). For any 0 < p < 1 < ¢ and non-zero w € R4, the PQ Index is

d
11 |lw 1/p
pg(w) = a3 120 g = (S ) (10)
=1

We write I(w) when (p, ¢) are clear from context. Intuitively, larger I(w) indicates a denser (less
sparse) distribution of mass across coordinates, whereas smaller I(w) indicates concentration on a
few entries (higher sparsity).

We employ PQI on the diagonal of matrix A in[Equation §]to quantify the relative importance of each
module. A larger PQI, which arises when the values of A are relatively uniform, suggests that all
ranks (i.e., the knowledge directions discussed in the previous subsection) contribute meaningfully,
indicating the potential benefit of allocating additional ranks to capture richer parameter directions.
Conversely, when certain entries of A are substantially smaller than others, the resulting lower PQI
reflects redundancy within the module, implying that some directions are uninformative and the
effective rank of the module can be reduced accordingly. In addition, PQI also satisfies the following
property (proof can be found in [Appendix B, which allows us to determine how much the rank of
each module should be decreased.

Theorem 1. Let M, denote the set of r indices of w with the largest magnitudes, and let 7,. be the

smallest value such that
S wil? < me D JwlP (1n
i¢ M, ieM,

Then
q qp

r>d(l4n) p [I(w)] P, (12)

After the warm-up phase, during which the model fully explores the parameter space under uni-
formly allocated ranks, we employ PQI to guide dynamic rank adjustment. This design ensures that
the model begins adaptation only after establishing a balanced foundation across all modules.

Concretely, by applying[Equation 12| with a given tolerance 7, we can determine the precise number
of ranks to be reduced for each module. Modules with lower PQI are considered to contain redundant
or uninformative directions, and their ranks are therefore safely reduced. This process parallels the
role of forgetting in human learning, where discarding useless or conflicting information enables
more efficient acquisition of new knowledge and frees capacity for more meaningful directions.

Furthermore, to ensure that important modules continue to gain sufficient expressive power, we
perform rank expansion at regular intervals of v steps. Specifically, modules with the highest PQI
are assigned additional ranks, allowing them to capture richer parameter directions.

Through PQI-guided rank reallocation, DaRA not only eliminates redundant directions but also
strengthens the most informative ones, thereby improving both training efficiency and parameter
utilization. The detailed algorithmic procedure is provided in[Appendix A]for completeness.

5 EXPERIMENT

‘We compare our method on natural language understanding tasks using DeBERTaV3-base (He et al.,
2023) with an additional classification layer on Glue (Wang et al., [2019). Furthermore, we in-
vestigate the performance of larger language models, including OPT-125M, [Zhang et al.| (2022)
Qwenl.5-1.8B (Bai et al., 2023), and LLaMA3.1-8B (Dubey et al., 2024), on question answering
benchmarks such as MathQA (Amini et al., [2019), OpenBookQA (Mihaylov et al., [2018)), Wino-
grande (Sakaguchi et al.|, [2020), and BoolQ (Clark et al., 2019).

Implementation Details. We implement all algorithms in PyTorch (Paszke et al., 2019), based on
the publicly available Huggingface Transformers library (Wolf et al., 2020). LoRA scales Ax by
a/r, where we set « = 2r, so that the output magnitude remains consistent across different values
of r. This reduces the need to retune the learning rate when varying r. Following LoRA, we apply
the same scaling for Eq. (3) and fix « as 2r.
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Table 1: Comparison between Methods on Glue.

MNLI SST-2 COLA QQP QNLI
Method Parmas Acc Acc Acc Acc Acc AVERAGE

LoRA 1.33M 86.85 9235 85.05 88.34 90.48 88.61
AdaLoRA 1.31M 88.42 9230 85.19  88.89 91.45 89.25
IncreLoRA  1.36M 88.51 92.79 8533  88.92 90.77 89.26
DaRA w 1.34M 89.22 92.89 8635 89.08 9141 89.79
DaRA ik 1.34M 89.14  93.16 85.82 8897 91.49 89.72

Methods. The baseline and our method are described as follows:

* LoRA (Hu et al.| [2022) is a state-of-the-art method for parameter-efficient fine-tuning. It parame-
terizes incremental updates using two low-rank matrices, with the number of trainable parameters
determined by the rank r and the number of adapted weight matrices n.

* AdaLoRA (Zhang et al [2023b) adaptively allocates parameter ranks during training based on
importance scores, thereby improving parameter utilization and efficiency.

* IncreLoRA (Zhang et al.||2023a) gradually increases the rank of LoRA modules during training
by dynamically expanding the parameter capacity.

e DaRA has been introduced in For rank expansion, we consider two initialization
schemes: (1) the LoRA default (Hu et al. 2022), with B = 0, A random, and A is an iden-
tity matrix; (2) task-direction initialization, using the mean of the top-% principal directions from
the previous rank.

5.1 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. We evaluate the fine-tuning performance of DeBERTaV3-base (He et al.,
2023)) using the proposed algorithm. Experiments are conducted on the General Language Under-
standing Evaluation (GLUE, (Wang et al.,|2019)) benchmark. Specifically, we select five represen-
tative datasets from GLUE for training, including MNLI, CoLA, QNLI, SST-2, and QQP. Dataset

details are summarized in[Appendix C

Implementation Details. We use PyTorch (Paszke et al,, |2019) and Transformers (Wolf et al.,
2020), and run all experiments on NVIDIA 4090 GPUs. IncreLoRA is applied to fine-tune
DeBERTaV3-base (He et al., 2023)), which has 12 layers, hidden size 768, and 183M parameters.
Update matrices are applied to all backbone weights, and the trainable parameter count is determined
by the final total rank 7qy,,. For instance, 7,y = 2 yields about 0.32M trainable parameters, while
we set 1y, = 8 in our experiments. Due to varying module sizes and early-stopping checkpoints of
our method, the actual parameter count may differ from this budget.

Results. In we compare the proposed method with the baseline models. Since the al-
location of trainable parameters for both the baseline methods and our method is not fixed across
different tasks, we report the average number of parameters across all tasks. The experimental re-
sults show that, under different tasks and parameter budgets, the parameter size of our method falls
between AdalLoRA and IncreLoRA, and its performance exhibits improvements compared to both.

Further analysis reveals a consistent trend in parameter allocation: our method tends to reduce the
rank of the QKV modules in LoRA, while increasing the rank of the projection layers and FNN
modules. This observation is consistent with the conclusions of IncreLoRA as well as the heatmap
results in Drawing upon findings from the knowledge editing literature, it can be in-
ferred that the QKV layers primarily capture general relational information, whereas the projection
layers and FNN modules are more likely to encode domain-specific knowledge. Since such rela-
tional information is relatively universal across domains and has already been sufficiently learned
during pre-training, allocating more parameter budget to the projection and FNN modules during
fine-tuning can more effectively enhance model performance. Although the FNN modules have far
more parameters than the attention modules, as shown in the table, our method still demonstrates
superior performance under nearly the same parameter scale.



Under review as a conference paper at ICLR 2026

Table 2: Comparison of Time Between Methods Across Different Base Models.

MathQA BoolQA OpenbookQA  Winogrande

Base Model Method Ace Ace Acc Acc Average
LoRA 22.02 62.20 16.06 50.81 37.77
AdaLoRA 22.47 62.20 16.11 51.19 37.99
OPT-125M (7avg = 16) IncreLoRA 22.56 62.20 16.21 51.51 38.12
DaRA v 22.42 62.21 16.12 51.41 38.04
DaRA sk 22.71 62.20 16.18 51.70 38.20
LoRA 25.33 69.17 22.30 51.49 42.07
AdalLoRA 26.62 69.17 25.83 51.57 43.30
Qwenl.5-1.8B (rayy = 8)  IncreLoRA 26.70 69.20 25.59 51.64 43.28
DaRA aw 26.73 69.31 25.94 51.64 43.41
DaRA sk 26.78 69.20 25.61 51.62 43.25
LoRA 39.42 84.35 37.23 55.44 54.11
AdaLoRA 39.56 84.54 37.96 55.57 54.41
LLaMA3.1-8B (rag = 8) IncreLoRA 39.62 84.65 38.23 55.69 54.55
DaRA.w 39.65 84.91 38.40 55.60 54.64
DaRA sk 39.68 84.68 38.08 55.66 54.53

5.2 REASONING AND QUESTION ANSWER

Models and Datasets. We evaluate the proposed algorithm on larger language models, includ-
ing OPT-125M, Qwen-1.8B, and LLaMA3.1-8B, using four question answering benchmarks:
MathQA (Amini et al) 2019) for math word problems, OpenBookQA (Mihaylov et al., [2018))
for scientific reasoning, Winogrande (Sakaguchi et al., 2020) for commonsense reasoning, and
BoolQ (Clark et al., 2019) for yes/no questions from search queries. Additional dataset details

are given in[Appendix C

Implementation Details. We conduct our experiments on NVIDIA A800 GPUs. We adopt In-
creLoRA with different target average ranks for different backbone models. For OPT-125M (Zhang
et al., 2022), we set the average target rank to r,y, = 16 and apply LoRA update matrices to all
weight matrices in the network. For Qwen (Bai et al.| 2023) and LLaMA (Dubey et al., [2024), we
use 7.y = 8 and restrict LoRA updates to the attention projection matrices @, K, V, O.

Results. We compare the proposed method with the baseline approaches in Table 2. The experi-
mental results show that on OPT-125M, our method consistently outperforms the baseline models,
and the improvements are similar to those observed on DeBERTaV3-base, demonstrating the ef-
fectiveness of the method on both encoder- and decoder-style models. For Qwen and LLaMA, the
parameter sizes of the LoRA-applied Q, K, V, and O weights are nearly identical. Nevertheless, our
method still achieves the best overall performance, indicating that the adaptive allocation strategy
remains effective even when the underlying parameter budgets are highly similar across modules.

6 ANALYSIS

0.510

6.1 EXPLANATION FOR PQI 0.505

As stated in[subsection 4.2] PQI reflects parameter spar-

sity, and thus, when computing A in the formula, it in-  0-4951
dicates the importance of the current set of directions. ¢ 490/ o
Moreover, this metric requires significantly less com-
putation than the importance scores used in AdaLoRA
and IncreLoRA. 0.4801

0.500

0.485

Furthermore, we conduct experiments on multiple 09338 0.9340 09342 09344 0.9346

datasets using the same model with randomly initial-

ized ranks for different modules, without performing Figure 4: PQI vs Test Accuracy. It can

be observed that PQI and test accuracy ex-
hibit a positive correlation.
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Figure 5: Rank Distribution with Different Methods. From left to right are the rank distributions
across different layers and modules for AdaLoRA, IncreLoRA, and our method.

any rank reallocation, and directly fine-tune the model. We observe from that during
the warm-up phase, i.e., when the initial accuracy is rising, PQI is positively correlated with test
performance. This also provides additional explanation for the effectiveness of using the PQI metric
to perform rank reallocation.

6.2 RANK DISTRIBUTION

Similar to AdalLoRA and IncreLoRA, we also analyze the rank distributions across different layers
and modules. presents the rank distributions of three methods on the Winogrande dataset
using the OPT model under approximately the same parameter budget. We find that AdaLoRA
produces a more evenly spread distribution, where ranks are allocated across different layers and
modules. In contrast, IncreLoRA focuses more heavily on the FNN modules and the projection
layers of the attention modules, while largely ignoring the functional differences across layers.

Our method lies between the two: it emphasizes the FNN and projection layers while also allocating
more ranks to the QKV modules in later layers. Since these layers directly affect task performance
and QKV modules are key to capturing attention, prioritizing them improves expressiveness, partic-
ularly for reasoning and semantic understanding tasks where later-layer attention strongly influences
output correctness.

Moreover, since our distribution is more concentrated than AdaLoRA but not as extreme as In-
creLoRA, the parameter count of our method naturally falls between the two.

6.3 CONVERGENCE SPEED AND STABILITY

We present the convergence curves of AdaLoRA, In- T pdatora,
creLoRA, and our method. It can be observed in 10 o
that our method exhibits a convergence speed
comparable to AdaLoRA in the early stage and signif- 8
icantly faster than IncreLoRA. In the later stage, how-

ever, the loss of our method becomes comparable to that 6

of IncreLoRA and higher than that of AdaLoRA.

This is because, in the early training stage, both our
method and Adal.oRA start with a higher rank, en- 0 200 400 600

abling faster convergence than IncreLoRA. With a

higher initial rank, our method is more likely to main-  Fjgure 6: Convergence Speeds of Differ-
tain an advantage and achieve lower loss. Compared ept Methods.

to AdaL.oRA, both methods show similar convergence

speed before rank reduction, but later our method gradually increases the rank, providing more pa-
rameter directions and thus sustaining or further reducing the loss. In contrast, AdaLoRA either
keeps or reduces the rank, which may cause the loss to stagnate or even increase.

7 CONCLUSION

In summary, we propose DaRA, a module-level dynamic rank reallocation method that integrates
previous rank reduction and rank expansion approaches while combining the advantages of both.
Moreover, it is the first to introduce the PQI metric, which significantly reduces the computational
overhead associated with module selection.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not raise any direct ethical concerns. All experiments are conducted on publicly
available datasets and do not involve human subjects, private information, or sensitive content. The
proposed methods are intended for advancing research on parameter-efficient fine-tuning of large
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A METHOD ALGORITHM

Algorithm 1 DaRA. D is dataset, M is target module set, A, 3, £ is the set of parameter matrices,
T is total steps, WV is warmup steps, 7 is learning rate, /1 is the number of modules selected in each
round, v/ is final total rank, interval -

Input:D, T, W, , h, rfinel
Parameter: A, B, &

1: for M} in M do
initalization(ag, bg, Ak )

3: end for

4: fort=1,....,T do

5:  Compute IJ(\Z for My in M
6.

7

8

N

if £ =) then R )
for [\" in min—h {I\" ... I{"} do

. F(t
Compute rank to decrease rgecrease according . ,g )

9: Delete smallest 7gecrease Ai and relative ag, by
10: Update 7o
11: end for
12:  endif
13:  ift > W and ry < rfina then
14: ift % p == 0 then
15: for S',Et) in top—h {S%t), e S'T(f)} do
16: Append new ay, b, A;, to A,(:), B,(:)7 Al(;)
17: initalization(ay, by, Ax)
18: end for
19: end if
20:  end if
21:  Update A® B®) £®)
22: end for

Output: The fine-tuned parameters { A7), B(T) £(T)}

B THEORETICAL PROOF

Proof of Theorem 2. Recall that M, is the largest » components of w, and 7, is a constant such that

Z ‘wilp < 7 Z |wz|p

i¢ M, ieM,
Therefore,

1
p
ol = D Tl | = | D fwil”+ D fwil”

1<i<d i€M, i¢ M,
1 1
P p 1
< (Z wil? + 9 > |wi|p> = (Z |wi|p> (1+mn)P
€M, i€EM, €M,
1
¢ 1 1 1 11 1
= (Z wz'q) rpa(1+n.)? = [wlgrr a(1+n.)P.

i€EM,

Rearranging the above inequality gives
q qp

P> d(L4n,) T [I(w) 7.
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C DETAILS OF DATASET

C.1 DETAILS OF GLUE

We provide a detailed description of GLUE and five selected subtasks below.

GLUE (General Language Understanding Evaluation) is a comprehensive benchmark for natural
language understanding, designed to assess the generalization ability of models across a diverse
set of tasks. It comprises nine subtasks in total, spanning grammatical acceptability, sentiment
analysis, semantic similarity, paraphrase detection, natural language inference, and question—answer
matching.

* CoLA (Corpus of Linguistic Acceptability): A single-sentence classification task that evaluates
whether a sentence is grammatically acceptable.

* SST-2 (Stanford Sentiment Treebank): A single-sentence sentiment classification task that de-
termines whether a movie review is positive or negative.

* QQP (Quora Question Pairs): A sentence-pair classification task that identifies whether two
questions from Quora convey the same meaning.

* MNLI (Multi-Genre Natural Language Inference): A natural language inference task that
predicts whether a hypothesis is entailed by, contradicts, or is neutral with respect to a given
premise.

* QNLI (Question Natural Language Inference): A sentence-pair classification task derived from
question answering, which determines whether a given sentence contains the answer to a question.

Table 3| presents the relevant statistics for each task.

Table 3: Summary of the GLUE benchmark.

Corpus Task #Train #Dev #Test #Label
Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2

SST-2 Sentiment 67k 872 1.8k 2
FPairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3
QQP Paraphrase 364k 40k 391k 2
QNLI QA/NLI 108k 5.7k 5.7k 2

C.2 DETAILS OF DATASET FOR QUESTION ANSWERING

We provide detailed introductions to the datasets used in our experiments.
¢ MathQA (Amini et al.,2019): A dataset of math word problems requiring models to parse natural
language into equations and perform multi-step numerical reasoning.

* OpenBookQA (Mihaylov et al.l 2018): A multiple-choice QA benchmark where solving ele-
mentary science questions requires combining provided core facts with additional commonsense
knowledge.

* Winogrande (Sakaguchi et al.,|2020): A large-scale commonsense reasoning dataset for pronoun
resolution, carefully constructed with adversarial filtering to reduce annotation artifacts.

* BoolQ (Clark et al.,2019): A yes/no question answering dataset with naturally occurring queries
paired with passages, testing reading comprehension and judgmental reasoning.

[Table 4l shows statics of datasets.
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Table 4: Summary of Question Answer Dataset.

Dataset #Train #Test
Mathqga 30k 3.0k
Boolq 9.2k 3.2k

Openbookqa 5.0k 0.5k
Winogrande 9.2k 1.3k

D EXPERIMENT DETAILS

D.1 DETAILS OF GLUE

We add a classification layer on top of DeBERTaV3-base, with the output dimension for each task
consistent with The specific training hyperparameters of our method and baselines for
each task are in {} indicates that a grid search was performed while keeping the other
hyperparameters fixed. Moreover, we ensure that all combinations across all methods can be trained
properly, with the loss decreasing and the accuracy improving as expected. And we We report the
average results over all combinations for each method.

Table 5: Training Details for Glue.

Dataset Epoch Batchsize Learning Rate Warm Up interval
CoLA 10 128 5x 1074 {100, 200, 300,400} {10, 30}
SST-2 1 128 5x 1074 {100, 200, 300, 400} {10, 30}
MNLI 1 128 5x 107 {400, 1000, 2000,4000} {200, 400}
QQP 1 128 5x 1074 {500, 1000, 1500} {100,200}
QNLI 1 128 5x 1074 {400, 700, 1000, 1300} {100,200}

D.2 DETAILS OF LLM TUNING AND EVALUATION

We conduct fine-tuning on three models across four datasets, with the training details summarized

in[Table 6

Table 6: Training Details for Question Answer.

Dataset Epoch Batchsize Learning Rate Warm Up interval
Mathqga 2 128 5x 1075 {100, 200, 300,400} {10, 30}
Boolq 10 128 5x 1075 {100, 200, 300,400} {10, 30}
Openbookqa 10 128 5x 1075 {100,200, 300,400} {10, 30}
Winogrande 10 128 5x 1075 {100, 200, 300,400} {10, 30}

We fine-tune the LLM with standard instruction tuning, and during evaluation we compute the per-
plexity (PPL) of each candidate option and select the one with the lowest perplexity (i.e., highest
probability) as the prediction.

E THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as a writing assistant to improve the clarity and
readability of the manuscript (e.g., polishing grammar and phrasing). The LLM was not involved in
research ideation, experimental design, implementation, or analysis. All scientific contributions and
results are entirely the work of the authors.
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