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ABSTRACT

Cross-domain reinforcement learning (CDRL) is meant to improve the data effi-
ciency of RL by leveraging the data samples collected from a source domain to
facilitate the learning in a similar target domain. Despite its potential, cross-domain
transfer in RL is known to have two fundamental and intertwined challenges: (i)
The source and target domains can have distinct state space or action space, and
this makes direct transfer infeasible and thereby requires more sophisticated inter-
domain mappings; (ii) The transferability of a source-domain model in RL is not
easily identifiable a priori, and hence CDRL can be prone to negative effect during
transfer. In this paper, we propose to jointly tackle these two challenges through
the lens of cross-domain Bellman consistency and hybrid critic. Specifically, we
first introduce the notion of cross-domain Bellman consistency as a way to measure
transferability of a source-domain model. Then, we propose QAvatar, which com-
bines the Q functions from both the source and target domains with an adaptive
hyperparameter-free weight function. Through this design, we characterize the
convergence behavior of QAvatar and show that QAvatar achieves reliable transfer
in the sense that it effectively leverages a source-domain Q function for knowledge
transfer to the target domain. Through experiments, we demonstrate that QAvatar
achieves favorable transferability across various RL benchmark tasks, including
locomotion and robot arm manipulation.

1 INTRODUCTION

Cross-domain reinforcement learning (CDRL) serves as a practical framework to improve the sample
efficiency of RL from the perspective of transfer learning, which leverages the pre-trained models
from a source domain to enable knowledge transfer to the target domain, under the presumption that
the data collection and model training are much less costly in the source domain (e.g., simulators). A
plethora of the existing CDRL methods focuses on knowledge transfer across environments that share
the same state-action spaces but with different transition dynamics. This setting has been extensively
studied from a variety of perspectives, such as reward augmentation (Eysenbach et al., 2021; Liu
et al., 2022), data filtering (Xu et al., 2023), and latent representations (Lyu et al., 2024). Despite
the above progress, to fully realize the promise of CDRL, there are two fundamental challenges to
tackle: (i) Distinct state and/or action spaces between domains: To support flexible transfer across a
wide variety of domains, the generic CDRL is required to address the discrepancies in the state and
action spaces between source and target domains. Take robot control as an example. One common
scenario is to apply direct policy transfer between robot agents of different morphologies (Zhang
et al., 2021), which naturally leads to a discrepancy in representations. This discrepancy significantly
complicates the transfer of either data samples or learned source-domain models. (ii) Unknown
transferability of a source-domain model to the target domain: CDRL conventionally presumes
that the source-domain model can achieve effective transfer under a properly learned cross-domain
correspondence. However, in practice, given that the data budget of the target domain is limited, it
is rather difficult to determine a priori the transferability of a source-domain model. Indeed, it has
been widely observed that transfer learning from the source domain can have a negative impact on
the target domain (Weiss et al., 2016; Pan & Yang, 2009).

As a consequence, despite that CDRL has been shown to succeed in various scenarios, without a
proper design, the performance of CDRL could actually be much worse than the vanilla target-domain
model learned without using any source knowledge. Notably, to tackle (i), several approaches have
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been proposed to address such representation discrepancy by learning state-action correspondence,
either in the typical RL (You et al., 2022) or unsupervised settings (Zhang et al., 2021; Gui et al.,
2023). However, existing solutions are all oblivious to the issues of model transferability between the
domains. Hence, one fundamental research question about CDRL remains largely open:

How to achieve effective transfer in CDRL under distinct state-action spaces without the knowledge
of the transferability of the pre-trained source-domain model?

In this paper, we affirmatively address the above question by revisiting cross-domain state-action
correspondence through the lens of cross-domain Bellman consistency, which quantifies the transfer-
ability of a source-domain model. To enable reliable transfer across varying levels of source-model
transferability, we introduce a novel CDRL framework, QAvatar, which integrates source-domain and
target-domain critics. Drawing an analogy from the movie Avatar, where humans remotely control
genetically engineered bodies to adapt to alien environments, QAvatar updates the target-domain
policy via a weighted combination of the target- and source-domain Q functions, while learning the
state-action correspondence by minimizing a cross-domain Bellman loss.

To validate this idea, we first present a tabular prototype of QAvatar and show that it attains a tight
sub-optimality bound under an adaptive, hyperparameter-free weight function, regardless of source
model transferability. This ensures improved sample efficiency while avoiding poor transfer. Building
on this, we develop a practical version by combiningQAvatar with a normalizing flow–based mapping
for learning state–action correspondence.

The main contributions of this paper can be summarized as follows: 1) We propose the QAvatar
framework that achieves knowledge transfer between two domains with distinct state and action spaces
for improving sample efficiency. We then present a prototypical QAvatar algorithm and establish its
convergence property. 2) We further substantiate the QAvatar framework by proposing a practical
implementation with a normalizing-flow-based state-action mapping. This further demonstrates the
compatibility of QAvatar with off-the-shelf methods for learning state-action correspondence. 3)
Through experiments and an ablation study, we show thatQAvatar outperforms the CDRL benchmark
algorithms on various RL benchmark tasks.

2 RELATED WORK

CDRL across domains with distinct state and action spaces. The existing approaches can be
divided into two main categories: (i) Manually designed latent mapping: In (Ammar & Taylor,
2012; Gupta et al., 2017; Ammar et al., 2012), the trajectories are mapped manually from the source
domain and the target domain to a common latent space. The distance between latent states can
then be calculated to find the correspondence of the states from the different domains. (ii) Learned
inter-domain mapping: In (Taylor et al., 2008; Zhang et al., 2021; You et al., 2022; Gui et al., 2023;
Zhu et al., 2024), the inter-domain mapping is mainly learned by enforcing dynamics alignment (or
termed dynamics cycle consistency in (Zhang et al., 2021)). Additional properties have also been
incorporated as auxiliary loss functions in learning the inter-domain mapping, including domain
cycle consistency (Zhang et al., 2021), effect cycle consistency (Zhu et al., 2024), maximizing mutual
information between states and embeddings (You et al., 2022) However, the existing approaches all
presume that the domains are sufficiently similar and do not have any performance guarantees. By
contrast, we propose a reliable CDRL method that can achieve transfer regardless of source-domain
model quality or domain similarity with guarantees.

CDRL across domains with identical state and action spaces. Various methods have been proposed
for the case where source and target domains share the same state and action spaces but are subject
to dynamics mismatch. Existing methods include (i) using the samples from both source and target
domains jointly for learning (Eysenbach et al., 2021; Liu et al., 2022; Xu et al., 2023; Lyu et al.,
2024), (ii) explicit characterization of domain similarity (Behboudian et al., 2022; Sreenivasan et al.,
2023), and (iii) using both Q-functions for Q-learning updates (Wang et al., 2020). However, given
the assumption on identical state-action spaces, they are not readily applicable to our CDRL setting.

3 PRELIMINARIES

In this section, we provide the problem statement and basic building blocks of CDRL as well as
the useful notation needed by subsequent sections. For a set X , we let ∆(X ) denote the set of
probability distributions over X . As in typical RL, we model each environment as an infinite-horizon
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discounted Markov decision process (MDP) denoted by M := (S,A, P, r, γ, µ), where (i) S and A
represent the state space and action space, (ii) P : S ×A → ∆(S) denotes the transition function,
(iii) r : S ×A → [0, 1] is the reward function (without loss of generality, we presume the rewards
lie in the [0, 1] interval), (iv) γ ∈ [0, 1) is the discounted factor, and (v) µ ∈ ∆(S ×A) denotes the
initial state-action distribution. Notably, the use of an initial distribution over states and actions is a
standard setting in the literature of natural policy gradient (NPG) (Agarwal et al., 2021a; Ding et al.,
2020; Yuan et al., 2022; Agarwal et al., 2020; Zhou et al., 2024). Given any policy π : S → ∆(A),
let τ = (s0, a0, r1, · · · ) denote a (random) trajectory generated under π in M, and the expected
total discounted reward under π is V πM(µ) := E[

∑∞
t=0 γ

tr(st, at)|π; s0, a0 ∼ µ]. We use QπM(s, a)
and V πM(s) to denote the Q function and value function of a policy π. We also define the state-
action visitation distribution (also known as the occupancy measure in the MDP literature) of π as
dπ(s, a) := (1− γ)

(
µ(s, a) +

∑∞
t=1 γ

tP(st = s, at = a;π, µ)
)
, for each (s, a).

Problem Statement of Cross-Domain RL. In typical CDRL, the knowledge transfer involves two
MDPs, namely the source-domain MDP Msrc := (Ssrc,Asrc, Psrc, rsrc, γ, µsrc) and the target-domain
MDP Mtar := (S tar,Atar, Ptar, rtar, γ, µtar)

1. Notably, in addition to distinct state and action spaces,
the two domains can have different reward functions, transition dynamics, and initial distributions.
We assume that the two MDPs share the same discounted factor γ, which is rather mild. Moreover,
the trajectories of the two domains are completely unpaired. Let Πtar be the set of all stationary
Markov policies for Mtar.

The goal of the RL agent is to learn a policy π∗ in the target domain such that the expected total
discounted reward is maximized, i.e., π∗ := argmaxπ∈Πtar V

π
Mtar

(µtar). To improve sample efficiency
via knowledge transfer (compared to learning from scratch), in CDRL, the target-domain agent
is granted access to (πsrc, Qsrc, Vsrc), which denotes a policy and the corresponding Q and value
functions pre-trained in Msrc. Notably, we make no assumption on the quality of πsrc (and hence
πsrc may not be optimal to Msrc), despite that πsrc shall exhibit acceptable performance in practice.

In this paper, we focus on designing a reliable CDRL algorithm in that it effectively leverages a
source-domain Q function Qsrc for knowledge transfer to the target domain, regardless of the quality
of Qsrc and domain similarity.

Inter-Domain Mapping Functions. To address the discrepancy in state-action spaces in CDRL,
learning an inter-domain mapping is one common block of many CDRL algorithms. Specifically,
there are a variety of ways to construct the mapping functions, such as handcrafted functions (Ammar
& Taylor, 2012), encoders and decoders trained by cycle consistency You et al. (2022) like cycle-GAN
(Zhu et al., 2017), neural networks trained by dynamics alignment of the MDPs (Gui et al., 2023).
Moreover, mapping functions have various candidate target spaces, such as a latent space, state or
action spaces of the target domain (i.e., from Ssrc,Asrc to S tar,Atar), and state or action spaces of the
source domain (i.e., from S tar,Atar to Ssrc,Asrc).

For example, Gui et al. (2023) proposed learning two mappings, G1 : S tar → Ssrc and G2 : Asrc →
Atar, via dynamics alignment, which infers the unknown mapping between unpaired trajectories of
Msrc and Mtar by aligning one-step state transitions. However, this unsupervised approach provides
no performance guarantee and can suffer from identification issues. By contrast, we propose learning
inter-domain state and action mappings, ϕ : S tar → Ssrc and ψ : Atar → Asrc, using a cross-domain
Bellman-like loss with guarantees (Section 4). Appendix D.1 shows a toy example where cycle
consistency fails, but the Bellman-like loss leverages target rewards to learn a better mapping.

Tabular Approximate Q–Natural Policy Gradient. Natural Policy Gradient (NPG) (Kakade,
2001; Agarwal et al., 2019) is a classical RL algorithm. In this paper, we adopt NPG under two
assumptions to analyze CDRL: (i) Tabular setting: finite state and action spaces, with independent
parameters for each state–action pair (s, a); (ii) Approximate Q-function: the trueQπ is inaccessible
due to limited data, so we use an empirical approximation from samples. At iteration t, we first collect
data D(t) by executing π(t), then obtain Q(t) by minimizing the standard TD loss for least-squares
policy evaluation (LSPE) (Lagoudakis & Parr, 2001; Yu & Bertsekas, 2009; Lazaric et al., 2012)2

LTD(Q
(t);π(t),D(t)) := Ê(s,a,r,s′)∈D(t)

[∣∣r + γEa′∼π(t) [Q(t)(s′, a′)]−Q(t)(s, a)
∣∣2]. (1)

1Throughout this paper, we use the subscripts “src" and “tar" to represent the objects in the source and target
domains, respectively.

2LSPE under linear function approximation includes the tabular case via one-hot features:
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Finally, we perform a one-step policy improvement: π(t+1)(a|s) ∝ π(t)(a|s) exp
(
ηQ(t)(s, a)

)
,

where η is the learning rate. This update improves the policy while staying close to the original.

Notation. Throughout this paper, for any policy π and any real-valued function h : S ×A → R,
we use h(s, π) and h̄(s, a;π) as the shorthand for Ea∼π(·|s)[h(s, a)] and h(s, a)−Ea∼π(·|s)[h(s, a)],
respectively. For any real vector z and p ≥ 1, we let ∥z∥p be the ℓp-norm of z. For any real-valued
function f : S ×A → R, we use ∥f∥

dπ
(t) as the shorthand for E

(s,a)∼dπ(t)

[
f(s, a)

]
.

4 METHODOLOGY
Algorithm 1 Direct Q Transfer (DQT)

Require: Source-domain Q function Qsrc, total
iterations T , and η = (1− γ)

√
1/T .

1: Initialize π(1) as a uniformly random policy.
2: for iteration t = 1, · · · , T do
3: Select ϕ(t) and ψ(t)

4: Update target-domain policy as in (3).
5: end for
6: Return π(T )

tar ∼ Uniform({π(1), · · · , π(T )}).

In this section, we first describe the concept of
cross-domain Bellman consistency and accord-
ingly propose the QAvatar framework in the
tabular setting (i.e., S tar and Atar are finite). We
then extend this framework to a practical deep
RL implementation.

4.1 CROSS-DOMAIN
BELLMAN CONSISTENCY

To motivate Source domain Q-function transfer, we present the sub-optimal gap of traditional NPG.
First, we describe the definitions of state-action distribution coverage and TD error.
Definition 1 (Coverage). Given a target-domain policy π† in Mtar, we say that π† has coverage Cπ†

if for any policy π ∈ Πtar, we have ∥dπ†
/dπ∥∞ ≤ Cπ† .

Assumption 1. The initial distribution is exploratory, i.e., µtar(s, a) > 0, for all s, a.

Notably, Cπ† is finite if ∥dπ†
/µtar∥∞ is finite (since ∥µtar/d

π∥∞ ≤ 1/(1 − γ) for all π by the
definition of dπ), which holds under an exploratory initial distribution with µtar(s, a) > 0 for all
(s, a)—a standard assumption in the NPG literature (Agarwal et al., 2021a; Ding et al., 2020; Yuan
et al., 2022; Agarwal et al., 2020; Zhou et al., 2024). Intuitively, coverage enables direct comparison
of Bellman errors between policies. We also use µtar,min as shorthand for mins,a µtar(s, a).

Definition 2 (TD Error). For each state-action pair (s, a) and t ∈ N, the TD error ϵ(t)td (s, a) is
defined as ϵ(t)td (s, a) :=

∣∣Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a),a′∼π(t)(·|s′)[Q

(t)
tar (s

′, a′)]
∣∣.

Proposition 1. Under the tabular and approximate-Q settings, and Assumption 1, the average sub-optimality
of Q-NPG over T iterations is upper bounded by

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C0

T

T∑
t=1

∥∥∥∣∣∣Q(t)
tar −Qπ

(t)
∣∣∣∥∥∥
dπ

(t)︸ ︷︷ ︸
(b)

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C1

T

T∑
t=1

∥ϵ(t)td ∥dπ(t)︸ ︷︷ ︸
(c)

, (2)

where C0 := 2Cπ∗/(1− γ) and C1 := 2Cπ∗/((1− γ)3µtar, min).

The detailed proof of Proposition 1 is provided in Appendix B. The upper bound of the sub-optimality
gap has two parts. Term (a) characterizes Q-NPG learning and converges at O(1/

√
T ), while term

(b) (or equivalently term (c)) accounts for approximation error at each iteration, which can be made
arbitrarily small with enough samples (Agarwal et al., 2021a). In CDRL, limited data amplifies
term (b), potentially preventing convergence to the optimal policy. To mitigate this issue, instead
of learning Q(t) from scratch to approximate Qπ

(t)

, we leverage a pre-trained source-domain Q-
functionQsrc(ϕ(t)(s), ψ(t)(a)) with inter-domain mapping ϕ(t) and ψ(t) to approximateQπ

(t)

. Here,
the inter-domain mappings ϕ(t) and ψ(t) are introduced to address the state–action representation
mismatch. For more specifically, we present Direct Q Transfer (DQT) method, in each iteration t,
DQT proceeds in two steps: (i) It first updates ϕ(t) and ψ(t), e.g., by gradient descent on some loss
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function. (ii) The policy is updated by an NPG policy improvement step based on the pre-trained
source-domain Qsrc and inter-domain mappings ϕ(t), ψ(t) as

π(t+1)(a|s) ∝ π(t)(a|s) exp
(
ηQsrc(ϕ

(t)(s), ψ(t)(a))
)
, (3)

where η is the step size. The pseudo code is in Algorithm 1. Before characterizing the convergence
behavior, we describe the cross-domain Bellman error used in Proposition 2.
Definition 3 (Cross-Domain Bellman Error). Given a pre-trained source-domain Qsrc, inter-domain
correspondences ϕ, ψ, and target-domain policy π, for each state-action pair (s, a), the cross-
domain Bellman error is defined as ϵcd(s, a;ϕ, ψ,Qsrc, π) :=

∣∣Qsrc(ϕ(s), ψ(a)) − rtar(s, a) −
γEs′∼Ptar(·|s,a),a′∼π(·|s′)[Qsrc(ϕ(s

′), ψ(a′))]
∣∣.

Proposition 2. Under the DQT method in Algorithm 1 and Assumption 1, the average sub-optimality
over T iterations is upper bounded as

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]
≤ [log | Atar |+ 1]√

T (1− γ)︸ ︷︷ ︸
(a)

+
C0

T

T∑
t=1

∥∥∥∣∣∣Qsrc(ϕ
(t), ψ(t))−Qπ

(t)
∣∣∣∥∥∥
dπ

(t)︸ ︷︷ ︸
(b)

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C1

T

T∑
t=1

∥ϵcd(Qsrc, ϕ
(t), ψ(t))∥

dπ
(t)︸ ︷︷ ︸

(c)

, (4)

where C0 := 2Cπ∗/(1− γ) and C1 := 2Cπ∗/((1− γ)3µtar, min).

The detailed proof of Proposition 2 is in Appendix B. The main insights are: (i) Similar to Propo-
sition 1, the upper bound has two terms. Term (a) characterizes Q-NPG learning, while the sub-
optimality gap is mainly determined by the approximation error from Qsrc, equivalent to the cross-
domain Bellman error (term (c)). (ii) Minimizing this error requires ϕ and ψ that reduce term (c).
Motivated by Equation (4), we define cross-domain Bellman consistency.
Definition 4 (Cross-Domain Bellman Consistency). Let δ ≥ 0. A source-domain critic Qsrc is said to
be δ-Bellman-consistent under target domain policy π if there exist a pair of inter-domain mapping
(ϕ, ψ) such that ∥ϵcd(Qsrc, ϕ, ψ)∥dπ is no more than δ.

Transferability of a Source-Domain Model. Given a source-domain critic Qsrc, if for any iteration t
there exist inter-domain mappings ϕ(t) and ψ(t) such that Qsrc is δ-Bellman-consistent under π(t),
then term (c) in (4) is bounded by C1δ. Thus, the transferability of a source-domain model is captured
by δ. In the perfect transfer scenario, where source and target domains are identical and Qsrc is
optimal, setting ϕ and ψ as identity mappings ensures small δ for all t, yielding a small sub-optimality
gap for sufficiently large T .

Limitations of DQT. By Proposition (2), a limitation of DQT is that with a poorly transferable source
critic, the cross-domain Bellman error at each iteration t is large, so term (c) in (4) dominates the
bound and prevents effective cross-domain transfer.

4.2 THE QAVATAR ALGORITHM

To address DQT’s limitation, we propose QAvatar, which uses a hybrid critic consisting of a weighted
combination of a learned target-domain Q function and a given source-domain Q function to enable
reliable cross-domain knowledge transfer. This design allows QAvatar to improve sample efficiency
in favorable scenarios while avoiding reliance on poorly transferable source models. Specifically,
QAvatar comprises three major components:

• Inter-domain mapping: Under QAvatar, we propose to learn the inter-domain mappings ϕ :
S tar → Ssrc and ψ : Atar → Asrc by minimizing the cross-domain Bellman loss as

LCD(ϕ, ψ;Qsrc, πtar,Dtar) := Ê(s,a,rtar,s′)∈Dtar

[∣∣rtar + γEa′∼πtar [Qsrc(ϕ(s
′), ψ(a′))]−Qsrc(ϕ(s), ψ(a))

∣∣],
(5)
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Algorithm 2 QAvatar
Require: Source-domain Q function Qsrc.
1: Initialize the state mapping function ϕ, the action mapping function ψ, number of on-policy samples per

iteration Ntar, the target-domain policy π(0), weight decay function α : N→ [0, 1], and η = (1− γ)
√

1/T .
2: for iteration t = 1, · · · , T do
3: Sample D(t)

tar = {(s, a, r, s′)} of N (t)
tar on-policy samples using π(t) in the target domain.

4: Update Qtar by minimizing the TD loss in (1), i.e., Q(t)
tar ← argminQtar LTD(Qtar;π

(t),D(t)
tar ).

5: Update ϕ and ψ by minimizing (5), i.e., ϕ(t), ψ(t) ← argminϕ,ψ LCD(ϕ, ψ;Qsrc, π
(t),D(t)

tar ).
6: Defined weight parameter α(t) = ∥ϵ(t)td ∥D(t)

tar
/(∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥D(t)
tar

+ ∥ϵ(t)td ∥D(t)
tar

)

7: Update the target-domain policy by adapting NPG to CDRL as in (6).
8: end for
9: Return Target-domain policy π(T )

tar ∼ Uniform({π(1), · · · , π(T )}).

where Qsrc is the pre-trained source-domain Q function and Dtar = {(s, a, rtar, s
′)} denotes a set

of target-domain samples drawn under πtar. Intuitively, the loss in (5) looks for a pair of mapping
functions ϕ, ψ such that Qsrc aligns as much with the target-domain transitions as possible.

• Target-domain Q function: To implement the hybrid critic, QAvatar maintains a target-domain
Q function Qtar, serving as the critic of the current target-domain policy. At each iteration t,
Qtar is obtained via policy evaluation by minimizing the TD loss LTD(Qtar;πtar,Dtar), where
Dtar = (s, a, r, s′) are target-domain samples (Equation 1).

• NPG-like policy update with a weighted Q-function combination: QAvatar leverages both Qsrc
and Qtar for policy updates. At each iteration t,

π(t+1)(a|s) ∝ π(t)(a|s) · exp
(
η
(
(1− α(t))Q

(t)
tar (s, a) + α(t)Qsrc(ϕ

(t)(s), ψ(t)(a))
))
, (6)

where α : N → [0, 1] is a weight function (see Section 4.3).

The pseudo code of QAvataris provided in Algorithm 2.
Remark 1. In line 6 of Algorithm 1 and line 8 of Algorithm 2, DQT and QAvatar output the final
policy by selecting uniformly from all intermediate policies which is a standard procedure linking
average sub-optimality to policy performance. In experiments, the last-iterate policy suffices and
performs well.

4.3 THEORETICAL JUSTIFICATION OF QAVATAR

In this section, we present the theoretical result of QAvatar and thereby describe how to choose the
proper decay parameter α(·).
Definition 5 (Cross-Domain Action Value Function). For each state-action pair (s, a) and t ∈ N,
the cross-domain action value function f (t)(s, a) is defined as f (t)(s, a) := (1− α(t))Q

(t)
tar (s, a) +

α(t)Qsrc(ϕ
(t)(s), ψ(t)(a)).

We are ready to present the main theoretical result, and the detailed proof is provided in Appendix B.
Proposition 3. (Average Sub-Optimality) Under the QAvatar in Algorithm 2 and Assumption 1, the average
sub-optimality over T iterations can be upper bounded as

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C0

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣f (t)(s, a)−Qπ
(t)

(s, a)
∣∣∣]︸ ︷︷ ︸

(b)

(7)

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C1

T

T∑
t=1

(
α(t)∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥
dπ

(t) + (1− α(t))∥ϵ(t)td ∥dπ(t)

)
︸ ︷︷ ︸

(c)

, (8)

where C0 := 2Cπ∗/(1− γ) and C1 := 2Cπ∗/((1− γ)3µtar, min).
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Notably, the term (a) in (8) reflects the learning progress of NPG, and term (c) reflects the trans-
ferability of a source-domain critic Qsrc and the error of policy evaluation for the target-domain
policy.

A Hyperparameter-Free Design of α(t). Based on (8), for each iteration t, term (c) can be
minimized by choosing α(t) as an indicator function, i.e., set to 1 when ∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥
dπ

(t) <

∥ϵ(t)td ∥
dπ

(t) , and 0 otherwise. In practice, estimating the two error terms is noisy, so using an
indicator can cause large fluctuations in α(t) and unstable training. To address this, we propose a
smoother variant: α(t) = ∥ϵ(t)td ∥

dπ
(t)/(∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥
dπ

(t) +∥ϵ(t)td ∥
dπ

(t) ). Notably, this design
is hyperparameter-free and incurs minimal deployment overhead.

Key Implications of Proposition 3: (1) Effective transfer lowers the upper bound of average sub-
optimality: In an ideal case with perfect mappings ϕ∗, ψ∗ such that LCD(ϕ

∗, ψ∗;Qsrc, πtar,Dtar) = 0
for any πtar, we obtain ∥ϵcd(Qsrc, ϕ

∗, ψ∗)∥dπtar = 0. Then α(t) = 1 at all t, making term (c) in (8)
vanish. The bound thus reduces to term (a), which becomes negligible as T grows. (2) QAvatar
avoids being trapped by low-transfer critics. For a source critic only δ-Bellman-consistent with large
δ, ∥ϵcd(Qsrc, ϕ, ψ)∥dπ(t) remains large, so α(t) ≈ 0. Consequently, term (c) reduces to the standard
TD error.

4.4 PRACTICAL IMPLEMENTATION OF QAVATAR

We extend theQAvatar framework in Algorithm 2 to a practical deep RL implementation. The pseudo
code is provided in Algorithm 3 in Appendix.

• Learning the target-domain policy and the Q function. To go beyond the tabular setting, we
extend QAvatar by connecting NPG with soft policy iteration (SPI) (Haarnoja et al., 2018). In
the entropy-regularized RL setting, SPI is known to be a special case of NPG (Cen et al., 2022).
Based on this connection, we choose to integrate QAvatar with soft actor-critic (SAC) (Haarnoja
et al., 2018), i.e., updating the target-domain critic Qtar by the critic loss of SAC and updating the
target-domain policy π(t) by the SAC policy loss with the weighted combination of Qtar and Qsrc
of QAvatar.

• Learning the inter-domain mapping functions with an augmented flow model. Similar to
the tabular setting, we learn inter-domain mappings by minimizing the cross-domain Bellman
loss. In practical RL problems, state and action spaces are usually bounded, so the outputs of
ϕ : S tar → Ssrc and ψ : Atar → Asrc must lie within feasible regions. As discussed in Section 2,
adversarial learning is commonly used to address this (Taylor et al., 2008; Zhang et al., 2021; Gui
et al., 2023; Zhu et al., 2024), but it can lead to unstable training. Therefore, we adopt the method of
(Brahmanage et al., 2023), training a normalizing flow to map the outputs of the mapping functions
into the feasible regions.

5 EXPERIMENTS

5.1 SETUP

Benchmark CDRL Methods. We compare QAvatar with recent CDRL benchmarks under different
state-action spaces, including Cross-Morphology-Domain Policy Adaptation (CMD) (Gui et al., 2023),
Cross-domain Adaptive Transfer (CAT) (You et al., 2022), and Policy Adaptation by Representation
mismatch (PAR) (Lyu et al., 2024). For a fair comparison, all methods use the same source-domain
models, including policy and corresponding Q-networks, pre-trained with SAC. We also evaluate
both PPO-based CAT, the original version in (You et al., 2022), and SAC-based CAT. Notably, CMD
is an enhanced version of (Zhang et al., 2021) that integrates dynamics cycle consistency to learn
state-action correspondences.

To demonstrate sample efficiency, we also compare QAvatar with standard SAC (Haarnoja et al.,
2018), which learns from scratch in the target domain, and with direct fine-tuning (FT) of the
source models (Ha et al., 2024), equivalent to SAC with source feature initialization. Both serve as
competitive baselines. Hyperparameters are provided in Appendix F.

Evaluation Environments.
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• Locomotion: We use the standard MuJoCo environments, including Hopper-v3, HalfCheetah-v3
and Ant-v3, as the source domains and follow the same procedure as in (Zhang et al., 2021; Xu
et al., 2023) to modify them for the target domains. The detailed morphologies are in Appendix F.

• Robot arm manipulation: We leverage Robosuite, a popular package for robot learning released
by (Zhu et al., 2020) and evaluate our algorithm on door opening and table wiping. For each task,
we use the Panda robot arm as the source domain and set the UR5e robot arm as the target domain.

• Goal Navigation: A natural transfer scenario occurs when the source and target domains share
the same goal but differ in robot type. We use the Safety-Gym benchmark (Ray et al., 2019) and
evaluate transfer from Car to Doggo, keeping the goal unchanged, specifically using CarGoal0 as
the source and DoggoGoal0 as the target domain.

The dimensions of the state and action spaces of all the source-target pairs are in Table 3 in Appendix
F. All the results reported below are averaged over 5 random seeds.

(a) HalfCheetah (b) Ant (c) Door Opening (d) Table Wiping (e) Navigation

Figure 1: Training curves of QAvatar and benchmark methods: (a)-(b) Locomotion tasks; (d)-(e)
Robot arm manipulation tasks in Robosuite; (f) Navigation task from CarGoal0 to DoggoGoal0.

5.2 EXPERIMENTAL RESULTS

Does QAvatar improve data efficiency?

Learning curves: As shown by Figure 1, we observe that QAvatar achieves improved data efficiency
via cross-domain transfer than SAC throughout the training process in all the tasks, despite that these
tasks have rather different dimensions as shown in Table 3.

CAT-SAC achieves moderate results on MuJoCo but transfers slowly to other tasks, as CAT-like
methods lack guarantees and depend on parameter-based transfer, i.e., weighted combinations of
source and target policy layers. Such methods assume shared feature representations (Zhuang et al.,
2020), which often fails when domains differ. FT improves data efficiency over SAC on MuJoCo but
learns slowly in Robosuite due to dissimilar state–action representations from different robot arms.
CMD generally performs poorly and can be unstable (e.g., in Ant) owing to its adversarial mapping
module. We attribute CMD’s weakness to its unsupervised design, which ignores target-domain
rewards.

Time to threshold: We provide Table 1 to mark the time to threshold. It shows that QAvatar requires
only about 44% of the environment steps to achieve the threshold than SAC does in the best case.

Aggregated performance: To ensure a reliable comparison, we follow the guidelines of (Agarwal
et al., 2021b) and calculate the interquartile mean (IQM) using rliable, which enables evaluation at an
aggregated level. Figure 2 shows that QAvatarindeed achieves significantly better performance than
all baselines.

Environment Threshold QAvatar SAC QAvatar / SAC

HalfCheetah 6000 126K 176K 0.71
Ant 1600 206K 346K 0.59
Door Opening 90 48K 98K 0.49
Table Wiping 45 72K 98K 0.73
Navigation 20 218K 490K 0.44

Table 1: Time to threshold of QAvatar and SAC Figure 2: Aggregated IQMs (with 95%
stratified bootstrap CIs) across tasks.
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How does QAvatar perform under strong positive and negative transfer? We consider a task
where the source domain is standard ’Ant-v3’ and the target changes the goal to move backward, with
all else unchanged. Here, Qsrc and Qtar are adversarial due to opposite goals. We evaluate QAvatar in
two scenarios: (a) Learning state/action mapping: strong transferability exists, as Ant is symmetric
along the front-back axis, allowing a perfect mapping. (b) Fixing mapping as identity: a strong
negative transfer case, since Qsrc provides adversarial reward signals. As shown in Figure 3, QAvatar
captures both positive transfer (high α(t)) and negative transfer (low α(t)), demonstrating that α(t)
reflects transferability.

Performance of QAvatar with a low-quality source domain: We evaluate this scenario in the
Cheetah environment (Section 5.1) using a low-quality source model with a total return of 1000 (vs.
∼7000 for the expert). Figure 4 illustrates the learning process and α(t) of QAvatar. Results show
that when the source model is of low quality, α(t) decreases to a small value by the end of training,
mitigating the effect of negative transfer.

(a) Evaluation Rewards (b) α(t)

Figure 3: The training curve and the values of
α(t) for QAvatar under strongly positive and
strongly negative transfer scenarios.

(a) Evaluation Rewards (b) α(t)

Figure 4: The training curve and the values
of α(t) in the Cheetah environment with a
low-quality source model.

Does QAvatar still perform reliably well when the source and target with two unrelated transfer
scenario? We evaluate transfer from original Hopper-v3 in MuJoCo to the table-wiping task in
Robosuite. The configurations of these environments are provided in Section 5.1. Figure 6 shows
that even when the source and target domains share no structural similarity, QAvatar still performs
reliably and does not suffer from negative transfer.

HowQAvatar perform on non-stationary environment? We use the Ant environment and introduce
stochasticity by adding N (0, 0.1) noise to rewards and N (0, 0.05) to actions, following (Tessler
et al., 2019). As shown in Figure 7, despite stochastic rewards and transitions, the inter-domain
mapping is effectively learned, enabling positive transfer and faster learning in the target domain.

Extension: QAvatar with more than one source model. QAvatar can be readily extended for
transfer from multiple source model. Similar to the idea of one source critic transfer, the weight
αi(t) for the i-th source critic Qsrc,i, αi(t) = (1/∥ϵcd(Qsrc,i, ϕ

(t)
i , ψ

(t)
i )∥

dπ
(t) )/(1/∥ϵ(t)td ∥

dπ
(t) +∑N

j=1 1/∥ϵcd(Qsrc,j , ϕ
(t)
i , ψ

(t)
i )∥

dπ
(t) ). Consider a two-source to one-target transfer scenario: (i)

Source domain 1 (denoted by “src1") is Ant-v3 with the both front legs disabled; (ii) Source domain 2
(denoted by “src2") is Ant-v3 with the both back legs disabled. (iii) Target domain (denoted by “tar")
is the original Ant-v3 with no modifications. Figure 8 shows QAvatarin multi-source cross-domain
transfer can achieve higher transferability by leveraging the knowledge from two source domains.

6 CONCLUDING REMARKS
We propose cross-domain Bellman consistency as a measure of source-model transferability, and
introduce QAvatar, the first CDRL method that reliably handles distinct state-action representations
with performance guarantees. Using a hybrid critic and a hyperparameter-free weighting scheme,
QAvatar achieves robust knowledge transfer even with weak source models. Experiments confirm
its effectiveness for cross-domain RL. A limitation of our formulation is the assumption that target-
domain data collection is costlier than training compute. Since QAvatar takes about twice the training
time of SAC due to inter-domain mappings and the flow model, further acceleration would be needed
when training efficiency is critical.
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We conduct our research entirely in simulated environments, using no human participants or sensitive
data. This work fully complies with the code of ethics.

REPRODUCIBILITY STATEMENT

The code for our experiments is provided in the supplementary material, along with a README
file detailing the commands required to run the experiments. Furthermore, a comprehensive list of
package dependencies is included to facilitate the recreation of the experimental environment.

USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were applied exclusively for linguistic refinement of the manuscript.
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results.
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APPENDICES

A SUPPORTING LEMMAS

Lemma 1 (Performance difference lemma). For any two policies π and π′, we have

V π
′
(µ)− V π(µ) =

1

1− γ
Es,a∼dπ′ [Aπ(s, a)],

where Aπ(s, a) := Qπ(s, a)− V π(s) is the advantage function.

Proof. This can be directly obtained from Lemma 6.1 in (Kakade & Langford, 2002).

Lemma 2 ((Agarwal et al., 2019), Chapter 4). Let τ = (s0, a0, s1, a1, · · · ) denote the (random)
trajectory generated under a policy π in an infinite-horizon MDP M. For any function f : S ×A →
R, we have

Eτ
[ ∞∑
t=0

γtf(st, at)

]
=

1

1− γ
E(s,a)∼dπ

[
f(s, a)

]
. (9)

Lemma 3 (Importance Ratio). Given a fixed policy π and a fixed state-action pair (s, a), let pk(s, a)
denote the probability of reaching (s, a) under an initial distribution dπ and policy π after k time
steps. Then, for any k ∈ N, we have

pk(s, a)

dπ(s, a)
≤ 1

(1− γ)µ(s, a)
. (10)

Proof. To begin with, recall the definition of dπ as

dπ(s, a) := (1− γ)
(
µ(s, a) +

∞∑
t=1

γtP (st = s, at = a;π, µ)
)
≡

∞∑
t=0

γtP (st = s, at = a;π, µ).

(11)

Let snext,k and anext,k denote the state and action after k time steps. Then, we can write down pk(s, a):

pk(s, a) =
∑

(s′,a′)∈S ×A

P(snext,k = s, anext,k = a|s′, a′;π)dπ(s′, a′) (12)

=
∑

(s′,a′)∈S ×A

P(snext,k = s, anext,k = a|s′, a′;π) · (1− γ) ·
∞∑
t=0

γt P(st = s′, at = a′;π, µ)

(13)

= (1− γ)

∞∑
t=0

γt
∑

s′,a′∈S ×A
P(snext,k = s, anext,k = a|s′, a′;π, µ) · P(st = s′, at = a′;π, µ)

(14)

= (1− γ)

∞∑
t=0

γt P(st+k = s, at+k = a;π, µ). (15)

Then, we have

pk(s, a)

dπ(s, a)
=

(1− γ)
∑∞
t=0 γ

t P(st+k = s; at+k = a;π, µ)

(1− γ)
∑∞
t=0 γ

t P(st = s, at = a;π, µ)
(16)

=

∑∞
t=0 γ

t P(st+k = s, at+k = a;π, µ)∑∞
t=0 γ

t P(st = s, at = a;π, µ)
(17)

≤
∑∞
t=0 γ

t∑∞
t=0 γ

t P(st = s;π, µ)
(18)

=
1

1− γ
· 1∑∞

t=0 γ
t P(st = s;π, µ)

, (19)
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where (18) holds by P(st+k = s, at+k = a;π, µ) ≤ 1 and (19) holds by taking the sum of an infinite
geometric sequence. By the fact that

∑∞
t=0 γ

t P(st = s, at = a;π, µ) = µ(s, a) +
∑∞
t=1 γ

t P(st =
s, at = a;π, µ), we have

1

1− γ
· 1∑∞

t=0 γ
t P(st = s, at = a;π, µ)

=
1

1− γ
· 1

µ(s, a) +
∑∞
t=1 γ

t P(st = s, at = a;π, µ)
(20)

≤ 1

(1− γ)µ(s, a)
(21)

where (21) holds by
∑∞
t=1 γ

t P(st = s, at = a;π, µ) ≥ 0.

Lemma 4. Let ν(t) : S ×A → R and π(t) denote any tabular function used in the policy update and
the policy at iteration t. That is,

π(t+1)(a | s) ∝ π(t)(a | s) exp
(
ην(t)(s, a)

)
.

Then, we assume that ∥ν(t)∥∞ ≤ 1/(1−γ) and setting learning rate η = (1−γ)
√
1/T and optimal

policy π∗, we have

T∑
t=1

E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
≤

√
T [log | Atar |+ 1]

1− γ

Proof. Let ν̄(t)(s, a) := ν(t)(s, a)−ν(t)(s, π(t)(s)). According to the policy update rule, at iteration
t, the policy π(t+1) for the next iteration is updated by the formula:

π(t+1)(a | s) =
π(t)(a | s) exp

(
ην(t)(s, a)

)∑
a′ π

(t) (a′ | s) exp
(
ην(t) (s, a′)

) =
π(t)(a | s) exp

(
ην̄(t)(s, a)

)∑
a′ π

(t) (a′ | s) exp
(
ην̄(t) (s, a′)

) . (22)

Let Zt :=
∑
a′ π

(t) (a′ | s) exp
(
ην̄(t) (s, a′)

)
. By multiplying both sides of (22) by Zt, taking the

logarithm, and then taking the expectation on both sides w.r.t (s, a) ∼ dπ
∗
, we obtain

E(s,a)∼dπ∗

[
ην̄(t)(s, a)

]
= E(s,a)∼dπ∗

[
logZt + log π(t+1)(a | s)− log π(t)(a | s)

]
. (23)

Next, we bound the term logZt. Note that ην̄(t)(s, a) ≤
√

1/T ≤ 1 and the fact that exp(x) <
1 + x+ x2 for any x ≤ 1, we have

logZt = log

(∑
a′∈A

π(t) (a′ | s) exp
(
ην̄(t) (s, a′)

))
(24)

≤ log

(∑
a′∈A

π(t) (a′ | s)
[
1 +

(
ην̄(t) (s, a′)

)
+
(
ην̄(t) (s, a′)

)2])
(25)

≤ log

(
1 +

η2

(1− γ)2

)
(26)

≤ η2

(1− γ)2
, (27)

where (26) is because
∑
a′∈A π

(t) (a′ | s) ν̄(t)(s, a′) = 0 and ∥ν(t)∥∞ ≤ 1/(1− γ), (27) is follow
the fact that log(1 + x) ≤ x for any x ≥ 0. Then, we have

E(s,a)∼dπ∗

[
ην̄(t)(s, a)

]
≤ E(s,a)∼dπ∗

[
log π(t+1)(a | s)− log π(t)(a | s) + η2

(1− γ)2

]
. (28)
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By taking the summation over iterations on both sides of (28), we have

T∑
t=1

E(s,a)∼d∗
[
ην̄(t)(s, a)

]
≤ Tη2

(1− γ)2
+ E(s,a)∼dπ∗

[
log π(T+1)(a | s)− log π(1)(a | s)

]
.

Using the fact that log(π(a | s)) ≤ 0 and π(1)(a | s) = 1
| Atar | , we have

T∑
t=1

E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
≤ Tη

(1− γ)2
+

log | Atar |
η

.

By setting η = (1− γ)
√
1/T , we have

T∑
t=1

E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
≤

√
T [log | Atar |+ 1]

1− γ

Lemma 5. Let ν(t) : S ×A → R and π(t) denote value function used in the policy update and the
policy at iteration t. That is,

π(t+1)(a | s) ∝ π(t)(a | s) exp
(
ην(t)(s, a)

)
. (29)

Then, we assume that ∥ν(t)∥∞ ≤ 1/(1−γ) and setting learning rate η = (1−γ)
√
1/T and optimal

policy π∗, we have

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)

+
2Cπ∗

1− γ

1

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣]

Proof.

V π
∗
(µtar)− V π

(t)

(µtar)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
Aπ

(t)

(s, a)
]

(30)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
ν̄(t)(s, a)− ν̄(t)(s, a) +Aπ

(t)

(s, a)
]

(31)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
ν̄(t)(s, a)

]
+

1

1− γ
E(s,a)∼dπ∗

tar

[
− ν̄(t)(s, a) +Aπ

(t)

(s, a)
]

(32)

≤ 1

1− γ
E(s,a)∼dπ∗

tar

[
ν̄(t)(s, a)

]
+

1

1− γ
E(s,a)∼dπ∗

tar

[ ∣∣∣−ν̄(t)(s, a) +Aπ
(t)

(s, a)
∣∣∣ ], (33)

where (30) holds by the performance difference lemma (cf. Lemma 1), (31) is obtained by adding
¯t(s, a)− ν̄t(s, a), (32) is obtained by rearranging the terms in (31), and (33) holds by x ≤ |x|, for all
x ∈ R. By the fact that ∥ dπ

∗

dπ
(t) ∥∞ ≤ C, we have

1

1− γ
E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
+

1

1− γ
Es,a∼dπ∗

[ ∣∣∣−ν̄(t)(s, a) +Aπ
(t)

(s, a)
∣∣∣ ]

≤ 1

1− γ
E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
+

1

1− γ
C · E

s,a∼dπ(t)

[ ∣∣∣−ν̄(t)(s, a) +Aπ
(t)

(s, a)
∣∣∣ ] (34)

. (35)
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Recall the definitions that ν̄(t)(s, a) := ν(t)(s, a)− ν(t)(s, π(t)(s)) and Aπ
(t)

(s, a) := Qπ
(t)

(s, a)−
Qπ

(t)

(s, π(t)(s)). Then, we have

E
(s,a)∼dπ(t)

[∣∣∣ν̄(t)(s, a)−Aπ
(t)

(s, a)
)∣∣∣]

= E
(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)− ν(t)(s, π(t)(s))−Qπ
(t)

(s, a) +Qπ
(t)

(s, π(t)(s))
)∣∣∣] (36)

≤ E
(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣+ ∣∣∣Qπ(t)

(s, π(t)(s))− ν(t)(s, π(t)(s))
∣∣∣] (37)

where (37) holds by the fact that |x+y| ≤ |x|+|y| for any x, y ∈ R. Then, by linearity of expectation,
we obtain

E
(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣+ ∣∣∣Qπ(t)

(s, π(t)(s))− ν(t)(s, π(t)(s))
∣∣∣]

= E
(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣]+ E

s∼dπ(t)

[∣∣∣Qπ(t)

(s, π(t)(s))− ν(t)(s, π(t)(s))
∣∣∣]
(38)

= E
(s,a)∼dπ(t)2

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣] (39)

where (39) holds by Jensen’s inequality. Then, by substituting the result from (39) back into (34), we
have

1

1− γ
E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
+

1

1− γ
C · E

s,a∼dπ(t)

[ ∣∣∣−ν̄(t)(s, a) +Aπ
(t)

(s, a)
∣∣∣ ] (40)

≤ 1

1− γ
E(s,a)∼dπ∗

[
ν̄(t)(s, a)

]
+

2C

1− γ
· E

(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣] (41)

Next, summing over all iterations and combining with Lemma 4, we have

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)

+
2C

1− γ

1

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣ν(t)(s, a)−Qπ
(t)

(s, a)
∣∣∣] (42)

Recall that for any policy π, we use dπ to denote the discounted state-action visitation distribution
under policy π in the target domain.

Lemma 6. Under Algorithm 2, for any t ∈ N, we have

E
(s,a)∼dπ(t)

[∣∣∣f t(s, a)−Qπ
(t)

(s, a)
∣∣∣]

≤ 1

(1− γ)2µtar,min

[
(1− α(t))E

(s,a)∼dπ(t)

[
ϵ
(t)
td (s, a)

]
+ α(t)E

(s,a)∼dπ(t)

[
ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))
]]

(43)

Proof. Recall the definition of f (t) := (1− α(t))Q
(t)
tar (s, a) + α(t)Qsrc(ϕ

(t)(s), ψ(t)(a)), we have

E
(s,a)∼dπ(t)

[∣∣∣f (t)(s, a)−Qπ
(t)

(s, a)
∣∣∣]

= E
(s,a)∼dπ(t)

[∣∣∣(1− α(t))Q
(t)
tar (s, a) + α(t)Qsrc(ϕ

(t)(s), ψ(t)(a))−Qπ
(t)

(s, a)
∣∣∣] (44)

= E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t)
)(
Q

(t)
tar (s, a)− rtar(s, a) + rtar(s, a)

)
+ α(t)

(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a) + rtar(s, a)
)
−Qπ

(t)

(s, a)

∣∣∣∣] (45)
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= E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t)
)(
Q

(t)
tar (s, a)− rtar(s, a) + rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
)
+ α(t)

(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a) + rtar(s, a)

− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))] + γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
)

−Qπ
(t)

(s, a)

∣∣∣∣]
(46)

= E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t)
)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+
(
1− α(t)

)
γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)] + α(t)γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

+ rtar(s, a)−Qπ
(t)

(s, a)

∣∣∣∣]
(47)

= E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t)
)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)

∣∣∣∣],
(48)

where we obtain (45) by adding the dummy terms
(
1 − α(t)

)(
− rtar(s, a) + rtar(s, a)

)
and α(t)

(
− rtar(s, a) + rtar(s, a)

)
to the inner part of (44), (46) is obtained by

adding
(
1 − α(t)

)(
− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)] + γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
)

and α(t)
(
−

γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))] + γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
)

to the inner part

of (45), (47) holds by rearranging the terms in (46), and (48) holds by the definition of f (t). Then, by
adding γEs′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)] to the inner part of (48), we

can rewrite (48) as

E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t)
)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)

+ γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]

∣∣∣∣]
(49)
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≤ E
(s,a)∼dπ(t)

[∣∣∣(1− α(t)
)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)∣∣∣

+
∣∣∣α(t)(Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)∣∣∣
+
∣∣∣γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)
∣∣∣

+
∣∣∣γEs′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣]

(50)

≤ E
(s,a)∼dπ(t)

[(
1− α(t)

) ∣∣∣Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
∣∣∣︸ ︷︷ ︸

=:ϵ
(t)
td (s,a)

+ α(t)
∣∣∣(Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)∣∣∣︸ ︷︷ ︸
=:ϵcd(s,a;Qsrc,ϕ(t),ψ(t),π(t))

+
∣∣∣γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)]− γEs′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]
∣∣∣

+
∣∣∣rtar(s, a)−Qπ

(t)

(s, a) + γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣︸ ︷︷ ︸

=0

]
(51)

≤ E
(s,a)∼dπ(t)

[(
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′′)

[∣∣∣f (t)(s′, a′)−Qπ
(t)

(s′, a′)
∣∣∣]] (52)

where (50) holds by triangle inequality, (51) holds by the facts that 0 ≤ α(t) ≤
1 and 0 ≤ 1 − α(t) ≤ 1, (52) holds by coupling (s′, a′) and (s′′, a′′) and
applying Bellman expectation equation as well as the definitions that ϵ

(t)
td (s, a) :=∣∣Q(t)

tar (s, a) − rtar(s, a) − γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
∣∣ and ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t)) :=∣∣Qsrc(ϕ
(t)(s), ψ(t)(a)) − rtar(s, a) − γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
∣∣. By recursively ap-

plying the procedure from (44) to (52) to
∣∣f (t)(s′, a′) − Qπ

(t)

(s′, a′)
∣∣, we obtain a bound on

E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

as follows:

E
(s,a)∼dπ(t)

[∣∣∣f (t)(s, a)−Qπ
(t)

(s, a)
∣∣∣]

≤ E
(s,a)∼dπ(t)

[∣∣∣(1− α(t)
)
ϵ
(t)
td (s, a) + α(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[∣∣f (t)(s′, a′)−Qπ
(t)

(s′, a′)
∣∣]∣∣∣] (53)
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≤ E
(s,a)∼dπ(t)

[∣∣∣∣∣(1− α(t)
)
ϵ
(t)
td (s, a) + α(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[(
1− α(t)

)
ϵ
(t)
td (s′, a′) + α(t)ϵcd(s

′, a′;Qsrc, ϕ
(t), ψ(t), π(t))

+ γEs′′∼Ptar(·|s′,a′)
a′′∼π(t)(·|s′′)

[∣∣f (t)(s′′, a′′)−Qπ
(t)

(s′′, a′′)
∣∣]]∣∣∣∣∣

] (54)

≤ E
(s,a)∼dπ(t)

[∣∣∣(1− α(t)
)
ϵ
(t)
td (s, a) + α(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))

+
1

(1− γ)µtar,min

(
γ
(
1− α(t)

)
ϵ
(t)
td (s, a) + γα(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))

+ γ2
(
1− α(t)

)
ϵ
(t)
td (s, a) + γ2α(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t)) + · · ·
)∣∣∣]

(55)

≤ 1

(1− γ)2µtar,min
E
(s,a)∼dπ(t)

[∣∣∣(1− α(t))ϵ
(t)
td (s, a) + α(t)ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))
∣∣∣] (56)

=
1

(1− γ)2µtar,min

[
(1− α(t))E

(s,a)∼dπ(t)

[
ϵ
(t)
td (s, a)

]
+ α(t)E

(s,a)∼dπ(t)

[
ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))
]]

(57)

where (54) holds by applying the procedure from (44) to (52) to f (t)(s′, a′)−Qπ(t)

(s′, a′), (55) holds
by applying the procedure from (44) to (52) to all the subsequent time steps and using importance
sampling with the importance ratio bound in Lemma 3 and then using the same dummy variables
(s, a) for all the subsequent state-action pairs, (57) holds by taking the sum of an infinite geometric
sequence.

B PROOFS OF THE PROPOSITIONS

We first present the proof of Proposition 3 in Appendix B.1 and then establish Proposition 2 and 1 by
a similar argument in Appendix B.3.

B.1 PROOF OF PROPOSITION 3

Proposition 3. (Average Sub-Optimality) Under the QAvatar in Algorithm 2 and Assumption 1, the average
sub-optimality over T iterations can be upper bounded as

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C0

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣f (t)(s, a)−Qπ
(t)

(s, a)
∣∣∣]︸ ︷︷ ︸

(b)

(7)

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C1

T

T∑
t=1

(
α(t)∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥
dπ

(t) + (1− α(t))∥ϵ(t)td ∥dπ(t)

)
︸ ︷︷ ︸

(c)

, (8)

where C0 := 2Cπ∗/(1− γ) and C1 := 2Cπ∗/((1− γ)3µtar, min).
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Proof. Using Lemma 5 and setting ν(t) = f (t), we have

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)

+
2C

1− γ

1

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣f (t)(s, a)−Qπ
(t)

(s, a)
∣∣∣] (58)

This establishes the first inequality. Furthermore, recall the definitions of ϵ
(t)
td (s, a) and

ϵcd(s, a;Qsrc, ϕ, ψ, π) as

ϵ
(t)
td (s, a) :=

∣∣Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
∣∣, (59)

ϵcd(s, a;Qsrc, ϕ, ψ, π) :=
∣∣Qsrc(ϕ(s), ψ(a))− rtar(s, a)− γEs′∼Ptar(·|s,a),a′∼π(·|s′)[Qsrc(ϕ(s

′), ψ(a′))]
∣∣.

(60)
We also define the weighted ℓ1 norm under state-action distribution induced by any policy π as

∥ϵ(t)td ∥dπ := E(s,a)∼dπ
[
ϵ
(t)
td (s, a)

]
, (61)

∥ϵcd(Qsrc, ϕ
(t), ψ(t))∥dπ := E(s,a)∼dπ

[
ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π)
]
. (62)

For the second inequality, by Lemma 6, we have

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)

+
2C

1− γ

1

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣f (t)(s, a)−Qπ
(t)

(s, a)
∣∣∣] (63)

≤ [log | Atar |+ 1]√
T (1− γ)

+
2C

(1− γ)3µtar,min

1

T

T∑
t=1

[
(1− α(t))∥ϵ(t)td ∥

dπ
(t) + α(t)∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥
dπ

(t)

]
(64)

This completes the proof of Proposition 3. Additionally, by choosing α(t) =
∥ϵ(t)td ∥

dπ
(t)

∥ϵcd(Qsrc,ϕ(t),ψ(t))∥
dπ

(t)+∥ϵ(t)td ∥
dπ

(t)

(as discussed in Section 4), we have

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ 2

(1− γ)2

√
log(Atar)

T
+

4
√
2C

(1− γ)3µtar,min

1

T

T∑
t=1

∥ϵcd(Qsrc, ϕ
(t), ψ(t))∥

dπ
(t) · ∥ϵ(t)td ∥

dπ
(t)

∥ϵcd(Qsrc, ϕ(t), ψ(t))∥
dπ

(t) + ∥ϵ(t)td ∥
dπ

(t)

. (65)

B.2 PROOF OF PROPOSITION 2

Proposition 2. Under the DQT method in Algorithm 1 and Assumption 1, the average sub-optimality
over T iterations is upper bounded as

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]
≤ [log | Atar |+ 1]√

T (1− γ)︸ ︷︷ ︸
(a)

+
C0

T

T∑
t=1

∥∥∥∣∣∣Qsrc(ϕ
(t), ψ(t))−Qπ

(t)
∣∣∣∥∥∥
dπ

(t)︸ ︷︷ ︸
(b)

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C1

T

T∑
t=1

∥ϵcd(Qsrc, ϕ
(t), ψ(t))∥

dπ
(t)︸ ︷︷ ︸

(c)

, (4)

where C0 := 2Cπ∗/(1− γ) and C1 := 2Cπ∗/((1− γ)3µtar, min).
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Proof. Notably, since the Proposition 2 is a special case of Proposition 3, we can simply follow all the
steps taken for Proposition 3 and set α(t) = 1 for all t to establish Proposition 2. More specifically,
we can replace f (t)(s, a) with Qsrc(ϕ

(t)(s), ψ(t)(a)). Accordingly, under α(t) = 1 for all t, Lemma
6 can be simply rewritten as

E
(s,a)∼dπ(t)

[∣∣∣Qsrc(ϕ
(t)(s), ψ(t)(a))−Qπ

(t)

(s, a)
∣∣∣] (66)

≤ 1

(1− γ)2µtar,min
E
(s,a)∼dπ(t)

[
ϵcd(s, a;Qsrc, ϕ

(t), ψ(t), π(t))
]
. (67)

Similarly, Lemma 5 can be be rewritten as

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)

+
2Cπ∗

1− γ

1

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣Qsrc(ϕ
(t)(s), ψ(t)(a))−Qπ

(t)

(s, a)
∣∣∣]

From the combination of the two results,

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]
≤ [log | Atar |+ 1]√

T (1− γ)
+

2Cπ∗

(1− γ)3µtar,minT

T∑
t=1

∥ϵcd(Qsrc, ϕ
(t), ψ(t))∥

dπ
(t) .

(68)

B.3 PROOF OF PROPOSITION 1

Proposition 1. Under the tabular and approximate-Q settings, and Assumption 1, the average sub-optimality
of Q-NPG over T iterations is upper bounded by

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C0

T

T∑
t=1

∥∥∥∣∣∣Q(t)
tar −Qπ

(t)
∣∣∣∥∥∥
dπ

(t)︸ ︷︷ ︸
(b)

≤ [log | Atar |+ 1]√
T (1− γ)︸ ︷︷ ︸

(a)

+
C1

T

T∑
t=1

∥ϵ(t)td ∥dπ(t)︸ ︷︷ ︸
(c)

, (2)

where C0 := 2Cπ∗/(1− γ) and C1 := 2Cπ∗/((1− γ)3µtar, min).

Proof. Notably, since the Proposition 1 is a special case of Proposition 3, we can simply follow all the
steps taken for Proposition 3 and set α(t) = 0 for all t to establish Proposition 1. More specifically,
we can replace f (t)(s, a) with Q(t)

tar (s, a). Accordingly, under α(t) = 0 for all t, Lemma 6 can be
simply rewritten as

E
(s,a)∼dπ(t)

[∣∣∣Q(t)
tar (s, a)−Qπ

(t)

(s, a)
∣∣∣] (69)

≤ 1

(1− γ)2µtar,min
E
(s,a)∼dπ(t) [ϵtd(s, a)] . (70)

Similarly, Lemma 5 can be be rewritten as

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

≤ [log | Atar |+ 1]√
T (1− γ)

+
2Cπ∗

1− γ

1

T

T∑
t=1

E
(s,a)∼dπ(t)

[∣∣∣Q(t)
tar (s, a)−Qπ

(t)

(s, a)
∣∣∣]

From the combination of the two results,

1

T

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]
≤ [log | Atar |+ 1]√

T (1− γ)
+

2Cπ∗

(1− γ)3µtar,minT

T∑
t=1

∥ϵtd∥dπ(t) . (71)
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C A DETAILED DESCRIPTION OF RELATED WORK

CDRL across domains with distinct state and action spaces. The existing approaches can divided
into the following main categories:

• (i) Manually designed latent mapping: In (Ammar & Taylor, 2012) and (Ammar et al.,
2012), the trajectories are mapped manually and by sparse coding from the source domain
and the target domain to a common latent space, respectively. The distance between latent
states can then be calculated to find the correspondence of the states from the different
domains. In Gupta et al. (2017), the correspondence of the states is found by dynamic time
warping and the mapping function which can map the states from two domains to the latent
space is found by the correspondence.

• (ii) Learned inter-domain mapping: In the literature (Taylor et al., 2008; Zhang et al., 2021;
You et al., 2022; Gui et al., 2023; Zhu et al., 2024), the inter-domain mapping is mainly
learned by enforcing dynamics alignment (or termed dynamics cycle consistency in (Zhang
et al., 2021)), i.e., aligning the one-step transitions of the two domains. Additional properties
have also been incorporated as auxiliary loss functions in learning the inter-domain mapping
in the prior works, including domain cycle consistency (Zhang et al., 2021; You et al.,
2022), effect cycle consistency (Zhu et al., 2024), maximizing mutual information between
states and embeddings (You et al., 2022), and alignment of target-domain rewards with
the embeddings (You et al., 2022). Moreover, as the state and action spaces are typically
bounded sets and these methods directly map the data samples between the two domains,
adversarial learning has been used to restrict the output range of the mapping functions
(Zhang et al., 2021; Gui et al., 2023). On the other hand, in (Ammar et al., 2015), the state
mapping function is found by Unsupervised Manifold Alignment (Wang & Mahadevan,
2009).

Despite the above progress, the existing approaches all presume that the domains are sufficiently
similar and do not have any performance guarantees (and hence can suffer from negative transfer in
bad-case scenarios). By contrast, this paper proposes a robust CDRL method that can achieve transfer
regardless of source-domain model quality or domain similarity with guarantees.

CDRL across domains with identical state and action spaces. In CDRL, a variety of methods have
been proposed for the case where source and target domains share the same state and action spaces
but are subject to dynamics mismatch.

• (i) Using the data samples from both source and target domains for policy learning: One
popular approach is to use the data from both domains for model updates (Eysenbach et al.,
2021; Liu et al., 2022; Xu et al., 2023). For example, for compensating the discrepancy
between domains in transition dynamics, (Eysenbach et al., 2021) proposes to modify
the reward function, which is learned by an auxiliary domain classifier that distinguishes
between the source-domain and target-domain transitions. (Liu et al., 2022) handles the
dynamics shift problem in offline RL by augmenting rewards in the source-domain dataset.
(Xu et al., 2023) proposes to address dynamics mismatch by a value-guided data filtering
scheme, which ensures selective sharing of the source-domain transitions based on the
proximity of paired value targets.

• (ii) Explicit domain similarity: (Sreenivasan et al., 2023) proposes to selectively apply
direct transfer of the source-domain policy to the target domain based on a learnable
similarity metric, which is essentially the TD error of target domain trajectories with source
Q function. Moreover, based on the policy invariant explicit shaping (Behboudian et al.,
2022), (Sreenivasan et al., 2023) further uses the potential function as a bias term for
selecting actions.

• (iii) Using both Q-functions for the Q-learning updates: Target Transfer Q-Learning (Wang
et al., 2020) calculates the TD error by the source and target domains Q functions in order
to select the TD target from the two Q functions.

• (iv) Domain randomization: To tackle sim-to-real transfer with dynamics mismatch, domain
randomization (Rajeswaran et al., 2016; Peng et al., 2018; Chebotar et al., 2019; Du et al.,
2021) and Du et al. (2021) collects data from multiple similar source domains with different
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configurations to learn a high-quality policy that can work robustly in a possibly unseen but
similar target domain.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 A TOY EXAMPLES FOR MOTIVATING THE BENEFIT OF CROSS-DOMAIN BELLMAN LOSS

(a) Source Domain (b) Target Domain

Figure 5: Source and target domains of the grid
navigation example.

We consider the 3-by-3 grid navigation problem,
as shown in Figure 5. In both domains, there are
only two actions: ’going top’ and ’going right.’
The state of the source domain is described in
decimal coordinates, while the state of the target
domain is described in binary coordinates. The
white squares represent obstacles that cannot
be traversed. There are three special states: (i)
Start state: The episode always begins at this
state. (ii) End state: The episode will only end
at this state, and the agent will receive an ending
reward of +1. (iii) Treasure state: When the
agent first navigates to this state, it will receive
+0.5 rewards. In other states or at other times
navigating the treasure state, the agent will not receive any reward. In the source domain, the start
state, end state, and treasure state are set to (0, 0), (0, 2), and (2, 2), respectively. In the target
domain, the start state, end state, and treasure state are set to (0, 0, 0, 0), (0, 0, 1, 1), and (1, 1, 1, 1),
respectively. We assume that the source Q-function Qsrc is optimal in the source domain and the
environment discount factor γ is set to 0.99. It is easy to verify that the optimal trajectory of the
source domain is (0, 0) → (0, 1) → (0, 2) → (1, 2) → (2, 2) and the optimal trajectory of the
target domain is (0, 0, 0, 0) → (0, 0, 0, 1) → (0, 0, 1, 1) → (0, 1, 1, 1) → (1, 1, 1, 1). Consider two
trajectories in the source domain: Traj-A, which is the optimal trajectory, and Traj-B, defined as
(0, 0) → (0, 1) → (1, 1) → (1, 2) → (2, 2). When we map the optimal trajectory of the target
domain to Traj-A and the optimal trajectory of the target domain to Traj-B, both mappings result in 0
cycle consistency loss. This suggests that the cycle consistency cannot determine which mapping is
superior. This phenomenon results from the unsupervised nature of dynamics cycle consistency. In
contrast, when we mapping the optimal trajectory of the target domain to Traj-A yields a cross-domain
Bellman-like loss of 0, while mapping the optimal trajectory of the target domain to Traj-B results in
a cross-domain Bellman-like loss of 1. Thus, we can achieve optimal mapping results based on the
cross-domain Bellman error, while the cycle consistency loss provides sub-optimal mapping results.

D.2 FINAL REWARDS

In this section, we show the asymptotic performance of all baselines and our algorithm. In the
experiments, we train all the target-domain models for 500k steps in MuJoCo and 100k steps in
Robosuite. The asymptotic performances of all baselines and our algorithm are shown in the following
Table 2.

Table 2: Final rewards of QAvatarand all baselines in the experiments.

Algorithm HalfCheetah Ant Door Opening Table Wiping Navigation

QAvatar 11586.0 ± 1224.4 2858.8 ± 848.0 216.6 ± 131.3 76.6 ± 13.5 38.5 ± 13.2
SAC 10986.0 ± 1821.8 1620.0 ± 527.2 94.8 ± 23.9 47.6 ± 11.0 19.7 ± 13.6
FT 10756.8 ± 1070.8 1644.3 ± 748.2 129.9 ± 34.6 42.1 ± 15.4 12.5 ± 9.0
PAR 8097.4 ± 3962.0 737.6 ± 45.3 33.7 ± 18.6 17.9 ± 11.8 0.0 ± 0.0
CAT-SAC 8756.5 ± 1264.3 1628.9 ± 200.6 63.2 ± 33.3 23.7 ± 10.7 2.7 ± 2.4
CAT 46.1 ± 149.9 17.1 ± 27.3 34.7 ± 8.4 55.5 ± 29.7 -0.1 ± 0.2
CMD -253.1 ± 344.1 777.5 ± 144.1 7.8 ± 6.4 0.8 ± 0.4 -0.0 ± 0.0

D.3 ABLATION STUDY: EXPERIMENT RESULT
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(a) unrelated transfer scenario

Figure 6: Training curves of unrelated trans-
fer scenario, the source domains are labeled.
The target domain is Table-Wiping with robot
UR5e.

(a) non-stationary environment

Figure 7: Training curves in non-stationary
Ant-v3.

(a) Multiple source model

Figure 8: Training curves of 2 source domains
transfer to target domain.

E IMPLEMENTATION DETAILS OF QAVATAR

E.1 PSEUDO CODE OF THE PRACTICAL IMPLEMENTATION OF QAVATAR

In this section, we provide the pseudo code of the practical version of QAvatarin Algorithm 3.

E.2 SOURCE-DOMAIN MODELS AND THEIR PERFORMANCE

For the locomotion tasks including HalfCheetah and Ant, we train each source model for 1M
steps. The average performance of the 5 source-domain models (under 5 distinct random seeds)
in HalfCheetah and Ant are 7355 ± 2892 and 3689 ± 1013, respectively. For the Robosuite tasks
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Algorithm 3 Practical Implementation of QAvatar

1: Require: Source-domain Q-network Qsrc, update α frequency Nα, batch size N .
2: Initialize the state mapping function ϕ, the action mapping function ψ, the initial target-domain

policy network π(1), entropy coefficient β, replay buffer D, and α = 0.
3: for iteration t = 1, · · · , T do
4: Interact with the environment and store the transition (st, at, rt, st+1) in the replay buffer D.
5: Sample two sets of N transitions, denoted as BSAC and BMap, from the replay buffer D.
6: Update the target-domain {Qtar,1, Qtar,2} by SAC’s critic loss:

Q
(t)
tar,j = argmin

Qtar
Ê(s,a,r,s′)∈BSAC

[∣∣r + γEa′∼π(t)(·|s′)
[
Qtar(s

′, a′)− β log(π(a′|s′))
]
−Qtar(s, a)

∣∣2].
(72)

7: Update the state mapping function ϕ and action mapping function ψ by minimizing
8: the following loss:

ϕ(t), ψ(t) = argmin
ϕ,ψ

Ê(s,a,r,s′)∈BMap

[∣∣r + γEa′∼π(t)(·|s′)
[
Qsrc(ϕ(s

′), ψ(a′))
]
−Qsrc(ϕ(s), ψ(a))

∣∣2].
(73)

9: if t mod Nα = 0 then
10: Define ∥ϵ(t)td ∥D = Ê(s,a,r,s′)∈D

[∣∣r + γEa′∼π(t)(·|s′)
[
minj=1,2Q

(t)
tar,j(s

′, a′)
]
−minj=1,2Q

(t)
tar,j(s, a)

∣∣],
11: ∥ϵcd(Qsrc, ϕ

(t), ψ(t))∥D = Ê(s,a,r,s′)∈D

[∣∣r + γEa′∼π(t)(·|s′)
[
Qsrc(ϕ

(t)(s′), ψ(t)(a′))
]
−Qsrc(ϕ

(t)(s), ψ(t)(a))
∣∣].

12: Update the weight α = ∥ϵ(t)td ∥D/(∥ϵcd(Qsrc, ϕ
(t), ψ(t))∥D + ∥ϵ(t)td ∥D).

13: end if
14: Update the target-domain policy π:

π(t+1) = argmin
π

Ê(s,a,r,s′)∈BSAC

a′∼π(t)(·|s)

[
β log π(a′|s)− f (t)(s, a′)

]
, (74)

f (t)(s, a′) = (1− α) min
j=1,2

Q
(t)
tar,j(s, a

′) + αQsrc(ϕ
(t)(s), ψ(t)(a′)). (75)

15: end for

including Door Opening and Table Wiping, we train each source-domain model for 500K steps. The
average performance of 5 random seed is 383± 139 and 94± 16, respectively. For the navigation
environment, we train the model for 500K steps, and the average performance is 39.85.

E.3 INTER-DOMAIN MAPPING NETWORK AUGMENTED WITH A NORMALIZING FLOW
MODEL

As discussed in Section 4, a flow-based generative model is employed to transform the outputs of the
mapping functions into their corresponding feasible regions. Therefore, there are two architectural
paradigms of the flow model can be considered. In the first paradigm, the state and action are
concatenated and jointly treated as the codomain of the flow model. This joint formulation is adopted
in Cheetah, Ant environment. In the second paradigm, the state and action are modeled separately,
with two independent flow models trained respectively for the state and the action. This decoupled
formulation is applied in Hopper-v3, Table Wiping, and Door Opening tasks.
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F CONFIGURATION DETAILS OF THE EXPERIMENTS

F.1 STATE AND ACTION DIMENSIONS OF BENCHMARK ENVIRONMENTS

We summarize the state and action dimensions of each pair of source-domain and target-domain
benchmark tasks in the following Table 3.

Table 3: Dimensions of the source and target domains (“Src” and “Tar” represent the source domain and the
target domain.)

Environment State Action

Src Tar Src Tar

HalfCheetah 17 23 6 9
Ant 111 133 8 10

Door Opening 46 51 8 7
Table Wiping 37 34 7 6
Goal Navigation 40 72 2 12

F.2 MUJOCO AND ROBOSUITE ENVIRONMENTS

As mentioned in Section 5, We evaluate QAvatarin both MuJoCo and Robosuite environments. In the
MuJoCo environments, the source domains of our experiments are the original MuJoCo environments
such as HalfCheetah-v3 and Ant-v3. The target domains are the modified MuJoCo environments
such as HalfCheetah with three legs and Ant with five legs. In Robosuite environments, We evaluate
QAvataron two tasks, including door opening and table wiping. For each task, we consider cross-
domain transfer from controlling a Panda robot arm to controlling a UR5e robot arm. These four
tasks are illustrated in Figure 9 and 10.

(a) Hopper (b) HalfCheetah (c) Ant

(d) Three-joint Hopper (e) Three-leg HalfCheetah (f) Five-leg Ant

Figure 9: The environments of the source domains and the target domains. (a)-(c): Source domains –
Original MuJoCo environments. (d)-(f): Target domains – Modified MuJoCo environments.
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(a) Door Opening: Panda (b) Table Wiping: Panda (c) Navigation: CarGoal0

(d) Door Opening: UR5e (e) Table Wiping: UR5e (f) Navigation: DoggoGoal0

Figure 10: The environments of the source domains and the target domains. (a)-(c): Source domains –
Control Panda to solve the tasks in robosuite and Safety-gym CarGoal0. (e)-(h): Target domains –
Control UR5e to solve the tasks in robosuite and Safety-gym DoggoGoal0.

F.3 THE IMPLEMENTATION DETAILS OF BASELINES

SAC. The implementation of SAC used in our experiments is released by stable-baselines3 Raffin
et al. (2021). The settings of all hyperparameters except for the discouted factor γ follows the default
settings of SAC in the documentation of stable-baselines3. The discouted factor is set 0.99 in all other
MuJoCo environments, which follows the setting shown in Hugging Face. As for in the Robosuite
environments, we set the discouted factor to 0.9.

CMD. Since there is no publicly available implementation of CMD, we leverage and adapt the
codebase of DCC (Zhang et al., 2021) (https://github.com/sjtuzq/Cycle_Dynamics)
and reproduce CMD by following the pseudo code of CMD in its original paper Gui et al. (2023).
We follow the setting of the hyperparameters which is revealed in its original paper. Additionally,
we change CMD from collecting the fixed amount of data to collecting data continuously for a fair
comparison. As for the source model, we use the same model used in our algorithm. Moreover,
we observe that the original setting could suffer because the collected trajectories mostly have low
returns due to a random behavior policy. Therefore, we consider a stronger version of CMD with
target-domain data collected under the target-domain policy, which is induced by the source-domain
pre-trained policy and the current inter-domain mappings.

FT. FT can be seen as a standard SAC algorithm with source feature initialization. Specifically, we
modify the input and output layers of the source policy to match the target domain’s state and action
dimensions, using random initialization, while keeping the middle layers with the same weights as
the source model. Similarly, for the source Q function, we adjust the input layer to fit the target
domain’s state and action dimensions with random initialization, while the remaining layers retain
the source model’s weights. After initialization, we can use SAC algorithm to implement FT.

CAT. We use the authors’ implementation (https://github.com/TJU-DRL-LAB/
transfer-and-multi-task-reinforcement-learning/tree/main/
Single-agent%20Transfer%20RL/Cross-domain%20Transfer/CAT) and use
PPO as the target-domain base algorithm following the original paper. For a fair comparison, we use
the same source model used in QAvatar. The hyperparameters are shown in the following table and
"n epochs" means the number of epochs when optimizing the surrogate loss.
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CAT-SAC. As CAT can be integrated with any off-the-shelf RL method, we adapt the original
PPO-based CAT to CAT-SAC by using the SAC implementation in Spinning Up Achiam (2018)
as the backbone of CAT-SAC. All the SAC-related hyperparameters are the same as those used by
SAC and the CAT-related parameters are configured as in the original implementation. For a fair
comparison, we use the same source model used by QAvatar.

PAR. We use the authors’ implementation (https://github.com/dmksjfl/PAR.git)
and consider the offline to online version of PAR, which is more compatible with the CDRL setting
in our paper. For the source-domain data required by PAR, we use the samples in the buffer collected
during the training of the source-domain policies (shared by QAvatarand other baselines). As a result,
to adapt PAR to the more general CDRL setting in our paper, similar to the data pre-processing
methods used in handling sequences (Zahavy et al., 2018; Dwarampudi & Reddy, 2019; Morad et al.,
2024; ?), we use padding and truncation to handle the differences in state and action dimensions.
More specifically,

• Padding: If the target domain has n more dimensions than the source, we append n zeros to
the end of each source sample.

• Truncation: If the target domain has n fewer dimensions than the source, we discard the
last n from each source sample.

Note that this design is reasonable, as neither the baselines nor QAvatarhave any knowl-
edge about the physical meaning of each entry in the state or action representations. For
the hyperparameters, to ensure a fair comparison with QAvataras well as the baselines CAT-
SAC and SAC, we set the ratio between environment interaction and agent training to 1 (i.e.,
config[’tar_env_interact_freq’] in their original code). Other parameters (e.g., beta,
weight, etc.) and network architecture follow the recommendations provided in the original PAR pa-
per. In addition, we observe that in some environments, temperature tuning can improve performance.
Therefore, we apply temperature tuning during the training process (as adopted by PAR’s original
code), and select the better one between using and not using temperature tuning as the final result.

Table 4: A list of candidate hyperparameters for Robosuite and MuJoCo.

Parameter MuJoCo Robosuite

learning rate 0.0001, 0.0003, 0.0004, 0.0008 0.0001, 0.0003
length of rollouts 500, 2000 2000
batch size 50, 100 50, 100, 200
entropy coefficient (ent. coef.) 0.01, 0.002 0.01, 0.002
n epochs 10, 20 5, 10
num. of hidden layer of encoder/decoder 1 1
num. of hidden layer of actor/critic 2 2
hidden layer size 256 256

Table 5: Final hyperparameters chosen for each environment.

learning rate len. of rollouts batch size ent. coef. n epochs

HalfCheetah 0.0001 500 50 0.002 10
Ant 0.0004 500 50 0.002 10
Robosuite 0.0003 2000 100 0.01 10

F.4 DETAILED CONFIGURATION OF QAVATAR

The base algorithm, SAC, is implemented by stable-baselines3 Raffin et al. (2021). As for the
compute resource, we use NVIDIA GeForce RTX 3090 to do the experiments. The Hyperparameters
of QAvatarare shown in the following table. The settings of hyperparameters such as critic/actor
learning rate, batch size, buffer size and discounted factor are same as SAC.
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Table 6: A list of hyperparameters of QAvatar.

Parameter Value

critic/actor learning rate 0.0003
state mapping function learning rate 0.01
action mapping function learning rate 0.01
batch size 256
replay buffer size 106

optimizer Adam
number of hidden layer of mapping functions 1
hidden layer size 256
update α frequency Nα 1000
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