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Abstract

In order to enable extraction of structured001
clinical data from unstructured radiology re-002
ports, we introduce RadGraph-XL, a large-003
scale, expert-annotated dataset for clinical en-004
tity and relation extraction. RadGraph-XL con-005
sists of 2,300 radiology reports, which are an-006
notated with over 410,000 entities and rela-007
tions by board-certified radiologists. Whereas008
previous approaches focus solely on chest009
X-rays, RadGraph-XL includes data from010
four anatomy-modality pairs - chest CT, ab-011
domen/pelvis CT, brain MR, and chest X-rays.012
Then, in order to automate structured informa-013
tion extraction, we use RadGraph-XL to train014
transformer-based models for clinical entity015
and relation extraction. Our evaluations include016
comprehensive ablation studies as well as an017
expert reader study that evaluates trained mod-018
els on out-of-domain data. Results demonstrate019
that our model surpasses the performance of020
previous methods by up to 52% and notably021
outperforms GPT-4 in this domain. We release022
RadGraph-XL as well as our trained model to023
foster further innovation and research in struc-024
tured clinical information extraction.025

1 Introduction026

Radiology reports, which are critical for patient027

care, present a challenge for clinical research and028

applications due to their unstructured format and029

complex language. To address this, various meth-030

ods have been developed to automatically extract031

important information from these reports (Langlotz032

and Meininger, 2000; Savova et al., 2010; Sugi-033

moto et al., 2021). This is essential for tasks like034

training medical imaging models and monitoring035

diseases (Johnson et al., 2019; Irvin et al., 2019;036

Reis et al., 2022). However, the effectiveness of037

these methods is often limited by the specific types038

of information they are designed to extract and the039

scarcity of densely annotated datasets, which are040

costly to produce due to the need for expert input.041

(a) Anatomy and Modality

RadGraph-1.0 Chest X-ray
Chest CT, Abdomen/Pelvis CT,

RadGraph-XL Brain MR, Chest X-ray

(b) Annotation Complexity

Sample Length Expert Knowledge

CoNLL04 29.0 ✗

RadGraph-1.0 111.3 ✓

RadGraph-XL 409.8 ✓

(c) Dataset Scale

# Sentences # Annotations

CoNLL04 1.4k 5.9k
RadGraph-1.0 3.7k 30.2k
RadGraph-XL 68.7k 409.0k

(d) Comparison w/ GPT-4 (Why so “old-school”?)

Entity F1 Relation F1

GPT-4 (0-shot) 0.158 0.012
GPT-4 (10-shot) 0.203 0.024
BERT (RadGraph-1.0) 0.744 0.453
BERT (RadGraph-XL) 0.863 0.691

Table 1: Illustrations of our motivation and contribu-
tion: (a) RadGraph-XL extends RadGraph-1.0 to other
anatomies and modalities; (b) The long radiology re-
ports and the requirements of expert knowledge pose
a significant challenge to the annotation; (c) The scale
of RadGraph-XL is much larger than existing general-
domain and medical-domain datasets; (d) We show the
performance comparisons with GPT-4 to demonstrate
why we are so “old-school” and why we need RadGraph-
XL in the large language model (LLM) era.

Recent initiatives have been directed towards 042

addressing the complexities of deriving structured 043

clinical data from the unstructured text of radiol- 044

ogy reports. One such approach is RadGraph1 (Jain 045

et al., 2021), which comprises a dataset and schema 046

that aim to capture a wide array of clinically rele- 047

vant information, such as observation and anatomi- 048

cal details. This schema is designed to streamline 049

and standardize the annotation process, thereby 050

1We denote it as RadGraph-1.0 in our paper.
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Report Level Annotation Level
Dataset Anatomy and Modality MIMIC Hosp. A w̄ Σa ā

Chest X-ray 550 50 111.3 30.2k 50.5
Radgraph-1.0

Total 550 50 - 30.2k -

Chest CT 100 500 502.1 115.7k 192.9
Abdomen/Pelvis CT 100 500 576.8 169.8k 283.1
Brain MR 100 500 352.3 95.2k 158.7
Chest X-ray - 500 167.7 28.5k 57.0

Radgraph-XL (Ours)

Total 300 2000 - 409.0k -

Table 2: We provide an overview of the RadGraph-XL annotations, encompassing 2,300 reports, in comparison
to RadGraph-1.0 (Jain et al., 2021). Additionally, we highlight the total number of annotations Σa, as well as the
average number of words w̄ and annotations ā per report, underscoring the significant expansion our annotations
contribute to the existing RadGraph-1.0 dataset. This involves adding annotations to reports from both new types of
imaging and body regions, as well as those originating from a different institution.

facilitating the extraction of meaningful insights051

from radiology narratives. However, its applica-052

tion has been primarily confined to chest X-ray053

reports, which limits its utility across the diverse054

spectrum of radiology documentation (as shown055

in Table 1(a)). In parallel, there is a burgeoning056

interest within the medical AI community to extend057

beyond chest X-rays, exploring a wider variety of058

imaging modalities and anatomical regions. This059

expansion is evident in recent advancements in re-060

port summarization (Chen et al., 2023; Delbrouck061

et al., 2023), report generation (Li et al., 2022;062

Zhang et al., 2023a), and the development of foun-063

dation models (Wu et al., 2023b; Tu et al., 2023).064

These advancements underscore the necessity for065

innovative methodologies capable of interpreting a066

broader range of radiology reports.067

Additionally, Large Language Models (LLMs)068

have also been explored to extract information with069

various prompting strategies (Liu et al., 2023a), be-070

ginning with a single example and expanding up to071

200-shot examples to maximize the GPT-4 model’s072

context window. In addition to the impracticalities073

of the approach, including issues with access, costs,074

and inference time. Moreover, there is no certainty075

that LLMs will perform equally well across dif-076

ferent modalities and anatomical studies, and this077

hypothesis remains untestable due to the lack of078

annotated data in these areas.079

Motivated by these limitations, we introduce080

RadGraph-XL, a large-scale dataset featuring 2,300081

radiology reports with approximately 410,000 ex-082

pert annotations by radiologists (as shown in Ta-083

ble 1(b)(c)). These annotations cover a range of084

entities, relationships, and measurements across 085

four different modality-anatomy pairs, aimed at sig- 086

nificantly enhancing the precision and richness of 087

data extracted from radiology texts. Leveraging our 088

annotations, we train a transformer-based model 089

tailored for the automatic annotation of radiology 090

reports using proven frameworks for entity and re- 091

lation extraction. Our evaluation encompasses a 092

series of ablation studies and a reader study fo- 093

cused on out-of-domain data, providing a thorough 094

assessment of the model’s capabilities. Our model 095

not only surpasses the performance benchmarks set 096

by previous methodologies (up to 52%) but also 097

demonstrates a significant edge over GPT-4’s capa- 098

bilities in this domain (as shown in Table 1(d)). 099

The structure of the paper is organized as fol- 100

lows. First, we introduce the RadGraph-XL dataset 101

in Section 3.1 and discuss its differences from 102

RadGraph-1.0. Next, we outline the process of 103

annotating the dataset and the challenges encoun- 104

tered in Section 3.2, and present some key statistics 105

in 3.3. Our focus then shifts to experiments in Sec- 106

tion 4, where we elaborate on our model’s training 107

process (Section 4.1), our methodology for select- 108

ing the best-performing model (Section 4.2), and 109

its comparison with a solution that employs a Large 110

Language Model (LLM) as the transformer back- 111

bone (Section 4.3). Importantly, we highlight our 112

model’s performance on entities defined as mea- 113

surements (Section 4.4)—a novel aspect of our an- 114

notations—and compare our model’s performance 115

with that of models from previous studies (Sec- 116

tion 4.5). The experiments section concludes with 117

a brief evaluation of GPT-4 against our reference 118
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test set (Section 4.6). Following this, Section 5119

presents the outcomes of our reader study, and the120

paper concludes with Section 6.121

2 Related work122

2.1 Extracting Information from Radiology123

Reports124

In the field of chest x-rays, traditional automated125

radiology report labelers, used in datasets like126

MIMIC-CXR (Johnson et al., 2019) and CheX-127

pert (Irvin et al., 2019), categorize reports for128

common medical conditions but miss finer de-129

tails like specific entities and their relationships.130

More detailed approaches use entity extraction131

schemas (Bustos et al., 2020) and focus on facts and132

spatial relations (Datta et al., 2020a,b), but these133

require dense annotation by experts. The most134

advanced work intended to cover most clinically135

relevant information within the report on chest x-136

ray is RadGraph-1.0 as discussed in Section 1. New137

annotations or information extraction approaches138

are proposed on modalities and anatomies beyond139

chest x-rays, such as head CT (Jantscher et al.,140

2023) or chest CT (Lau et al., 2023), but remain141

coarse and scarce.142

2.2 Downstream Tasks143

Downstream tasks often leverage structured clini-144

cal data to enhance model performance. RadGraph-145

1.0 (Jain et al., 2021) annotations, for example,146

have been utilized to boost the quality of radiology147

report generation by using annotations as a form of148

reward (Delbrouck et al., 2022), as an indicator of149

style (Yan et al., 2023), or to eliminate hallucinated150

references (Ramesh et al., 2022). They are also151

used in pretraining (Zhang et al., 2023b; Wu et al.,152

2023a), to augment the performance of fine-grained153

image-text self-supervised models (Varma et al.,154

2023), and to assess the capabilities of Large Lan-155

guage Models (Liu et al., 2023a; Tu et al., 2023).156

3 RadGraph-XL157

3.1 Overview158

RadGraph-XL aims to enhance the capabilities of159

RadGraph-1.0 (Jain et al., 2021) by expanding160

its application across different medical imaging161

modalities, anatomical regions, and healthcare in-162

stitutions. The proposed extensions include:163

• New Modality: Annotating Computed Tomog-164

raphy (CT) reports for the chest, moving beyond165

the initial focus on Chest X-ray reports.166

• New Anatomy: Expanding the scope to include 167

CT reports for the abdomen and pelvis, based on 168

the experience with Chest CT reports. 169

• New Modality and Anatomy: To evaluate the 170

model’s performance on data that is significantly 171

different from the training set, the proposal in- 172

cludes annotating Brain Magnetic Resonance 173

(MR) imaging reports, which represents a new 174

imaging modality and anatomical region. 175

• New Institution: Broadening the data source to 176

include reports from a new institution, Hospital 177

A (Hosp. A), in addition to the previously used 178

MIMIC-CXR reports from RadGraph-1.0. 179

We select reports based on the following criteria 180

in an effort to curate a diverse dataset, prioritized 181

as follows: (i) We select reports with annotated 182

disease labels and aim for a balanced selection to 183

ensure an even distribution across different condi- 184

tions, (ii) We employ unsupervised semantic clus- 185

tering (Universal Sentence Encoder (USE) (Cer 186

et al., 2018)) to group the reports and then select 187

samples from each cluster, and (iii) we cluster the 188

remaining reports by their length and sample from 189

each cluster. A semantic projection of the USE 190

embeddings using t-SNE is proposed in Figure 3. 191

3.2 Annotations 192

Each report is annotated by two board-certified ra- 193

diologists. To ensure that there is a baseline level of 194

concordance in the clinical judgments made by the 195

two radioligists, we require the average agreement 196

to be equal to or exceed a threshold of 50%. The 197

average agreement rates for different imaging stud- 198

ies are 53.58% for Chest X-ray, 59.26% for Chest 199

CT, 59.44% for Abdomen Pelvis CT, and 55.55% 200

for Brain MR. If there is no consensus between the 201

two radiologists, one judge is called upon to make 202

a decision. In total, 406,141 annotations have been 203

validated. 204

We use the same schema as RadGraph-1.0 to 205

extract entities and relations from radiology re- 206

ports: entities can be labeled as ‘Observation def- 207

initely present’, ‘Observation definitely absent’, 208

‘Observation uncertain’, ‘Anatomy definitely ab- 209

sent’, ‘Anatomy definitely present’ or ‘Anatomy 210

uncertain’ and relations between entities can be 211

labeled as ‘Located At’, ‘Modify’, ‘Suggestive Of’. 212

For a detailed explanation of what we consider 213

to be an entity or a relation, please refer to Ap- 214

pendix A. In addition to the established schema, 215

we’ve introduced a post-processing step that identi- 216

fies entities related to measurements. This effort 217
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Anatomy and Modality
Type Label Chest CT Abdomen/Pelvis CT Brain MR Chest X-ray Total

Anatomy 33,976 46,326 25,104 7,715 113,121
Observation definitely present 22,425 35,595 18,033 6,469 82,522
Observation: Definitely Absent 5,705 8,975 7,215 987 22,882
Observation: Uncertain 2,104 2,867 2,121 946 8,038

Entity

Total 64,210 93,763 52,473 16,117 226,563

Modify 29,892 46,708 29,608 7,471 113,679
Located at 18,313 25,333 11,345 4,163 59,154
Suggestive of 2,081 2,443 1,504 717 6,745Relation

Total 50,286 74,484 42,457 12,351 179,578

Table 3: Overview of the 406,141 RadGraph-XL annotations categorized by entity and relations across various
modalities and anatomies, detailing the different distributions per labels. Additionally, a subset of 3,297 measure-
ments have been identified. We show the details in Table 13 in Appendix.

is geared towards encouraging future research to218

create new models designed for dealing with or219

forecasting measurements, an area within radiol-220

ogy AI that, based on our informed understand-221

ing, presents unique challenges and has not been222

extensively addressed. This additional step, de-223

tailed in Appendix C, allowed us to annotate a224

subset of 3,297 entities in RadGraph-XL and 65 in225

RadGraph-1.0.226

Finally, the task of annotating new modality-227

anatomy pairs presented significant challenges that228

are quite distinct from those encountered with chest229

X-rays, which were the focus of RadGraph-1.0.230

These complexities are detailed in Appendix B.231

In particular, we note that chest X-ray reports232

are considerably shorter than the reports for other233

modality-anatomy pairs, as shown in Figure 1.234

3.3 Statistics235

Table 3 provides a detailed breakdown of the an-236

notations collected, organized by type of imaging237

study and annotation categories. It is important to238

highlight that the dataset is evenly balanced, with239

anatomical annotations comprising 49.92% and ob-240

servations making up 50.08%. The abdomen/pelvis241

CT reports, which are the longest reports in our col-242

lection as depicted in Figure 1, account for 41.38%243

of all annotations. This is followed by chest CTs244

at 28.34%, brain MRs at 23.16%, and chest x-rays245

at 7.11%. Regarding the types of relations anno-246

tated, 63.30% are classified as ‘modify’, 32.94%247

as ‘located at’, and 3.75% ‘suggestive of’. For248

entities, we identify 19,772 unique (entity, label)249

pairs; for relations, we find 67,323 (source entity,250

target entity, label) unique triplets. The 10 most251

Figure 1: Statistics of RadGraph-XL on the Hosp. A
(Top) and MIMIC-CXR (Bottom), where the distribu-
tions of the number of sentences per report, per imaging
studies, and per institution are shown.

common unique entity pairs and relation triplets 252

are presented in Table 14. 253

4 Experiments 254

4.1 Baseline training 255

In this section, we aim to develop a predictive 256

model using both the newly annotated dataset 257

and the data from RadGraph-1.0. To achieve 258
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Entity Relations
Approach Micro F1 Macro F1 Micro F1 Macro F1

SpERT
BERT 0.844±0.001 0.707±0.033 0.638±0.016 0.513±0.023

BiomedBERT 0.741±0.002 0.646±0.020 0.535±0.007 0.463±0.018

BiomedVLP-CXR-BERT 0.743±0.003 0.642±0.033 0.538±0.007 0.431±0.025

DYGIE++
BERT 0.877±0.002 0.758±0.005 0.729±0.016 0.664±0.018

BiomedBERT 0.880±0.000 0.785±0.002 0.725±0.014 0.671±0.017

BiomedVLP-CXR-BERT 0.889±0.000 0.796±0.001 0.737±0.015 0.689±0.023

BiomedVLP-CXR-BERT(b) 0.889 0.797 0.739 0.691

Table 4: Aggregated results from the 10-folds for the DYGIE++ and SpERT framework. In this context, a true
positive is defined as an instance where the prediction of an entity or relation is completely accurate. This accuracy
encompasses correctly identifying the span and label of an entity. For relations, it involves correctly determining the
spans of both the source and target entities involved in the relation, as well as accurately identifying the label of the
relation.

this, we evaluate two transformer-based libraries259

under MIT License for Entity and Relation Ex-260

traction: DyGIE++ (Wadden et al., 2019) and261

SpERT (Eberts and Ulges, 2020) with three proven262

transformer architectures, namely BERT (Kenton263

and Toutanova, 2019), BiomedBERT Gu et al.264

(2020) and BiomedVLP-CXR-BERT Boecking265

et al. (2022). We assess the effectiveness of our266

training through a 10-fold cross-validation process.267

Considering that the majority of the models dis-268

cussed in this paper handle sequences of no more269

than 512 tokens, we ensure that both the reports270

and annotations are divided appropriately.271

The summarized results are presented in Table 4,272

where we demonstrate that the DYGIE++ frame-273

work delivers the best performance overall. In274

terms of comparing various transformer architec-275

tures, the differences observed between them are276

minimal. The highest-scoring transformer model277

is BiomedVLP-CXR-BERT.278

4.2 Selecting the Best Model279

From the 10-fold cross-validation process, we iden-280

tified the training, validation, and testing splits281

based on the fold where BiomedVLP-CXR-BERT282

achieved its highest performance, recording scores283

of 0.889 and 0.797 for Entity F1 Micro and F1284

Macro, and 0.739 and 0.691 for Relations F1 Micro285

and F1 Macro, respectively. This top-performing286

model is now referred as to BiomedVLP-CXR-287

BERT(b). These splits will be used as the standard288

for our subsequent ablation studies; for context, the289

selected splits for the training, validation, and test 290

sets include 2320, 290, and 290 reports, respec- 291

tively. The comprehensive results of BiomedVLP- 292

CXR-BERT(b) for entities and relationships in this 293

specific split are detailed in Table 5. 294

Category F1 Score Precision Recall

NER Label Metrics

Anatomy definitely present 0.93 0.92 0.93
Observation definitely absent 0.90 0.90 0.91
Observation definitely present 0.85 0.85 0.85
Observation uncertain 0.77 0.78 0.77
Anatomy definitely absent 0.53 0.57 0.50

Relations Label Metrics

modify - 0.74 0.74 0.74
located at - 0.75 0.74 0.76
suggestive of - 0.58 0.60 0.55

Table 5: Comprehensive results of BiomedVLP-CXR-
BERT(b) for entities and relationships in the chosen
split from the 10-fold cross-validation process, based
on its peak performance. This split, marked by Entity
F1 Micro and Macro scores of 0.889 and 0.797, and
Relations F1 Micro and Macro scores of 0.739 and
0.691 respectively, will serve as the official split.

4.3 Scaling with LLMs 295

The baseline architectures we selected are relatively 296

small by current standards, each having a total of 297

0.11 billion parameters. In addition, we investi- 298

gated transformer models with varying numbers of 299

parameters, specifically XLM-Roberta (Conneau 300

et al., 2019), which has 0.5 billion parameters and 301

was trained on 2.5TB of filtered CommonCrawl 302
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data. We also looked at Pythia (Biderman et al.,303

2023), with 1 billion parameters trained on the Pile,304

and StableLM2 (StabilityAI, 2024), which has 1.6305

billion parameters and was trained on a dataset of306

2 trillion tokens.307

Approach Entity Relations

Macro F1 Macro F1

BiomedVLP-CXR-BERT 0.796 0.689
XLM-Roberta 0.702 0.650
Pythia 1B 0.650 0.632
StableLM2 2.7B 0.789 0.656

Table 6: Comparison of BiomedVLP-CXR-BERT back-
bone against larger models on a 10-fold cross validation
experiment.

XLM-Roberta, Pythia, and StableLM2 reports308

micro F1 scores that are closely matched with those309

of BiomedVLP-CXR-BERT, with values for enti-310

ties between 0.87 and 0.88 and for relations be-311

tween 0.71 and 0.73. However, they fall short in312

performance for certain under-represented labels,313

as indicated by the macro F1 scores presented in314

Table 6. Particularly, XLM-Roberta reports an F1315

score of 0 for ‘Anatomy definitely absent’, 0.68 for316

‘Observation uncertain’, and 0.47 for the relation317

‘suggestive of’.318

4.4 Performance on Measurements319

We found that a small number of outlier labels were320

identified as measurements, specifically ‘Obser-321

vation definitely absent’, ‘Observation uncertain’,322

‘Anatomy definitely absent’, and ‘Anatomy uncer-323

tain’, with occurrence totals of 11, 7, 4, and 3, re-324

spectively.2 In our official test set, only four labels325

are included as measurements. Table 7 presents the326

performance metrics for these labels as evaluated327

by our top-performing model, BiomedVLP-CXR-328

BERT(b).329

Measurements Entity

F1 Score Precision Recall

Obs. definitely present 0.820 0.860 0.780
Anat. definitely present 0.630 0.580 0.700
Obs. definitely absent 0.660 1.000 0.500
Obs. uncertain 0.660 1.000 0.500

Table 7: Performance on measurements entities by our
best model BiomedVLP-CXR-BERT (b) on the test-set
of our official split.

2We provide details in Table 12 in the Appendix.

4.5 Comparison to RadGraph-1.0 330

To assess the value of our new annotations, we 331

conducted two experiments. 332

The first experiment involves testing the model 333

trained on RadGraph-1.0 (chest X-rays only) on our 334

official test split, ensuring we excluded annotations 335

labeled as ‘Anatomy Uncertain’ and ‘Anatomy 336

definitely absent’ since they do not exist in the 337

RadGraph-1.0 schema. 338

Approach Entity Relation

Macro F1 Macro F1

BiomedVLP-CXR-BERT(b) 0.863 0.691
RadGraph-1.0 0.744 0.453

Table 8: Comparison of the model provided by
RadGraph-1.0 with our top-performing model on our
official test-set. The presented results were obtained
by excluding the categories ‘Anatomy Uncertain’ and
‘Anatomy definitely absent’, since these are not included
in RadGraph-1.0.

As seen in Table 8, the BiomedVLP-CXR- 339

BERT(b) model significantly outperforms 340

RadGraph-1.0 in both categories. Specifically, in 341

the Entity category, our model achieves a Macro 342

F1 score of 0.863, which is approximately 16.0% 343

higher than RadGraph-1.0’s score of 0.744. In 344

the Relations category, the improvement is even 345

more pronounced, with our model attaining a score 346

of 0.691, which surpasses RadGraph-1.0’s score 347

of 0.453 by 52.5%. These results suggest that 348

BiomedVLP-CXR-BERT(b) provides a significantly 349

more effective approach for recognizing entities 350

and their relations on reports from various imaging 351

studies. The detailed results of RadGraph-1.0 on 352

our test-set are presented in Table 9. A significant 353

discrepancy is observed in the category ‘Observa- 354

tion definitely present’, where the performance 355

of RadGraph-1.0’s model is 20 f1-score points 356

inferior compared to BiomedVLP-CXR-BERT(b). 357

358

In the second experiment, we trained the 359

BiomedVLP-CXR-BERT backbone using all avail- 360

able data except for the official test set from 361

RadGraph-1.0, which includes only annotations 362

for chest X-rays. The outcomes of this experi- 363

ment are detailed in Table 10. We observe that 364

our BiomedVLP-CXR-BERT model, despite being 365

trained on a large, diverse dataset, can match the 366

performance of the RadGraph-1.0 model on the 367

RadGraph-1.0 test-set. It’s also worth mentioning 368
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Category F1 Score Precision Recall

Anatomy definitely present 0.83 0.80 0.86
Observation definitely absent 0.71 0.65 0.77
Observation definitely present 0.61 0.67 0.56
Observation uncertain 0.81 0.80 0.83

Relations Label Metrics

modify - 0.48 0.44 0.52
located at - 0.52 0.54 0.50
suggestive of - 0.35 0.45 0.29

Table 9: Detailed results of the RadGraph-1.0 model
tested on our RadGraph-XL official test-split. These
results can be directly compared to Table 5 as they are
computed on the same test-set.

that the test set is relatively small, consisting of 100369

reports focused on chest X-rays. These reports are370

typically brief and offer limited semantic variety371

compared to other types of imaging studies found372

in our RadGraph-XL dataset.373

Approach Entity Relation

Macro F1 Macro F1

BiomedVLP-CXR-BERT 0.862 0.694
RadGraph-1.0 0.862 0.692

Table 10: Comparison of the model provided by
RadGraph-1.0 with our top-performing model on
RadGraph-1.0 test-set.

4.6 Comparisons with GPT-4374

Recent work has demonstrated the utility of GPT-375

4, a task-agnostic foundation model, in effec-376

tively performing a variety of natural language377

tasks (Achiam et al., 2023; Liu et al., 2023b). In or-378

der to compare state-of-the-art task-agnostic mod-379

els with our task-specific approach, we benchmark380

performance of GPT-4 on the RadGraph-XL test381

set. Given an input radiology report, we use GPT-4382

to extract entities and relations. We evaluate per-383

formance of zero-shot GPT-4, where no in-context384

examples are provided, and few-shot GPT-4, where385

between one and ten in-context examples are in-386

cluded in the prompt. In-context examples are sam-387

pled randomly from the RadGraph-XL training set.388

Our results are summarized in Table 11.389

390

We find that performing entity and relation391

extraction on the RadGraph-XL dataset is challeng-392

ing for GPT-4, with macro-F1 scores observed to393

be significantly lower (0.594 F1-points on entity ex-394

traction and 0.667 F1-points on relation extraction)395

Approach Entity Relation

Macro F1 Macro F1

GPT4 (0-shot) 0.158 0.012
GPT4 (1-shot) 0.173 0.010
GPT4 (5-shot) 0.203 0.020
GPT4 (10-shot) 0.203 0.024

BiomedVLP-CXR-BERT(b) 0.797 0.691

Table 11: We compare our top-performing model with
GPT-4 on the official RadGraph-XL test set.

than our task-specific approach. Few-shot GPT-4 396

with in-context examples exhibit slight improve- 397

ments in performance over zero-shot GPT-4 (0.045 398

F1 points on entity extraction and 0.012 F1 points 399

on relation extraction). In line with prior work 400

(Liu et al., 2023a), we find that the key source of 401

GPT-4 errors comes from incorrect understanding 402

of the annotation schema, even in few-shot settings. 403

404

Overall, our experiments show that GPT-4 re- 405

quires substantial manual prompt tuning, gener- 406

ates outputs that do not adequately align with the 407

annotation schema, and requires significant post- 408

processing of generated outputs. Additionally, eval- 409

uations with GPT-4 are expensive, which is a par- 410

ticular concern on the RadGraph-XL dataset where 411

reports are lengthy with a large number of entities 412

and relations. Our results demonstrate (i) the need 413

for task-specific models like our BiomedVLP-CXR- 414

BERT(b) model, which are capable of performing 415

specialized tasks with high accuracy, and (ii) that 416

RadGraph-XL can serve as a useful and challeng- 417

ing test-bed for future foundation models. 418

5 Reader Study 419

We conduct a reader study on out-of-domain data, 420

namely Deep Vein Thrombosis (DVT) ultrasound 421

reports, in order to evaluate the ability of our model 422

to generalize to new radiological text. We chose 423

20 reports with semantic diversity, extracted the 424

impressions section, and ran our top-performing 425

model BiomedVLP-CXR-BERT(b) to predict enti- 426

ties and relations. Our model generated 265 enti- 427

ties (13.25 per report) and 207 relations (10.35 per 428

report). A board-certified radiologist was tasked 429

to detect critical errors, imprecise or ambiguous 430

classifications and unclear labels, and provide a 431

subjective overview summary. 432
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Critical errors Three critical errors were de-433

tected. First, ‘deep’ in ‘deep veins’ was twice434

labeled as an observation, though it should be435

anatomy. This is a surprising edge case because i)436

our RadGraph-XL training set contains 51 ‘deep’437

annotations, 40 of which are labeled as Anatomy:438

definitely present ii) the other ‘deep’ words were439

labeled correctly. Secondly, in one case, ‘some440

areas’ was labeled as an observation instead of441

anatomy (referring to some areas of the blood ves-442

sel). Finally, in one impression, ‘loss of phasicity’443

and ‘loss of normal response’ were labeled as ‘def-444

initely present’, but should have been labeled as445

‘definitely absent’.446

Imprecise or ambiguous classifications A few447

awkward labels have been predicted: ‘Thrombosis’448

incorrectly modified ‘venous’ instead of indicat-449

ing location. The entities ‘baker cyst’ and ‘color450

flow’ were wrongly marked as ‘present’ instead of451

‘uncertain’, while ‘infection’ and ‘focal’ were mis-452

takenly labeled as ‘uncertain’ rather than ‘definitely453

present’.454

Overview summary RadGraph-XL can effec-455

tively generalize to an unknown modality and456

anatomic terms. For example, it was able to show457

that ‘spectral doppler imaging’ modifies ‘flow’, a458

combination of entities that is non-existent in our459

training dataset. Although the overwhelming ma-460

jority of anatomic terms were classified correctly,461

there is opportunity for improvement in classifying462

anatomic terms, in this case “deep” as an anatomic463

modifier of deep vein thrombosis, that were fre-464

quently misclassified.465

In summary, 5 entities out of 265 were criti-466

cal errors (1.8%) and 4 entities were subjectively467

flagged as imprecise (1.5%). Only one relation468

was subjectively flagged as imprecise. Despite this469

study being carried on a small sample focused on470

ultrasound done for deep venous thrombosis, the471

results are encouraging for the broader use of our472

RadGraph-XL model for radiological information473

extraction.474

6 Conclusion475

We introduced RadGraph-XL, an expansive dataset476

comprising 2,300 radiology reports enriched with477

over 410,000 expert annotations from radiologists478

(Section 3). This dataset spans a variety of en-479

tities, relations, and measurements across multi-480

ple modality-anatomy pairs, enriching the data ex-481

tracted from radiological texts with unprecedented 482

precision and depth. We have conducted experi- 483

ments (Section 4) using transformer-based models 484

trained for automatic annotation of radiology re- 485

ports, employing state-of-the-art frameworks for 486

entity and relation extraction. Through compre- 487

hensive ablation studies (Section 4.2, 4.3, and 4.4) 488

and a reader study (Section 5) that extends to out- 489

of-domain data, we meticulously evaluated our 490

model’s performance. The results reveal that our 491

model not only sets a new benchmark, but also 492

outperforms previous methods by as much as 52% 493

(Section 4.5) and notably outperforms GPT-4 (Sec- 494

tion 4.6) in this specific field. To encourage further 495

innovation and research, we release the reports, the 496

annotations, and our trained model. 497

7 Limitations 498

We denote three limitations to our work. First and 499

foremost, the experiments have been conducted on 500

the raw annotations without further post-processing. 501

The annotations could be refined by implementing 502

various heuristics to identify and address outliers 503

in the dataset. For instance, entities with unusually 504

long spans could be flagged for review, as these 505

may indicate potential mislabeling or annotation er- 506

rors. Similarly, entities that appear to be mislabeled 507

could be systematically identified and corrected; 508

Those that lack any annotations might be removed 509

to ensure the dataset’s consistency and relevance. 510

Secondly, the selected transformer architectures 511

have a maximum input size of 512 tokens, but many 512

reports in our dataset are longer than that. It’s un- 513

certain if dividing a report into several parts affects 514

the model’s effectiveness due to the loss of con- 515

text. Additionally, expanding the model to a size 516

comparable to ‘Large Language Models’ and fine- 517

tuning all its parameters hasn’t led to any enhance- 518

ments. More advanced techniques, referred to as 519

Parameter-Efficient Fine-Tuning (PEFT), might al- 520

low for more consistent training and the scaling up 521

to larger models that are capable of more sophisti- 522

cated reasoning. 523

Finally, our reader study indicates that while our 524

model generally produces good annotations on un- 525

seen datasets, it is not immune to significant errors 526

when dealing with out-of-distribution data. It re- 527

mains uncertain how effectively our model handles 528

unseen modalities and anatomies, and whether it 529

can be considered reliable for annotating data in 530

such contexts for subsequent tasks. 531
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Ethical considerations532

The reports subject to the annotations have been533

automatically deidentified with human review and534

approved for release by the institution. To guaran-535

tee patient safety when deploying clinical models in536

practice, it’s crucial for researchers training models537

on our datasets to rigorously audit for performance538

disparities across key demographic attributes, such539

as sex, age, and race. This involves a proactive ap-540

proach to identifying and addressing potential dis-541

tribution shifts that may occur when these models542

are applied across diverse patient populations, en-543

suring equitable and effective healthcare outcomes544

for all individuals.545

We publicly release of our top-performing546

model, BiomedVLP-CXR-BERT(b), which is capa-547

ble of automatically annotating radiology reports.548

Along with the model, we are also sharing our an-549

notations with the public.550
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A Information Schema771

In RadGraph-1.0 (Jain et al., 2021), Entities and772

Relations are defined as such:773

Figure 2: Example of annotations for an impression.
Figure taken from Jain et al. (2021).

Entities: We categorize text into units called774

‘entities’, which are spans of text that might be775

just one word or a string of words stuck together.776

These entities fall into two big buckets: ‘Anatomy’,777

which is about body parts like the lung you might778

read about in a medical report, and ‘Observation’,779

which is about words associated with visual fea-780

tures, identifiable pathophysiologic processes, or781

diagnostic disease classifications.782

Relations: We look at how these entities re-783

late to each other, which are like arrows that con-784

nect one entity to another in a specific way. We use785

three types of relations: ‘Suggestive Of’, which786

connects two Observations when one might imply787

the other; ‘Located At’, which links an Observation788

to an Anatomy to show where something’s happen-789

ing or to describe their relationship in other ways;790

and ‘Modify’, which can connect two Observations791

or two Anatomies to show how one changes or adds792

detail to the other.793

B Labeling challenges794

In the complex landscape of radiology reports,795

accurately identifying and annotating anatomical796

terms and their associated modifiers presents a sig-797

nificant challenge. This challenge is not only im-798

portant to create high-quality labels but also crucial799

for maintaining consistency across reports. The800

nuances involved in this process can lead to vari-801

ability in interpretations, which, in turn, may affect802

patient care and outcomes.803

Anatomical Term Identification A primary804

concern in anatomical term identification is dis-805

tinguishing between the main anatomical regions806

or organs and the modifiers that specify their exact807

locations or characteristics. An illustrative exam-808

ple can be seen in the description of lung scarring:809

‘The lung bases are clear with the exception of810

some scarring in the right lung base.’ Here, ‘right’,811

‘lung’, and ‘base’ are all anatomical terms. The am- 812

biguity arises in determining whether ‘right’ modi- 813

fies ‘lung’ or ‘base’, or if ‘right lung base’ should 814

be collectively annotated as a singular anatomical 815

entity. To mitigate such ambiguities, it is recom- 816

mended that the major anatomic region or organ, in 817

this case, ‘lung’, be labeled as the primary anatom- 818

ical term. The terms ‘right’ and ‘base’ should then 819

be annotated as modifiers that delineate the specific 820

location within the lung. 821

Modifier Identification Another layer of com- 822

plexity is introduced when considering how to accu- 823

rately label modifiers, particularly in phrases where 824

multiple anatomical terms are present. For instance, 825

the phrase "There is moderate intrahepatic biliary 826

duct dilatation" contains "intrahepatic," "biliary," 827

and "duct" as anatomical terms. The challenge 828

here is to ascertain whether "intrahepatic" modifies 829

"duct" or "biliary." Consistency can be achieved 830

by identifying the duct as the primary anatomical 831

term and treating "intrahepatic" and "biliary" as 832

modifiers that provide additional specificity. 833

Measurements A common question that arises 834

in this context is how to handle phrases that in- 835

clude qualifiers such as "up to," "less than," or 836

"greater than," which provide crucial information 837

about the measurements being reported. Consider 838

the sentence: "The CBD (Common Bile Duct) it- 839

self measures up to 3 cm in diameter." The use 840

of "up to" may not be the most precise phrasing 841

for a radiology report, where the exact measure- 842

ment is typically preferred. However, the reality of 843

clinical practice often involves approximations and 844

ranges, particularly when exact measurements are 845

challenging to obtain. Given their significance, it is 846

recommended that qualifiers such as "up to," "less 847

than," and "greater than" be labeled as observation 848

modifiers. 849

Qualitative Modifiers Annotating qualitative 850

modifiers such as ‘extensive’, ‘some’, and ‘clear’ 851

in radiology reports presents a notable challenge. 852

These terms significantly impact the clinical inter- 853

pretation by modifying observations (e.g., ‘exten- 854

sive diverticulosis’) or indicating uncertainty (e.g., 855

‘grossly unremarkable’). The complexity arises 856

from their dual role in describing the severity of 857

findings and spatial relationships between anatom- 858

ical entities. Our approach recommends labeling 859

terms that alter the interpretation of findings as ob- 860

servations and utilizing a generalized ‘located_at’ 861

relation for spatial descriptors to simplify the an- 862

notation process. Terms that introduce ambiguity, 863
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like ‘clear’ and ‘grossly’, are best represented by864

annotating the corresponding observations as ‘un-865

certain’.866

Contextual Modifiers Phrases like ‘in the set-867

ting of recent surgical procedure’ or ‘hematocrit868

drop’ provide essential clinical context but do not869

directly describe imaging findings. Our guideline870

suggests excluding these terms from annotation, as871

they do not describe the radiological findings.872

Compound words Determining whether to split873

or merge terms for annotation, such as in "hiatal874

hernia" or "focal pancreatitis," can be perplexing.875

The rule of thumb is to label words individually to876

maintain clarity, especially since compound terms877

might not always appear together in the text. How-878

ever, it’s crucial to identify the primary entity in879

each compound term, which typically represents880

the main anatomy or observation. For example,881

"hernia" in "hiatal hernia" is the observation, with882

"hiatal" specifying the anatomical location. Sim-883

ilarly, "pancreatitis" is the observation in "focal884

pancreatitis," with "focal" indicating the observa-885

tion’s nature.886

C Measurements887

The following code snippet was used to detect mea-888

surements.

Algorithm 1 Check measurement in an entity

1 # e n t i t y i s a l i s t o f words
2 # e . g . [ " 5 " , " x " , " 5 " , "mm" ]
3 i f "mm" i n e n t i t y o r "cm" i n e n t i t y o r \
4 "MM" i n e n t i t y o r "CM" i n e n t i t y o r \
5 ( " x " i n e n t i t y and any (w. i s d i g i t ( )

f o r w i n e n t i t y ) ) :
6 # e n t i t y i s c o n s i d e r e d a measure

889

Captured measurements are highly diverse, such890

as ’approximately a 4.6 cm’, ’advanced by at least891

11 cm’, ’measuring slightly less than 6 mm’ or892

’smaller in size compared to the prior study mea-893

suring 1.5 cm in the largest dimension’. Measure-894

ments are distributed across labels as such:895

Category Count

Observation definitely present 3212
Anatomy definitely present 125
Observation definitely absent 11
Observation uncertain 7
Anatomy definitely absent 4
Anatomy uncertain 3

Table 12: Distribution of measurements per label

The measurements are distributed as follows be- 896

tween imaging studies: 897

Imaging Study Count

Hosp A. Abdomen/Pelvis CT 1421
Hosp A. Chest CT 1035
Hosp A. Brain MR 241
MIMIC Chest CT 225
MIMIC Abdomen/Pelvis CT 199
Hosp A. Chest X-ray 96
MIMIC Brain MR 80
MIMIC Chest X-ray 65

Table 13: Distribution of measurements per imaging
study

D Dataset 898

The figure below illustrates the process we used to 899

select the reports, as detailed in Section 3.1.

Figure 3: t-SNE representation of the embeddings gen-
erated by the Universal Sentence Encoder for CT ab-
domen/pelvis (left) and MR Brain (right). We use the
automatic topic modeling LDA algorithm (Blei et al.,
2003) to generate ten clusters.

900
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Entities Label Count
Right Anatomy: DP 4078
Left Anatomy: DP 3652
Normal Observation: DP 3619
Unremarkable Observation: DP 1840
Lobe Anatomy: DP 1572
Pulmonary Anatomy: DP 1553
Artery Anatomy: DP 1402
Size Anatomy: DP 1222
Small Observation: DP 1193
Pleural Anatomy: DP 1118
Source => Target Label Count
Right => Lobe Modify 818
Normal => Caliber Located At 706
Normal => Size Located At 695
Effusion => Pericardial Located At 665
Left => Lobe Modify 564
Lower => Lobe Modify 501
Effusion => Pleural Located At 462
Small => Bowel Modify 414
Size => Heart Modify 378
Caliber => Aorta Modify 376
Adrenal => Glands Modify 375

Table 14: Most common entities and relations in the
dataset

E Training details901

Our best model is trained using the Entity and Re-902

lation Extraction framework DyGIE++ (Wadden903

et al., 2019). The parameters are defined in Ta-904

ble 15.905

Parameter Value
max_span_width 8
initializer xavier_normal
Loss Weights - ner 0.2
Loss Weights - relation 1.0
Feedforward Params - num_layers 2
Feedforward Params - hidden_dims 768
Feedforward Params - dropout 0.4
Data Loader - sampler_type random
Data Loader - batch_size 8
num_epochs 100
grad_norm 5.0
Optimizer (classifier) - lr 1e-3
Optimizer (classifier) - weight_decay 0.0
Optimizer (transformer) - lr 5e-5
Optimizer (transformer) - weight_decay 0.1
Learning Rate Scheduler - type slanted_triangular

Table 15: Hyperparameters

F GPT-4 Evaluations906

We provide the prompt used for GPT-4 evaluations907

in Figure 4.908
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GPT-4 prompt

Prompt:
Your task is to extract medical entities and relations from a given radiology report. I’ll provide you
with 1) the problem setup, 2) the radiology report, and 3) the output format.

1) Problem setup: For each report, you will be asked to identify 7 types of medical entities:
(1) observation::present, which is used for visual features, pathophysiologic processes, or
diagnosable diseases that are present;
(2) observation::absent, which is used for visual features, pathophysiologic processes, or
diagnosable diseases that are absent;
(3) observation::uncertain, which is used for visual features, pathophysiologic processes, or
diagnosable diseases where you are uncertain about presence or absence;
(4) observation::measurement::present, which refers to a measurement associated with visual
features, pathophysiologic processes, or diseases;
(5) anatomy::present, which refers to an anatomical body part that is present;
(6) anatomy::absent, which refers to an anatomical body part that is absent;
(7) anatomy::measurement::present, which refers to a measurement associated with an anatomical
body part;
For each report, you will also be asked to identify 3 types of relations between entities:
(1) suggestive_of, which is a relation between two Observation entities indicating that the presence
of the second Observation is inferred from the first Observation.
(2) located_at, which is a relation between an Observation entity and an Anatomy entity indicating
that the Observation is related to the Anatomy
(3) modify, which is a relation between two Observation entities or two Anatomy entities indicating
that the first entity modifies the scope of or quantifies the degree of the second entity.

2) Radiology report:
Report

3) Output format:
Please strictly follow this output format. Entities must be short substrings (often just 1 word) from
the radiology report with no changes to formatting. Each relation exists between a pair of identified
entities. Please list entities and relations in the order they appear in the radiology report.

[Entities]:
[[<entity>, <entity type>], [<entity>, <entity type>], ..., [<entity>, <entity
type>]]

[Relations]:
[[<entity 1>, <entity 2>, <relation type>], [<entity 1>, <entity 2>, <relation
type>], ..., [<entity 1>, <entity 2>, <relation type>]]

Figure 4: Here, we provide the input prompt used by GPT-4 in order to extract entities and relations from RadGraph-
XL. Definitions for entities and relations are adapted from (Jain et al., 2021). For few-shot prompting, we append
example reports and example outputs to the end of this prompt.
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