

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CROSS-DOMAIN POLICY OPTIMIZATION VIA BELLMAN CONSISTENCY AND HYBRID CRITICS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Cross-domain reinforcement learning (CDRL) is meant to improve the data efficiency of RL by leveraging the data samples collected from a source domain to facilitate the learning in a similar target domain. Despite its potential, cross-domain transfer in RL is known to have two fundamental and intertwined challenges: (i) The source and target domains can have distinct state space or action space, and this makes direct transfer infeasible and thereby requires more sophisticated inter-domain mappings; (ii) The transferability of a source-domain model in RL is not easily identifiable a priori, and hence CDRL can be prone to negative effect during transfer. In this paper, we propose to jointly tackle these two challenges through the lens of *cross-domain Bellman consistency* and *hybrid critic*. Specifically, we first introduce the notion of cross-domain Bellman consistency as a way to measure transferability of a source-domain model. Then, we propose *QAvatar*, which combines the Q functions from both the source and target domains with an adaptive hyperparameter-free weight function. Through this design, we characterize the convergence behavior of *QAvatar* and show that *QAvatar* achieves reliable transfer in the sense that it effectively leverages a source-domain Q function for knowledge transfer to the target domain. Through experiments, we demonstrate that *QAvatar* achieves favorable transferability across various RL benchmark tasks, including locomotion and robot arm manipulation.

## 1 INTRODUCTION

Cross-domain reinforcement learning (CDRL) serves as a practical framework to improve the sample efficiency of RL from the perspective of transfer learning, which leverages the pre-trained models from a source domain to enable knowledge transfer to the target domain, under the presumption that the data collection and model training are much less costly in the source domain (e.g., simulators). A plethora of the existing CDRL methods focuses on knowledge transfer across environments that share the same state-action spaces but with different transition dynamics. This setting has been extensively studied from a variety of perspectives, such as reward augmentation (Eysenbach et al., 2021; Liu et al., 2022), data filtering (Xu et al., 2023), and latent representations (Lyu et al., 2024). Despite the above progress, to fully realize the promise of CDRL, there are two fundamental challenges to tackle: (i) *Distinct state and/or action spaces between domains*: To support flexible transfer across a wide variety of domains, the generic CDRL is required to address the discrepancies in the state and action spaces between source and target domains. Take robot control as an example. One common scenario is to apply direct policy transfer between robot agents of different morphologies (Zhang et al., 2021), which naturally leads to a discrepancy in representations. This discrepancy significantly complicates the transfer of either data samples or learned source-domain models. (ii) *Unknown transferability of a source-domain model to the target domain*: CDRL conventionally presumes that the source-domain model can achieve effective transfer under a properly learned cross-domain correspondence. However, in practice, given that the data budget of the target domain is limited, it is rather difficult to determine a priori the transferability of a source-domain model. Indeed, it has been widely observed that transfer learning from the source domain can have a negative impact on the target domain (Weiss et al., 2016; Pan & Yang, 2009).

As a consequence, despite that CDRL has been shown to succeed in various scenarios, without a proper design, the performance of CDRL could actually be much worse than the vanilla target-domain model learned without using any source knowledge. Notably, to tackle (i), several approaches have

been proposed to address such representation discrepancy by learning state-action correspondence, either in the typical RL (You et al., 2022) or unsupervised settings (Zhang et al., 2021; Gui et al., 2023). However, existing solutions are all oblivious to the issues of model transferability between the domains. Hence, one fundamental research question about CDRL remains largely open:

*How to achieve effective transfer in CDRL under distinct state-action spaces without the knowledge of the transferability of the pre-trained source-domain model?*

In this paper, we affirmatively address the above question by revisiting cross-domain state-action correspondence through the lens of *cross-domain Bellman consistency*, which quantifies the transferability of a source-domain model. To enable reliable transfer across varying levels of source-model transferability, we introduce a novel CDRL framework, *QAvatar*, which integrates source-domain and target-domain critics. Drawing an analogy from the movie *Avatar*, where humans remotely control genetically engineered bodies to adapt to alien environments, *QAvatar* updates the target-domain policy via a weighted combination of the target- and source-domain Q functions, while learning the state-action correspondence by minimizing a cross-domain Bellman loss.

To validate this idea, we first present a tabular prototype of *QAvatar* and show that it attains a tight sub-optimality bound under an adaptive, hyperparameter-free weight function, regardless of source model transferability. This ensures improved sample efficiency while avoiding poor transfer. Building on this, we develop a practical version by combining *QAvatar* with a normalizing flow-based mapping for learning state-action correspondence.

The main contributions of this paper can be summarized as follows: 1) We propose the *QAvatar* framework that achieves knowledge transfer between two domains with distinct state and action spaces for improving sample efficiency. We then present a prototypical *QAvatar* algorithm and establish its convergence property. 2) We further substantiate the *QAvatar* framework by proposing a practical implementation with a normalizing-flow-based state-action mapping. This further demonstrates the compatibility of *QAvatar* with off-the-shelf methods for learning state-action correspondence. 3) Through experiments and an ablation study, we show that *QAvatar* outperforms the CDRL benchmark algorithms on various RL benchmark tasks.

## 2 RELATED WORK

**CDRL across domains with *distinct* state and action spaces.** The existing approaches can be divided into two main categories: (i) *Manually designed latent mapping*: In (Ammar & Taylor, 2012; Gupta et al., 2017; Ammar et al., 2012), the trajectories are mapped manually from the source domain and the target domain to a common latent space. The distance between latent states can then be calculated to find the correspondence of the states from the different domains. (ii) *Learned inter-domain mapping*: In (Taylor et al., 2008; Zhang et al., 2021; You et al., 2022; Gui et al., 2023; Zhu et al., 2024), the inter-domain mapping is mainly learned by enforcing dynamics alignment (or termed dynamics cycle consistency in (Zhang et al., 2021)). Additional properties have also been incorporated as auxiliary loss functions in learning the inter-domain mapping, including domain cycle consistency (Zhang et al., 2021), effect cycle consistency (Zhu et al., 2024), maximizing mutual information between states and embeddings (You et al., 2022). However, the existing approaches all presume that the domains are sufficiently similar and do not have any performance guarantees. By contrast, we propose a reliable CDRL method that can achieve transfer regardless of source-domain model quality or domain similarity with guarantees.

**CDRL across domains with *identical* state and action spaces.** Various methods have been proposed for the case where source and target domains share the same state and action spaces but are subject to dynamics mismatch. Existing methods include (i) using the samples from both source and target domains jointly for learning (Eysenbach et al., 2021; Liu et al., 2022; Xu et al., 2023; Lyu et al., 2024), (ii) explicit characterization of domain similarity (Behboudian et al., 2022; Sreenivasan et al., 2023), and (iii) using both Q-functions for Q-learning updates (Wang et al., 2020). However, given the assumption on identical state-action spaces, they are not readily applicable to our CDRL setting.

## 3 PRELIMINARIES

In this section, we provide the problem statement and basic building blocks of CDRL as well as the useful notation needed by subsequent sections. For a set  $\mathcal{X}$ , we let  $\Delta(\mathcal{X})$  denote the set of probability distributions over  $\mathcal{X}$ . As in typical RL, we model each environment as an infinite-horizon

108 discounted Markov decision process (MDP) denoted by  $\mathcal{M} := (\mathcal{S}, \mathcal{A}, P, r, \gamma, \mu)$ , where (i)  $\mathcal{S}$  and  $\mathcal{A}$  represent the state space and action space, (ii)  $P : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$  denotes the transition function, (iii)  $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$  is the reward function (without loss of generality, we presume the rewards lie in the  $[0, 1]$  interval), (iv)  $\gamma \in [0, 1]$  is the discounted factor, and (v)  $\mu \in \Delta(\mathcal{S} \times \mathcal{A})$  denotes the initial state-action distribution. Notably, the use of an initial distribution over states and actions is a standard setting in the literature of natural policy gradient (NPG) (Agarwal et al., 2021a; Ding et al., 2020; Yuan et al., 2022; Agarwal et al., 2020; Zhou et al., 2024). Given any policy  $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ , let  $\tau = (s_0, a_0, r_1, \dots)$  denote a (random) trajectory generated under  $\pi$  in  $\mathcal{M}$ , and the expected total discounted reward under  $\pi$  is  $V_{\mathcal{M}}^{\pi}(\mu) := \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | \pi; s_0, a_0 \sim \mu]$ . We use  $Q_{\mathcal{M}}^{\pi}(s, a)$  and  $V_{\mathcal{M}}^{\pi}(s)$  to denote the Q function and value function of a policy  $\pi$ . We also define the state-action visitation distribution (also known as the occupancy measure in the MDP literature) of  $\pi$  as  $d^{\pi}(s, a) := (1 - \gamma)(\mu(s, a) + \sum_{t=1}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu))$ , for each  $(s, a)$ .

120 **Problem Statement of Cross-Domain RL.** In typical CDRL, the knowledge transfer involves two  
121 MDPs, namely the source-domain MDP  $\mathcal{M}_{\text{src}} := (\mathcal{S}_{\text{src}}, \mathcal{A}_{\text{src}}, P_{\text{src}}, r_{\text{src}}, \gamma, \mu_{\text{src}})$  and the target-domain  
122 MDP  $\mathcal{M}_{\text{tar}} := (\mathcal{S}_{\text{tar}}, \mathcal{A}_{\text{tar}}, P_{\text{tar}}, r_{\text{tar}}, \gamma, \mu_{\text{tar}})$ <sup>1</sup>. Notably, in addition to distinct state and action spaces,  
123 the two domains can have different reward functions, transition dynamics, and initial distributions.  
124 We assume that the two MDPs share the same discounted factor  $\gamma$ , which is rather mild. Moreover,  
125 the trajectories of the two domains are completely unpaired. Let  $\Pi_{\text{tar}}$  be the set of all stationary  
126 Markov policies for  $\mathcal{M}_{\text{tar}}$ .

127 The goal of the RL agent is to learn a policy  $\pi^*$  in the target domain such that the expected total  
128 discounted reward is maximized, *i.e.*,  $\pi^* := \arg \max_{\pi \in \Pi_{\text{tar}}} V_{\mathcal{M}_{\text{tar}}}^{\pi}(\mu_{\text{tar}})$ . To improve sample efficiency  
129 via knowledge transfer (compared to learning from scratch), in CDRL, the target-domain agent  
130 is granted access to  $(\pi_{\text{src}}, Q_{\text{src}}, V_{\text{src}})$ , which denotes a policy and the corresponding Q and value  
131 functions pre-trained in  $\mathcal{M}_{\text{src}}$ . Notably, we make no assumption on the quality of  $\pi_{\text{src}}$  (and hence  
132  $\pi_{\text{src}}$  may not be optimal to  $\mathcal{M}_{\text{src}}$ ), despite that  $\pi_{\text{src}}$  shall exhibit acceptable performance in practice.  
133

134 In this paper, we focus on designing a reliable CDRL algorithm in that it effectively leverages a  
135 source-domain Q function  $Q_{\text{src}}$  for knowledge transfer to the target domain, regardless of the quality  
136 of  $Q_{\text{src}}$  and domain similarity.

137 **Inter-Domain Mapping Functions.** To address the discrepancy in state-action spaces in CDRL,  
138 learning an inter-domain mapping is one common block of many CDRL algorithms. Specifically,  
139 there are a variety of ways to construct the mapping functions, such as handcrafted functions (Ammar  
140 & Taylor, 2012), encoders and decoders trained by cycle consistency You et al. (2022) like cycle-GAN  
141 (Zhu et al., 2017), neural networks trained by dynamics alignment of the MDPs (Gui et al., 2023).  
142 Moreover, mapping functions have various candidate target spaces, such as a latent space, state or  
143 action spaces of the target domain (*i.e.*, from  $\mathcal{S}_{\text{src}}, \mathcal{A}_{\text{src}}$  to  $\mathcal{S}_{\text{tar}}, \mathcal{A}_{\text{tar}}$ ), and state or action spaces of the  
144 source domain (*i.e.*, from  $\mathcal{S}_{\text{tar}}, \mathcal{A}_{\text{tar}}$  to  $\mathcal{S}_{\text{src}}, \mathcal{A}_{\text{src}}$ ).

145 For example, Gui et al. (2023) proposed learning two mappings,  $G_1 : \mathcal{S}_{\text{tar}} \rightarrow \mathcal{S}_{\text{src}}$  and  $G_2 : \mathcal{A}_{\text{src}} \rightarrow$   
146  $\mathcal{A}_{\text{tar}}$ , via dynamics alignment, which infers the unknown mapping between unpaired trajectories of  
147  $\mathcal{M}_{\text{src}}$  and  $\mathcal{M}_{\text{tar}}$  by aligning one-step state transitions. However, this unsupervised approach provides  
148 no performance guarantee and can suffer from identification issues. By contrast, we propose learning  
149 inter-domain state and action mappings,  $\phi : \mathcal{S}_{\text{tar}} \rightarrow \mathcal{S}_{\text{src}}$  and  $\psi : \mathcal{A}_{\text{tar}} \rightarrow \mathcal{A}_{\text{src}}$ , using a cross-domain  
150 Bellman-like loss with guarantees (Section 4). Appendix D.1 shows a toy example where cycle  
151 consistency fails, but the Bellman-like loss leverages target rewards to learn a better mapping.

152 **Tabular Approximate Q-Natural Policy Gradient.** Natural Policy Gradient (NPG) (Kakade,  
153 2001; Agarwal et al., 2019) is a classical RL algorithm. In this paper, we adopt NPG under two  
154 assumptions to analyze CDRL: (i) **Tabular setting**: finite state and action spaces, with independent  
155 parameters for each state-action pair  $(s, a)$ ; (ii) **Approximate Q-function**: the true  $Q^{\pi}$  is inaccessible  
156 due to limited data, so we use an empirical approximation from samples. At iteration  $t$ , we first collect  
157 data  $\mathcal{D}^{(t)}$  by executing  $\pi^{(t)}$ , then obtain  $Q^{(t)}$  by minimizing the standard TD loss for least-squares  
158 policy evaluation (LSPE) (Lagoudakis & Parr, 2001; Yu & Bertsekas, 2009; Lazaric et al., 2012)<sup>2</sup>

$$\mathcal{L}_{\text{TD}}(Q^{(t)}; \pi^{(t)}, \mathcal{D}^{(t)}) := \hat{\mathbb{E}}_{(s, a, r, s') \in \mathcal{D}^{(t)}} \left[ |r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}} [Q^{(t)}(s', a')] - Q^{(t)}(s, a)|^2 \right]. \quad (1)$$

159 <sup>1</sup>Throughout this paper, we use the subscripts “src” and “tar” to represent the objects in the source and target  
160 domains, respectively.

161 <sup>2</sup>LSPE under linear function approximation includes the tabular case via one-hot features:

Finally, we perform a one-step policy improvement:  $\pi^{(t+1)}(a|s) \propto \pi^{(t)}(a|s) \exp(\eta Q^{(t)}(s, a))$ , where  $\eta$  is the learning rate. This update improves the policy while staying close to the original.

**Notation.** Throughout this paper, for any policy  $\pi$  and any real-valued function  $h : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ , we use  $h(s, \pi)$  and  $\bar{h}(s, a; \pi)$  as the shorthand for  $\mathbb{E}_{a \sim \pi(\cdot|s)}[h(s, a)]$  and  $h(s, a) - \mathbb{E}_{a \sim \pi(\cdot|s)}[h(s, a)]$ , respectively. For any real vector  $z$  and  $p \geq 1$ , we let  $\|z\|_p$  be the  $\ell_p$ -norm of  $z$ . For any real-valued function  $f : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ , we use  $\|f\|_{d\pi^{(t)}}$  as the shorthand for  $\mathbb{E}_{(s, a) \sim d\pi^{(t)}}[f(s, a)]$ .

## 4 METHODOLOGY

In this section, we first describe the concept of cross-domain Bellman consistency and accordingly propose the *Q*Avatar framework in the tabular setting (*i.e.*,  $\mathcal{S}_{\text{tar}}$  and  $\mathcal{A}_{\text{tar}}$  are finite). We then extend this framework to a practical deep RL implementation.

### 4.1 CROSS-DOMAIN BELLMAN CONSISTENCY

To motivate Source domain Q-function transfer, we present the sub-optimal gap of traditional NPG. First, we describe the definitions of state-action distribution coverage and TD error.

**Definition 1** (Coverage). *Given a target-domain policy  $\pi^\dagger$  in  $\mathcal{M}_{\text{tar}}$ , we say that  $\pi^\dagger$  has coverage  $C_{\pi^\dagger}$  if for any policy  $\pi \in \Pi_{\text{tar}}$ , we have  $\|d\pi^\dagger/d\pi\|_\infty \leq C_{\pi^\dagger}$ .*

**Assumption 1.** *The initial distribution is exploratory, *i.e.*,  $\mu_{\text{tar}}(s, a) > 0$ , for all  $s, a$ .*

Notably,  $C_{\pi^\dagger}$  is finite if  $\|d\pi^\dagger/\mu_{\text{tar}}\|_\infty$  is finite (since  $\|\mu_{\text{tar}}/d\pi\|_\infty \leq 1/(1-\gamma)$  for all  $\pi$  by the definition of  $d\pi$ ), which holds under an exploratory initial distribution with  $\mu_{\text{tar}}(s, a) > 0$  for all  $(s, a)$ —a standard assumption in the NPG literature (Agarwal et al., 2021a; Ding et al., 2020; Yuan et al., 2022; Agarwal et al., 2020; Zhou et al., 2024). Intuitively, coverage enables direct comparison of Bellman errors between policies. We also use  $\mu_{\text{tar}, \min}$  as shorthand for  $\min_{s, a} \mu_{\text{tar}}(s, a)$ .

**Definition 2** (TD Error). *For each state-action pair  $(s, a)$  and  $t \in \mathbb{N}$ , the TD error  $\epsilon_{\text{td}}^{(t)}(s, a)$  is defined as  $\epsilon_{\text{td}}^{(t)}(s, a) := |Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{s' \sim P_{\text{tar}}(\cdot|s, a), a' \sim \pi^{(t)}(\cdot|s')}[Q_{\text{tar}}^{(t)}(s', a')]|$ .*

**Proposition 1.** *Under the tabular and approximate-Q settings, and Assumption 1, the average sub-optimality of Q-NPG over  $T$  iterations is upper bounded by*

$$\begin{aligned} & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} [V^{\pi^*}(s) - V^{\pi^{(t)}}(s)] \\ & \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \left\| Q_{\text{tar}}^{(t)} - Q^{\pi^{(t)}} \right\|_{d\pi^{(t)}}}_{(b)} \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \|\epsilon_{\text{td}}^{(t)}\|_{d\pi^{(t)}}}_{(c)}, \end{aligned} \quad (2)$$

where  $C_0 := 2C_{\pi^*}/(1-\gamma)$  and  $C_1 := 2C_{\pi^*}/((1-\gamma)^3 \mu_{\text{tar}, \min})$ .

The detailed proof of Proposition 1 is provided in Appendix B. The upper bound of the sub-optimality gap has two parts. Term (a) characterizes Q-NPG learning and converges at  $O(1/\sqrt{T})$ , while term (b) (or equivalently term (c)) accounts for approximation error at each iteration, which can be made arbitrarily small with enough samples (Agarwal et al., 2021a). In CDRL, limited data amplifies term (b), potentially preventing convergence to the optimal policy. To mitigate this issue, instead of learning  $Q^{(t)}$  from scratch to approximate  $Q^{\pi^{(t)}}$ , we leverage a pre-trained source-domain Q-function  $Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a))$  with inter-domain mapping  $\phi^{(t)}$  and  $\psi^{(t)}$  to approximate  $Q^{\pi^{(t)}}$ . Here, the inter-domain mappings  $\phi^{(t)}$  and  $\psi^{(t)}$  are introduced to address the state-action representation mismatch. For more specifically, we present Direct Q Transfer (DQT) method, in each iteration  $t$ , DQT proceeds in two steps: (i) It first updates  $\phi^{(t)}$  and  $\psi^{(t)}$ , *e.g.*, by gradient descent on some loss

216 function. (ii) The policy is updated by an NPG policy improvement step based on the pre-trained  
 217 source-domain  $Q_{\text{src}}$  and inter-domain mappings  $\phi^{(t)}, \psi^{(t)}$  as  
 218

$$219 \quad \pi^{(t+1)}(a|s) \propto \pi^{(t)}(a|s) \exp \left( \eta Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) \right), \quad (3)$$

221 where  $\eta$  is the step size. The pseudo code is in Algorithm 1. Before characterizing the convergence  
 222 behavior, we describe the cross-domain Bellman error used in Proposition 2.

223 **Definition 3** (Cross-Domain Bellman Error). *Given a pre-trained source-domain  $Q_{\text{src}}$ , inter-domain  
 224 correspondences  $\phi, \psi$ , and target-domain policy  $\pi$ , for each state-action pair  $(s, a)$ , the cross-  
 225 domain Bellman error is defined as  $\epsilon_{\text{cd}}(s, a; \phi, \psi, Q_{\text{src}}, \pi) := |Q_{\text{src}}(\phi(s), \psi(a)) - r_{\text{tar}}(s, a) -$   
 226  $\gamma \mathbb{E}_{s' \sim P_{\text{tar}}(\cdot|s, a), a' \sim \pi(\cdot|s')} [Q_{\text{src}}(\phi(s'), \psi(a'))]|$ .*

227 **Proposition 2.** *Under the DQT method in Algorithm 1 and Assumption 1, the average sub-optimality  
 228 over  $T$  iterations is upper bounded as*

$$\begin{aligned} 230 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} [V^{\pi^*}(s) - V^{\pi^{(t)}}(s)] &\leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \left\| Q_{\text{src}}(\phi^{(t)}, \psi^{(t)}) - Q^{\pi^{(t)}} \right\|_{d^{\pi^{(t)}}}}_{(b)} \\ 234 \quad &\leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}}}_{(c)}, \quad (4) \end{aligned}$$

238 where  $C_0 := 2C_{\pi^*}/(1-\gamma)$  and  $C_1 := 2C_{\pi^*}/((1-\gamma)^3 \mu_{\text{tar}, \min})$ .

240 The detailed proof of Proposition 2 is in Appendix B. The main insights are: (i) Similar to Propo-  
 241 sition 1, the upper bound has two terms. Term (a) characterizes Q-NPG learning, while the sub-  
 242 optimality gap is mainly determined by the approximation error from  $Q_{\text{src}}$ , equivalent to the cross-  
 243 domain Bellman error (term (c)). (ii) Minimizing this error requires  $\phi$  and  $\psi$  that reduce term (c).  
 244 Motivated by Equation (4), we define cross-domain Bellman consistency.

245 **Definition 4** (Cross-Domain Bellman Consistency). *Let  $\delta \geq 0$ . A source-domain critic  $Q_{\text{src}}$  is said to  
 246 be  $\delta$ -Bellman-consistent under target domain policy  $\pi$  if there exist a pair of inter-domain mapping  
 247  $(\phi, \psi)$  such that  $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi, \psi)\|_{d^{\pi}}$  is no more than  $\delta$ .*

248 **Transferability of a Source-Domain Model.** Given a source-domain critic  $Q_{\text{src}}$ , if for any iteration  $t$   
 249 there exist inter-domain mappings  $\phi^{(t)}$  and  $\psi^{(t)}$  such that  $Q_{\text{src}}$  is  $\delta$ -Bellman-consistent under  $\pi^{(t)}$ ,  
 250 then term (c) in (4) is bounded by  $C_1\delta$ . Thus, the transferability of a source-domain model is captured  
 251 by  $\delta$ . In the perfect transfer scenario, where source and target domains are identical and  $Q_{\text{src}}$  is  
 252 optimal, setting  $\phi$  and  $\psi$  as identity mappings ensures small  $\delta$  for all  $t$ , yielding a small sub-optimality  
 253 gap for sufficiently large  $T$ .

254 **Limitations of DQT.** By Proposition (2), a limitation of DQT is that with a poorly transferable source  
 255 critic, the cross-domain Bellman error at each iteration  $t$  is large, so term (c) in (4) dominates the  
 256 bound and prevents effective cross-domain transfer.

## 258 4.2 THE QAVATAR ALGORITHM

260 To address DQT’s limitation, we propose *QAvatar*, which uses a hybrid critic consisting of a weighted  
 261 combination of a learned target-domain Q function and a given source-domain Q function to enable  
 262 reliable cross-domain knowledge transfer. This design allows *QAvatar* to improve sample efficiency  
 263 in favorable scenarios while avoiding reliance on poorly transferable source models. Specifically,  
 264 *QAvatar* comprises three major components:

266 • **Inter-domain mapping:** Under *QAvatar*, we propose to learn the inter-domain mappings  $\phi :  
 267 \mathcal{S}_{\text{tar}} \rightarrow \mathcal{S}_{\text{src}}$  and  $\psi : \mathcal{A}_{\text{tar}} \rightarrow \mathcal{A}_{\text{src}}$  by minimizing the cross-domain Bellman loss as

$$268 \quad \mathcal{L}_{\text{CD}}(\phi, \psi; Q_{\text{src}}, \pi_{\text{tar}}, \mathcal{D}_{\text{tar}}) := \hat{\mathbb{E}}_{(s, a, r_{\text{tar}}, s') \in \mathcal{D}_{\text{tar}}} \left[ |r_{\text{tar}} + \gamma \mathbb{E}_{a' \sim \pi_{\text{tar}}} [Q_{\text{src}}(\phi(s'), \psi(a'))] - Q_{\text{src}}(\phi(s), \psi(a))|^2 \right], \quad (5)$$

270 **Algorithm 2** *Q*Avatar

---

271 **Require:** Source-domain Q function  $Q_{\text{src}}$ .  
272 1: Initialize the state mapping function  $\phi$ , the action mapping function  $\psi$ , number of on-policy samples per  
273 iteration  $N_{\text{tar}}$ , the target-domain policy  $\pi^{(0)}$ , weight decay function  $\alpha : \mathbb{N} \rightarrow [0, 1]$ , and  $\eta = (1 - \gamma)\sqrt{1/T}$ .  
274 2: **for** iteration  $t = 1, \dots, T$  **do**  
275 3:     Sample  $\mathcal{D}_{\text{tar}}^{(t)} = \{(s, a, r, s')\}$  of  $N_{\text{tar}}^{(t)}$  on-policy samples using  $\pi^{(t)}$  in the target domain.  
276 4:     Update  $Q_{\text{tar}}$  by minimizing the TD loss in (1), i.e.,  $Q_{\text{tar}}^{(t)} \leftarrow \arg \min_{Q_{\text{tar}}} \mathcal{L}_{\text{TD}}(Q_{\text{tar}}; \pi^{(t)}, \mathcal{D}_{\text{tar}}^{(t)})$ .  
277 5:     Update  $\phi$  and  $\psi$  by minimizing (5), i.e.,  $\phi^{(t)}, \psi^{(t)} \leftarrow \arg \min_{\phi, \psi} \mathcal{L}_{\text{CD}}(\phi, \psi; Q_{\text{src}}, \pi^{(t)}, \mathcal{D}_{\text{tar}}^{(t)})$ .  
278 6:     Defined weight parameter  $\alpha(t) = \|\epsilon_{\text{td}}^{(t)}\|_{\mathcal{D}_{\text{tar}}^{(t)}} / (\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{\mathcal{D}_{\text{tar}}^{(t)}} + \|\epsilon_{\text{td}}^{(t)}\|_{\mathcal{D}_{\text{tar}}^{(t)}})$   
279 7:     Update the target-domain policy by adapting NPG to CDRL as in (6).  
280 8: **end for**  
281 9: **Return** Target-domain policy  $\pi_{\text{tar}}^{(T)} \sim \text{Uniform}(\{\pi^{(1)}, \dots, \pi^{(T)}\})$ .

---

283 where  $Q_{\text{src}}$  is the pre-trained source-domain Q function and  $\mathcal{D}_{\text{tar}} = \{(s, a, r_{\text{tar}}, s')\}$  denotes a set  
284 of target-domain samples drawn under  $\pi_{\text{tar}}$ . Intuitively, the loss in (5) looks for a pair of mapping  
285 functions  $\phi, \psi$  such that  $Q_{\text{src}}$  aligns as much with the target-domain transitions as possible.

286 • **Target-domain Q function:** To implement the hybrid critic, *Q*Avatar maintains a target-domain  
287 Q function  $Q_{\text{tar}}$ , serving as the critic of the current target-domain policy. At each iteration  $t$ ,  
288  $Q_{\text{tar}}$  is obtained via policy evaluation by minimizing the TD loss  $\mathcal{L}_{\text{TD}}(Q_{\text{tar}}; \pi_{\text{tar}}, \mathcal{D}_{\text{tar}})$ , where  
289  $\mathcal{D}_{\text{tar}} = (s, a, r, s')$  are target-domain samples (Equation 1).  
290 • **NPG-like policy update with a weighted Q-function combination:** *Q*Avatar leverages both  $Q_{\text{src}}$   
291 and  $Q_{\text{tar}}$  for policy updates. At each iteration  $t$ ,

$$293 \pi^{(t+1)}(a|s) \propto \pi^{(t)}(a|s) \cdot \exp \left( \eta \left( (1 - \alpha(t))Q_{\text{tar}}^{(t)}(s, a) + \alpha(t)Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) \right) \right), \quad (6)$$

294 where  $\alpha : \mathbb{N} \rightarrow [0, 1]$  is a weight function (see Section 4.3).

295 The pseudo code of *Q*Avatar is provided in Algorithm 2.

296 **Remark 1.** In line 6 of Algorithm 1 and line 8 of Algorithm 2, DQT and *Q*Avatar output the final  
297 policy by selecting uniformly from all intermediate policies which is a standard procedure linking  
298 average sub-optimality to policy performance. In experiments, the last-iterate policy suffices and  
299 performs well.

302 4.3 THEORETICAL JUSTIFICATION OF *Q*AVATAR

303 In this section, we present the theoretical result of *Q*Avatar and thereby describe how to choose the  
304 proper decay parameter  $\alpha(\cdot)$ .

305 **Definition 5** (Cross-Domain Action Value Function). *For each state-action pair  $(s, a)$  and  $t \in \mathbb{N}$ ,  
306 the cross-domain action value function  $f^{(t)}(s, a)$  is defined as  $f^{(t)}(s, a) := (1 - \alpha(t))Q_{\text{tar}}^{(t)}(s, a) +$   
307  $\alpha(t)Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a))$ .*

308 We are ready to present the main theoretical result, and the detailed proof is provided in Appendix B.

309 **Proposition 3.** (Average Sub-Optimality) *Under the *Q*Avatar in Algorithm 2 and Assumption 1, the average  
310 sub-optimality over  $T$  iterations can be upper bounded as*

$$311 \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} [V^{\pi^*}(s) - V^{\pi^{(t)}}(s)] \\ 312 \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} [ |f^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a)|]}_{(b)} \quad (7)$$

$$313 \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \left( \alpha(t) \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} + (1 - \alpha(t)) \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}} \right)}_{(c)}, \quad (8)$$

314 where  $C_0 := 2C_{\pi^*}/(1 - \gamma)$  and  $C_1 := 2C_{\pi^*}/((1 - \gamma)^3 \mu_{\text{tar}, \min})$ .

324 Notably, the term (a) in (8) reflects the learning progress of NPG, and term (c) reflects the trans-  
 325 ferability of a source-domain critic  $Q_{\text{src}}$  and the error of policy evaluation for the target-domain  
 326 policy.

327 **A Hyperparameter-Free Design of  $\alpha(t)$ .** Based on (8), for each iteration  $t$ , term (c) can be  
 328 minimized by choosing  $\alpha(t)$  as an indicator function, i.e., set to 1 when  $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} <$   
 329  $\|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}$ , and 0 otherwise. In practice, estimating the two error terms is noisy, so using an  
 330 indicator can cause large fluctuations in  $\alpha(t)$  and unstable training. To address this, we propose a  
 331 smoother variant:  $\alpha(t) = \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}} / (\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} + \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}})$ . Notably, this design  
 332 is *hyperparameter-free* and incurs minimal deployment overhead.

333 **Key Implications of Proposition 3:** (1) Effective transfer lowers the upper bound of average sub-  
 334 optimality: In an ideal case with perfect mappings  $\phi^*, \psi^*$  such that  $L_{\text{CD}}(\phi^*, \psi^*; Q_{\text{src}}, \pi_{\text{tar}}, \mathcal{D}_{\text{tar}}) = 0$   
 335 for any  $\pi_{\text{tar}}$ , we obtain  $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^*, \psi^*)\|_{d^{\pi_{\text{tar}}}} = 0$ . Then  $\alpha(t) = 1$  at all  $t$ , making term (c) in (8)  
 336 vanish. The bound thus reduces to term (a), which becomes negligible as  $T$  grows. (2)  $Q$ Avatar  
 337 avoids being trapped by low-transfer critics. For a source critic only  $\delta$ -Bellman-consistent with large  
 338  $\delta$ ,  $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi, \psi)\|_{d^{\pi^{(t)}}}$  remains large, so  $\alpha(t) \approx 0$ . Consequently, term (c) reduces to the standard  
 339 TD error.

#### 342 4.4 PRACTICAL IMPLEMENTATION OF $Q$ AVATAR

343 We extend the  $Q$ Avatar framework in Algorithm 2 to a practical deep RL implementation. The pseudo  
 344 code is provided in Algorithm 3 in Appendix.

345 • **Learning the target-domain policy and the Q function.** To go beyond the tabular setting, we  
 346 extend  $Q$ Avatar by connecting NPG with soft policy iteration (SPI) (Haarnoja et al., 2018). In  
 347 the entropy-regularized RL setting, SPI is known to be a special case of NPG (Cen et al., 2022).  
 348 Based on this connection, we choose to integrate  $Q$ Avatar with soft actor-critic (SAC) (Haarnoja  
 349 et al., 2018), i.e., updating the target-domain critic  $Q_{\text{tar}}$  by the critic loss of SAC and updating the  
 350 target-domain policy  $\pi^{(t)}$  by the SAC policy loss with the weighted combination of  $Q_{\text{tar}}$  and  $Q_{\text{src}}$   
 351 of  $Q$ Avatar.

352 • **Learning the inter-domain mapping functions with an augmented flow model.** Similar to  
 353 the tabular setting, we learn inter-domain mappings by minimizing the cross-domain Bellman  
 354 loss. In practical RL problems, state and action spaces are usually bounded, so the outputs of  
 355  $\phi : \mathcal{S}_{\text{tar}} \rightarrow \mathcal{S}_{\text{src}}$  and  $\psi : \mathcal{A}_{\text{tar}} \rightarrow \mathcal{A}_{\text{src}}$  must lie within feasible regions. As discussed in Section 2,  
 356 adversarial learning is commonly used to address this (Taylor et al., 2008; Zhang et al., 2021; Gui  
 357 et al., 2023; Zhu et al., 2024), but it can lead to unstable training. Therefore, we adopt the method of  
 358 (Brahmane et al., 2023), training a normalizing flow to map the outputs of the mapping functions  
 359 into the feasible regions.

## 362 5 EXPERIMENTS

### 363 5.1 SETUP

364 **Benchmark CDRL Methods.** We compare  $Q$ Avatar with recent CDRL benchmarks under different  
 365 state-action spaces, including Cross-Morphology-Domain Policy Adaptation (CMD) (Gui et al., 2023),  
 366 Cross-domain Adaptive Transfer (CAT) (You et al., 2022), and Policy Adaptation by Representation  
 367 mismatch (PAR) (Lyu et al., 2024). For a fair comparison, all methods use the same source-domain  
 368 models, including policy and corresponding Q-networks, pre-trained with SAC. We also evaluate  
 369 both PPO-based CAT, the original version in (You et al., 2022), and SAC-based CAT. Notably, CMD  
 370 is an enhanced version of (Zhang et al., 2021) that integrates dynamics cycle consistency to learn  
 371 state-action correspondences.

372 To demonstrate sample efficiency, we also compare  $Q$ Avatar with standard SAC (Haarnoja et al.,  
 373 2018), which learns from scratch in the target domain, and with direct fine-tuning (FT) of the  
 374 source models (Ha et al., 2024), equivalent to SAC with source feature initialization. Both serve as  
 375 competitive baselines. Hyperparameters are provided in Appendix F.

376 **Evaluation Environments.**

378 • **Locomotion:** We use the standard MuJoCo environments, including Hopper-v3, HalfCheetah-v3  
 379 and Ant-v3, as the source domains and follow the same procedure as in (Zhang et al., 2021; Xu  
 380 et al., 2023) to modify them for the target domains. The detailed morphologies are in Appendix F.  
 381

382 • **Robot arm manipulation:** We leverage Robosuite, a popular package for robot learning released  
 383 by (Zhu et al., 2020) and evaluate our algorithm on door opening and table wiping. For each task,  
 384 we use the Panda robot arm as the source domain and set the UR5e robot arm as the target domain.  
 385

386 • **Goal Navigation:** A natural transfer scenario occurs when the source and target domains share  
 387 the same goal but differ in robot type. We use the Safety-Gym benchmark (Ray et al., 2019) and  
 388 evaluate transfer from Car to Doggo, keeping the goal unchanged, specifically using CarGoal0 as  
 389 the source and DoggoGoal0 as the target domain.

390 The dimensions of the state and action spaces of all the source-target pairs are in Table 3 in Appendix  
 391 F. All the results reported below are averaged over 5 random seeds.



400 Figure 1: Training curves of *QAvatar* and benchmark methods: (a)-(b) Locomotion tasks; (d)-(e)  
 401 Robot arm manipulation tasks in Robosuite; (f) Navigation task from CarGoal0 to DoggoGoal0.  
 402

## 403 5.2 EXPERIMENTAL RESULTS

### 405 Does *QAvatar* improve data efficiency?

406 **Learning curves:** As shown by Figure 1, we observe that *QAvatar* achieves improved data efficiency  
 407 via cross-domain transfer than SAC throughout the training process in all the tasks, despite that these  
 408 tasks have rather different dimensions as shown in Table 3.

409 **CAT-SAC** achieves moderate results on MuJoCo but transfers slowly to other tasks, as CAT-like  
 410 methods lack guarantees and depend on parameter-based transfer, i.e., weighted combinations of  
 411 source and target policy layers. Such methods assume shared feature representations (Zhuang et al.,  
 412 2020), which often fails when domains differ. FT improves data efficiency over SAC on MuJoCo but  
 413 learns slowly in Robosuite due to dissimilar state-action representations from different robot arms.  
 414 CMD generally performs poorly and can be unstable (e.g., in Ant) owing to its adversarial mapping  
 415 module. We attribute CMD’s weakness to its unsupervised design, which ignores target-domain  
 416 rewards.

417 **Time to threshold:** We provide Table 1 to mark the time to threshold. It shows that *QAvatar* requires  
 418 only about 44% of the environment steps to achieve the threshold than SAC does in the best case.  
 419

420 **Aggregated performance:** To ensure a reliable comparison, we follow the guidelines of (Agarwal  
 421 et al., 2021b) and calculate the interquartile mean (IQM) using rliable, which enables evaluation at an  
 422 aggregated level. Figure 2 shows that *QAvatar*indeed achieves significantly better performance than  
 423 all baselines.

424 Table 1: Time to threshold of *QAvatar* and SAC.

| Environment  | Threshold | <i>QAvatar</i> | SAC  | <i>QAvatar</i> / SAC |
|--------------|-----------|----------------|------|----------------------|
| HalfCheetah  | 6000      | 126K           | 176K | 0.71                 |
| Ant          | 1600      | 206K           | 346K | 0.59                 |
| Door Opening | 90        | 48K            | 98K  | 0.49                 |
| Table Wiping | 45        | 72K            | 98K  | 0.73                 |
| Navigation   | 20        | 218K           | 490K | 0.44                 |



431 Figure 2: Aggregated IQMs (with 95%  
 432 stratified bootstrap CIs) across tasks.

432 **How does  $Q$ Avatar perform under strong positive and negative transfer?** We consider a task  
 433 where the source domain is standard ‘Ant-v3’ and the target changes the goal to move backward, with  
 434 all else unchanged. Here,  $Q_{\text{src}}$  and  $Q_{\text{tar}}$  are adversarial due to opposite goals. We evaluate  $Q$ Avatar in  
 435 two scenarios: (a) **Learning state/action mapping**: strong transferability exists, as Ant is symmetric  
 436 along the front-back axis, allowing a perfect mapping. (b) **Fixing mapping as identity**: a strong  
 437 negative transfer case, since  $Q_{\text{src}}$  provides adversarial reward signals. As shown in Figure 3,  $Q$ Avatar  
 438 captures both positive transfer (high  $\alpha(t)$ ) and negative transfer (low  $\alpha(t)$ ), demonstrating that  $\alpha(t)$   
 439 reflects transferability.

440 **Performance of  $Q$ Avatar with a low-quality source domain:** We evaluate this scenario in the  
 441 Cheetah environment (Section 5.1) using a low-quality source model with a total return of 1000 (vs.  
 442  $\sim 7000$  for the expert). Figure 4 illustrates the learning process and  $\alpha(t)$  of  $Q$ Avatar. Results show  
 443 that when the source model is of low quality,  $\alpha(t)$  decreases to a small value by the end of training,  
 444 mitigating the effect of negative transfer.



445  
 446  
 447  
 448  
 449  
 450  
 451  
 452 Figure 3: The training curve and the values of  
 453  $\alpha(t)$  for  $Q$ Avatar under strongly positive and  
 454 strongly negative transfer scenarios.



453  
 454 Figure 4: The training curve and the values of  
 455  $\alpha(t)$  in the Cheetah environment with a  
 456 low-quality source model.

457  
 458 **Does  $Q$ Avatar still perform reliably well when the source and target with two unrelated transfer**  
 459 **scenarios?** We evaluate transfer from original Hopper-v3 in MuJoCo to the table-wiping task in  
 460 Robosuite. The configurations of these environments are provided in Section 5.1. Figure 6 shows  
 461 that even when the source and target domains share no structural similarity,  $Q$ Avatar still performs  
 462 reliably and does not suffer from negative transfer.

463  
 464 **How  $Q$ Avatar performs on non-stationary environment?** We use the Ant environment and introduce  
 465 stochasticity by adding  $\mathcal{N}(0, 0.1)$  noise to rewards and  $\mathcal{N}(0, 0.05)$  to actions, following (Tessler  
 466 et al., 2019). As shown in Figure 7, despite stochastic rewards and transitions, the inter-domain  
 467 mapping is effectively learned, enabling positive transfer and faster learning in the target domain.

468  
 469 **Extension:  $Q$ Avatar with more than one source model.**  $Q$ Avatar can be readily extended for  
 470 transfer from multiple source model. Similar to the idea of one source critic transfer, the weight  
 471  $\alpha_i(t)$  for the  $i$ -th source critic  $Q_{\text{src},i}$ ,  $\alpha_i(t) = (1/\|\epsilon_{\text{cd}}(Q_{\text{src},i}, \phi_i^{(t)}, \psi_i^{(t)})\|_{d^{\pi(t)}})/(1/\|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi(t)}} +$   
 472  $\sum_{j=1}^N 1/\|\epsilon_{\text{cd}}(Q_{\text{src},j}, \phi_i^{(t)}, \psi_i^{(t)})\|_{d^{\pi(t)}})$ . Consider a two-source to one-target transfer scenario: (i)  
 473 Source domain 1 (denoted by ‘src1’) is Ant-v3 with the both front legs disabled; (ii) Source domain 2  
 474 (denoted by ‘src2’) is Ant-v3 with the both back legs disabled. (iii) Target domain (denoted by ‘tar’)  
 475 is the original Ant-v3 with no modifications. Figure 8 shows  $Q$ Avatar in multi-source cross-domain  
 476 transfer can achieve higher transferability by leveraging the knowledge from two source domains.

## 477 6 CONCLUDING REMARKS

478  
 479 We propose cross-domain Bellman consistency as a measure of source-model transferability, and  
 480 introduce  $Q$ Avatar, the first CDRL method that reliably handles distinct state-action representations  
 481 with performance guarantees. Using a hybrid critic and a hyperparameter-free weighting scheme,  
 482  $Q$ Avatar achieves robust knowledge transfer even with weak source models. Experiments confirm  
 483 its effectiveness for cross-domain RL. A limitation of our formulation is the assumption that target-  
 484 domain data collection is costlier than training compute. Since  $Q$ Avatar takes about twice the training  
 485 time of SAC due to inter-domain mappings and the flow model, further acceleration would be needed  
 486 when training efficiency is critical.

486 ETHICS STATEMENT  
487488 We conduct our research entirely in simulated environments, using no human participants or sensitive  
489 data. This work fully complies with the code of ethics.  
490491 REPRODUCIBILITY STATEMENT  
492493 The code for our experiments is provided in the supplementary material, along with a README  
494 file detailing the commands required to run the experiments. Furthermore, a comprehensive list of  
495 package dependencies is included to facilitate the recreation of the experimental environment.  
496497 USE OF LARGE LANGUAGE MODELS (LLMs)  
498500 Large language models (LLMs) were applied exclusively for linguistic refinement of the manuscript.  
501 No assistance was sought from LLMs in developing methods, performing experiments, or interpreting  
502 results.  
503504 BIBLIOGRAPHY  
505

506 Joshua Achiam. Spinning Up in Deep Reinforcement Learning, 2018.

507 Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and  
508 algorithms. *CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep*, 32:96, 2019.510 Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. P<sub>c</sub>-pg: Policy cover directed exploration  
511 for provable policy gradient learning. In *Procersing in Advances in Neural Information Processing  
512 Systems*, 2020.513 Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy  
514 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning  
515 Research*, 2021a.517 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.  
518 Deep reinforcement learning at the edge of the statistical precipice. In *Advances in Neural  
519 Information Processing Systems*, 2021b.520 Haitham B Ammar, Karl Tuyls, Matthew E Taylor, Kurt Driessens, and Gerhard Weiss. Reinforcement  
521 learning transfer via sparse coding. In *International Conference on Autonomous Agents and  
522 Multiagent Systems*, 2012.523 Haitham Bou Ammar and Matthew E Taylor. Reinforcement learning transfer via common subspaces.  
524 In *Adaptive and Learning Agents: International Workshop*, 2012.526 Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Unsupervised cross-domain  
527 transfer in policy gradient reinforcement learning via manifold alignment. In *AAAI Conference on  
528 Artificial Intelligence*, 2015.530 Paniz Behboudian, Yash Satsangi, Matthew E Taylor, Anna Harutyunyan, and Michael Bowling.  
531 Policy invariant explicit shaping: an efficient alternative to reward shaping. *Neural Computing and  
532 Applications*, 34(3):1673–1686, 2022.533 Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. Flowpg: Action-constrained policy gradient  
534 with normalizing flows. In *Advances in Neural Information Processing Systems*, 2023.535 Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of  
536 natural policy gradient methods with entropy regularization. *Operations Research*, 2022.538 Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff, and  
539 Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world  
experience. In *IEEE International Conference on Robotics and Automation*, 2019.

540 Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient  
 541 primal-dual method for constrained markov decision processes. In *Advances in Neural Information*  
 542 *Processing Systems*, 2020.

543 Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, and Deepak Pathak. Auto-tuned sim-to-real  
 544 transfer. In *IEEE International Conference on Robotics and Automation*, 2021.

545 Mahidhar Dwarampudi and NV Reddy. Effects of padding on lstms and cnns. *arXiv preprint*  
 546 *arXiv:1903.07288*, 2019.

547 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,  
 548 Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance  
 549 weighted actor-learner architectures. In *International Conference on Machine Learning*, 2018.

550 Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdinov.  
 551 Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In *International*  
 552 *Conference on Learning Representations*, 2021.

553 Haiyuan Gui, Shanchen Pang, Shihang Yu, Sibo Qiao, Yufeng Qi, Xiao He, Min Wang, and Xue Zhai.  
 554 Cross-domain policy adaptation with dynamics alignment. *Neural Networks*, 2023.

555 Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant  
 556 feature spaces to transfer skills with reinforcement learning. In *International Conference on*  
 557 *Learning Representations*, 2017.

558 Seokhyeon Ha, Sunbeam Jeong, and Jungwoo Lee. Domain-aware fine-tuning: Enhancing neural  
 559 network adaptability. In *Association for the Advancement of Artificial Intelligence*, 2024.

560 561 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy  
 562 maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference*  
 563 *on Machine Learning*, 2018.

564 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In  
 565 *International Conference on Machine Learning*, 2002.

566 Sham M Kakade. A natural policy gradient. In *Advances in Neural Information Processing Systems*,  
 567 2001.

568 Michail G. Lagoudakis and Ronald Parr. Model-free least-squares policy iteration. In *Advances in*  
 569 *Neural Information Processing Systems*, 2001.

570 Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-  
 571 squares policy iteration. *Journal of Machine Learning Research*, 2012.

572 Jinxiu Liu, Zhang Hongyin, and Donglin Wang. DARA: Dynamics-Aware Reward Augmentation in  
 573 Offline Reinforcement Learning. In *International Conference on Learning Representations*, 2022.

574 575 Jiafei Lyu, Chenjia Bai, Jing-Wen Yang, Zongqing Lu, and Xiu Li. Cross-domain policy adaptation  
 576 by capturing representation mismatch. In *International Conference on Machine Learning*, 2024.

577 Steven Morad, Chris Lu, Ryan Kortvelesy, Stephan Liwicki, Jakob Foerster, and Amanda Prorok.  
 578 Recurrent reinforcement learning with memoroids. In *Advances in Neural Information Processing*  
 579 *Systems*, 2024.

580 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on Knowledge*  
 581 *and Data Engineering*, 2009.

582 Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of  
 583 robotic control with dynamics randomization. In *IEEE International Conference on Robotics and*  
 584 *Automation*, 2018.

585 586 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah  
 587 Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of*  
 588 *Machine Learning Research*, 2021.

594 Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning  
 595 robust neural network policies using model ensembles. In *International Conference on Learning  
 596 Representations*, 2016.

597

598 Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement  
 599 learning. *arXiv preprint arXiv:1910.01708*, 7(1):2, 2019.

600 Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid  
 601 RL: Using both offline and online data can make RL efficient. In *International Conference on  
 602 Learning Representations*, 2023.

603

604 Ram Ananth Sreenivasan, Hyun-Rok Lee, Yeonjeong Jeong, Jongseong Jang, Dongsub Shim, and  
 605 Chi-Guhn Lee. A learnable similarity metric for transfer learning with dynamics mismatch. In *PRL  
 606 Workshop Series – Bridging the Gap Between AI Planning and Reinforcement Learning*, 2023.

607

608 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,  
 609 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv preprint  
 610 arXiv:1801.00690*, 2018.

611

612 Matthew E Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer for reinforcement  
 613 learning. In *Autonomous Agents and Multiagent Systems*, 2008.

614

615 Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-  
 616 tions in continuous control. In *International Conference on Machine Learning*, 2019.

617

618 Chang Wang and Sridhar Mahadevan. Manifold alignment without correspondence. In *International  
 619 Joint Conference on Artificial Intelligence*, 2009.

620

621 Yue Wang, Yuting Liu, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. Target transfer q-learning and its  
 622 convergence analysis. *Neurocomputing*, 2020.

623

624 Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. *Journal of  
 625 Big Data*, 2016.

626

627 Yuxiang Wu and Baotian Hu. Learning to extract coherent summary via deep reinforcement learning.  
 628 In *AAAI Conference on Artificial Intelligence*, 2018.

629

630 Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.  
 631 Cross-domain policy adaptation via value-guided data filtering. In *Advances in Neural Information  
 632 Processing Systems*, 2023.

633

634 Heng You, Tianpei Yang, Yan Zheng, Jianye Hao, and E. Taylor, Matthew. Cross-domain adaptive  
 635 transfer reinforcement learning based on state-action correspondence. In *Uncertainty in Artificial  
 636 Intelligence*, 2022.

637

638 Huizhen Yu and Dimitri P Bertsekas. Convergence results for some temporal difference methods  
 639 based on least squares. *IEEE Transactions on Automatic Control*, 2009.

640

641 Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of  
 642 natural policy gradient methods with log-linear policies. In *International Conference on Learning  
 643 Representations*, 2022.

644

645 Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn what not  
 646 to learn: Action elimination with deep reinforcement learning. In *Advances in Neural Information  
 647 Processing Systems*, 2018.

648

649 Qiang Zhang, Tete Xiao, Alexei A Efros, Lerrel Pinto, and Xiaolong Wang. Learning cross-domain  
 650 correspondence for control with dynamics cycle-consistency. In *International Conference on  
 651 Learning Representations*, 2021.

652

653 Yifei Zhou, Ayush Sekhari, Yuda Song, and Wen Sun. Offline data enhanced on-policy policy gradient  
 654 with provable guarantees. In *International Conference on Learning Representations*, 2024.

648 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation  
649 using cycle-consistent adversarial networks. In *International Conference on Computer Vision*,  
650 2017.

651 Ruiqi Zhu, Tianhong Dai, and Oya Celiktutan. Cross domain policy transfer with effect cycle-  
652 consistency. In *IEEE International Conference on Robotics and Automation*, 2024.

653

654 Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany,  
655 and Yifeng Zhu. Robosuite: A modular simulation framework and benchmark for robot learning.  
656 *arXiv preprint arXiv:2009.12293*, 2020.

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

## APPENDICES

## A SUPPORTING LEMMAS

**Lemma 1** (Performance difference lemma). *For any two policies  $\pi$  and  $\pi'$ , we have*

$$V^{\pi'}(\mu) - V^{\pi}(\mu) = \frac{1}{1-\gamma} \mathbb{E}_{s,a \sim d^{\pi'}}[A^{\pi}(s,a)],$$

where  $A^{\pi}(s,a) := Q^{\pi}(s,a) - V^{\pi}(s)$  is the advantage function.

*Proof.* This can be directly obtained from Lemma 6.1 in (Kakade & Langford, 2002).  $\square$

**Lemma 2** ((Agarwal et al., 2019), Chapter 4). *Let  $\tau = (s_0, a_0, s_1, a_1, \dots)$  denote the (random) trajectory generated under a policy  $\pi$  in an infinite-horizon MDP  $\mathcal{M}$ . For any function  $f : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ , we have*

$$\mathbb{E}_{\tau} \left[ \sum_{t=0}^{\infty} \gamma^t f(s_t, a_t) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d^{\pi}}[f(s,a)]. \quad (9)$$

**Lemma 3** (Importance Ratio). *Given a fixed policy  $\pi$  and a fixed state-action pair  $(s,a)$ , let  $p_k(s,a)$  denote the probability of reaching  $(s,a)$  under an initial distribution  $d^{\pi}$  and policy  $\pi$  after  $k$  time steps. Then, for any  $k \in \mathbb{N}$ , we have*

$$\frac{p_k(s,a)}{d^{\pi}(s,a)} \leq \frac{1}{(1-\gamma)\mu(s,a)}. \quad (10)$$

*Proof.* To begin with, recall the definition of  $d^{\pi}$  as

$$d^{\pi}(s,a) := (1-\gamma) \left( \mu(s,a) + \sum_{t=1}^{\infty} \gamma^t P(s_t = s, a_t = a; \pi, \mu) \right) \equiv \sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a; \pi, \mu). \quad (11)$$

Let  $s_{\text{next},k}$  and  $a_{\text{next},k}$  denote the state and action after  $k$  time steps. Then, we can write down  $p_k(s,a)$ :

$$\begin{aligned} p_k(s,a) &= \sum_{(s',a') \in \mathcal{S} \times \mathcal{A}} \mathbb{P}(s_{\text{next},k} = s, a_{\text{next},k} = a | s', a'; \pi) d^{\pi}(s', a') \\ &= \sum_{(s',a') \in \mathcal{S} \times \mathcal{A}} \mathbb{P}(s_{\text{next},k} = s, a_{\text{next},k} = a | s', a'; \pi) \cdot (1-\gamma) \cdot \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s', a_t = a'; \pi, \mu) \end{aligned} \quad (12)$$

$$\begin{aligned} &= (1-\gamma) \sum_{t=0}^{\infty} \gamma^t \sum_{s',a' \in \mathcal{S} \times \mathcal{A}} \mathbb{P}(s_{\text{next},k} = s, a_{\text{next},k} = a | s', a'; \pi, \mu) \cdot \mathbb{P}(s_t = s', a_t = a'; \pi, \mu) \end{aligned} \quad (13)$$

$$= (1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_{t+k} = s, a_{t+k} = a; \pi, \mu). \quad (14)$$

Then, we have

$$\frac{p_k(s,a)}{d^{\pi}(s,a)} = \frac{(1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_{t+k} = s, a_{t+k} = a; \pi, \mu)}{(1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu)} \quad (16)$$

$$= \frac{\sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_{t+k} = s, a_{t+k} = a; \pi, \mu)}{\sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu)} \quad (17)$$

$$\leq \frac{\sum_{t=0}^{\infty} \gamma^t}{\sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s; \pi, \mu)} \quad (18)$$

$$= \frac{1}{1-\gamma} \cdot \frac{1}{\sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s; \pi, \mu)}, \quad (19)$$

756 where (18) holds by  $\mathbb{P}(s_{t+k} = s, a_{t+k} = a; \pi, \mu) \leq 1$  and (19) holds by taking the sum of an infinite  
 757 geometric sequence. By the fact that  $\sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu) = \mu(s, a) + \sum_{t=1}^{\infty} \gamma^t \mathbb{P}(s_t =$   
 758  $s, a_t = a; \pi, \mu)$ , we have

$$760 \frac{1}{1-\gamma} \cdot \frac{1}{\sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu)} = \frac{1}{1-\gamma} \cdot \frac{1}{\mu(s, a) + \sum_{t=1}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu)} \quad (20)$$

$$763 \leq \frac{1}{(1-\gamma)\mu(s, a)} \quad (21)$$

766 where (21) holds by  $\sum_{t=1}^{\infty} \gamma^t \mathbb{P}(s_t = s, a_t = a; \pi, \mu) \geq 0$ .  $\square$

769 **Lemma 4.** Let  $\nu^{(t)} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$  and  $\pi^{(t)}$  denote any tabular function used in the policy update and  
 770 the policy at iteration  $t$ . That is,

$$772 \pi^{(t+1)}(a | s) \propto \pi^{(t)}(a | s) \exp\left(\eta \nu^{(t)}(s, a)\right).$$

774 Then, we assume that  $\|\nu^{(t)}\|_{\infty} \leq 1/(1-\gamma)$  and setting learning rate  $\eta = (1-\gamma)\sqrt{1/T}$  and optimal  
 775 policy  $\pi^*$ , we have

$$777 \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] \leq \frac{\sqrt{T} [\log |\mathcal{A}_{tar}| + 1]}{1-\gamma}$$

781 *Proof.* Let  $\bar{\nu}^{(t)}(s, a) := \nu^{(t)}(s, a) - \nu^{(t)}(s, \pi^{(t)}(s))$ . According to the policy update rule, at iteration  
 782  $t$ , the policy  $\pi^{(t+1)}$  for the next iteration is updated by the formula:

$$784 \pi^{(t+1)}(a | s) = \frac{\pi^{(t)}(a | s) \exp(\eta \nu^{(t)}(s, a))}{\sum_{a'} \pi^{(t)}(a' | s) \exp(\eta \nu^{(t)}(s, a'))} = \frac{\pi^{(t)}(a | s) \exp(\eta \bar{\nu}^{(t)}(s, a))}{\sum_{a'} \pi^{(t)}(a' | s) \exp(\eta \bar{\nu}^{(t)}(s, a'))}. \quad (22)$$

787 Let  $Z_t := \sum_{a'} \pi^{(t)}(a' | s) \exp(\eta \bar{\nu}^{(t)}(s, a'))$ . By multiplying both sides of (22) by  $Z_t$ , taking the  
 788 logarithm, and then taking the expectation on both sides w.r.t  $(s, a) \sim d^{\pi^*}$ , we obtain

$$790 \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\eta \bar{\nu}^{(t)}(s, a)] = \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\log Z_t + \log \pi^{(t+1)}(a | s) - \log \pi^{(t)}(a | s)]. \quad (23)$$

792 Next, we bound the term  $\log Z_t$ . Note that  $\eta \bar{\nu}^{(t)}(s, a) \leq \sqrt{1/T} \leq 1$  and the fact that  $\exp(x) <$   
 793  $1 + x + x^2$  for any  $x \leq 1$ , we have

$$795 \log Z_t = \log \left( \sum_{a' \in \mathcal{A}} \pi^{(t)}(a' | s) \exp(\eta \bar{\nu}^{(t)}(s, a')) \right) \quad (24)$$

$$798 \leq \log \left( \sum_{a' \in \mathcal{A}} \pi^{(t)}(a' | s) \left[ 1 + (\eta \bar{\nu}^{(t)}(s, a')) + (\eta \bar{\nu}^{(t)}(s, a'))^2 \right] \right) \quad (25)$$

$$801 \leq \log \left( 1 + \frac{\eta^2}{(1-\gamma)^2} \right) \quad (26)$$

$$804 \leq \frac{\eta^2}{(1-\gamma)^2}, \quad (27)$$

806 where (26) is because  $\sum_{a' \in \mathcal{A}} \pi^{(t)}(a' | s) \bar{\nu}^{(t)}(s, a') = 0$  and  $\|\nu^{(t)}\|_{\infty} \leq 1/(1-\gamma)$ , (27) is follow  
 807 the fact that  $\log(1+x) \leq x$  for any  $x \geq 0$ . Then, we have

$$809 \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\eta \bar{\nu}^{(t)}(s, a)] \leq \mathbb{E}_{(s,a) \sim d^{\pi^*}} \left[ \log \pi^{(t+1)}(a | s) - \log \pi^{(t)}(a | s) + \frac{\eta^2}{(1-\gamma)^2} \right]. \quad (28)$$

810 By taking the summation over iterations on both sides of (28), we have  
811

$$\begin{aligned} 812 & \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^*} [\eta \bar{\nu}^{(t)}(s, a)] \\ 813 & \leq \frac{T\eta^2}{(1-\gamma)^2} + \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\log \pi^{(T+1)}(a | s) - \log \pi^{(1)}(a | s)]. \\ 814 \end{aligned}$$

815 Using the fact that  $\log(\pi(a | s)) \leq 0$  and  $\pi^{(1)}(a | s) = \frac{1}{|\mathcal{A}_{\text{tar}}|}$ , we have  
816

$$\sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] \leq \frac{T\eta}{(1-\gamma)^2} + \frac{\log |\mathcal{A}_{\text{tar}}|}{\eta}.$$

817 By setting  $\eta = (1-\gamma)\sqrt{1/T}$ , we have  
818

$$\sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] \leq \frac{\sqrt{T} [\log |\mathcal{A}_{\text{tar}}| + 1]}{1-\gamma}$$

819  $\square$   
820

821 **Lemma 5.** Let  $\nu^{(t)} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$  and  $\pi^{(t)}$  denote value function used in the policy update and the  
822 policy at iteration  $t$ . That is,  
823

$$\pi^{(t+1)}(a | s) \propto \pi^{(t)}(a | s) \exp \left( \eta \nu^{(t)}(s, a) \right). \quad (29)$$

824 Then, by assuming that  $\|\nu^{(t)}\|_\infty \leq 1/(1-\gamma)$  and setting the learning rate  $\eta = (1-\gamma)\sqrt{1/T}$  and  
825 optimal policy  $\pi^*$ , we have  
826

$$\begin{aligned} 827 & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} [V^{\pi^*}(s) - V^{\pi^{(t)}}(s)] \\ 828 & \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C_{\pi^*}}{1-\gamma} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} [\left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right|] \\ 829 \end{aligned}$$

830 *Proof.*

$$\begin{aligned} 831 & V^{\pi^*}(\mu_{\text{tar}}) - V^{\pi^{(t)}}(\mu_{\text{tar}}) \\ 832 & = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\text{tar}}^{\pi^*}} [A^{\pi^{(t)}}(s, a)] \\ 833 \end{aligned} \quad (30)$$

$$= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\text{tar}}^{\pi^*}} [\bar{\nu}^{(t)}(s, a) - \bar{\nu}^{(t)}(s, a) + A^{\pi^{(t)}}(s, a)] \quad (31)$$

$$= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\text{tar}}^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\text{tar}}^{\pi^*}} [-\bar{\nu}^{(t)}(s, a) + A^{\pi^{(t)}}(s, a)] \quad (32)$$

$$\leq \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\text{tar}}^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\text{tar}}^{\pi^*}} [\left| -\bar{\nu}^{(t)}(s, a) + A^{\pi^{(t)}}(s, a) \right|], \quad (33)$$

834 where (30) holds by the performance difference lemma (cf. Lemma 1), (31) is obtained by adding  
835  $\bar{\nu}^t(s, a) - \bar{\nu}^t(s, a)$ , (32) is obtained by rearranging the terms in (31), and (33) holds by  $x \leq |x|$ , for  
836 all  $x \in \mathbb{R}$ . By the fact that  $\| \frac{d^{\pi^*}}{d^{\pi^{(t)}}} \|_\infty \leq C$ , we have  
837

$$\begin{aligned} 838 & \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] + \frac{1}{1-\gamma} \mathbb{E}_{s,a \sim d^{\pi^*}} [\left| -\bar{\nu}^{(t)}(s, a) + A^{\pi^{(t)}}(s, a) \right|] \\ 839 & \leq \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d^{\pi^*}} [\bar{\nu}^{(t)}(s, a)] + \frac{1}{1-\gamma} C \cdot \mathbb{E}_{s,a \sim d^{\pi^{(t)}}} [\left| -\bar{\nu}^{(t)}(s, a) + A^{\pi^{(t)}}(s, a) \right|] \quad (34) \\ 840 \end{aligned}$$

841 (35)

864 Recall the definitions that  $\bar{\nu}^{(t)}(s, a) := \nu^{(t)}(s, a) - \nu^{(t)}(s, \pi^{(t)}(s))$  and  $A^{\pi^{(t)}}(s, a) := Q^{\pi^{(t)}}(s, a) -$   
865  $Q^{\pi^{(t)}}(s, \pi^{(t)}(s))$ . Then, we have  
866

$$867 \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \bar{\nu}^{(t)}(s, a) - A^{\pi^{(t)}}(s, a) \right| \right] \\ 868 = \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \nu^{(t)}(s, a) - \nu^{(t)}(s, \pi^{(t)}(s)) - Q^{\pi^{(t)}}(s, a) + Q^{\pi^{(t)}}(s, \pi^{(t)}(s)) \right| \right] \quad (36)$$

$$869 \leq \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| + \left| Q^{\pi^{(t)}}(s, \pi^{(t)}(s)) - \nu^{(t)}(s, \pi^{(t)}(s)) \right| \right] \quad (37)$$

873 where (37) holds by the fact that  $|x+y| \leq |x|+|y|$  for any  $x, y \in \mathbb{R}$ . Then, by linearity of expectation,  
874 we obtain

$$875 \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| + \left| Q^{\pi^{(t)}}(s, \pi^{(t)}(s)) - \nu^{(t)}(s, \pi^{(t)}(s)) \right| \right] \\ 876 = \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] + \mathbb{E}_{s \sim d^{\pi^{(t)}}} \left[ \left| Q^{\pi^{(t)}}(s, \pi^{(t)}(s)) - \nu^{(t)}(s, \pi^{(t)}(s)) \right| \right] \quad (38)$$

$$877 = \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} 2 \left[ \left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (39)$$

882 where (39) holds by Jensen's inequality. Then, by substituting the result from (39) back into (34), we  
883 have

$$884 \frac{1}{1-\gamma} \mathbb{E}_{(s, a) \sim d^{\pi^*}} \left[ \bar{\nu}^{(t)}(s, a) \right] + \frac{1}{1-\gamma} C \cdot \mathbb{E}_{s, a \sim d^{\pi^{(t)}}} \left[ \left| -\bar{\nu}^{(t)}(s, a) + A^{\pi^{(t)}}(s, a) \right| \right] \quad (40)$$

$$885 \leq \frac{1}{1-\gamma} \mathbb{E}_{(s, a) \sim d^{\pi^*}} \left[ \bar{\nu}^{(t)}(s, a) \right] + \frac{2C}{1-\gamma} \cdot \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (41)$$

889 Next, summing over all iterations and combining with Lemma 4, we have

$$890 \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 891 \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C}{1-\gamma} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| \nu^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (42)$$

892  $\square$

893 Recall that for any policy  $\pi$ , we use  $d^\pi$  to denote the discounted state-action visitation distribution  
894 under policy  $\pi$  in the target domain.

895 **Lemma 6.** *Under Algorithm 2, for any  $t \in \mathbb{N}$ , we have*

$$896 \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| f^t(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \\ 897 \leq \frac{1}{(1-\gamma)^2 \mu_{\text{tar}, \min}} \left[ (1-\alpha(t)) \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \epsilon_{td}^{(t)}(s, a) \right] + \alpha(t) \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \epsilon_{cd}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right] \right] \quad (43)$$

900 *Proof.* Recall the definition of  $f^{(t)} := (1-\alpha(t))Q_{\text{tar}}^{(t)}(s, a) + \alpha(t)Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a))$ , we have

$$901 \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| f^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \\ 902 = \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| (1-\alpha(t))Q_{\text{tar}}^{(t)}(s, a) + \alpha(t)Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (44)$$

$$903 = \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ \left| (1-\alpha(t))(Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) + r_{\text{tar}}(s, a)) \right. \right. \\ 904 \left. \left. + \alpha(t)(Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) + r_{\text{tar}}(s, a)) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (45)$$

$$\begin{aligned}
&= \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left[ (1 - \alpha(t)) (Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) + r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')]] \right. \right. \\
&\quad + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')]] + \alpha(t) \left( Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) + r_{\text{tar}}(s, a) \right. \\
&\quad \left. \left. - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \right) \right. \\
&\quad \left. - Q^{\pi^{(t)}}(s, a) \right] \right] \tag{46}
\end{aligned}$$

$$\begin{aligned}
&= \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left[ (1 - \alpha(t)) (Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')]] \right. \right. \\
&\quad + \alpha(t) \left( Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \right) \\
&\quad + (1 - \alpha(t)) \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')] + \alpha(t) \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \\
&\quad \left. \left. + r_{\text{tar}}(s, a) - Q^{\pi^{(t)}}(s, a) \right] \right] \tag{47}
\end{aligned}$$

$$\begin{aligned}
&= \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left[ (1 - \alpha(t)) \left( Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')] \right) \right. \right. \\
&\quad + \alpha(t) \left( Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \right) \\
&\quad \left. \left. + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [f^{(t)}(s', a')] + r_{\text{tar}}(s, a) - Q^{\pi^{(t)}}(s, a) \right] \right], \tag{48}
\end{aligned}$$

where we obtain (45) by adding the dummy terms  $(1 - \alpha(t))(-r_{\text{tar}}(s, a) + r_{\text{tar}}(s, a))$  and  $\alpha(t)(-r_{\text{tar}}(s, a) + r_{\text{tar}}(s, a))$  to the inner part of (44), (46) is obtained by adding  $(1 - \alpha(t))(-\gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')] + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')])$  and  $\alpha(t)(-\gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))])$  to the inner part of (45), (47) holds by rearranging the terms in (46), and (48) holds by the definition of  $f^{(t)}$ . Then, by adding  $\gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')] - \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')]$  to the inner part of (48), we can rewrite (48) as

$$\begin{aligned}
&\mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left[ (1 - \alpha(t)) \left( Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')] \right) \right. \right. \\
&\quad + \alpha(t) \left( Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \right) \\
&\quad + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [f^{(t)}(s', a')] + r_{\text{tar}}(s, a) - Q^{\pi^{(t)}}(s, a) \\
&\quad \left. \left. + \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')] - \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')] \right] \right] \tag{49}
\end{aligned}$$

$$\begin{aligned}
& \leq \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| (1 - \alpha(t)) \left( Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')] \right) \right| \right. \\
& \quad \left. + \left| \alpha(t) \left( Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \right) \right| \right. \\
& \quad \left. + \left| \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [f^{(t)}(s', a')] + r_{\text{tar}}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right. \\
& \quad \left. + \left| \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s')}} [Q^{\pi^{(t)}}(s'', a'')] - \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')] \right| \right] \tag{50}
\end{aligned}$$

$$\begin{aligned}
& \leq \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ (1 - \alpha(t)) \underbrace{\left| Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s', a')] \right|}_{=:\epsilon_{\text{td}}^{(t)}(s,a)} \right. \\
& \quad \left. + \alpha(t) \underbrace{\left| \left( Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] \right) \right|}_{=:\epsilon_{\text{cd}}(s,a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)})} \right. \\
& \quad \left. + \left| \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [f^{(t)}(s', a')] - \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')] \right| \right. \\
& \quad \left. + \underbrace{\left| r_{\text{tar}}(s, a) - Q^{\pi^{(t)}}(s, a) + \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s,a) \\ a'' \sim \pi^{(t)}(\cdot|s'')}} [Q^{\pi^{(t)}}(s'', a'')] \right|}_{=0} \right] \tag{51}
\end{aligned}$$

$$\begin{aligned}
& \leq \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s,a) + \alpha(t) \epsilon_{\text{cd}}(s,a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right. \\
& \quad \left. + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} \left[ \left| f^{(t)}(s', a') - Q^{\pi^{(t)}}(s', a') \right| \right] \right] \tag{52}
\end{aligned}$$

where (50) holds by triangle inequality, (51) holds by the facts that  $0 \leq \alpha(t) \leq 1$  and  $0 \leq 1 - \alpha(t) \leq 1$ , (52) holds by coupling  $(s', a')$  and  $(s'', a'')$  and applying Bellman expectation equation as well as the definitions that  $\epsilon_{\text{td}}^{(t)}(s,a) := |Q_{\text{tar}}^{(t)}(s,a) - r_{\text{tar}}(s,a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{tar}}^{(t)}(s',a')]|$  and  $\epsilon_{\text{cd}}(s,a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) := |Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - r_{\text{tar}}(s,a) - \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))]|$ . By recursively applying the procedure from (44) to (52) to  $|f^{(t)}(s', a') - Q^{\pi^{(t)}}(s', a')|$ , we obtain a bound on  $\mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ (f^{(t)}(s,a) - Q^{\pi^{(t)}}(s,a))^2 \right]$  as follows:

$$\begin{aligned}
& \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| f^{(t)}(s,a) - Q^{\pi^{(t)}}(s,a) \right| \right] \\
& \leq \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s,a) + \alpha(t) \epsilon_{\text{cd}}(s,a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right. \right. \\
& \quad \left. \left. + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} \left[ \left| f^{(t)}(s', a') - Q^{\pi^{(t)}}(s', a') \right| \right] \right| \right] \tag{53}
\end{aligned}$$

$$\begin{aligned}
& \leq \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s, a) + \alpha(t) \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right. \right. \\
& \quad \left. \left. + \gamma \mathbb{E}_{\substack{s' \sim P_{\text{tar}}(\cdot|s,a) \\ a' \sim \pi^{(t)}(\cdot|s')}} \left[ (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s', a') + \alpha(t) \epsilon_{\text{cd}}(s', a'; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right. \right. \right. \\
& \quad \left. \left. \left. + \gamma \mathbb{E}_{\substack{s'' \sim P_{\text{tar}}(\cdot|s',a') \\ a'' \sim \pi^{(t)}(\cdot|s'')}} \left[ \left| f^{(t)}(s'', a'') - Q^{\pi^{(t)}}(s'', a'') \right| \right] \right] \right] \right] \quad (54)
\end{aligned}$$

$$\begin{aligned}
& \leq \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s, a) + \alpha(t) \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right. \right. \\
& \quad \left. \left. + \frac{1}{(1 - \gamma) \mu_{\text{tar}, \min}} \left( \gamma (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s, a) + \gamma \alpha(t) \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right. \right. \right. \\
& \quad \left. \left. \left. + \gamma^2 (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s, a) + \gamma^2 \alpha(t) \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) + \dots \right) \right] \right] \quad (55)
\end{aligned}$$

$$\leq \frac{1}{(1 - \gamma)^2 \mu_{\text{tar}, \min}} \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| (1 - \alpha(t)) \epsilon_{\text{td}}^{(t)}(s, a) + \alpha(t) \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right| \right] \quad (56)$$

$$= \frac{1}{(1 - \gamma)^2 \mu_{\text{tar}, \min}} \left[ (1 - \alpha(t)) \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \epsilon_{\text{td}}^{(t)}(s, a) \right] + \alpha(t) \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right] \right] \quad (57)$$

where (54) holds by applying the procedure from (44) to (52) to  $f^{(t)}(s', a') - Q^{\pi^{(t)}}(s', a')$ , (55) holds by applying the procedure from (44) to (52) to all the subsequent time steps and using importance sampling with the importance ratio bound in Lemma 3 and then using the same dummy variables  $(s, a)$  for all the subsequent state-action pairs, (57) holds by taking the sum of an infinite geometric sequence.  $\square$

## B PROOFS OF THE PROPOSITIONS

We first present the proof of Proposition 3 in Appendix B.1 and then establish Proposition 2 and 1 by a similar argument in Appendix B.2.

### B.1 PROOF OF PROPOSITION 3

**Proposition 3.** (Average Sub-Optimality) Under the QAvatar in Algorithm 2 and Assumption 1, the average sub-optimality over  $T$  iterations can be upper bounded as

$$\begin{aligned}
& \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\
& \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| f^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right]}_{(b)} \quad (7)
\end{aligned}$$

$$\leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \left( \alpha(t) \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} + (1 - \alpha(t)) \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}} \right)}_{(c)}, \quad (8)$$

where  $C_0 := 2C_{\pi^*}/(1 - \gamma)$  and  $C_1 := 2C_{\pi^*}/((1 - \gamma)^3 \mu_{\text{tar}, \min})$ .

1080 *Proof.* Using Lemma 5 and setting  $\nu^{(t)} = f^{(t)}$ , we have  
1081

$$\begin{aligned} 1082 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1083 \quad & \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C}{1-\gamma} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ |f^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a)| \right] \end{aligned} \quad (58)$$

1084 This establishes the first inequality. Furthermore, recall the definitions of  $\epsilon_{\text{td}}^{(t)}(s, a)$  and  
1085  $\epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi, \psi, \pi)$  as  
1086

$$\epsilon_{\text{td}}^{(t)}(s, a) := |Q_{\text{tar}}^{(t)}(s, a) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{s' \sim P_{\text{tar}}(\cdot|s, a)} [Q_{\text{tar}}^{(t)}(s', a')]|, \quad (59)$$

$$\epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi, \psi, \pi) := |Q_{\text{src}}(\phi(s), \psi(a)) - r_{\text{tar}}(s, a) - \gamma \mathbb{E}_{s' \sim P_{\text{tar}}(\cdot|s, a), a' \sim \pi(\cdot|s')} [Q_{\text{src}}(\phi(s'), \psi(a'))]|. \quad (60)$$

1087 We also define the weighted  $\ell_1$  norm under state-action distribution induced by any policy  $\pi$  as  
1088

$$\|\epsilon_{\text{td}}^{(t)}\|_{d^\pi} := \mathbb{E}_{(s,a) \sim d^\pi} \left[ \epsilon_{\text{td}}^{(t)}(s, a) \right], \quad (61)$$

$$\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^\pi} := \mathbb{E}_{(s,a) \sim d^\pi} \left[ \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi) \right]. \quad (62)$$

1089 For the second inequality, by Lemma 6, we have  
1090

$$\begin{aligned} 1091 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1092 \quad & \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C}{1-\gamma} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ |f^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a)| \right] \end{aligned} \quad (63)$$

$$\begin{aligned} 1093 \quad & \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C}{(1-\gamma)^3 \mu_{\text{tar}, \min}} \frac{1}{T} \sum_{t=1}^T \left[ (1-\alpha(t)) \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}} + \alpha(t) \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} \right] \end{aligned} \quad (64)$$

1100 This completes the proof of Proposition 3. Additionally, by choosing  $\alpha(t) =$   
1101

1102  $\frac{\|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}}{\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} + \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}}$  (as discussed in Section 4), we have  
1103

$$\begin{aligned} 1104 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1105 \quad & \leq \frac{2}{(1-\gamma)^2} \sqrt{\frac{\log(\mathcal{A}_{\text{tar}})}{T}} + \frac{4\sqrt{2C}}{(1-\gamma)^3 \mu_{\text{tar}, \min}} \frac{1}{T} \sum_{t=1}^T \frac{\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} \cdot \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}}{\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} + \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}}. \end{aligned} \quad (65)$$

1106  $\square$

## 1107 B.2 PROOF OF PROPOSITION 2

1108 **Proposition 2.** *Under the DQT method in Algorithm 1 and Assumption 1, the average sub-optimality  
1109 over  $T$  iterations is upper bounded as*

$$\begin{aligned} 1110 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \left\| Q_{\text{src}}(\phi^{(t)}, \psi^{(t)}) - Q^{\pi^{(t)}} \right\|_{d^{\pi^{(t)}}}}_{(b)} \\ 1111 \quad & \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}}}_{(c)}, \end{aligned} \quad (4)$$

1112 where  $C_0 := 2C_{\pi^*}/(1-\gamma)$  and  $C_1 := 2C_{\pi^*}/((1-\gamma)^3 \mu_{\text{tar}, \min})$ .

1134 *Proof.* Notably, since the Proposition 2 is a special case of Proposition 3, we can simply follow all the  
 1135 steps taken for Proposition 3 and set  $\alpha(t) = 1$  for all  $t$  to establish Proposition 2. More specifically,  
 1136 we can replace  $f^{(t)}(s, a)$  with  $Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a))$ . Accordingly, under  $\alpha(t) = 1$  for all  $t$ , Lemma  
 1137 6 can be simply rewritten as

$$\mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (66)$$

$$\leq \frac{1}{(1-\gamma)^2 \mu_{\text{tar}, \min}} \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \epsilon_{\text{cd}}(s, a; Q_{\text{src}}, \phi^{(t)}, \psi^{(t)}, \pi^{(t)}) \right]. \quad (67)$$

1142 Similarly, Lemma 5 can be be rewritten as

$$\begin{aligned} 1144 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1145 \quad & \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C_{\pi^*}}{1-\gamma} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a)) - Q^{\pi^{(t)}}(s, a) \right| \right] \end{aligned}$$

1149 From the combination of the two results,

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C_{\pi^*}}{(1-\gamma)^3 \mu_{\text{tar}, \min} T} \sum_{t=1}^T \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}}. \quad (68)$$

1154  $\square$

### 1156 B.3 PROOF OF PROPOSITION 1

1158 **Proposition 1.** *Under the tabular and approximate-Q settings, and Assumption 1, the average sub-optimality  
 1159 of Q-NPG over  $T$  iterations is upper bounded by*

$$\begin{aligned} 1160 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1161 \quad & \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \left\| Q_{\text{tar}}^{(t)} - Q^{\pi^{(t)}} \right\|_{d^{\pi^{(t)}}}}_{(b)} \leq \underbrace{\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}}_{(c)}, \quad (2) \end{aligned}$$

1166 where  $C_0 := 2C_{\pi^*}/(1-\gamma)$  and  $C_1 := 2C_{\pi^*}/((1-\gamma)^3 \mu_{\text{tar}, \min})$ .

1168 *Proof.* Notably, since the Proposition 1 is a special case of Proposition 3, we can simply follow all the  
 1169 steps taken for Proposition 3 and set  $\alpha(t) = 0$  for all  $t$  to establish Proposition 1. More specifically,  
 1170 we can replace  $f^{(t)}(s, a)$  with  $Q_{\text{tar}}^{(t)}(s, a)$ . Accordingly, under  $\alpha(t) = 0$  for all  $t$ , Lemma 6 can be  
 1171 simply rewritten as

$$\mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| Q_{\text{tar}}^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \quad (69)$$

$$\leq \frac{1}{(1-\gamma)^2 \mu_{\text{tar}, \min}} \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} [\epsilon_{\text{td}}(s, a)]. \quad (70)$$

1177 Similarly, Lemma 5 can be be rewritten as

$$\begin{aligned} 1178 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1179 \quad & \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C_{\pi^*}}{1-\gamma} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi^{(t)}}} \left[ \left| Q_{\text{tar}}^{(t)}(s, a) - Q^{\pi^{(t)}}(s, a) \right| \right] \end{aligned}$$

1184 From the combination of the two results,

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1-\gamma)} + \frac{2C_{\pi^*}}{(1-\gamma)^3 \mu_{\text{tar}, \min} T} \sum_{t=1}^T \|\epsilon_{\text{td}}\|_{d^{\pi^{(t)}}}. \quad (71)$$

1185  $\square$

1188 B.4 SAMPLE COMPLEXITY BOUND  
1189

1190 To convert the convergence result in Proposition 3 into sample complexity guarantees, we adopt the  
1191 standard technique of the least squares generalization bound for sequential function estimation (Agar-  
1192 wal et al., 2019; Song et al., 2023) as follows.

1193 **Lemma 7** (Least squares generalization bound, Lemma 3 in (Song et al., 2023)). *Consider a  
1194 sequential function estimation setting with an instance space  $\mathcal{X}$  and target space  $\mathcal{Y}$ . Let  $R > 0$ ,  $\delta \in  
1195 (0, 1)$ . Let  $\mathcal{H} : \mathcal{X} \rightarrow [-R, R]$  be a class of real-valued functions. Let  $\mathcal{D} = \{(x_1, y_1), \dots, (x_M, y_M)\}$   
1196 be a dataset of  $M$  points where  $x_m \sim \rho_m := \rho_m(x_{1:m-1}, y_{1:m-1})$ , and  $y_m$  is sampled via the  
1197 conditional probability  $p(\cdot|x_m)$ :  $y_m \sim p(\cdot|x_m) := h^*(x_m) + \varepsilon_m$ . Suppose the following conditions  
1198 hold:*

1199 1.  $h^*$  satisfies approximate realizability, i.e.,  $\inf_{h \in \mathcal{H}} \frac{1}{M} \sum_{m=1}^M \mathbb{E}_{x \sim \rho_m} [(h^*(x) - h(x))^2] \leq \kappa$ .  
1200  
1201 2.  $\{\varepsilon_m\}_{m=1}^M$  are independent random variables such that  $\mathbb{E}[y_m|x_m] = h^*(x_m)$ .  
1202  
1203 3.  $\max_m |y_m| \leq R$  and  $\max_x |h^*(x)| \leq R$ .

1204 Then, the least-squares solution  $\hat{h} := \arg \min_{h \in \mathcal{H}} \sum_{m=1}^M (h(x_m) - y_m)^2$  satisfies that with proba-  
1205 bility at least  $1 - \delta$ ,

$$1207 \sum_{m=1}^M \mathbb{E}_{x \sim \rho_m} [(\hat{h}(x) - h^*(x))^2] \leq 3\kappa M + 256R^2 \log\left(\frac{2|\mathcal{H}|}{\delta}\right). \quad (72)$$

1210 We define

$$1211 \kappa_{\text{tar}}^{(t)} := \inf_{Q^{(t)} \in \mathcal{Q}} \mathbb{E}_{(s, a) \sim d^{\pi^{(t)}}} \left[ |r_{\text{tar}}(s, a) + \gamma \mathbb{E}_{s' \sim P_{\text{tar}}, a' \sim \pi^{(t)}} [Q^{(t)}(s', a')] - Q^{(t)}(s, a)|^2 \right], \quad (73)$$

1213 where  $\mathcal{Q}$  denotes a (finite) class of possible action-value functions. For ease of exposition, we suppose  
1214  $\kappa_{\text{tar}}^{(t)} \leq \kappa_{\text{tar}, \max}$ , for all  $t$ . Note that this can be achieved since  $\kappa_{\text{tar}, \max}$  can be configured by choosing  
1215 the function class  $\mathcal{Q}$ . We also let  $\mathcal{F}$  denote the product of the (finite) classes of possible inter-domain  
1216 mappings  $\phi$  and  $\psi$ .

1217 **Definition 6** (Cross-Domain Realizability). *A source-domain critic  $Q_{\text{src}}$  is said to satisfy the cross-  
1218 domain realizability under a target-domain policy  $\pi$  if there exists a pair of inter-domain mappings  
1219  $(\phi, \psi)$  in  $\mathcal{F}$  such that  $\|\epsilon_{cd}(Q_{\text{src}}, \phi, \psi)\|_{d^\pi} = 0$ .*

1221 **Corollary 1.** *Consider the setting of Proposition 3 and assume a source-domain critic with cross-  
1222 domain realizability for all  $t$ . In order to obtain an  $\epsilon$ -optimal policy in  $\mathcal{M}_{\text{tar}}$  with probability at least  
1223  $1 - \delta$ , the number of target-domain samples needed under QAvatar is*

$$1224 \mathcal{O}\left(\left(\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{(1 - \gamma)}\right)^2 \frac{1}{\epsilon^2} \cdot \min\left\{\frac{C_1^2 C_{cd}}{\epsilon^2}, \frac{C_{\text{tar}}}{\left[\frac{\epsilon^2}{C_1^2} - 3\kappa_{\text{tar}, \max}\right]^+}\right\}\right) \quad (74)$$

1227 where  $C_{\text{tar}} := \frac{1024}{(1-\gamma)^2} \log\left(\frac{4|\mathcal{Q}|}{\delta}\right)$  and  $C_{cd} := \frac{1024}{(1-\gamma)^2} \log\left(\frac{4|\mathcal{F}|}{\delta}\right)$ . Moreover, to obtain an  $\epsilon$ -optimal  
1228 policy in  $\mathcal{M}_{\text{tar}}$  with probability at least  $1 - \delta$ , the number of target-domain samples needed under  
1229 Q-NPG is

$$1231 \mathcal{O}\left(\left(\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{(1 - \gamma)}\right)^2 \frac{1}{\epsilon^2} \cdot \frac{C_{\text{tar}}}{\left[\frac{\epsilon^2}{C_1^2} - 3\kappa_{\text{tar}, \max}\right]^+}\right) \quad (75)$$

1234 *Proof.* To establish the sample complexity bound, we connect the sub-optimality gap in Proposition 3  
1235 with the number of samples needed in learning the Q function and the inter-domain mappings. To  
1236 begin with, we bound the  $\|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}$  as follows: Let  $Q : \mathcal{S}_{\text{tar}} \times \mathcal{A}_{\text{tar}} \rightarrow \mathbb{R}$  denote an action-value  
1237 function in the target domain. Recall that we use  $r_{\text{tar}}$  and  $P_{\text{tar}}$  to denote the reward function and  
1238 the transition kernel of the target domain, respectively. For ease of exposition, define two helper  
1239 functions  $\zeta : \mathcal{S}_{\text{tar}} \times \mathcal{A}_{\text{tar}} \rightarrow \mathbb{R}$  and  $\zeta^* : \mathcal{S}_{\text{tar}} \times \mathcal{A}_{\text{tar}} \rightarrow \mathbb{R}$  as

$$1240 \zeta(s, a; Q, \pi) := r_{\text{tar}}(s, a) + \gamma \mathbb{E}_{s' \sim P_{\text{tar}}, a' \sim \pi} [Q(s', a')] - Q(s, a), \quad (76)$$

$$1241 \zeta^*(s, a; \pi) := r_{\text{tar}}(s, a) + \gamma \mathbb{E}_{s' \sim P_{\text{tar}}, a' \sim \pi} [Q^\pi(s', a')] - Q^\pi(s, a). \quad (77)$$

1242 By the Bellman expectation equations, we know  $\zeta^*(s, a; \pi) = 0$ , for any  $(s, a)$  and any target-domain  
 1243 policy  $\pi$ . Recall from Algorithm 2, in each iteration  $t$ , we sample a batch  $\mathcal{D}^{(t)}$  of  $N_{\text{tar}}$  target-domain  
 1244 samples to obtain the  $Q_{\text{tar}}^{(t)}$  by minimizing the empirical TD loss, *i.e.*,  
 1245

$$1246 Q_{\text{tar}}^{(t)} = \arg \min_{Q^{(t)} \in \mathcal{Q}} \sum_{(s, a, r, s') \in \mathcal{D}^{(t)}} \left[ |r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}}[Q^{(t)}(s', a')] - Q^{(t)}(s, a)|^2 \right]. \quad (78)$$

1247 Now we are ready to reinterpret (76)-(78) through the lens of Lemma 7. Let  $\zeta(s, a; Q, \pi)$  and  
 1248  $\zeta^*(s, a; \pi)$  play the roles of  $h(x)$  and  $h^*(x)$ . For each data sample  $(s, a, r, s')$ , by treating  
 1249  $(\zeta(s, a; Q, \pi) - (r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}}[Q^{(t)}(s', a')] - Q^{(t)}(s, a)))$  as the noise term  $\epsilon_m$  in Lemma 7, we  
 1250 know  $Q_{\text{tar}}^{(t)}$  actually plays the role of the least-squares solution (*i.e.*,  $\hat{h}$  in Lemma 7). Through  
 1251 this interpretation, we know that the three conditions in Lemma 7 are satisfied with  $\kappa = \kappa_{\text{tar}}$  and  
 1252  $R = 2/(1 - \gamma)$ . By applying Lemma 7 and Jensen's inequality, the result in (72) implies that with  
 1253 probability at least  $1 - \delta/2$ ,

$$1254 \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}}^2 \leq 3\kappa_{\text{tar}}^{(t)} + \frac{C_{\text{tar}}}{N_{\text{tar}}}, \quad (79)$$

1255 where  $C_{\text{tar}} := \frac{1024}{(1-\gamma)^2} \log\left(\frac{4|\mathcal{Q}|}{\delta}\right)$ . Similarly, we proceed to bound the  $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}}$  as  
 1256 follows. Define an additional helper function  $\zeta_{\text{cd}} : \mathcal{S}_{\text{tar}} \times \mathcal{A}_{\text{tar}} \rightarrow \mathbb{R}$  as  
 1257

$$1258 \zeta_{\text{cd}}(s, a; Q_{\text{src}}, \pi, \phi, \psi) := r_{\text{tar}}(s, a) + \gamma \mathbb{E}_{s' \sim P_{\text{tar}}, a' \sim \pi}[Q_{\text{src}}(\phi(s'), \psi(a'))] - Q_{\text{src}}(\phi(s), \psi(a)). \quad (80)$$

1259 Recall that in each iteration  $t$ , we also use the batch  $\mathcal{D}^{(t)}$  of  $N_{\text{tar}}$  target-domain samples to obtain the  
 1260  $\phi^{(t)}, \psi^{(t)}$  by minimizing the empirical cross-domain Bellman loss, *i.e.*,  
 1261

$$1262 \phi^{(t)}, \psi^{(t)} \leftarrow \arg \min_{\phi, \psi} \mathcal{L}_{\text{CD}}(\phi, \psi; Q_{\text{src}}, \pi^{(t)}, \mathcal{D}_{\text{tar}}^{(t)}). \quad (81)$$

1263 In each iteration  $t$ , we let  $\phi_*^{(t)}$  and  $\psi_*^{(t)}$  denote the inter-domain mappings that yield  
 1264  $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi_*^{(t)}, \psi_*^{(t)})\|_{d^{\pi^{(t)}}} = 0$ . We know  $\zeta_{\text{cd}}(s, a; Q_{\text{src}}, \pi^{(t)}, \phi_*^{(t)}, \psi_*^{(t)}) = 0$ , for all  $(s, a)$ .  
 1265

1266 Now we are ready to reinterpret (80) through the lens of Lemma 7. Let  $\zeta_{\text{cd}}(s, a; Q_{\text{src}}, \pi, \phi, \psi)$  and  
 1267  $\zeta_{\text{cd}}(s, a; Q_{\text{src}}, \pi^{(t)}, \phi_*^{(t)}, \psi_*^{(t)})$  play the roles of  $h(x)$  and  $h^*(x)$ , respectively. For each data  
 1268 sample  $(s, a, r, s')$ , by treating  $(\zeta_{\text{cd}}(s, a; Q_{\text{src}}, \pi, \phi, \psi) - (r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}}[Q_{\text{src}}^{(t)}(\phi(s'), \psi(a'))] -$   
 1269  $Q_{\text{src}}^{(t)}(\phi(s), \psi(a)))$  as the noise term  $\epsilon_m$  in Lemma 7, we know that  $\phi^{(t)}$  and  $\psi^{(t)}$  actually play  
 1270 the role of the least-squares solution (*i.e.*,  $\hat{h}$  in Lemma 7). Again, through the above interpretation,  
 1271 we know that the three conditions in Lemma 7 hold with  $\kappa = 0$  and  $R = 2/(1 - \gamma)$ . By applying  
 1272 Lemma 7 and Jensen's inequality, the result in (72) implies that with probability at least  $1 - \delta/2$ ,  
 1273

$$1274 \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}}^2 \leq \frac{C_{\text{cd}}}{N_{\text{tar}}}, \quad (82)$$

1275 where  $C_{\text{cd}} := \frac{1024}{(1-\gamma)^2} \log\left(\frac{4|\mathcal{F}|}{\delta}\right)$ . We are ready to put everything together. We can rewrite the  
 1276 sub-optimality gap in Proposition 3 as follows. With probability at least  $1 - \delta$ ,

$$1277 \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{\text{tar}}} \left[ V^{\pi^*}(s) - V^{\pi^{(t)}}(s) \right] \\ 1278 \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)} + \frac{C_1}{T} \sum_{t=1}^T \left( \alpha(t) \|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi^{(t)}}} + (1 - \alpha(t)) \|\epsilon_{\text{td}}^{(t)}\|_{d^{\pi^{(t)}}} \right), \quad (83)$$

$$1279 \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)} + \frac{C_1}{T} \sum_{t=1}^T \left( \alpha(t) \sqrt{\frac{C_{\text{cd}}}{N_{\text{tar}}}} + (1 - \alpha(t)) \sqrt{3\kappa_{\text{tar}}^{(t)} + \frac{C_{\text{tar}}}{N_{\text{tar}}}} \right), \quad (84)$$

$$1280 \leq \frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{\sqrt{T}(1 - \gamma)} + \frac{C_1}{T} \sum_{t=1}^T \min \left\{ \sqrt{\frac{C_{\text{cd}}}{N_{\text{tar}}}}, \sqrt{3\kappa_{\text{tar}}^{(t)} + \frac{C_{\text{tar}}}{N_{\text{tar}}}} \right\}, \quad (85)$$

1281 where (84) follows from (79) and (82), and (85) holds by choosing  $\alpha(t)$  as an indicator function as  
 1282 described in Section 4.3. Accordingly, we can convert this into a sample complexity bound. We use  
 1283

1296  $[z]^+$  as the shorthand for  $\max\{0, z\}$ . Moreover, suppose  $\kappa_{\text{tar}}^{(t)} \leq \kappa_{\text{tar,max}}$ , for all  $t$ . Note that  $\kappa_{\text{tar,max}}$   
 1297 can be configured by choosing the function class  $\mathcal{Q}$ . Then, given any  $\epsilon > 0$ , for any  $\beta \in (0, 1)$ , we  
 1298 have that for any  $T \geq \left(\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{(1-\gamma)\beta}\right)^2 \frac{1}{\epsilon^2} =: T(\epsilon)$  and  $N_{\text{tar}} \geq \min\left\{\frac{C_1^2 C_{\text{cd}}}{(1-\beta)^2 \epsilon^2}, \frac{C_{\text{tar}}}{\left[\frac{(1-\beta)^2 \epsilon^2}{C_1^2} - 3\kappa_{\text{tar,max}}\right]^+}\right\}$ ,  
 1299 the average sub-optimality gap is no more than  $\epsilon$ . Hence, by the fact that the final target-domain  
 1300 policy  $\pi_{\text{tar}}^{(T)} \sim \text{Uniform}(\{\pi^{(1)}, \dots, \pi^{(T)}\})$ , we have that  $\mathbb{E}_{s \sim \mu_{\text{tar}}} [V^{\pi^*}(s) - V^{\pi_{\text{tar}}^{(T)}}(s)] \leq \epsilon$ , for any  
 1301  
 1302  
 1303  $T \geq \left(\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{(1-\gamma)\beta}\right)^2 \frac{1}{\epsilon^2}$  and  $N_{\text{tar}} \geq \min\left\{\frac{C_1^2 C_{\text{cd}}}{(1-\beta)^2 \epsilon^2}, \frac{C_{\text{tar}}}{\left[\frac{(1-\beta)^2 \epsilon^2}{C_1^2} - 3\kappa_{\text{tar,max}}\right]^+}\right\}$ . This implies a total  
 1304 number of target-domain samples  
 1305

$$\mathcal{O}\left(\left(\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{(1-\gamma)\beta}\right)^2 \frac{1}{\epsilon^2} \cdot \min\left\{\frac{C_1^2 C_{\text{cd}}}{(1-\beta)^2 \epsilon^2}, \frac{C_{\text{tar}}}{\left[\frac{\epsilon^2}{C_1^2} - 3\kappa_{\text{tar,max}}\right]^+}\right\}\right) \quad (86)$$

1306 is needed to achieve an  $\epsilon$ -optimal target-domain policy under QAvatar. Moreover, recall that one can  
 1307 recover the vanilla Q-NPG by setting  $\alpha(t) = 0$  for all  $t$ . Hence, by setting  $\alpha(t) = 0$  in (83)-(85), we  
 1308 can also obtain that a total number of target-domain samples  
 1309

$$\mathcal{O}\left(\left(\frac{[\log |\mathcal{A}_{\text{tar}}| + 1]}{(1-\gamma)\beta}\right)^2 \frac{1}{\epsilon^2} \cdot \frac{C_{\text{tar}}}{\left[\frac{\epsilon^2}{C_1^2} - 3\kappa_{\text{tar,max}}\right]^+}\right) \quad (87)$$

1310 is needed to achieve an  $\epsilon$ -optimal target-domain policy under Q-NPG.  $\square$   
 1311

1312  
 1313  
 1314  
 1315  
 1316  
 1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349

1350 **C A DETAILED DESCRIPTION OF RELATED WORK**

1352 **CDRL across domains with distinct state and action spaces.** The existing approaches can divided  
 1353 into the following main categories:

- 1355 • (i) *Manually designed latent mapping*: In (Ammar & Taylor, 2012) and (Ammar et al.,  
 1356 2012), the trajectories are mapped manually and by sparse coding from the source domain  
 1357 and the target domain to a common latent space, respectively. The distance between latent  
 1358 states can then be calculated to find the correspondence of the states from the different  
 1359 domains. In Gupta et al. (2017), the correspondence of the states is found by dynamic time  
 1360 warping and the mapping function which can map the states from two domains to the latent  
 1361 space is found by the correspondence.
- 1362 • (ii) *Learned inter-domain mapping*: In the literature (Taylor et al., 2008; Zhang et al., 2021;  
 1363 You et al., 2022; Gui et al., 2023; Zhu et al., 2024), the inter-domain mapping is mainly  
 1364 learned by enforcing dynamics alignment (or termed dynamics cycle consistency in (Zhang  
 1365 et al., 2021)), i.e., aligning the one-step transitions of the two domains. Additional properties  
 1366 have also been incorporated as auxiliary loss functions in learning the inter-domain mapping  
 1367 in the prior works, including domain cycle consistency (Zhang et al., 2021; You et al.,  
 1368 2022), effect cycle consistency (Zhu et al., 2024), maximizing mutual information between  
 1369 states and embeddings (You et al., 2022), and alignment of target-domain rewards with  
 1370 the embeddings (You et al., 2022). Moreover, as the state and action spaces are typically  
 1371 bounded sets and these methods directly map the data samples between the two domains,  
 1372 adversarial learning has been used to restrict the output range of the mapping functions  
 1373 (Zhang et al., 2021; Gui et al., 2023). On the other hand, in (Ammar et al., 2015), the state  
 1374 mapping function is found by Unsupervised Manifold Alignment (Wang & Mahadevan,  
 1375 2009).

1376 Despite the above progress, the existing approaches all presume that the domains are sufficiently  
 1377 similar and do not have any performance guarantees (and hence can suffer from negative transfer in  
 1378 bad-case scenarios). By contrast, this paper proposes a robust CDRL method that can achieve transfer  
 1379 regardless of source-domain model quality or domain similarity with guarantees.

1380 **CDRL across domains with identical state and action spaces.** In CDRL, a variety of methods have  
 1381 been proposed for the case where source and target domains share the same state and action spaces  
 1382 but are subject to dynamics mismatch.

- 1383 • (i) *Using the data samples from both source and target domains for policy learning*: One  
 1384 popular approach is to use the data from both domains for model updates (Eysenbach et al.,  
 1385 2021; Liu et al., 2022; Xu et al., 2023). For example, for compensating the discrepancy  
 1386 between domains in transition dynamics, (Eysenbach et al., 2021) proposes to modify  
 1387 the reward function, which is learned by an auxiliary domain classifier that distinguishes  
 1388 between the source-domain and target-domain transitions. (Liu et al., 2022) handles the  
 1389 dynamics shift problem in offline RL by augmenting rewards in the source-domain dataset.  
 1390 (Xu et al., 2023) proposes to address dynamics mismatch by a value-guided data filtering  
 1391 scheme, which ensures selective sharing of the source-domain transitions based on the  
 1392 proximity of paired value targets.
- 1393 • (ii) *Explicit domain similarity*: (Sreenivasan et al., 2023) proposes to selectively apply  
 1394 direct transfer of the source-domain policy to the target domain based on a learnable  
 1395 similarity metric, which is essentially the TD error of target domain trajectories with source  
 1396 Q function. Moreover, based on the policy invariant explicit shaping (Behboudian et al.,  
 1397 2022), (Sreenivasan et al., 2023) further uses the potential function as a bias term for  
 1398 selecting actions.
- 1399 • (iii) *Using both Q-functions for the Q-learning updates*: Target Transfer Q-Learning (Wang  
 1400 et al., 2020) calculates the TD error by the source and target domains Q functions in order  
 1401 to select the TD target from the two Q functions.
- 1402 • (iv) *Domain randomization*: To tackle sim-to-real transfer with dynamics mismatch, domain  
 1403 randomization (Rajeswaran et al., 2016; Peng et al., 2018; Chebotar et al., 2019; Du et al.,  
 2021) and Du et al. (2021) collects data from multiple similar source domains with different

1404 configurations to learn a high-quality policy that can work robustly in a possibly unseen but  
 1405 similar target domain.  
 1406

## 1407 D ADDITIONAL EXPERIMENTAL RESULTS

### 1408 D.1 A TOY EXAMPLES FOR MOTIVATING THE BENEFIT OF CROSS-DOMAIN BELLMAN LOSS

1409 We consider the 3-by-3 grid navigation problem,  
 1410 as shown in Figure 5. In both domains, there are  
 1411 only two actions: ‘going top’ and ‘going right.’  
 1412 The state of the source domain is described in  
 1413 decimal coordinates, while the state of the target  
 1414 domain is described in binary coordinates. The  
 1415 white squares represent obstacles that cannot  
 1416 be traversed. There are three special states: (i)  
 1417 Start state: The episode always begins at this  
 1418 state. (ii) End state: The episode will only end  
 1419 at this state, and the agent will receive an ending  
 1420 reward of +1. (iii) Treasure state: When the  
 1421 agent first navigates to this state, it will receive  
 1422 +0.5 rewards. In other states or at other times  
 1423 navigating the treasure state, the agent will not receive any reward. In the source domain, the start  
 1424 state, end state, and treasure state are set to (0, 0), (0, 2), and (2, 2), respectively. In the target  
 1425 domain, the start state, end state, and treasure state are set to (0, 0, 0, 0), (0, 0, 1, 1), and (1, 1, 1, 1),  
 1426 respectively. We assume that the source Q-function  $Q_{\text{src}}$  is optimal in the source domain and the  
 1427 environment discount factor  $\gamma$  is set to 0.99. It is easy to verify that the optimal trajectory of the  
 1428 source domain is  $(0, 0) \rightarrow (0, 1) \rightarrow (0, 2) \rightarrow (1, 2) \rightarrow (2, 2)$  and the optimal trajectory of the  
 1429 target domain is  $(0, 0, 0, 0) \rightarrow (0, 0, 0, 1) \rightarrow (0, 0, 1, 1) \rightarrow (0, 1, 1, 1) \rightarrow (1, 1, 1, 1)$ . Consider two  
 1430 trajectories in the source domain: Traj-A, which is the optimal trajectory, and Traj-B, defined as  
 1431  $(0, 0) \rightarrow (0, 1) \rightarrow (1, 1) \rightarrow (1, 2) \rightarrow (2, 2)$ . When we map the optimal trajectory of the target  
 1432 domain to Traj-A and the optimal trajectory of the target domain to Traj-B, both mappings result in 0  
 1433 cycle consistency loss. This suggests that the cycle consistency cannot determine which mapping is  
 1434 superior. This phenomenon results from the unsupervised nature of dynamics cycle consistency. In  
 1435 contrast, when we mapping the optimal trajectory of the target domain to Traj-A yields a cross-domain  
 1436 Bellman-like loss of 0, while mapping the optimal trajectory of the target domain to Traj-B results in  
 1437 a cross-domain Bellman-like loss of 1. Thus, we can achieve optimal mapping results based on the  
 1438 cross-domain Bellman error, while the cycle consistency loss provides sub-optimal mapping results.  
 1439

### 1440 D.2 FINAL REWARDS

1441 In this section, we show the asymptotic performance of all baselines and our algorithm. In the  
 1442 experiments, we train all the target-domain models for 500k steps in MuJoCo and 100k steps in  
 1443 Robosuite. The asymptotic performances of all baselines and our algorithm are shown in the following  
 1444 Table 2.  
 1445

1446 Table 2: Final rewards of  $Q$ Avatar and all baselines in the experiments.  
 1447

| 1448 Algorithm | 1449 HalfCheetah                       | 1450 Ant                             | 1451 Door Opening                   | 1452 Table Wiping                 | 1453 Navigation                   |
|----------------|----------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|
| $Q$ Avatar     | <b><math>11586.0 \pm 1224.4</math></b> | <b><math>2858.8 \pm 848.0</math></b> | <b><math>216.6 \pm 131.3</math></b> | <b><math>76.6 \pm 13.5</math></b> | <b><math>38.5 \pm 13.2</math></b> |
| SAC            | $10986.0 \pm 1821.8$                   | $1620.0 \pm 527.2$                   | $94.8 \pm 23.9$                     | $47.6 \pm 11.0$                   | $19.7 \pm 13.6$                   |
| FT             | $10756.8 \pm 1070.8$                   | $1644.3 \pm 748.2$                   | $129.9 \pm 34.6$                    | $42.1 \pm 15.4$                   | $12.5 \pm 9.0$                    |
| PAR            | $8097.4 \pm 3962.0$                    | $737.6 \pm 45.3$                     | $33.7 \pm 18.6$                     | $17.9 \pm 11.8$                   | $0.0 \pm 0.0$                     |
| CAT-SAC        | $8756.5 \pm 1264.3$                    | $1628.9 \pm 200.6$                   | $63.2 \pm 33.3$                     | $23.7 \pm 10.7$                   | $2.7 \pm 2.4$                     |
| CAT            | $46.1 \pm 149.9$                       | $17.1 \pm 27.3$                      | $34.7 \pm 8.4$                      | $55.5 \pm 29.7$                   | $-0.1 \pm 0.2$                    |
| CMD            | $-253.1 \pm 344.1$                     | $777.5 \pm 144.1$                    | $7.8 \pm 6.4$                       | $0.8 \pm 0.4$                     | $-0.0 \pm 0.0$                    |

### 1455 D.3 ABLATION STUDY: EXPERIMENT RESULT



1456 Figure 5: Source and target domains of the grid  
 1457 navigation example.  
 1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

16



(a) unrelated transfer scenario



(a) non-stationary environment



(a) Multiple source model

Figure 6: Training curves of unrelated transfer scenario, the source domains are labeled. The target domain is Table-Wiping with robot UR5e.

#### D.4 ADDITIONAL EXPERIMENT AND EXPLANATION DURING REBUTTAL

##### QAvatar on image-based experiment.

We additionally evaluate QAvatar on image-based continuous control tasks from the DeepMind Control Suite (DMC) (Tassa et al., 2018). In DMC, each observation consists of a stack of three 84x84 RGB frames, and we apply an action repeat of 4. Below, we outline the SAC setup, the flow-model training, and the cross-domain transfer protocol.



Figure 9: Performance evaluation of ECC.

**SAC.** For SAC, both the actor and critic use 3 hidden layers with 1024 units each. The image encoder follows the IMPALA (Espeholt et al., 2018) architecture to extract low-dimensional visual features. All remaining hyperparameters are the same as those used in Stable-Baselines3.

**Flow model training.** Training a flow model directly on the raw high-dimensional image observations is challenging. Therefore, we first pass each image stack through the source encoder to obtain its feature representation, and train the flow model to match the distribution of these extracted features rather than the raw images. Notably, this modification does not alter the *Q*Avatar framework, since the source model remains fixed during target-domain transfer.

**Cross-domain transfer** For cross-domain experiments, we consider two transfer scenarios: The source model is trained with SAC on the walker\_walk task, and the target tasks are walker\_run and cheetah\_run, respectively. To leverage the source critic for transfer, each target image observation is first passed through the target encoder to obtain its feature representation, which is then used as the input to the state decoder; the rest of the procedure follows the standard *Q*Avatar framework. Figure 10 indicate that *Q*Avatar achieves substantially higher performance than SAC trained from scratch on both target tasks, and notably, *Q*Avatar succeeds even when SAC struggles to learn effectively on cheetah\_run.

#### Sensitivity test on the choice of $N_\alpha$ .

In *Q*Avatar,  $\alpha_t$  is updated periodically, and  $N_\alpha$  determines only the frequency of this closed-form update. As long as  $N_\alpha$  is not too large (which would delay updates) or too small (which may cause  $\alpha_t$  to fluctuate too rapidly and introduce instability), the overall learning behavior remains largely unaffected. We evaluate three update intervals,  $N_\alpha = 300, 1000, 3000$ , in the Cheetah and Table Wiping environments, whose configurations are provided in Section 5.1. As shown in Figure 11 and 12, the results indicate that (1) **the learned  $\alpha_t$  trajectories are highly similar across settings**, and (2) **performance exhibits only mild sensitivity**. None of the choices lead to degradation or instability, suggesting that the method is reasonably robust to the selection of  $N_\alpha$  within this range.

#### Comparison to Effective Cycle Consistency (Zhu et al., 2024).

Effective cycle consistency (ECC) (Zhu et al., 2024) operates under the same **unsupervised** cross-domain assumption as DCC and CMD, where the agent has no access to target-domain rewards. This makes the problem fundamentally more challenging than the supervised CDRL setting (i.e., with target-domain reward signal) considered in our work. Building on the DCC objective, ECC further introduces effect cycle-consistency to learn the mapping functions. We evaluate on Cheetah, Ant, Door Opening, and Table Wiping in Section 5.1. Figure 9 demonstrate that although ECC produces more stable alignment than CMD, its overall performance remains significantly below SAC and other supervised CDRL baselines, which is consistent with the inherent limitations of the unsupervised CDRL methods.



Figure 10: Training curves for the image-based environments.

Figure 11: The training curves and the values of  $\alpha(t)$  for QAvatar under three settings of the  $N_\alpha$  value in Cheetah environment.Figure 12: The training curves and the values of  $\alpha(t)$  for QAvatar under three settings of the  $N_\alpha$  value in Table Wiping environment.

## E IMPLEMENTATION DETAILS OF QAVATAR

### E.1 PSEUDO CODE OF THE PRACTICAL IMPLEMENTATION OF QAVATAR

In this section, we provide the pseudo code of the practical version of QAvatar in Algorithm 3.

### E.2 SOURCE-DOMAIN MODELS AND THEIR PERFORMANCE

For the locomotion tasks including HalfCheetah and Ant, we train each source model for 1M steps. The average performance of the 5 source-domain models (under 5 distinct random seeds) in HalfCheetah and Ant are  $7355 \pm 2892$  and  $3689 \pm 1013$ , respectively. For the Robosuite tasks including Door Opening and Table Wiping, we train each source-domain model for 500K steps. The average performance of 5 random seed is  $383 \pm 139$  and  $94 \pm 16$ , respectively. For the navigation environment, we train the model for 500K steps, and the average performance is 39.85.

### E.3 INTER-DOMAIN MAPPING NETWORK AUGMENTED WITH A NORMALIZING FLOW MODEL

As discussed in Section 4, a flow-based generative model is employed to transform the outputs of the mapping functions into their corresponding feasible regions. Therefore, there are two architectural paradigms of the flow model can be considered. In the first paradigm, the state and action are concatenated and jointly treated as the codomain of the flow model. This joint formulation is adopted in Cheetah, Ant environment. In the second paradigm, the state and action are modeled separately, with two independent flow models trained respectively for the state and the action. This decoupled formulation is applied in Hopper-v3, Table Wiping, and Door Opening tasks.  $\phi$

---

1620 **Algorithm 3** Practical Implementation of  $Q$ Avatar

1621 1: **Require:** Source-domain Q-network  $Q_{\text{src}}$ , update  $\alpha$  frequency  $N_\alpha$ , batch size  $N$ .

1622 2: Initialize the state mapping function  $\phi$ , the action mapping function  $\psi$ , the initial target-domain

1623 policy network  $\pi^{(1)}$ , entropy coefficient  $\beta$ , replay buffer  $D$ , and  $\alpha = 0$ .

1624 3: **for** iteration  $t = 1, \dots, T$  **do**

1625 4:   Interact with the environment and store the transition  $(s_t, a_t, r_t, s_{t+1})$  in the replay buffer  $D$ .

1626 5:   Sample two sets of  $N$  transitions, denoted as  $B_{\text{SAC}}$  and  $B_{\text{Map}}$ , from the replay buffer  $D$ .

1627 6:   Update the target-domain  $\{Q_{\text{tar},1}, Q_{\text{tar},2}\}$  by SAC's critic loss:

1628

$$1629 Q_{\text{tar},j}^{(t)} = \arg \min_{Q_{\text{tar}}} \hat{\mathbb{E}}_{(s,a,r,s') \in B_{\text{SAC}}} \left[ |r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}(\cdot|s')} [Q_{\text{tar}}(s', a') - \beta \log(\pi(a'|s'))] - Q_{\text{tar}}(s, a)|^2 \right]. \quad (88)$$

1630

1631 7:   Update the state mapping function  $\phi$  and action mapping function  $\psi$  by minimizing

1632 8:   the following loss:

1633

$$1634 \phi^{(t)}, \psi^{(t)} = \arg \min_{\phi, \psi} \hat{\mathbb{E}}_{(s,a,r,s') \in B_{\text{Map}}} \left[ |r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}(\cdot|s')} [Q_{\text{src}}(\phi(s'), \psi(a'))] - Q_{\text{src}}(\phi(s), \psi(a))|^2 \right]. \quad (89)$$

1635

1636 9:   **if**  $t \bmod N_\alpha = 0$  **then**

1637 10:    Define  $\|\epsilon_{\text{td}}^{(t)}\|_D = \hat{\mathbb{E}}_{(s,a,r,s') \in D} \left[ |r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}(\cdot|s')} [\min_{j=1,2} Q_{\text{tar},j}^{(t)}(s', a')] - \min_{j=1,2} Q_{\text{tar},j}^{(t)}(s, a)| \right]$ ,

1638 11:     $\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_D = \hat{\mathbb{E}}_{(s,a,r,s') \in D} \left[ |r + \gamma \mathbb{E}_{a' \sim \pi^{(t)}(\cdot|s')} [Q_{\text{src}}(\phi^{(t)}(s'), \psi^{(t)}(a'))] - Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a))| \right]$ .

1639 12:    Update the weight  $\alpha = \|\epsilon_{\text{td}}^{(t)}\|_D / (\|\epsilon_{\text{cd}}(Q_{\text{src}}, \phi^{(t)}, \psi^{(t)})\|_D + \|\epsilon_{\text{td}}^{(t)}\|_D)$ .

1640 13:   **end if**

1641 14:   Update the target-domain policy  $\pi$ :

1642

$$1643 \pi^{(t+1)} = \arg \min_{\pi} \hat{\mathbb{E}}_{\substack{(s,a,r,s') \in B_{\text{SAC}} \\ a' \sim \pi^{(t)}(\cdot|s)}} \left[ \beta \log \pi(a'|s) - f^{(t)}(s, a') \right], \quad (90)$$

1644

$$1645 f^{(t)}(s, a') = (1 - \alpha) \min_{j=1,2} Q_{\text{tar},j}^{(t)}(s, a') + \alpha Q_{\text{src}}(\phi^{(t)}(s), \psi^{(t)}(a')). \quad (91)$$

1646

1647 15: **end for**

---

#### E.4 QUALITY AND STABILITY OF LEARNED STATE/ACTION MAPPING FUNCTIONS $\phi$ AND $\psi$ .

1652 In  $Q$ Avatar, a key diagnostic for assessing alignment quality and stability is the cross-domain Bellman

1653 error. When this error approaches zero, it implies that  $Q_{\text{src}}$  is  $\delta$ -Bellman-consistent with a sufficiently

1654 small  $\delta$  under the learned mappings, indicating that  $\phi$  and  $\psi$  are well aligned. Figure 13 demonstrate

1655 the curves of cross-domain Bellman error versus the TD error of the target critic across all main

1656 experiments in Section 5. The results consistently show that the cross-domain Bellman error remains

1657 low relative to the TD error when the learned mappings align well with the target domain.

1658



Figure 13: Cross-domain Bellman error and TD error of the target Q-function during training across all main experiments.

1674 F CONFIGURATION DETAILS OF THE EXPERIMENTS  
1675  
1676  
16771678 F.1 STATE AND ACTION DIMENSIONS OF BENCHMARK ENVIRONMENTS  
16791680 We summarize the state and action dimensions of each pair of source-domain and target-domain  
1681 benchmark tasks in the following Table 3.  
1682  
16831684 Table 3: Dimensions of the source and target domains (“Src” and “Tar” represent the source domain and the  
1685 target domain.)  
1686

| Environment     | State |     | Action |     |
|-----------------|-------|-----|--------|-----|
|                 | Src   | Tar | Src    | Tar |
| HalfCheetah     | 17    | 23  | 6      | 9   |
| Ant             | 111   | 133 | 8      | 10  |
| Door Opening    | 46    | 51  | 8      | 7   |
| Table Wiping    | 37    | 34  | 7      | 6   |
| Goal Navigation | 40    | 72  | 2      | 12  |

1698 F.2 MUJOCO AND ROBOSUITE ENVIRONMENTS  
16991700 As mentioned in Section 5, We evaluate *Q*Avatarin both MuJoCo and Robosuite environments. In the  
1701 MuJoCo environments, the source domains of our experiments are the original MuJoCo environments  
1702 such as HalfCheetah-v3 and Ant-v3. The target domains are the modified MuJoCo environments  
1703 such as HalfCheetah with three legs and Ant with five legs. In Robosuite environments, We evaluate  
1704 *Q*Avataron two tasks, including door opening and table wiping. For each task, we consider cross-  
1705 domain transfer from controlling a Panda robot arm to controlling a UR5e robot arm. These four  
1706 tasks are illustrated in Figure 14 and 15.  
17071726 Figure 14: The environments of the source domains and the target domains. (a)-(c): Source domains –  
1727 Original MuJoCo environments. (d)-(f): Target domains – Modified MuJoCo environments.  
1728



Figure 15: The environments of the source domains and the target domains. (a)-(c): Source domains – Control Panda to solve the tasks in robosuite and Safety-gym CarGoal0. (e)-(h): Target domains – Control UR5e to solve the tasks in robosuite and Safety-gym DoggoGoal0.

### F.3 THE IMPLEMENTATION DETAILS OF BASELINES

**SAC.** The implementation of SAC used in our experiments is released by stable-baselines3 Raffin et al. (2021). The settings of all hyperparameters except for the discounted factor  $\gamma$  follows the default settings of SAC in the documentation of stable-baselines3. The discounted factor is set 0.99 in all other MuJoCo environments, which follows the setting shown in Hugging Face. As for in the Robosuite environments, we set the discounted factor to 0.9.

**CMD.** Since there is no publicly available implementation of CMD, we leverage and adapt the codebase of DCC (Zhang et al., 2021) ([https://github.com/sjtuzq/Cycle\\_Dynamics](https://github.com/sjtuzq/Cycle_Dynamics)) and reproduce CMD by following the pseudo code of CMD in its original paper Gui et al. (2023). We follow the setting of the hyperparameters which is revealed in its original paper. Additionally, we change CMD from collecting the fixed amount of data to collecting data continuously for a fair comparison. As for the source model, we use the same model used in our algorithm. Moreover, we observe that the original setting could suffer because the collected trajectories mostly have low returns due to a random behavior policy. Therefore, we consider a stronger version of CMD with target-domain data collected under the target-domain policy, which is induced by the source-domain pre-trained policy and the current inter-domain mappings.

**FT.** FT can be seen as a standard SAC algorithm with source feature initialization. Specifically, we modify the input and output layers of the source policy to match the target domain’s state and action dimensions, using random initialization, while keeping the middle layers with the same weights as the source model. Similarly, for the source Q function, we adjust the input layer to fit the target domain’s state and action dimensions with random initialization, while the remaining layers retain the source model’s weights. After initialization, we can use SAC algorithm to implement FT.

**CAT.** We use the authors’ implementation (<https://github.com/TJU-DRL-LAB/transfer-and-multi-task-reinforcement-learning/tree/main/Single-agent%20Transfer%20RL/Cross-domain%20Transfer/CAT>) and use PPO as the target-domain base algorithm following the original paper. For a fair comparison, we use the same source model used in QAvatar. The hyperparameters are shown in the following table and “n epochs” means the number of epochs when optimizing the surrogate loss.

**CAT-SAC.** As CAT can be integrated with any off-the-shelf RL method, we adapt the original PPO-based CAT to CAT-SAC by using the SAC implementation in Spinning Up Achiam (2018) as the backbone of CAT-SAC. All the SAC-related hyperparameters are the same as those used by

SAC and the CAT-related parameters are configured as in the original implementation. For a fair comparison, we use the same source model used by *QAvatar*.

**PAR.** We use the authors' implementation (<https://github.com/dmksjfl/PAR.git>) and consider the offline to online version of PAR, which is more compatible with the CDRL setting in our paper. For the source-domain data required by PAR, we use the samples in the buffer collected during the training of the source-domain policies (shared by *QAvatar* and other baselines). As a result, to adapt PAR to the more general CDRL setting in our paper, similar to the data pre-processing methods used in handling sequences (Zahavy et al., 2018; Dwarampudi & Reddy, 2019; Morad et al., 2024; Wu & Hu, 2018), we use padding and truncation to handle the differences in state and action dimensions. More specifically,

- **Padding:** If the target domain has  $n$  more dimensions than the source, we append  $n$  zeros to the end of each source sample.
- **Truncation:** If the target domain has  $n$  fewer dimensions than the source, we discard the last  $n$  from each source sample.

Note that this design is reasonable, as neither the baselines nor *QAvatar* have any knowledge about the physical meaning of each entry in the state or action representations. For the hyperparameters, to ensure a fair comparison with *QAvatar* as well as the baselines CAT-SAC and SAC, we set the ratio between environment interaction and agent training to 1 (i.e., `config['tar_env_interact_freq']` in their original code). Other parameters (e.g., beta, weight, etc.) and network architecture follow the recommendations provided in the original PAR paper. In addition, we observe that in some environments, temperature tuning can improve performance. Therefore, we apply temperature tuning during the training process (as adopted by PAR's original code), and select the better one between using and not using temperature tuning as the final result.

Table 4: A list of candidate hyperparameters for Robosuite and MuJoCo.

| Parameter                               | MuJoCo                         | Robosuite      |
|-----------------------------------------|--------------------------------|----------------|
| learning rate                           | 0.0001, 0.0003, 0.0004, 0.0008 | 0.0001, 0.0003 |
| length of rollouts                      | 500, 2000                      | 2000           |
| batch size                              | 50, 100                        | 50, 100, 200   |
| entropy coefficient (ent. coef.)        | 0.01, 0.002                    | 0.01, 0.002    |
| n epochs                                | 10, 20                         | 5, 10          |
| num. of hidden layer of encoder/decoder | 1                              | 1              |
| num. of hidden layer of actor/critic    | 2                              | 2              |
| hidden layer size                       | 256                            | 256            |

Table 5: Final hyperparameters chosen for each environment.

|             | learning rate | len. of rollouts | batch size | ent. coef. | n epochs |
|-------------|---------------|------------------|------------|------------|----------|
| HalfCheetah | 0.0001        | 500              | 50         | 0.002      | 10       |
| Ant         | 0.0004        | 500              | 50         | 0.002      | 10       |
| Robosuite   | 0.0003        | 2000             | 100        | 0.01       | 10       |

#### F.4 HYPERPARAMTER TUNING OF THE BASELINES

In this section, we provide the value of hyperparameter tuning detail of in the Section 5. For fairness, all SAC-based methods (*QAvatar*, SAC, FT, CAT-SAC, and PAR) use exactly the same SAC-related hyperparameters. This ensures that any performance differences arise solely from whether transfer is applied and how it is implemented. For all locomotion tasks, we follow the recommended SAC

hyperparameters from Stable-Baselines3(Raffin et al., 2021). Thus, there are no hyperparameter need to tune in SAC and FT. For the other baselines,

**CAT and CAT-SAC.** We conducted tuning for the schedule of  $p(t)$ , which is the weight of the linear combination of hidden layer parameters:  $p(t) = 0$  means that only the source-domain parameters are used;  $p(t) = 1$  means that only the target-domain parameters are used). Specifically, You et al. (2022) sets  $p(t)$  to be piecewise linear as follows: Let  $T$  be the total training steps.

$$p(t) = \begin{cases} 0, & t \in [0, c_1 T], \\ \frac{t - c_1 T}{(c_2 - c_1)T}, & t \in [c_1 T, c_2 T], \\ 1, & t \in [c_2 T, T]. \end{cases}$$

The official CAT chooses  $c_1 = 0.45$ ,  $c_2 = 0.9$ . For each environment, we choose the best among the following candidate choices:  $(c_1, c_2) \in \{(0.15, 0.4), (0.4, 0.7), (0.45, 0.9)\}$ .

**PAR.** We performed a grid search over the penalty coefficient  $\beta : \{0.1, 0.5, 1.0, 2.0\}$ , which are the values suggested by the ablation study in the original paper. We also searched over the policy objective normalization coefficient  $\nu : \{2.5, 5.0\}$ , as recommended by the official code and Appendix E.1 of the original paper. In addition, we evaluated both configurations that enable temperature tuning during training, which is used in their official implementation, and configurations that exclude temperature tuning, which is the default setting. We selected the best-performing configuration in the Cheetah environment and applied this configuration to all remaining environments.

**CMD.** We conduct a grid search over the loss weights  $(\rho_0, \rho_1, \rho_2)$  in

$$L_{2nd} = \rho_0 L_{gan}(D_{\text{source}}, G_1) + \rho_1 L_{gan}(D_{\text{target}}, G_2) + \rho_2 L_3(G_1, G_2)$$

The official CMD setting is  $(\rho_0, \rho_1, \rho_2) = (1, 1, 3)$ , we fix  $\rho_1 = 1$  and conduct the grid search on  $\rho_2 : \{0.3, 1.0, 3.0\}$ ,  $\rho_2 = \{1.0, 3.0, 10.0\}$ . Across all combinations, the performance is similar and consistently much lower than that of SAC. Based on this observation, we adopt the original recommended CMD setting for all remaining environments.

## F.5 DETAILED CONFIGURATION OF $Q$ AVATAR

The base algorithm, SAC, is implemented by stable-baselines3 (Raffin et al., 2021). As for the compute resource, we use NVIDIA GeForce RTX 3090 to do the experiments. The Hyperparameters of  $Q$ Avatar are shown in the following table. The settings of hyperparameters such as critic/actor learning rate, batch size, buffer size and discounted factor are same as SAC.

Table 6: A list of hyperparameters of  $Q$ Avatar.

| Parameter                                   | Value  |
|---------------------------------------------|--------|
| critic/actor learning rate                  | 0.0003 |
| state mapping function learning rate        | 0.01   |
| action mapping function learning rate       | 0.01   |
| batch size                                  | 256    |
| replay buffer size                          | $10^6$ |
| optimizer                                   | Adam   |
| number of hidden layer of mapping functions | 1      |
| hidden layer size                           | 256    |
| update $\alpha$ frequency $N_\alpha$        | 1000   |

## G ANALYSIS OF THE OFF-POLICY VARIANT OF PROPOSITION 3

In Proposition 3, we provide an upper bound on the average sub-optimality of the on-policy version of  $Q$ Avatar. In this section, we derive the corresponding upper bound for the off-policy variant

of  $Q$ Avatar. The primary difference between the on-policy and off-policy settings lies in the data collection policy. The on-policy approach collects data using the learned policy  $\pi^{(t)}$ , while the off-policy variant collects data using a behavior policy  $\pi_\beta^{(t)}$ . Based on notation use in the main paper, we provide the average sub-optimality of the off-policy version of  $Q$ Avatar as following:

**Corollary 2.** *Under the  $Q$ Avatarin Algorithm 2, but with the data collection policy  $\pi^{(t)}$  replaced by  $\pi_\beta^{(t)}$ , and under Assumption 1, the average sub-optimality over  $T$  iterations can be upper bounded as follows:*

$$\begin{aligned} & \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \mu_{tar}} [V^{\pi^*}(s) - V^{\pi^{(t)}}(s)] \\ & \leq \underbrace{\frac{[\log |\mathcal{A}_{tar}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_0}{T} \sum_{t=1}^T \mathbb{E}_{(s,a) \sim d^{\pi_\beta^{(t)}}} [ |f^{(t)}(s,a) - Q^{\pi^{(t)}}(s,a)| ]}_{(b)} \end{aligned} \quad (92)$$

$$\begin{aligned} & \leq \underbrace{\frac{[\log |\mathcal{A}_{tar}| + 1]}{\sqrt{T}(1-\gamma)}}_{(a)} + \underbrace{\frac{C_1}{T} \sum_{t=1}^T \left( \alpha(t) \|\epsilon_{cd}(Q_{src}, \phi^{(t)}, \psi^{(t)})\|_{d^{\pi_\beta^{(t)}}} + (1-\alpha(t)) \|\epsilon_{id}^{(t)}\|_{d^{\pi_\beta^{(t)}}} \right)}_{(c)} \end{aligned} \quad (93)$$

where  $C_0 := 2C_{\pi^*, \beta}/(1-\gamma)$  and  $C_1 := 2C_{\pi^*, \beta}/((1-\gamma)^3 \mu_{tar, min})$ .

*Proof.* The proof follows exactly the same steps as those used for Proposition 3. The only difference lies in the proof of Lemma 5, specifically in Equation (34). There, instead of assuming the learned policy  $\pi^{(t)}$  together with the corresponding  $\left\| \frac{d^{\pi^*}}{d^{\pi^{(t)}}} \right\|_\infty \leq C$ , we replace it with the behavior policy  $\pi_\beta^{(t)}$  together with the corresponding  $\left\| \frac{d^{\pi^*}}{d^{\pi_\beta^{(t)}}} \right\|_\infty \leq C_\beta$ . Notably, both  $C_\beta$  and  $C$  are bounded constants given the condition of exploratory initial distribution in Assumption 1. For the subsequent derivations in Lemma 5 as well as those in Lemma 6, we may directly replace  $d^{\pi^{(t)}}$  with  $d^{\pi_\beta^{(t)}}$ . This substitution preserves all arguments, because the relevant manipulations are carried out entirely inside expectations with respect to a distribution, and the structure of the inequalities does not depend on which particular distribution the expectation is taken over.

Lemma 4 does not require any modification, because it is designed to control the learning process of the NPG-style policy update. This part of the analysis does not depend on whether the data are collected by  $\pi^{(t)}$  or by  $\pi_\beta^{(t)}$ . With the above substitutions, we may directly use the modified versions of Lemma 5, Lemma 6, and Lemma 4. Following the same sequence of steps as in Equations (58) to (64), we can then complete the proof of this corollary.  $\square$

In our practical SAC-based implementation of  $Q$ Avatar, we set the behavior policy  $\pi_\beta^{(t)}$  to match the buffer distribution, which can be viewed as a mixture of all past learned policies. Consequently, the value of  $\alpha(t)$  can naturally be evaluated over the buffer distribution.