
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC RANK REALLOCATION FOR MODULE-
LEVEL LORA

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) and its variants have been widely applied in
parameter-efficient fine-tuning of large language models. However, most existing
approaches assign the same rank to all modules, which limits the representational
capacity and adaptation flexibility of the finetuned model. Inspired by interfer-
ence theory in human learning, which posits that forgetting outdated knowledge
while allocating more resources to relevant new knowledge facilitates better learn-
ing, we propose the Dynamic rank re-Allocation method (DaRA). In DaRA, the
rank of each module represents a direction in the parameter space, analogous to
a knowledge component. During warm-up, DaRA allocates the same rank to all
modules, allowing the model to form a coarse understanding of the task. After-
wards, DaRA reallocates ranks by discarding less useful directions from unimpor-
tant modules (outdated knowledge) and assigning more ranks to important mod-
ules (new knowledge). This dynamic adjustment mirrors the human learning pro-
cess described by interference theory. Extensive experiments across diverse model
architectures and downstream tasks demonstrate that DaRA consistently outper-
forms existing baselines.

1 INTRODUCTION

In recent years, the emergence of large-scale pre-trained models on general-domain corpora (Brown
et al., 2020; OpenAI, 2023; Touvron et al., 2023a;b; Bai et al., 2023; Mesnard et al., 2024; Zeng
et al., 2023) has firmly established the pretrain–fine-tune paradigm as the dominant framework for
natural language processing and multimodal learning. Alongside this trend, parameter-efficient fine-
tuning (PEFT) methods (Li & Liang, 2021; Liu et al., 2022; Houlsby et al., 2019; Hu et al., 2022)
have emerged, enabling models to adapt to downstream tasks by updating only a small fraction of
parameters while keeping the majority frozen. Among various PEFT methods, Low-Rank Adap-
tation (LoRA) (Hu et al., 2022) was proposed early and has become one of the most influential
approaches. LoRA is based on the intuition that parameter updates during fine-tuning often lie in
a low-dimensional subspace. It reparameterizes the update matrices as the product of two low-rank
matrices, thereby drastically reducing the number of trainable parameters while maintaining per-
formance comparable to full fine-tuning. Thanks to its simplicity, efficiency, and architecture-free
design, LoRA has been widely adopted in diverse domains, including language modeling (Hu et al.,
2022), multimodal learning (Microsoft et al., 2025), and recommender systems (Zhu et al., 2024),
and has quickly become one of the most cited PEFT methods.

Most existing approaches allocate the same rank to all modules, which restricts the representa-
tional capacity and adaptation flexibility of the finetuned model. From our observations during
full-parameter fine-tuning and LoRA, not only do different modules within the same model exhibit
different optimal ranks, but even the same model may require different ranks when trained on dif-
ferent datasets. This suggests that it is unreasonable to predefine a fixed rank allocation for each
module in advance. A more practical strategy is to start with an initial allocation of ranks, and then
dynamically reallocate them during training. Although some prior works have considered rank vari-
ation (Zhang et al., 2023b;a), they only explore one-sided changes—either rank reduction or rank
increase—rather than true reallocation across modules. Moreover, these studies do not explicitly
target the problem of redistributing ranks among modules. Rank-decreasing methods, inspired by
pruning, primarily aim to lower the number of parameters while retaining performance, but they
ignore the potential benefit of reallocating ranks and are strictly constrained by the upper bound of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the initial rank. Conversely, rank-increasing methods provide module-specific adjustments, but their
training process is fundamentally limited by the initially low-rank matrices, often leading to training
instability.

To address the above limitations, we draw inspiration from interference theory in human learning
and propose a dynamic rank reallocation method (DaRA). Interference theory suggests that when
learning a new task, humans must first suppress or forget useless prior knowledge before effectively
acquiring new knowledge. Analogously, in DaRA, the rank of each module is viewed as a direc-
tion in the parameter space. During the warm-up stage, DaRA first allocates the same rank to all
modules, enabling the model to form a coarse understanding of the task. It then reallocates ranks
by discarding less important directions from unimportant modules (forgetting outdated knowledge)
and allocating new directions to critical modules to capture more task-relevant information (acquir-
ing new knowledge). To make this process efficient, we introduce a lightweight metric (Diao et al.,
2023) to assess the relative importance of modules and guide the reallocation. This method mirrors
the human learning mechanism of forgetting and reinforcing, thus improving both adaptability and
performance.

Our contributions are summarized as follows:

• Motivated by interference theory in human learning and empirical observations from full-
parameter fine-tuning, we propose DaRA, a dynamic rank reallocation method. DaRA unifies
rank decrease and rank increase, enabling modules to first share a uniform rank during warm-up
and then adaptively reallocate ranks.

• We introduce a lightweight metric to efficiently assess module importance and guide the realloca-
tion process, enabling effective parameter reallocation without additional gradient computation.

• Through extensive experiments across multiple architectures and downstream tasks, we demon-
strate that DaRA achieves consistent improvements over existing PEFT baselines, offering
superior adaptability and performance under the same parameter budgets.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT) (Li & Liang, 2021; Liu et al., 2022; Houlsby et al.,
2019; Hu et al., 2022) has gained increasing attention as a way to reduce the computational and
storage costs of adapting large pre-trained models. Existing PEFT methods can be broadly cat-
egorized into selective and additive approaches. Selective methods update only a subset of the
original model parameters, such as BitFit (Zaken et al., 2022), which tunes only bias terms, or Fish-
Mask (Sung et al., 2021), which selects parameters based on Fisher information, thereby reducing
trainable parameters but sometimes at the cost of sub-optimal performance. Additive methods, in-
cluding Adapters (Houlsby et al., 2019), LoRA (Hu et al., 2022), Prefix-Tuning (Li & Liang, 2021),
and related variants, introduce small trainable modules into the model, allowing efficient fine-tuning
without additional inference overhead. Hybrid approaches (Mao et al., 2022; Lawton et al., 2023)
further combine these strategies, often incorporating parameter sharing or pruning, to exploit redun-
dancy in PEFT modules and achieve better performance under limited parameter budgets. Overall,
PEFT enables flexible and efficient adaptation of large models while maintaining competitive accu-
racy with significantly fewer trainable parameters.

Low-Rank Adaptation (LoRA) (Hu et al., 2022) belongs to the second category of PEFT methods,
i.e., additive approaches, which introduce low-rank trainable modules into the model for efficient
fine-tuning without adding inference overhead. LoRA and its variants have received widespread
attention and inspired various research directions to improve their expressive capacity and adapt-
ability. For instance, Zhang et al. (2023b) employ SVD decomposition and prune less significant
singular values for more efficient updates; Hyeon-Woo et al. (2022) focus on low-rank Hadamard
products in federated learning; Liu et al. (2024) utilize orthogonal factorization when fine-tuning
diffusion models; Renduchintala et al. (2024) leverage weight tying to further reduce trainable pa-
rameters; Yeh et al. (2024) introduce a unified LoRA family framework for Stable Diffusion; Ponti
et al. (2023) select different combinations of LoRA modules via a routing function for different
tasks; and Kopiczko et al. (2024) implement learnable scaling vectors to adjust shared pairs of
frozen random matrices across layers.

Among these methods, some specifically focus on enhancing the rank of LoRA modules to improve
expressiveness. For example, KronA (Edalati et al., 2022) increases the module rank via Kronecker

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

20

60

100

140

180

220

260

300

340

Module Contribution Rate

(a)

20

60

100

140

180

220

260

300

340

Rank Change Trend

(b)

20

60

100

140

180

220

260

300

340

Module Contribution Rate

(c)

20

60

100

140

180

220

260

300

340

Rank Change Trend

(d)

Figure 1: Module Rank Contribution and Rank Change Trend. The subplots (a) and (b) show
the module rank of the OPT-125M(Zhang et al., 2022) model on the Winogrande (Sakaguchi et al.,
2020) dataset and the normalization across different checkpoints for the same module, respectively,
while (c) and (d) correspond to the results of DeBERTaV3-base (He et al., 2023) on the CoLA (Wang
et al., 2019) dataset.

products, and Efficient Learning with Sine-Activated Low-Rank Matrices (Ji et al., 2025) boosts
rank using sine-based activations. These approaches generally increase the rank uniformly across
all modules, lacking flexible allocation for different modules. To address this, some methods ex-
plore dynamic rank adjustment: AdaLoRA (Zhang et al., 2023b) reduces ranks based on module
importance to save parameters, while IncreLoRA (Zhang et al., 2023a) increases ranks to achieve
module-specific allocation. However, previous methods still suffer from certain limitations: ap-
proaches that uniformly increase ranks across all modules ignore the heterogeneous importance of
different modules, while methods that only decrease or only increase ranks restrict the flexibility
and expressiveness of LoRA. To overcome these issues, our work introduces dynamic rank realloca-
tion (DaRA), which is more flexible and expressive than single-direction rank adjustment methods.
Moreover, DaRA can be combined with strategies that uniformly increase ranks across all modules
to further enhance parameter-efficient fine-tuning.

3 ANALYSIS OF FULL-PARAMETER FINE-TUNING AND LORA

To further demonstrate the effectiveness of our method and the rationale for allocating different
ranks to different modules, we conduct experiments under both full-parameter fine-tuning (FFT)
and LoRA-based fine-tuning.

3.1 RANK DYNAMICS IN FULL-PARAMETER FINE-TUNING

FFT Formulation: Let M denote a pretrained model with parameter set Θ = {W1,W2, . . . ,Wn}.
Fine-tuning (FT) refers to the process of adapting M on a downstream dataset by updating a subset
of parameters Θ′ ⊆ Θ. In particular, when Θ′ = Θ, i.e., all parameters are updated, the process is
referred to as full-parameter fine-tuning (FFT).

To better understand the learning patterns of different modules under FFT, we conduct experiments
on multiple models across various datasets to trace the rank evolution of each module. To achieve
this, we measure the effective rank of module updates during training as follows.

Analysis Method: Let W 0
i ∈ Rd×k denote the pretrained weight in set Θ and W t

i denote its weight
after the t-th training step. The module-wise update is computed as:

∆W t
i = W t

i −W 0
i (1)

To find the effective rank of each weight, we apply singular value decomposition (SVD) on ∆W t
i :

∆W t
i = U t

iΣ
t
i(V

t
i)

⊤ (2)

where Σt
i = diag(σ1, σ2, . . . , σmin(d,k)) contains the singular values. Given a threshold τ , the

effective rank rt of the module at step t is defined as the number of singular values whose normalized
contribution exceeds τ :

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

rti =

min(d,k)∑
l=1

1

(
σl∑
j σj

≥ τ

)
(3)

where 1(·) is the indicator function. This measure captures the number of dominant directions
contributing significantly to the module’s weight update at each training step.

Results and Analysis: The rank rt of different modules across training steps is visualized in Fig-
ure 1. In Figure 1 (b) and Figure 1 (d), we show how the ranks of different modules evolve over
the course of training, while Figure 1 (a) and Figure 1 (c) present a normalized visualization of
ranks for all modules at a single checkpoint, mapped to the range [0, 1]. Each row corresponds
to a specific checkpoint, and each column represents a particular module. The results reveal sig-
nificant differences in rank dynamics among modules: some modules exhibit gradually increasing
rank during training, while others remain rank or slightly decrease. This non-uniform distribution
of rank dynamics indicates that different modules contribute unevenly to the overall model expres-
siveness during FT, providing valuable insights for subsequent adaptive rank allocation strategies in
LoRA-based PEFT methods.

3.2 MODULE IMPORTANCE OF LORA

LoRA Formulation: LoRA models the weight update ∆Wi of a pre-trained weight matrix W 0
i ∈

Rd×k as a product of two low-rank matrices B ∈ Rd×r and A ∈ Rr×k, i.e.,

W ′
i = W 0

i +∆Wi = W 0
i +BA (4)

where r ≪ min(d, k) is the rank. In standard practice, the same rank r is allocated uniformly to all
LoRA modules in the model.

O Q,V Q,K,V Q,K,V,O Q,K,V,O,FC1,FC2 FC1 FC2 FC1,FC2

Ra
tio

 o
f P

er
fo

rm
an

ce

Ra
tio

 o
f P

ar
am

et
er

 S
ize

SST-2 Winogrande Param Size

Figure 2: Parameter Size vs. Per-
formance between Different Modules.
Tuning different modules results in differ-
ent performance.

Experimental Setup: To investigate the effect of
module-specific rank allocation, we conducted experi-
ments on the OPT model under a fixed total rank budget
and varied which modules were fine-tuned. The evalu-
ation was performed on SST-2 and Winogrande. The
modules we examined include the query (Q), key (K),
value (V), and output (O) projections in the attention
mechanism, as well as the two fully connected layers in
the FNN (FC1, FC2), along with their combinations.
This setup represents an extreme form of rank allo-
cation, where some modules are assigned a rank of 0
while others receive allocated ranks.

Results and Analysis: Our experiments show that in Figure 2, the optimal modules to fine-tune
vary across different models and datasets. In some cases, fine-tuning only the query and value
projections can achieve high performance with relatively low overhead, while in other cases, fine-
tuning only the projection layers yields the best results with minimal parameter cost. Moreover, the
effectiveness of fine-tuning FC1 and FC2 differs across datasets. These results highlight that uniform
rank allocation across all modules may not be optimal, and that considering module-specific rank
allocation is crucial for maximizing the effectiveness of LoRA under a limited total rank budget.

4 METHOD

As observed in section 3, the optimal rank of different modules varies across models and datasets,
making it difficult to predefine the optimal rank for each module. A representative example is LoRA,
which follows a predefined allocation strategy and assumes that all modules share the same optimal
rank. This assumption is clearly unrealistic. To address this, we propose a compromise: we first
allocate the same initial rank to all modules, and then reallocate ranks during training based on
the behavior of the corresponding parameters. The distinction between the predefined allocation
paradigm and our reallocation paradigm is illustrated in Figure 3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Rank reallocator … …𝑟𝑟1

𝑟𝑟1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑊𝑊1 ∈ 𝑅𝑅𝑚𝑚1×𝑛𝑛1

…… 𝑟𝑟

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑊𝑊1 ∈ 𝑅𝑅𝑚𝑚1×𝑛𝑛1

Rank allocator

Allocation LoRA Reallocation LoRA new
knowledge

learning useless
knowledge

unlearning

Human Learning
old

knowledge learning

target task

useless rank

finetuned
model

warm-up decrease rank
increase rank

during finetuning

DaRA
model

with lora

Figure 3: Differences between DaRA and Allocation LoRA, and the Analogy to Human Learn-
ing. The left figure illustrates the difference between DaRA and predefined rank allocation, showing
that this is only one component of the DaRA method, while the right figure presents the analogy be-
tween the method and human learning.

4.1 RANK ALLOCATION

At the beginning of training, our method allocates the same initial rank to all modules, following
the common practice in existing LoRA-based approaches. This uniform allocation ensures a fair
starting point where each module is granted equal expressive capacity, avoiding premature bias
toward certain directions. During this warm-up phase, the model explores the parameter space
under balanced conditions before adaptive reallocation begins.

LoRA can be equivalently formulated by representing A and B as collections of vectors:

A = [a1, a2, . . . , ar], B = [b1, b2, . . . , br], (5)

with ai ∈ Rdin , ; bi ∈ Rdout . Equation 4 can then be further expanded as:

W = W (0) + w1 + w2 + · · ·+ wr = W (0) + bT1 a1 + bT2 a2 + · · ·+ bTr ar, (6)

where wi is a rank-1 matrix obtained by the outer product of bi and ai.

For the subsequent reallocation of ranks, we introduce a learnable scaling factor λi for each compo-
nent wi:

W = W (0) +

r∑
i=1

λiwi = W (0) +

r∑
i=1

λib
T
i ai, (7)

where each λi is updated via backpropagation. The sequence λi reflects the relative importance
of different directions, allowing the model to adjust capacity dynamically by emphasizing or sup-
pressing specific rank components. In this way, although all modules start with identical ranks, their
effective contributions gradually diverge as λi values evolve, leading to a more adaptive and fine-
grained parameter re-allocation. To make this formulation more compact, we rewrite the update in
matrix form. Let Λ = diag(λ1, λ2, . . . , λr), then the update can be written compactly as:

∆W = BΛA. (8)

To further ensure that each component wi captures distinct directions in the parameter space, we
impose an orthogonality regularization on A and B:

R(A,B) = ||A⊤A− I||2F + ||B⊤B − I||2F , (9)

where I is the identity matrix. This reduces dependencies between rank components and ensures
that λi modulates contributions of diverse and independent directions—analogous to the orthogonal
bases U, V in singular value decomposition (SVD).

In practice, this SVD-inspired triplet structure (B,Λ, A) replaces the original LoRA matrix, with
Λ stored as a one-dimensional tensor, introducing only r additional parameters per module. This
design keeps the formulation compact while enabling more expressive and flexible adaptation.

4.2 RANK REALLOCATION

To determine which modules have redundant ranks that should be pruned and which modules are
important and deserve more rank allocation, we introduce the PQ Index (PQI) from the pruning
literature, a lightweight metric for measuring parameter sparsity. The definition is as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 1 (PQ Index). For any 0 < p ≤ 1 < q and non-zero w ∈ Rd, the PQ Index is

Ip,q(w) = d
1
q−

1
p
∥w∥p
∥w∥q

, ∥w∥p =
(d∑

i=1

|wi|p
)1/p

. (10)

We write I(w) when (p, q) are clear from context. Intuitively, larger I(w) indicates a denser (less
sparse) distribution of mass across coordinates, whereas smaller I(w) indicates concentration on a
few entries (higher sparsity).

We employ PQI on the diagonal of matrix Λ in Equation 8 to quantify the relative importance of each
module. A larger PQI, which arises when the values of Λ are relatively uniform, suggests that all
ranks (i.e., the knowledge directions discussed in the previous subsection) contribute meaningfully,
indicating the potential benefit of allocating additional ranks to capture richer parameter directions.
Conversely, when certain entries of Λ are substantially smaller than others, the resulting lower PQI
reflects redundancy within the module, implying that some directions are uninformative and the
effective rank of the module can be reduced accordingly. In addition, PQI also satisfies the following
property (proof can be found in Appendix B), which allows us to determine how much the rank of
each module should be decreased.

Theorem 1. Let Mr denote the set of r indices of w with the largest magnitudes, and let ηr be the
smallest value such that ∑

i/∈Mr

|wi|p ≤ ηr
∑
i∈Mr

|wi|p. (11)

Then

r ≥ d (1 + ηr)
− q

q−p
[
I(w)

] qp
q−p . (12)

After the warm-up phase, during which the model fully explores the parameter space under uni-
formly allocated ranks, we employ PQI to guide dynamic rank adjustment. This design ensures that
the model begins adaptation only after establishing a balanced foundation across all modules.

Concretely, by applying Equation 12 with a given tolerance η, we can determine the precise number
of ranks to be reduced for each module. Modules with lower PQI are considered to contain redundant
or uninformative directions, and their ranks are therefore safely reduced. This process parallels the
role of forgetting in human learning, where discarding useless or conflicting information enables
more efficient acquisition of new knowledge and frees capacity for more meaningful directions.

Furthermore, to ensure that important modules continue to gain sufficient expressive power, we
perform rank expansion at regular intervals of ν steps. Specifically, modules with the highest PQI
are assigned additional ranks, allowing them to capture richer parameter directions.

Through PQI-guided rank reallocation, DaRA not only eliminates redundant directions but also
strengthens the most informative ones, thereby improving both training efficiency and parameter
utilization. The detailed algorithmic procedure is provided in Appendix A for completeness.

5 EXPERIMENT

We compare our method on natural language understanding tasks using DeBERTaV3-base (He et al.,
2023) with an additional classification layer on Glue (Wang et al., 2019). Furthermore, we in-
vestigate the performance of larger language models, including OPT-125M, Zhang et al. (2022)
Qwen1.5-1.8B (Bai et al., 2023), and LLaMA3.1-8B (Dubey et al., 2024), on question answering
benchmarks such as MathQA (Amini et al., 2019), OpenBookQA (Mihaylov et al., 2018), Wino-
grande (Sakaguchi et al., 2020), and BoolQ (Clark et al., 2019).

Implementation Details. We implement all algorithms in PyTorch (Paszke et al., 2019), based on
the publicly available Huggingface Transformers library (Wolf et al., 2020). LoRA scales ∆x by
α/r, where we set α = 2r, so that the output magnitude remains consistent across different values
of r. This reduces the need to retune the learning rate when varying r. Following LoRA, we apply
the same scaling for Eq. (3) and fix α as 2r.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison between Methods on Glue.

Method Parmas
MNLI

Acc
SST-2
Acc

COLA
Acc

QQP
Acc

QNLI
Acc AVERAGE

LoRA 1.33M 86.85 92.35 85.05 88.34 90.48 88.61
AdaLoRA 1.31M 88.42 92.30 85.19 88.89 91.45 89.25
IncreLoRA 1.36M 88.51 92.79 85.33 88.92 90.77 89.26
DaRAraw 1.34M 89.22 92.89 86.35 89.08 91.41 89.79
DaRAtask 1.34M 89.14 93.16 85.82 88.97 91.49 89.72

Methods. The baseline and our method are described as follows:

• LoRA (Hu et al., 2022) is a state-of-the-art method for parameter-efficient fine-tuning. It parame-
terizes incremental updates using two low-rank matrices, with the number of trainable parameters
determined by the rank r and the number of adapted weight matrices n.

• AdaLoRA (Zhang et al., 2023b) adaptively allocates parameter ranks during training based on
importance scores, thereby improving parameter utilization and efficiency.

• IncreLoRA (Zhang et al., 2023a) gradually increases the rank of LoRA modules during training
by dynamically expanding the parameter capacity.

• DaRA has been introduced in section 4. For rank expansion, we consider two initialization
schemes: (1) the LoRA default (Hu et al., 2022), with B = 0, A random, and Λ is an iden-
tity matrix; (2) task-direction initialization, using the mean of the top-k principal directions from
the previous rank.

5.1 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. We evaluate the fine-tuning performance of DeBERTaV3-base (He et al.,
2023) using the proposed algorithm. Experiments are conducted on the General Language Under-
standing Evaluation (GLUE, (Wang et al., 2019)) benchmark. Specifically, we select five represen-
tative datasets from GLUE for training, including MNLI, CoLA, QNLI, SST-2, and QQP. Dataset
details are summarized in Appendix C.

Implementation Details. We use PyTorch (Paszke et al., 2019) and Transformers (Wolf et al.,
2020), and run all experiments on NVIDIA 4090 GPUs. IncreLoRA is applied to fine-tune
DeBERTaV3-base (He et al., 2023), which has 12 layers, hidden size 768, and 183M parameters.
Update matrices are applied to all backbone weights, and the trainable parameter count is determined
by the final total rank rfinal. For instance, ravg = 2 yields about 0.32M trainable parameters, while
we set ravg = 8 in our experiments. Due to varying module sizes and early-stopping checkpoints of
our method, the actual parameter count may differ from this budget.

Results. In Table 1, we compare the proposed method with the baseline models. Since the al-
location of trainable parameters for both the baseline methods and our method is not fixed across
different tasks, we report the average number of parameters across all tasks. The experimental re-
sults show that, under different tasks and parameter budgets, the parameter size of our method falls
between AdaLoRA and IncreLoRA, and its performance exhibits improvements compared to both.

Further analysis reveals a consistent trend in parameter allocation: our method tends to reduce the
rank of the QKV modules in LoRA, while increasing the rank of the projection layers and FNN
modules. This observation is consistent with the conclusions of IncreLoRA as well as the heatmap
results in subsection 3.1. Drawing upon findings from the knowledge editing literature, it can be in-
ferred that the QKV layers primarily capture general relational information, whereas the projection
layers and FNN modules are more likely to encode domain-specific knowledge. Since such rela-
tional information is relatively universal across domains and has already been sufficiently learned
during pre-training, allocating more parameter budget to the projection and FNN modules during
fine-tuning can more effectively enhance model performance. Although the FNN modules have far
more parameters than the attention modules, as shown in the table, our method still demonstrates
superior performance under nearly the same parameter scale.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Time Between Methods Across Different Base Models.

Base Model Method
MathQA

Acc
BoolQA

Acc
OpenbookQA

Acc
Winogrande

Acc Average

OPT-125M (ravg = 16)

LoRA 22.02 62.20 16.06 50.81 37.77
AdaLoRA 22.47 62.20 16.11 51.19 37.99
IncreLoRA 22.56 62.20 16.21 51.51 38.12
DaRAraw 22.42 62.21 16.12 51.41 38.04
DaRAtask 22.71 62.20 16.18 51.70 38.20

Qwen1.5-1.8B (ravg = 8)

LoRA 25.33 69.17 22.30 51.49 42.07
AdaLoRA 26.62 69.17 25.83 51.57 43.30
IncreLoRA 26.70 69.20 25.59 51.64 43.28
DaRAraw 26.73 69.31 25.94 51.64 43.41
DaRAtask 26.78 69.20 25.61 51.62 43.25

LLaMA3.1-8B (ravg = 8)

LoRA 39.42 84.35 37.23 55.44 54.11
AdaLoRA 39.56 84.54 37.96 55.57 54.41
IncreLoRA 39.62 84.65 38.23 55.69 54.55
DaRAraw 39.65 84.91 38.40 55.60 54.64
DaRAtask 39.68 84.68 38.08 55.66 54.53

5.2 REASONING AND QUESTION ANSWER

Models and Datasets. We evaluate the proposed algorithm on larger language models, includ-
ing OPT-125M, Qwen-1.8B, and LLaMA3.1-8B, using four question answering benchmarks:
MathQA (Amini et al., 2019) for math word problems, OpenBookQA (Mihaylov et al., 2018)
for scientific reasoning, Winogrande (Sakaguchi et al., 2020) for commonsense reasoning, and
BoolQ (Clark et al., 2019) for yes/no questions from search queries. Additional dataset details
are given in Appendix C.

Implementation Details. We conduct our experiments on NVIDIA A800 GPUs. We adopt In-
creLoRA with different target average ranks for different backbone models. For OPT-125M (Zhang
et al., 2022), we set the average target rank to ravg = 16 and apply LoRA update matrices to all
weight matrices in the network. For Qwen (Bai et al., 2023) and LLaMA (Dubey et al., 2024), we
use ravg = 8 and restrict LoRA updates to the attention projection matrices Q,K, V,O.

Results. We compare the proposed method with the baseline approaches in Table 2. The experi-
mental results show that on OPT-125M, our method consistently outperforms the baseline models,
and the improvements are similar to those observed on DeBERTaV3-base, demonstrating the ef-
fectiveness of the method on both encoder- and decoder-style models. For Qwen and LLaMA, the
parameter sizes of the LoRA-applied Q, K, V, and O weights are nearly identical. Nevertheless, our
method still achieves the best overall performance, indicating that the adaptive allocation strategy
remains effective even when the underlying parameter budgets are highly similar across modules.

6 ANALYSIS

6.1 EXPLANATION FOR PQI

0.9338 0.9340 0.9342 0.9344 0.9346

0.480

0.485

0.490

0.495

0.500

0.505

0.510

Figure 4: PQI vs Test Accuracy. It can
be observed that PQI and test accuracy ex-
hibit a positive correlation.

As stated in subsection 4.2, PQI reflects parameter spar-
sity, and thus, when computing Λ in the formula, it in-
dicates the importance of the current set of directions.
Moreover, this metric requires significantly less com-
putation than the importance scores used in AdaLoRA
and IncreLoRA.

Furthermore, we conduct experiments on multiple
datasets using the same model with randomly initial-
ized ranks for different modules, without performing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11
Layer

q_proj

k_proj

v_proj

out_proj

fc1

fc2

M
od

ul
e

0.50 0.25 0.38 0.62 0.12 0.38 0.50 1.00 0.12 1.00 1.00 0.50

0.25 0.62 0.75 1.00 0.25 0.88 0.88 0.38 0.50 0.88 1.00 1.00

1.00 0.62 0.50 1.00 1.00 1.00 1.00 0.12 0.38 0.12 1.00 1.00

1.00 0.38 0.62 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00 1.00

1.00 1.00 0.38 0.88 1.00 1.00 1.00 1.00 1.00 0.50 0.38 0.62

0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.12 1.00 1.00 1.00 1.00

(a)

0 1 2 3 4 5 6 7 8 9 10 11
Layer

q_proj

k_proj

v_proj

out_proj

fc1

fc2

M
od

ul
e

0.38 0.46 0.38 0.54 0.38 0.54 0.38 0.46 0.54 0.46 0.46 0.38

0.46 0.46 0.38 0.46 0.54 0.54 0.46 0.54 0.54 0.54 0.46 0.54

0.62 0.46 0.46 0.54 0.77 0.62 0.54 0.77 0.62 0.54 0.85 0.54

0.62 1.00 0.77 0.77 0.85 0.69 0.62 0.92 0.85 0.92 0.69 0.85

0.69 0.77 0.54 0.54 0.62 0.69 0.46 0.77 0.77 0.69 0.62 0.85

0.69 0.69 0.46 0.62 0.62 0.77 0.77 0.77 0.62 0.69 0.69 0.77

(b)

0 1 2 3 4 5 6 7 8 9 10 11
Layer

q_proj

k_proj

v_proj

out_proj

fc1

fc2

M
od

ul
e

0.50 0.50 0.50 0.75 0.50 0.50 0.75 0.42 0.58 0.50 0.75 0.75

0.50 0.50 0.50 0.50 0.50 0.75 0.50 0.75 0.50 0.58 0.50 0.75

0.50 0.92 0.50 0.50 0.83 0.83 0.50 0.50 0.50 0.83 0.83 0.83

0.50 0.50 0.50 0.83 0.50 0.83 0.83 0.92 0.92 1.00 0.83 0.67

0.50 0.50 0.67 0.50 0.50 0.92 0.50 0.75 0.92 0.50 0.92 0.83

0.50 0.50 0.83 0.83 0.50 0.83 0.75 0.75 0.83 0.92 0.92 0.83

(c)

Figure 5: Rank Distribution with Different Methods. From left to right are the rank distributions
across different layers and modules for AdaLoRA, IncreLoRA, and our method.

any rank reallocation, and directly fine-tune the model. We observe from Figure 4 that during
the warm-up phase, i.e., when the initial accuracy is rising, PQI is positively correlated with test
performance. This also provides additional explanation for the effectiveness of using the PQI metric
to perform rank reallocation.

6.2 RANK DISTRIBUTION

Similar to AdaLoRA and IncreLoRA, we also analyze the rank distributions across different layers
and modules. Figure 5 presents the rank distributions of three methods on the Winogrande dataset
using the OPT model under approximately the same parameter budget. We find that AdaLoRA
produces a more evenly spread distribution, where ranks are allocated across different layers and
modules. In contrast, IncreLoRA focuses more heavily on the FNN modules and the projection
layers of the attention modules, while largely ignoring the functional differences across layers.

Our method lies between the two: it emphasizes the FNN and projection layers while also allocating
more ranks to the QKV modules in later layers. Since these layers directly affect task performance
and QKV modules are key to capturing attention, prioritizing them improves expressiveness, partic-
ularly for reasoning and semantic understanding tasks where later-layer attention strongly influences
output correctness.

Moreover, since our distribution is more concentrated than AdaLoRA but not as extreme as In-
creLoRA, the parameter count of our method naturally falls between the two.

6.3 CONVERGENCE SPEED AND STABILITY

0 200 400 600

4

6

8

10

AdaLora
IncreLora
DrRA

Figure 6: Convergence Speeds of Differ-
ent Methods.

We present the convergence curves of AdaLoRA, In-
creLoRA, and our method. It can be observed in Fig-
ure 6 that our method exhibits a convergence speed
comparable to AdaLoRA in the early stage and signif-
icantly faster than IncreLoRA. In the later stage, how-
ever, the loss of our method becomes comparable to that
of IncreLoRA and higher than that of AdaLoRA.

This is because, in the early training stage, both our
method and AdaLoRA start with a higher rank, en-
abling faster convergence than IncreLoRA. With a
higher initial rank, our method is more likely to main-
tain an advantage and achieve lower loss. Compared
to AdaLoRA, both methods show similar convergence
speed before rank reduction, but later our method gradually increases the rank, providing more pa-
rameter directions and thus sustaining or further reducing the loss. In contrast, AdaLoRA either
keeps or reduces the rank, which may cause the loss to stagnate or even increase.

7 CONCLUSION

In summary, we propose DaRA, a module-level dynamic rank reallocation method that integrates
previous rank reduction and rank expansion approaches while combining the advantages of both.
Moreover, it is the first to introduce the PQI metric, which significantly reduces the computational
overhead associated with module selection.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not raise any direct ethical concerns. All experiments are conducted on publicly
available datasets and do not involve human subjects, private information, or sensitive content. The
proposed methods are intended for advancing research on parameter-efficient fine-tuning of large
language models. Potential societal impacts are consistent with those of general LLM research,
including both positive applications (e.g., lowering computational cost and energy consumption)
and risks of misuse (e.g., generating harmful or misleading text). We encourage responsible use of
our methods and adherence to ethical guidelines in AI research and deployment.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All datasets used in
this paper are publicly available and properly cited. The experimental settings, including model
architectures, hyperparameters, training steps, and evaluation metrics, are described in detail in
the main text and Appendix. For key results, we report the average performance over multiple
random seeds. In addition, we provide pseudo-code and algorithmic descriptions in the appendix
for clarity. Source code and instructions for reproducing our experiments will be made available
upon publication.

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. In NAACL-HLT, 2019.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan,
Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. CoRR, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL-
HLT, 2019.

Enmao Diao, Ganghua Wang, Jiawei Zhang, Yuhong Yang, Jie Ding, and Vahid Tarokh. Pruning
deep neural networks from a sparsity perspective. In ICLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson,
Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra,
Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of
models. CoRR, 2024.

Ali Edalati, Marzieh S. Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi Reza-
gholizadeh. Krona: Parameter efficient tuning with kronecker adapter. CoRR, 2022.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. In ICLR, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In ICML, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In ICLR, 2022.

Yiping Ji, Hemanth Saratchandran, Cameron Gordon, Zeyu Zhang, and Simon Lucey. Efficient
learning with sine-activated low-rank matrices. In ICLR, 2025.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation. In ICLR, 2024.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural architec-
ture search for parameter-efficient fine-tuning of large pre-trained language models, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
IJCNLP, 2021.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In ICLR, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In ACL, 2022.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Scott Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning. In
ACL, 2022.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose
Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak
Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne
Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Gr-
ishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway,
Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma: Open models based
on gemini research and technology. CoRR, 2024.

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai,
Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong
Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha
Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna Zhang, Yunan
Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
models via mixture-of-loras, 2025.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In EMNLP, 2018.

OpenAI. GPT-4 technical report. CoRR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining parameter-
efficient modules for task-level generalisation. In EACL, 2023.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter effi-
ciency of lora with weight tying. In NAACL, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In AAAI, 2020.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks. In
NeurIPS, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, 2023b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In EMNLP, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B. W. Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In ICLR,
2024.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In ACL, 2022.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130B: an open bilingual
pre-trained model. In ICLR, 2023.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. CoRR,
2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. In ICLR, 2023b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: open pre-trained transformer language models. CoRR, 2022.

Jiachen Zhu, Jianghao Lin, Xinyi Dai, Bo Chen, Rong Shan, Jieming Zhu, Ruiming Tang, Yong
Yu, and Weinan Zhang. Lifelong personalized low-rank adaptation of large language models for
recommendation. CoRR, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A METHOD ALGORITHM

Algorithm 1 DaRA. D is dataset, M is target module set, A,B, E is the set of parameter matrices,
T is total steps, W is warmup steps, η is learning rate, h is the number of modules selected in each
round, rfinal is final total rank, interval µ.
Input:D, T , W , η, h, rfinal
Parameter: A,B, E

1: for Mk in M do
2: initalization(ak, bk, λk)
3: end for
4: for t = 1, ..., T do
5: Compute I

(t)
Mk

for Mk in M
6: if t = W then
7: for Î

(t)
k in min−h {Î(t)1 , ..., Î

(t)
n } do

8: Compute rank to decrease rdecrease according Î
(t)
k

9: Delete smallest rdecrease λk and relative ak, bk
10: Update rtotal
11: end for
12: end if
13: if t > W and rtotal < rfinal then
14: if t % µ == 0 then
15: for Ŝ

(t)
k in top−h {Ŝ(t)

1 , ..., Ŝ
(t)
n } do

16: Append new ak, bk, λk to A
(t)
k , B

(t)
k ,Λ

(t)
k

17: initalization(ak, bk, λk)
18: end for
19: end if
20: end if
21: Update A(t),B(t), E(t)

22: end for
Output: The fine-tuned parameters {A(T),B(T), E(T)}

B THEORETICAL PROOF

Proof of Theorem 2. Recall that Mr is the largest r components of w, and ηr is a constant such that∑
i/∈Mr

|wi|p ≤ ηr
∑
i∈Mr

|wi|p.

Therefore,

∥w∥p =

 ∑
1≤i≤d

|wi|p


1
p

=

∑
i∈Mr

|wi|p +
∑
i/∈Mr

|wi|p


1
p

≤

(∑
i∈Mr

|wi|p + ηr
∑
i∈Mr

|wi|p
) 1

p

=

(∑
i∈Mr

|wi|p
) 1

p

(1 + ηr)
1
p

≤

(∑
i∈Mr

|wi|q
) 1

q

r
1
p− 1

q (1 + ηr)
1
p = ∥w∥q r

1
p− 1

q (1 + ηr)
1
p .

Rearranging the above inequality gives

r ≥ d(1 + ηr)
− q

q−p [I(w)]
qp
q−p .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C DETAILS OF DATASET

C.1 DETAILS OF GLUE

We provide a detailed description of GLUE and five selected subtasks below.

GLUE (General Language Understanding Evaluation) is a comprehensive benchmark for natural
language understanding, designed to assess the generalization ability of models across a diverse
set of tasks. It comprises nine subtasks in total, spanning grammatical acceptability, sentiment
analysis, semantic similarity, paraphrase detection, natural language inference, and question–answer
matching.

• CoLA (Corpus of Linguistic Acceptability): A single-sentence classification task that evaluates
whether a sentence is grammatically acceptable.

• SST-2 (Stanford Sentiment Treebank): A single-sentence sentiment classification task that de-
termines whether a movie review is positive or negative.

• QQP (Quora Question Pairs): A sentence-pair classification task that identifies whether two
questions from Quora convey the same meaning.

• MNLI (Multi-Genre Natural Language Inference): A natural language inference task that
predicts whether a hypothesis is entailed by, contradicts, or is neutral with respect to a given
premise.

• QNLI (Question Natural Language Inference): A sentence-pair classification task derived from
question answering, which determines whether a given sentence contains the answer to a question.

Table 3 presents the relevant statistics for each task.

Table 3: Summary of the GLUE benchmark.

Corpus Task #Train #Dev #Test #Label
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2
SST-2 Sentiment 67k 872 1.8k 2

Pairwise Text Classification (GLUE)

MNLI NLI 393k 20k 20k 3
QQP Paraphrase 364k 40k 391k 2
QNLI QA/NLI 108k 5.7k 5.7k 2

C.2 DETAILS OF DATASET FOR QUESTION ANSWERING

We provide detailed introductions to the datasets used in our experiments.

• MathQA (Amini et al., 2019): A dataset of math word problems requiring models to parse natural
language into equations and perform multi-step numerical reasoning.

• OpenBookQA (Mihaylov et al., 2018): A multiple-choice QA benchmark where solving ele-
mentary science questions requires combining provided core facts with additional commonsense
knowledge.

• Winogrande (Sakaguchi et al., 2020): A large-scale commonsense reasoning dataset for pronoun
resolution, carefully constructed with adversarial filtering to reduce annotation artifacts.

• BoolQ (Clark et al., 2019): A yes/no question answering dataset with naturally occurring queries
paired with passages, testing reading comprehension and judgmental reasoning.

Table 4 shows statics of datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Summary of Question Answer Dataset.

Dataset #Train #Test
Mathqa 30k 3.0k
Boolq 9.2k 3.2k
Openbookqa 5.0k 0.5k
Winogrande 9.2k 1.3k

D EXPERIMENT DETAILS

D.1 DETAILS OF GLUE

We add a classification layer on top of DeBERTaV3-base, with the output dimension for each task
consistent with Table 3. The specific training hyperparameters of our method and baselines for
each task are in Table 5. {} indicates that a grid search was performed while keeping the other
hyperparameters fixed. Moreover, we ensure that all combinations across all methods can be trained
properly, with the loss decreasing and the accuracy improving as expected. And we We report the
average results over all combinations for each method.

Table 5: Training Details for Glue.

Dataset Epoch Batchsize Learning Rate Warm Up interval

CoLA 10 128 5× 10−4 {100, 200, 300, 400} {10, 30}
SST-2 1 128 5× 10−4 {100, 200, 300, 400} {10, 30}
MNLI 1 128 5× 10−4 {400, 1000, 2000, 4000} {200, 400}
QQP 1 128 5× 10−4 {500, 1000, 1500} {100, 200}
QNLI 1 128 5× 10−4 {400, 700, 1000, 1300} {100, 200}

D.2 DETAILS OF LLM TUNING AND EVALUATION

We conduct fine-tuning on three models across four datasets, with the training details summarized
in Table 6.

Table 6: Training Details for Question Answer.

Dataset Epoch Batchsize Learning Rate Warm Up interval

Mathqa 2 128 5× 10−5 {100, 200, 300, 400} {10, 30}
Boolq 10 128 5× 10−5 {100, 200, 300, 400} {10, 30}
Openbookqa 10 128 5× 10−5 {100, 200, 300, 400} {10, 30}
Winogrande 10 128 5× 10−5 {100, 200, 300, 400} {10, 30}

We fine-tune the LLM with standard instruction tuning, and during evaluation we compute the per-
plexity (PPL) of each candidate option and select the one with the lowest perplexity (i.e., highest
probability) as the prediction.

E THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as a writing assistant to improve the clarity and
readability of the manuscript (e.g., polishing grammar and phrasing). The LLM was not involved in
research ideation, experimental design, implementation, or analysis. All scientific contributions and
results are entirely the work of the authors.

16

	Introduction
	Related Work
	Analysis of Full-parameter Fine-Tuning and LoRA
	Rank Dynamics in Full-Parameter Fine-Tuning
	Module importance of LORA

	Method
	Rank Allocation
	Rank Reallocation

	Experiment
	NATURAL LANGUAGE UNDERSTANDING
	REASONING AND QUESTION ANSWER

	Analysis
	Explanation for PQI
	Rank Distribution
	Convergence Speed and stability

	Conclusion
	Method Algorithm
	Theoretical proof
	Details of Dataset
	Details of Glue
	Details of Dataset for Question Answering

	Experiment Details
	Details of Glue
	Details of LLM Tuning and Evaluation

	The Use of Large Language Models

