
Accelerating Transformer Pre-training with 2:4 Sparsity

Yuezhou Hu 1 Kang Zhao Weiyu Huang 1 Jianfei Chen 1 Jun Zhu 1

Abstract
Training large transformers is slow, but recent
innovations on GPU architecture give us an ad-
vantage. NVIDIA Ampere GPUs can execute
a fine-grained 2:4 sparse matrix multiplication
twice as fast as its dense equivalent. In the light of
this property, we comprehensively investigate the
feasibility of accelerating feed-forward networks
(FFNs) of transformers in pre-training. First, we
define a “flip rate” to monitor the stability of a
2:4 training process. Utilizing this metric, we
propose three techniques to preserve accuracy:
to modify the sparse-refined straight-through es-
timator by applying the masked decay term on
gradients, to determine a feasible decay factor
in warm-up stage, and to enhance the model’s
quality by a dense fine-tuning procedure near the
end of pre-training. Besides, we devise two tech-
niques to practically accelerate training: to calcu-
late transposable 2:4 masks by convolution, and to
accelerate gated activation functions by reducing
GPU L2 cache miss. Experiments show that our
2:4 sparse training algorithm achieves similar con-
vergence to dense training algorithms on several
transformer pre-training tasks, while actual ac-
celeration can be observed on different shapes of
transformer block apparently. Our toolkit is avail-
able at https://github.com/huyz2023/
2by4-pretrain.

1. Introduction
Pre-training large-scale transformers is hard, for its intensive
computation and time-consuming process (Anthony et al.,
2020). To accelerate training, sparsity-based methods have
recently emerged as a promising solution, and one of the
hardware-friendly sparse patterns is 2:4 sparsity. In a 2:4
sparse matrix, every four consecutive elements contain two

1Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center,
Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University.
Correspondence to: Jianfei Chen <jianfeic@tsinghua.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

zeros. Within a tensor core, a 2:4 sparse matrix multiplica-
tion (2:4-spMM) could be 2x faster than its dense equivalent
on NVIDIA Ampere architecture GPUs.

Some works use 2:4 sparsity for accelerating training
(Hubara et al., 2021; Lu et al., 2023; McDanel et al., 2022;
Chmiel et al., 2023). However, they mainly target on con-
volutional neural networks (CNNs) (Hubara et al., 2021;
McDanel et al., 2022), whose architecture, optimizer and
training procedure are different from transformers. Whether
these 2:4 sparse training methods are capable for transform-
ers remains under-explored. In practice, we find two bar-
riers: 1) Low accuracy. The hyperparameters in some
accuracy preserving techniques for transformers vary sig-
nificantly from that for CNNs, which is ineffective if trans-
planted directly. Remarkably, simply halving the inner di-
mensionality of a feed-forward network can also reduce
the same amount of computational cost, but provides bet-
ter performance than most of proposed 2:4 sparse training
methods. 2) Inefficiency. All previous works on 2:4 training
stay on simulation, and do not provide actual acceleration
results. Besides, they don’t focus on other key operations be-
yond matrix multiplication that affect the practical time cost,
such as overheads of pruning and activation functions. They
usually lead to substantial mismatches between simulation
and actual acceleration performance.

In this work, we aim to propose an end-to-end acceleration
method for pre-training transformers based on 2:4 sparsity.
Here are our major contributions:

• We propose three accuracy-preserving techniques (two
for masked decay and one for dense fine-tune) for 2:4
training. First, we propose to apply the masked decay on
gradients rather than on weight. Second, we show that
the feasible masked decay factor on transformers may
be very small (100x smaller than it has been reported
on CNNs) and devise a method to quickly determine an
available decay factor. Besides, our analysis demonstrates
that employing a dense fine-tuning stage at the end of pre-
training, rather than at the beginning, can enhance the
quality of transformers.

• We analyze practical factors affecting the 2:4 training
speed of transformers, which is rarely considered by pre-
vious works. We identify two speed bottlenecks: prun-
ing overhead and gated activation functions’ overhead.

1

https://github.com/huyz2023/2by4-pretrain
https://github.com/huyz2023/2by4-pretrain


Accelerating Transformer Pre-training with 2:4 Sparsity

We proposed kernel-level accelerated methods to address
each of these bottlenecks.

• To the best of our knowledge, this is the first report on
end-to-end acceleration on pre-training transformers (Fig-
ure 7, Table 11). Experiments show that transformers
pre-trained using our proposed sparse training scheme
are comparable or even superior in accuracy to those
trained with dense training methods (Table 5, 6).

2. Related Work
Existing sparsity-based methods can be classified into two
categories: accelerating inference and accelerating training.
For training acceleration, they can be further grouped by
whether 2:4 sparsity is involved.

Sparsity for Inference Acceleration Early methods in-
clude one-shot pruning (Han et al., 2015; 2016; Lee et al.,
2018; Mishra et al., 2021). Later methods (Evci et al., 2021;
Zhou et al., 2021; Lasby et al., 2023) suggest using dynamic
sparse training (DST). Particularly, Zhou et al. (2021) pro-
poses sparse-refined straight-through estimator (SR-STE)
for 2:4 inference. Iterative magnitude-based pruning (IMP)
methods (Chen et al., 2020; 2021; You et al., 2022), orig-
inated from the winning lottery ticket theory (Frankle &
Carbin, 2019; Frankle et al., 2020), can also be viewed as a
DST approach. All these methods only speedup the forward
pass. They are insufficient to accelerate training.

2:4 Semi-Structured Sparsity for Training Acceleration
Accelerating training by 2:4 sparsity is hard, because both
the forward and backward passes need to be accelerated.
On some GPUs involving sparse tensor cores, 2:4-spMMs
perform 2x faster than dense GEMMs (Mishra et al., 2021;
BUSATO & POOL). In light of this, (Hubara et al., 2021)
firstly proposes a transposable N:M mask to accelerate both
output activations and input gradients computation in back-
ward pass. Zhang et al. (2023) improve transposable mask
to bi-directional mask (Bi-Mask) to further boost mask di-
versity. To accelerate calculating weight gradient via 2:4-
spMM, an unbiased minimum-variance estimator (MVUE)
is introduced (Chmiel et al., 2023). In addition, Xu et al.
(2022) also achieve fully sparse training of CNNs using
spatial similarity. However, all these works do not report
end-to-end training speedups on 2:4 sparse tensor cores, and
they are built for CNNs. Practical 2:4 training acceleration
on transformers has not been reported so far.

Other Structured Sparsity for Training Acceleration
Structured sparsity means channel-wise pruning to dense
networks. For instance, training a large model and then
compressing it to be thinner or shallower seems effective
(Li et al., 2020; Zhou et al., 2020), given a fixed accuracy
requirement. However, it’s not memory-efficient due to the

larger model’s redundancy. In addition, low-rank adaption
proves to be an effective method to reduce fine-tuning costs
(Hu et al., 2023), but it can’t accelerate the pre-training.

3. Preliminary
In this section, we first present the mathematical formula-
tions of dense training and fully sparse training. Afterward,
we revisit the related methods which are helpful to achieve
fully sparse training with 2:4 sparsity, including SR-STE
(Zhou et al., 2021), transposable N: M mask (Hubara et al.,
2021), and MVUE (Chmiel et al., 2023).

3.1. Dense Training

Problem Formulation Dense training solves an opti-
mization problem minw L(w), where L is a loss function,
w ∈ RD is the collection of dense weights of all layers, flat-
tened to a vector. The loss is optimized by gradient descent
optimization algorithms such as SGD, Adam (Kingma &
Ba, 2017) and AdamW (Loshchilov & Hutter, 2019).

GEMMs of a Linear Layer in Dense Training In each
training step, a single linear layer performs three general
matrix multiplications (GEMMs):

Z = XW⊤, ∇X = ∇ZW, ∇W = ∇⊤
ZX, (1)

where X,W and Z are input activations, weights, and out-
put activations, with shape X,∇X ∈ Rp×q, W,∇W ∈
Rr×q, and Z,∇Z ∈ Rp×r. Here, the three GEMMs com-
putes output activations, input activation gradients, and
weight gradients, respectively. Without loss of generality,
we assume the input X to be a 2D matrix rather than a 3D
tensor. In the feed-forward networks of a transformer, this
can be done by simply flattening the input tensors’ first two
axes, i.e., axes of batch size and sequence length.

3.2. Fully Sparse Training with 2:4 Sparsity

GEMMs can be accelerated with structured sparsity. Partic-
ularly, 2:4 sparsity (Mishra et al., 2021) is a semi-structured
sparsity pattern supported on NVIDIA Ampere architec-
tures. A 2:4 sparse matrix partitions its elements into groups
of four numbers, where each group has exactly two zeros.
Depending on the direction of partition, there are row-wise
2:4 sparse matrix and column-wise 2:4 sparse matrix; see
Appendix A.1. With such sparsity, a GEMM C = AB can
be accelerated by 2x with the 2:4-spMM kernel if either A
is row-wise 2:4 sparse, or B is column-wise 2:4 sparse.

To accelerate training, each GEMM in Equation (1) should
have one 2:4 sparse operand. In general, weights and out-
put activation gradients are selected to be pruned due to
relatively lower pruning-induced loss (Chmiel et al., 2023).

2



Accelerating Transformer Pre-training with 2:4 Sparsity

That is,
Z = XSwt(W

⊤), (2)

∇X = ∇ZSw(W), (3)

∇W = Sz(∇⊤
Z )X. (4)

In Equations (2) to (4), Swt, Sw, and Sz represent the prun-
ing functions of W⊤,W, and ∇⊤

Z . They take dense matri-
ces as input, and outputs 2:4 sparse matrices. By intuition,
a pruning function picks out the 2 elements with the max
magnitudes in the adjoining 4 elements and zero out the rest.
With hardware support, computing Equations (2) to (4) can
be theoretically 2x faster than Equation (1). This method
use 2:4-spMMs for all matrix multiplications in forward and
backward propagation, so we call it fully sparse training
(FST). Note that Equation (4) contains a straight-through
estimator (STE), which we will explain later.

Transposable Masks Hubara et al. (2021) suggest that
a weight matrix and its transpose can be simply pruned by
multiplying binary masks, i.e.,

Swt(W
⊤) = W⊤ ⊙Mwt, Sw(W) = W ⊙Mw,

where Mwt,Mw ∈ {0, 1}p×q are 2:4 sparse, and ⊙ is
element-wise product. To utilize 2:4-spMM, the two binary
masks should be mutually transposable:

Mwt = M⊤
w , (5)

which they call as transposable masks (same as our defina-
tion in Section 5.1). In this manner, the backward pass share
the same sparse weight matrix with the forward pass. The
authors also propose a 2-approximation method for generat-
ing such masks with claimed low computational complexity.

Minimum-Variance Unbiased Estimator Chmiel et al.
(2023) propose to calculate the 2:4 sparse masks of neural
gradients by MVUE, i.e.,

Sz(∇⊤
Z ) = MVUE(∇⊤

Z ). (6)

Compared to the commonly used minimum square error esti-
mation, MVUE guarantees unbiasedness and minimizes the
variance of the sparsified gradients, which is more favorable
for promoting the convergence of training.

3.3. Optimization Strategies for Sparse Training

The optimization of a sparse network is difficult as it has non-
differentiable pruning functions. The optimization objective
can be formulated as minw L(w̃). The network makes
prediction with a sparse weight vector w̃ = m(w) ⊙ w,
where the mask m(w) ∈ {0, 1}D is the concatenation of
masks for each layer. If a layer is not sparsified, then the
corresponding mask is an all-one matrix. Computing the

gradient is tricky since the mask m is dynamically com-
puted based on the dense weight w: by chain rule we have
∇wL(w̃) = ∂w̃

∂w∇w̃L(w̃), where ∂w̃
∂w is a Jacobian matrix.

However, w̃ is not differentiable with w since it includes
a non-differentiable mask-computing-function m(·) in it.
Thus, it takes some skills to estimate the gradients and up-
date the parameters.

STE As w̃ is an approximation of w, a straight-through
estimator (STE, Bengio et al. (2013)) directly passes the
gradient of w̃ to w:

∇wL(w̃)← ∇w̃L(w̃). (7)

SR-STE There is a problem with STE: only a portion of
the weights in a layer participate in the forward calculation,
but all the weights receive gradients. This indicates that the
gradients associated with masked weights1 might be inac-
curate. To suppress those inaccurate gradients, Zhou et al.
(2021) proposes sparse-refined straight-through estimator
(SR-STE) which adds a decay term when updating:

wt ← wt−1 − γ(∇wLt(w̃t−1) + λW (m(wt−1))⊙wt−1),
(8)

where γ stands for the learning rate, λW is the decay fac-
tor, and m(wt−1) denotes the logical not operation of
m(wt−1). This decay term alleviates the change of weight
mask. With SR-STE, the optimization target becomes

min
w
L(w̃) + λW

2 ∥w ⊙m(w)∥22. (9)

4. Accuracy Preserving Techniques
While the methods reviewed in Section 3 can successfully
perform FST on small-scale models such as ResNet and
DenseNet, it is not clear whether they can be directly ap-
plied to pre-train large transformers. It is challenging for
FST to preserve the accuracy of dense training, since the
weights and masks need to be learned jointly, which is a non-
differentiable, combinatorial optimization problem. More-
over, unlike inference acceleration methods, FST has no
pre-trained dense model to start with. In this section, we pro-
pose three practical techniques to improve the convergence
of FST for transformers: transformer-specific masked decay,
Fast decay factor determination and dense fine-tuning.

4.1. Flip Rate: Stability of Training

Inspired by previous work (Zhou et al., 2021; You et al.,
2022), we define a “flip rate” to measure how frequently the
mask vector changes after one optimizer step. This metric
could be used to monitor whether the network connection is
stable during training.

3



Accelerating Transformer Pre-training with 2:4 Sparsity

Figure 1. Flip rates change throughout the training of different λW

on Transformer-base. Note that these models utilize an identical
learning rate schedule.

Table 1. Training results of different λW on Transformer-base. As
λW increases from 0 to 2e-4, accuracy first rises and then drops,
which means that λW should be neither too big nor too small to
reach the optimal results.

λW AVG EPOCH LOSS VAL LOSS TEST BLEU

DENSE 4.558 3.978 26.15
0 (STE) 4.76 4.164 24.98
6E-7 4.684 4.079 25.68
6E-6 4.626 4.033 25.81
2E-6 4.64 4.041 25.94
2E-5 4.642 4.049 25.74
2E-4 4.662 4.06 25.62

Definition 4.1. Suppose wt is a D-dimensional weight
vector at time t, and the flip rate rt is defined as the change
in proportion of the mask vector after an optimizer step:
rt = ∥m(wt) −m(wt−1)∥1/D ∈ [0, 1]. The larger rt is,
the more unstable the network connections become.

You et al. (2022) suggest that a sparse neural network acts
differently in different training phases. In the early phase
of training, it eagerly explores different connection modes,
which means the masks vector change rapidly over time.
Later, the masks gradually become stable, and the network
turns itself to fine-tune weight values. In terms of flip rate,
we hypothesize that

A healthy training process comes with the flip rate rt rising
at the beginning of training and then gradually fading to 0.

We measure flip rate change for dense training, STE and
SR-STE with different λW in Figure 1. For dense training,
we compute the flip rate by pruning the dense weight in
each iteration, despite the pruned weight is never used for
training. In terms of flip rate, dense training is healthy: its rt
exactly increases first before declines. If a training process

1Unlike some relevant literature, we use “masked weights” and
“pruned weights” to denote the weights that are set to 0.

consistently has higher flip rate than dense training, which
we call as “flip rate explosion”, it may suffer from a loss
in final accuracy due to unstable training; see Table 1. In
practice, STE suffers from a flip rate explosion, while SR-
STE takes effect by “freezing” masks of weights: by adding
a decay term, it decrease the number of flips. This inhibition
effect is related to the decay factor of SR-STE: the larger
λW is, the stronger the inhibition of flips is, and the smaller
flip rate goes.

In this section, all methods we propose involve our ultimate
principle: the peak of the curve should be sufficiently high to
fully explore different connection modes, and the tail should
be sufficiently low for the optimization process to converge.

4.2. Transformer-Specific Masked Decay

Based on our insights on flip rate, we propose a method
to suppress the frequent change of masks during FST for
transformers, which we call masked decay.

Unlike Equation (8) which imposes regularization directly
on weights, we propose to add masked decay on gradients,
i.e.,

gt ← ∇wLt(w̃t−1) + λW (m(wt−1)⊙wt−1). (10)

On SGD, applying decay on weights and on gradients
are equivalent, but on popular optimizers like Adam and
AdamW they aren’t. Specifically, Adam updates weights by

wt ← wt−1 −
γ(β1ut−1 + (1− β1)gt)

(1− βt
1)(
√
v̂t + ϵ)

(11)

where u and v are the first and second order momentum
of w. Compared to Equation (8), the masked decay regu-
larization term in Equation (10) would be later normalized
by
√
v̂t + ϵ in Equation (11), before it is subtracted from

weights. In this way, each dimension receives a different
intensity of decay (“masked decay”). More specifically,
weights with larger gradients get smaller decay intensity,
and vice versa.

In FST, we periodically prune weights by their magnitudes.
STE may cause the network to fall into such “dilemma
points”, where a portion of pruned weights and unpruned
weights have nearly the same L1 norm. Thus, the network
consistently oscillate between two possible masks m1 and
m2, and is unlikely to jump out the dilemma itself. To
illustrate this, we split each weight matrix by small 4 ×
4 blocks. We count each block’s cumulative flip number
and measure the ”L1 norm gap” by gi = ∥m1 ⊙wi∥1 −
∥m2 ⊙wi∥1, where wi is the i-th 4× 4 weights, m1 ⊙wi

and m2 ⊙ wi have the first and second largest L1-norm
among different pruning binary masks. The selected mask
is most likely to oscillate between m1 and m2, especially
when gi is small. In STE, there exists more 4 × 4 blocks

4



Accelerating Transformer Pre-training with 2:4 Sparsity

Figure 2. Scatter plots of cumulative flip number and L1 norm gap
gi on every 4× 4 block. All results are selected on Transformer-
base, with epoch=20. (a) shows the result of dense model. (b)-(d)
shows that of masked decaying on gradients, no decaying, and
masked decaying on weights. Also, we do it on purpose to choose
an extremely large λW for SR-STE.

Figure 3. Applying masked decay on weights takes no effect to
inhibit flip rate on BERT-base (compared to applying directly on
gradient).

Table 2. Optimal λW for multiple models.

MODEL OPTIMAL λW

RESNET18 (ZHOU ET AL., 2021) 2E-4
BERT-BASE 6E-6
TRANSFORMER-BASE 1E-6
DEIT-TINY 2E-3

GPT-2

124M 6E-5
350M 2E-4
774M 2E-4
1558M 6E-5

with high flip num and low ”L1 norm gap”; see Figure 2.
This results in overall flip rate explosion of STE.

On these occasions, we argue that an evenly masked de-
cay applied on weights is insufficient to save the training
from such “traps”. The weights don’t differentiate them-
selves after an update, so masks may oscillate back. By
normalizing the weight gradients with

√
v̂t + ϵ, our masked

decay amplifies the regularization strength for the dimen-
sion with smaller gradient, pushing it towards zero. Then,
the regularized dimension can no longer compete with other
dimensions. So we effectively break the tie and push the
training process out of the trap, towards a “healthier” state.

The comparison results between our masked decay defined
in Equation (10) and the conventional counterpart in Equa-
tion (8) are shown in Figure 3. Results show that applying
masked decay on weights takes no effect to inhibit flip rate
explosion of STE, while applying on gradients works fine.

4.3. Fast Decay Factor Determination

The determination of the decay factor λW in Equation (10)
is non-trivial: if λW is excessively large, then the “peak” of
the flip rate curve is not high enough; if λW is too small, the
“tail” of the curve is not low enough. Both do not provide a
healthy training process. Besides, we find that λW values
for CNNs and other small-scale networks differ significantly
from those for transformers, while on transformers, optimal
λW can span up to three orders of magnitude (Table 2).

As pre-training large transformers is costly, grid searching
for λW with the final accuracy is impractical, so it is vital to
determine a feasible λW as quickly as possible. To quickly
determine λW , here we propose a test-based method:

1) Grid search on the warm-up stage of training. For
each λW value in a candidate set, sample a corresponding
flip rate of the sparse network from a small number of
training steps. Note that sampling in early training stage
is enough to obtain a representative flip rate specific to a
sparse network.

2) Comparison with the dense counterparts. Suppose
rt0 to be the standard flip rate on the dense network at
time t0 and r

′

t0 to be the sparse network’s flip rate. Their
ratio is µ = r

′
t0/rt0 . We suggest that a feasible λW should

have µ ∈ [0.60, 0.95] and the sparse network may suffer
from an accuracy drop if µ ≥ 1.

4.4. Dense Fine-Tuning

To better improve accuracy, we suggest using a “dense fine-
tuning” procedure at the end of training. Formally, we select
a switch point ts. FST is performed while t ≤ ts, and dense
training is switched to if t > ts.

Why Choose Dense Fine-Tuning Instead of Dense Pre-
training? While previous work (Han et al., 2017) suggest
to switch between sparse and dense training stages, some
recent works like STEP (Lu et al., 2023) utilize dense pre-
training rather than dense fine-tuning, which means a dense
network is initially trained for a period of time before being
switched to a sparse one. However, we argue that dense pre-
training is meaningless in our FST process. As described in

5



Accelerating Transformer Pre-training with 2:4 Sparsity

Figure 4. Dense fine-tuning versus dense pre-training on BERT-
base

Section 4.1, the peak of the flip rate curve should be suffi-
ciently high to explore connection modes, so what matters
most to the flip rate is the magnitudes of weights, which
are the key to determine if connections are built or demol-
ished. In this regard, both FST and dense pre-training are
capable of delivering proper gradient magnitudes, so dense
pre-training is a waste. The precise gradients are generally
more necessary in the later stages of training, where the flip
rate of the dense network comes to its tail. Figure 4 visual-
izes the loss curve of pre-training BERT-base, where dense
pre-train obtains nearly the same result as the naive SR-STE
method. From this, we propose the following insight:

If dense pre-training of tα steps provides slight improve-
ment of accuracy, then moving the tα dense steps to the end
gives far more improvement than dense pre-training.

As for the specific position of the switch point in training,
STEP (Lu et al., 2023) suggests that the dense pre-training
occupy 10% to 50% of the total steps. Likewise, we deter-
mine that our dense fine-tuning takes up the last 1/6 of total
steps for balance training efficiency and accuracy.

5. Training Acceleration Techniques
For transformers, the forward pass of FST involves prun-
ing weights in FFNs with transposable 2:4 masks and then
performing normal forward propagation. During backward
propagation in FST, the gradients of input activations and
weight gradients in FFNs are derived by Equation (3) and
(4), respectively. Note that we also utilize MVUE to prune
gradients of output activations, i.e., Equation (6). Compared
to dense training, our FST replaces all the GEMMs in FFNs
with 2:4-spMMs that theoretically perform 2x faster than
their dense counterparts on GPUs within sparse tensor cores.

In addition to speeding up the most time-consuming
GEMMs in FFNs, there are three major operations that
also have non-negligible impacts on training speed:

1) Pruning. In FST, pruning includes two steps: finding a

mask that satisfies the 2:4 sparse patterns and then enforc-
ing the mask to the corresponding dense matrices. In our
case, we find that the time cost of finding transposable
masks is time-consuming.

2) Activation functions. In transformers, SwiGLU and
GEGLU (Shazeer, 2020) are popular. These two acti-
vation functions involve a gate mechanism to regulate
activations. This mechanism easily induces the GPU L2
cache misses, thus decreasing the computing speed.

3) Updating optimizer states. The excessive update fre-
quency can introduce additional time overheads.

Below, we show our methods to accelerate these operations,
the main workflow of which is shown in Appendix B.

5.1. Fast Computation of Transposable Masks

Problem Formulation We aim to find such a mask matrix
M ∈ {0, 1}r×q for every W ∈ Rr×q in the FFN layer that
1) each adjoining 4× 4 block contains 8 non-zero positions;
each row and column in the block occupies 2 non-zero
elements exactly; 2) maxM ∥M ⊙W∥1. Then M would
be our targeting transposable mask.

As described in Equation (5), both a transposable mask itself
and its transposition conform to the format of 2:4 sparsity.
Previous 2-approximation algorithm (Hubara et al., 2021)
consists of two steps: sort elements, and pick elements
out of the array. They claim that the procedure has less
computational complexity. However, in practice, the sorting
and picking process contains too many jumps in its control
flow, and may be fatal to modern GPU architecture. To
make full use of the GPUs’ parallel computation capability
(SIMD and SIMT), we convert the transposable mask-search
process into a convolution operation which traverse all the
masks to obtain the optimal one in three steps:

1) Create a convolutional kernel in the shape of 4× 4× nt,
where nt denotes the number of transposable masks. In
the case of 2:4 sparsity, mask diversity nt = 90. These
mask blocks for 2:4 sparsity can be selected by exhaus-
tively inspecting all potential masks offline.

2) Calculate the index matrix via Algorithm 1. The index
matrix denotes which 4 × 4 mask in the convolutional
kernel is the optimal mask that retains most of the weight
norms after being applied to weights.

Algorithm 1 transposable mask search

Input: mask pattern m′, weight matrix W
1. W = abs(W)
2. out = conv2d(W,m′, stride = 4, padding = 0)
3. index = argmax(out, dim = 2)
return index

3) Replace all the elements in the index matrix by the cor-
responding 4× 4 block, which is the desired mask.

6



Accelerating Transformer Pre-training with 2:4 Sparsity

Figure 5. Transposable mask search

Figure 6. left: adapted method; right: intuitive method

Table 3. Throughput of two transposable search kernels on
RTX3090 (TB/s).

INPUT
METHOD 2-APPROX OURS

FP16 FP32 FP16 FP32

3072× 768 18.5 36.4 69.2 104.7
4096× 1024 22.5 38.4 91.9 131.5
5120× 1280 22.6 44.4 91 128.2
1024× 1600 22.8 44.8 95 134.5
8192× 2048 23 45.1 99.4 142.9
16384× 4096 23.2 45.4 100.1 144.8
30768× 8192 23.2 45.5 100.9 145.1

Table 4. Throughput of two GEGLU implementations on
RTX3090 with fp16 column-major input tensors (TB/s).

INPUT
METHOD INTUITIVE OURS

32× 512× 768 18.4 55.5
32× 512× 1024 19.9 55.7
32× 512× 1280 18.2 55.9
32× 512× 1600 18.4 55.9
32× 512× 2048 19.5 56
32× 512× 4096 11.8 56.1
32× 512× 8192 12.1 56.2

Notably, step (1) is executed offline. Step (2) and (3) are fre-
quently performed during FST. The workflow of our method
is shown in Figure 5. Compared to the 2-approximation al-
gorithm, our method is up to about 5 times faster (Table 3).

5.2. Acceleration of Gated Activation Functions

Activation functions with gated mechanisms are widely
used in transformers such as GLM (Du et al., 2022) and
LLaMA (Touvron et al., 2023). Typical gated activation
functions involve SwiGLU and GEGLU. The bottleneck of
such activation functions is that the gate operations easily
incur GPU L2 cache miss. Take GEGLU as an example:
GEGLU(X,U,V,b, c) = GELU(XU⊤+b)⊙(XV⊤+
c), where X ∈ Rp×q,U,V ∈ Rr×q,b, c ∈ Rr. In prac-
tice, this function is composed of three steps:

1) Concatenate U and V into a new weight matrix W ∈
R2r×q , and b, c into a new bias vector d ∈ R2r.

2) Directly calculate Z = XW⊤ + d ∈ Rp×2r as a com-
pressed matrix.

3) Split the Z in the second dimension into Z1,Z2 ∈ Rp×r.
Calculate GELU(Z1)⊙ Z2.

Different from dense model, where output activations are
row-major matrices, in FST, the output activations are
column-major; see Appendix A.2. This property results
in the third step being extremely time-consuming if conven-
tionally Z is accessed along the row dimension. To illustrate,
Figure 6 shows that in a column-major matrix Z, accessing
along the column accords with array layout. Thus, adjacent
elements loaded into the GPU cache can be probably hit. By
contrast, accessing along the row does not fully utilize the
efficiency of GPU cache. In light of this, we carefully imple-
ment a GEGLU kernel where elements are accessed along
the column dimension. In this way, GEGLU is performed 5
times faster than the naive counterpart; see Table 4.

5.3. Other Implementation Details

Reducing Updating Frequency We find that a 2:4 mask
doesn’t change a lot after one optimization step, and it is
not necessary to update a mask frequently. For the sake
of efficiency, we update the transposable masks of weights
every l optimizer steps. We usually take l = 40 in practice.

Utilities For 2:4-spMMs, we use CUTLASS (Thakkar
et al., 2023). Other GPU kernels are implemented in Triton,
including transposable mask search kernel, pruning kernel,
MVUE kernel, GEGLU kernel, and masked decay kernel.

6. Experiments
In this section, we validate the proposed training speedup
methods on several transformers, including BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), Transformer-

2Results reported in the original paper; see https:
//github.com/facebookresearch/deit/blob/
main/README_deit.md.

3DeiT-base dense model using the original recipe.

7

https://github.com/facebookresearch/deit/blob/main/README_deit.md
https://github.com/facebookresearch/deit/blob/main/README_deit.md
https://github.com/facebookresearch/deit/blob/main/README_deit.md


Accelerating Transformer Pre-training with 2:4 Sparsity

Table 5. GLUE scores of different 2:4 training methods with BERT.

METHOD LOSS AVG SCORE COLA MNLI MNLIEXTRA MRPC QNLI QQP RTE SST-2 STS-B

DENSE 2.0669 79.8± 0.4 45.3± 1.1 82.6± 0.2 83.4± 0.1 78.8± 1.7/86.1± 1 89.3± 0.2 90.3± 0.1/87.1± 0 55.8± 0.9 91± 0.5 83.7± 1/83.7± 1
HALF 2.1280 77.9± 0.4 37.2± 1.3 82.4± 0.1 83± 0.3 75.1± 1.4/84.2± 0.7 88.8± 0.3 89.9± 0.1/86.6± 0.1 51.2± 2.4 92.1± 0.5 82.1± 0.5/82.3± 0.4
STEP 2.1179 77.7± 0.1 40.4± 1.4 82.2± 0.1 82.8± 0.1 74.5± 0.7/83.5± 0.4 88.3± 0.4 90.2± 0.1/87± 0.1 50.8± 2.1 92.3± 0.3 79.7± 1.2/80.7± 0.6
BI-MASK 2.1176 77.7± 0.3 38.3± 0.7 82.3± 0.1 83± 0.1 74.3± 0.7/83± 0.6 88.3± 0.3 90.2± 0.1/86.9± 0.1 53.1± 1.4 90.9± 0.3 80.9± 0.7/81.7± 0.4
OURS 2.0968 79.6± 0.6 44.4± 1.9 82.6± 0.2 83± 0.1 80.9± 0.7/87.4± 0.4 88.4± 0.3 90.3± 0.1/87± 0.1 54.3± 1 91.2± 0.4 82.9± 2.1/83± 1.7

Table 6. GLUE scores with different model sizes on GPT-2 models.

PARAMS METHOD VAL LOSS AVG SCORE COLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

124M DENSE 2.907 73.9± 1.1 44.6± 0.9 82± 0.1 78.3± 1.3/84.8± 1 88.4± 0.2 90± 0 86.5± 0/61.3± 1.5 91.9± 0.2 77.3± 3.2/77.9± 2.9 24.3± 7.1
OURS 2.952 74.3± 0.5 44.8± 1.3 81.5± 0.2 77.5± 1.8/84.2± 1.3 87.8± 0.1 89.5± 0.1 85.9± 0.1/66± 1 90.6± 0.4 80± 0.8/80.3± 0.5 23.9± 6.4

350M DENSE 2.618 76.3± 0.1 54.3± 0.4 85.1± 0.1 80.7± 1/86.6± 0.7 90.7± 0.1 91± 0.1 87.8± 0.1/64.9± 1.7 93.5± 0.4 81.7± 1.2/82.2± 0.8 17.6± 3.2
OURS 2.688 77.1± 0.2 51.8± 1.8 84.3± 0.1 80.6± 1.3/86.5± 0.8 90.4± 0.2 90.7± 0.1 87.5± 0.1/66.7± 1.3 93.3± 0.4 83.4± 1.1/83.5± 1.1 26.4± 4

774M DENSE 2.493 76.2± 0.4 57.5± 2 86.1± 0.1 80.3± 1.3/86.4± 0.9 91.4± 0.2 91.1± 0.1 88± 0.1/67.7± 2.6 94.6± 0.4 77.3± 3.3/78.4± 2.9 15.1± 2.3
OURS 2.564 77.1± 0.4 55.9± 0.9 85.6± 0.2 81.2± 0.6/87± 0.4 91.4± 0.1 91± 0.1 87.8± 0.1/71.5± 0.7 94.2± 0.4 81.8± 1.3/82.3± 1.2 15.8± 1.2

1558M DENSE 2.399 76.5± 0.5 55.3± 2 87± 0.1 79± 1/85.3± 0.8 91.8± 0.3 91.3± 0.1 88.3± 0.1/73.3± 2 95.9± 0.3 78.5± 2.4/79.2± 2.5 13± 1.3
OURS 2.489 77.1± 0.5 56.4± 3 86.6± 0.1 80± 0.4/86.1± 0.3 91.9± 0.1 91.4± 0.1 88.4± 0.1/75± 1.8 95.2± 0.4 80.6± 1.1/81.1± 1.3 12.7± 1.1

Table 7. SQuAD scores on GPT-2 models.

PARAMS METHOD EM F1

124M DENSE 67.6 78.8
OURS 67.5 78.5

350M DENSE 73.2 83.6
OURS 71.9 82.4

774M DENSE 74.3 84.9
OURS 74.3 84.6

Table 8. Experimental results for DeiT.

SIZE METHOD ACC@1 ACC@5

DEIT-TINY
ORIGINAL2 72.2 91.1
DENSE3 72.9 91.6
OURS 70.4 90.1

DEIT-SMALL

ORIGINAL 79.9 90.5
DENSE 79.9 94.5
BI-MASK 77.6 -
OURS 79.2 94.8

DEIT-BASE
ORIGINAL 81.8 95.6
DENSE 81.0 95.0
OURS 81.3 95.4

Table 9. Experimental results for Transformer-base.

METHOD
AVG EPOCH

LOSS
TEST

BLEU
VAL

BLEU VAL LOSS

DENSE 4.558 26.15 26.56 3.982
HALF 4.659 26.12 26.36 4.041
STEP 4.692 25.27 25.85 4.082
OURS 4.649 26.48 26.78 3.977

base for machine translation (Vaswani et al., 2023), and
DeiT (Touvron et al., 2021b). For BERT, we use Cramming
(Geiping & Goldstein, 2022) to pre-train a 16-layer BERT
model with the sequence length of 512 on the C4 dataset

(Raffel et al., 2019). For GPT-2, we use nanoGPT (Karpathy,
2023) to pre-train GPT-2 124M, 355M, 774M, and 1.5B on
OpenWebText (Gokaslan & Cohen, 2019). Both BERT and
GPT-2 models are estimated on GLUE (Wang et al., 2018).
For DeiT (Touvron et al., 2021a), we pre-train DeiT-tiny on
ImageNet-1K dataset (Deng et al., 2009). Besides, we use
fairseq (Ott et al., 2019) to train Transformer-base on the
WMT 14 En-De dataset (Bojar et al., 2014) and measure the
BLEU (Papineni et al., 2002) score of the trained model.

Of note, we use n to denote the length of sequences, d
to denote the input and output dimensions of each trans-
former block, dff to denote the inner dimensions of the
FFNs in each transformer block, h to denote the number
of heads, and N to denote the micro-batch size on each
device. The pre-training and evaluation scripts are pub-
licly available at https://github.com/thu-ml/
2by4-pretrain-acc-examples.

6.1. Accuracy Results

To investigate the effect of different 2:4 sparse training meth-
ods, we pre-train a sparse BERT-base model on the C4
dataset using two sparse training methods: STEP (Lu et al.,
2023) and Bi-Mask (Zhang et al., 2023). Besides, we also
pre-train a dense BERT-base and a ‘Half’ BERT-base for
comparison. Of note, ‘Half’ denotes a smaller yet still dense
BERT-base model. To create Half model, we simply reduce
the dff of each FFN layer in the original BERT-base by half
while maintaining the original value of d. Theoretically, this
adjustment halves the floating operations (FLOPs) of the
original FFN layer as well. Except for the FFN layers, the
shapes of the rest layers remain unaltered.

All the pre-trained models are measured on GLUE bench-
mark (WNLI excluded). Surprisingly, Table 5 shows that
despite having identical FLOPs, the 2:4-sparse BERT-base
trained with STEP and Bi-Mask shows inferior average
scores compared to the Half model. The Half model attains

8

https://github.com/thu-ml/2by4-pretrain-acc-examples
https://github.com/thu-ml/2by4-pretrain-acc-examples


Accelerating Transformer Pre-training with 2:4 Sparsity

Table 10. Experimental results of masked decay, MVUE, and
dense fine-tuning (FT) with BERT-Base. For decay term, we
use both techniques in Sections 4.2 and 4.3.

MASKED
DECAY

MVUE DENSE FT LOSS AVG SCORE

% % % 2.1553 77.6± 0.2

! % % 2.1096 79.2± 0.2

! ! % 2.1172 78.4± 0.3

! % ! 2.0896 79.4± 0.2

! ! ! 2.0968 79.6± 0.6

Table 11. Actual pre-train speed up on the whole network.

PARAMETERS BATCH SIZE SPEEDUP

124M 16 1.18
350M 8 1.2
774M 4 1.21

Figure 7. Result of acceleration ratio S of different batch sizes
and embedding Sizes. (a) shows the acceleration of a FFN layer.
(b)-(d) shows the acceleration of a transformer block when n =
2048, 1024, 512.

an average score of 77.9 on GLUE tests, while STEP and
Bi-Mask only reach 77.7 due to the weaknesses in MRPC,
QNLI, and STSB. By comparison, BERT-base trained in our
proposed training method achieves 79.6 on GLUE, which
significantly outperforms other sparse training methods and
is comparable with the dense baseline, i.e., 79.8.

Besides, we pre-train GPT-2 models with proposed meth-
ods. Table 6 and 7 shows that our method for model
sizes of 124M, 350M, 775M and 1558M achieves lossless
scores compared with dense baselines. Similarly, DeiT and

Transformer-base trained with our method also reach com-
parable results to dense training; see Table 8 and 9. For
GPT-2 and BERT, the training loss curves are sketched in
Appendix C.

Ablation Study We aim to investigate the effect of
masked decay, MVUE and dense fine-tuning introduced
in Section 4.2, 3.2, and 4.4. The 16-layer BERT-base is used
for ablation study. Results in Table 10 show that: 1) The
dense fine-tuning procedure helps to improve accuracy on
GLUE by 2 points at most ; 2) MVUE leads to insignifi-
cant, controllable accuracy loss; 3) By combining all these
techniques together, 2:4 sparse training for transformers
achieves comparable accuracy results as dense training.

6.2. Speedup Results

The training acceleration techniques proposed in Section 5
are evaluated using GPT-2 models and RTX3090 GPUs.
FP16 mixed precision training is used on all models. The
practical speedups of a single FFN layer, a single trans-
former block, and the entire network, compared to their re-
spective dense counterparts, are reported. All the measured
datum contain both forward and backward propagation.

Feed-forward Network Layers For a single FFN layer,
we fix n = 2048 and change d. Results in Figure 7 show
that a FFN layer can be accelerated up to 1.7x faster than its
corresponding dense layer.

Transformer Block We measure the acceleration ratio of
a transformer block when n = 512, 1024, 2048. Results in
Figure 7 show that in most cases, a transformer block can
be accelerated to 1.3x faster via 2:4 sparsity. To illustrate
this, a detailed profile result is given in Appendix D.

End-to-end Acceleration Finally, we test the practical
speedups of training GPT-2 models. Results in Table 11
show that our training method conducts up to 1.2x faster
than the dense training on a single RTX3090.

7. Conclusions
In this study, we are the first to propose accelerating the
pre-training of transformers by 2:4 sparsity. We analyze the
limitations of previous 2:4 training methods, including the
impropriety in choosing positions and determining values
of the masked decay factor, speed bottleneck incurred by
computing transposable masks and gated activation func-
tions. We propose a series of techniques to tackle them. Our
training method is validated on DeiT, BERT, Transformer-
base and GPT-2 models. In particular, we have attained 1.2x
end-to-end training acceleration for the GPT-2 774M model
without losing its accuracy.

9



Accelerating Transformer Pre-training with 2:4 Sparsity

Acknowledgements
We would like to thank Ziteng Wang, Bingrui Li and
Haocheng Xi for valuable discussions and help on the
training large transformers. This work was supported
by the National Key Research and Development Pro-
gram of China (No. 2021ZD0110502), NSFC Projects
(Nos. 62376131, 62061136001, 62106123, 62076147,
U19A2081, 61972224), Tsinghua Institute for Guo Qiang,
and the High Performance Computing Center, Tsinghua
University. J.Z is also supported by the XPlorer Prize.

Impact Statement
Our proposed efficient algorithm can be used to accelerate
pre-training large-scale transformers like GLM (Du et al.,
2022), LLaMA (Touvron et al., 2023), etc. Recently, large
transformers have exhibited remarkable efficacy in various
fields such as natural language processing, computer vision,
and speech recognition. However, the pre-training stage of
large transformers is computationally intensive and time-
consuming. For instance, pre-training a GPT-4 can span
several months, even using a supercomputer equipped with
thousands of GPUs. Thus, acceleration approaches are nec-
essary. Our fully sparse training approach of transformers
can potentially accelerate the FFN layers of a model by the-
oretical 2x faster, without loss of accuracy. Thus, it can be
potentially used to save energy and reduce carbon footprint.
But this work can also be used to accelerate baleful software,
like software that generates malicious contents, which may
have a negative impact on human society.

References
Anthony, L. F. W., Kanding, B., and Selvan, R. Carbon-

tracker: Tracking and predicting the carbon footprint of
training deep learning models, 2020.

Bengio, Y., Léonard, N., and Courville, A. Estimating
or propagating gradients through stochastic neurons for
conditional computation, 2013.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn,
P., Leveling, J., Monz, C., Pecina, P., Post, M., Saint-
Amand, H., Soricut, R., Specia, L., and Tamchyna, A.
Findings of the 2014 workshop on statistical machine
translation. In WMT@ACL, 2014. URL https://api.
semanticscholar.org/CorpusID:15535376.

BUSATO, F. and POOL, J. Exploiting nvidia ampere struc-
tured sparsity with cusparselt [online]. 2020 [visited on
2021-10-10].

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang,
Z., and Carbin, M. The lottery ticket hypothesis for pre-
trained bert networks, 2020.

Chen, X., Cheng, Y., Wang, S., Gan, Z., Wang, Z., and Liu,
J. Earlybert: Efficient bert training via early-bird lottery
tickets, 2021.

Chmiel, B., Hubara, I., Banner, R., and Soudry, D. Min-
imum variance unbiased n:m sparsity for the neural
gradients. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=vuD2xEtxZcj.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., and
Tang, J. Glm: General language model pretraining with
autoregressive blank infilling, 2022.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E.
Rigging the lottery: Making all tickets winners, 2021.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks, 2019.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Stabilizing the lottery ticket hypothesis, 2020.

Geiping, J. and Goldstein, T. Cramming: Training a lan-
guage model on a single gpu in one day, 2022.

Gokaslan, A. and Cohen, V. Openwebtext cor-
pus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks,
2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding, 2016.

Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S.,
Elsen, E., Vajda, P., Paluri, M., Tran, J., Catanzaro, B.,
and Dally, W. J. Dsd: Dense-sparse-dense training for
deep neural networks, 2017.

Hu, Z., Lan, Y., Wang, L., Xu, W., Lim, E.-P., Lee, R. K.-W.,
Bing, L., and Poria, S. Llm-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933, 2023.

10

https://api.semanticscholar.org/CorpusID:15535376
https://api.semanticscholar.org/CorpusID:15535376
https://openreview.net/forum?id=vuD2xEtxZcj
https://openreview.net/forum?id=vuD2xEtxZcj
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


Accelerating Transformer Pre-training with 2:4 Sparsity

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, S.,
and Soudry, D. Accelerated sparse neural training: A
provable and efficient method to find n:m transposable
masks, 2021.

Karpathy, A. nanogpt. https://github.com/
karpathy/nanoGPT/, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Lasby, M., Golubeva, A., Evci, U., Nica, M., and Ioannou,
Y. Dynamic sparse training with structured sparsity, 2023.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D.,
and Gonzalez, J. Train big, then compress: Rethinking
model size for efficient training and inference of trans-
formers. In International Conference on machine learn-
ing, pp. 5958–5968. PMLR, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019.

Lu, Y., Agrawal, S., Subramanian, S., Rybakov, O., Sa,
C. D., and Yazdanbakhsh, A. Step: Learning n:m struc-
tured sparsity masks from scratch with precondition,
2023.

McDanel, B., Dinh, H., and Magallanes, J. Accelerating
dnn training with structured data gradient pruning, 2022.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic, D.,
Venkatesh, G., Yu, C., and Micikevicius, P. Accelerating
sparse deep neural networks, 2021.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of NAACL-
HLT 2019: Demonstrations, 2019.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. J. Bleu: a
method for automatic evaluation of machine translation.
10 2002. doi: 10.3115/1073083.1073135.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are unsu-
pervised multitask learners. 2019. URL https:
//api.semanticscholar.org/CorpusID:
160025533.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Shazeer, N. Glu variants improve transformer, 2020.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H.,
Yan, E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A.,
Nicely, M., Merrill, D., Blasig, D., Qiao, F., Majcher, P.,
Springer, P., Hohnerbach, M., Wang, J., and Gupta, M.
CUTLASS, January 2023. URL https://github.
com/NVIDIA/cutlass.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jegou, H. Training data-efficient image trans-
formers & amp; distillation through attention. In Interna-
tional Conference on Machine Learning, volume 139, pp.
10347–10357, July 2021a.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image trans-
formers & distillation through attention, 2021b.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. In
BlackboxNLP@EMNLP, 2018. URL https://api.
semanticscholar.org/CorpusID:5034059.

Xu, W., He, X., Cheng, K., Wang, P., and Cheng, J. Towards
fully sparse training: Information restoration with spatial
similarity. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 2929–2937, 2022.

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., Baraniuk,
R. G., Wang, Z., and Lin, Y. Drawing early-bird tickets:
Towards more efficient training of deep networks, 2022.

Zhang, Y., Luo, Y., Lin, M., Zhong, Y., Xie, J., Chao, F.,
and Ji, R. Bi-directional masks for efficient n:m sparse
training, 2023.

Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K.,
Sun, W., and Li, H. Learning n:m fine-grained structured
sparse neural networks from scratch, 2021.

Zhou, D., Ye, M., Chen, C., Meng, T., Tan, M., Song, X.,
Le, Q., Liu, Q., and Schuurmans, D. Go wide, then
narrow: Efficient training of deep thin networks. In In-
ternational Conference on Machine Learning, pp. 11546–
11555. PMLR, 2020.

11

https://github.com/karpathy/nanoGPT/
https://github.com/karpathy/nanoGPT/
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://api.semanticscholar.org/CorpusID:5034059
https://api.semanticscholar.org/CorpusID:5034059


Accelerating Transformer Pre-training with 2:4 Sparsity

A. 2:4-spMM
A.1. 2:4 Sparsity

Examples of row-wise, column-wise and transposable 2:4 sparse matrix are shown in Figure 8. Note that transposable 2:4
sparsity aligns with both row-wise and column-wise 2:4 sparsity.

Figure 8. Row-wise 2:4, column-wise and transposable 2:4 sparse matrix.

A.2. Array Layout

The array layout of different types of matrix multiplications are listed in Table 12, which explains why output activations
and activation gradients are column-major matrices in FST.

Table 12. Array layout of MN. Here S denotes that the matrix is in row-wise 2:4 sparsity, R denotes row-major dense matrix, and C
denotes column-major dense matrix.

M
N

S S⊤ R C

S % % R R

S⊤ % % % %

R % C R R

C % C R R

B. Workflow
The main workflow of a single linear layer in FST process is depicted in Figure 9.

Figure 9. 2:4 sparse training iteration for a layer on a single batch.

12



Accelerating Transformer Pre-training with 2:4 Sparsity

C. Training Loss Curve
For BERT-base and GPT-2, we depict training loss curve in Figure 10.

Figure 10. Left: train loss of GPT-2; right: train loss of BERT.

D. Profiling result
To explain how we reach 1.3x block speedup, we profile our code and break down the time costs as shown in the table
below; see Table 13.

Table 13. Time costs of each part of our network and the dense model in one iteration per layer. m denotes the accumulation steps over
micro batches. Our method is evaluated on GPT-2, with batch size 16, sequence length 1024, embedding dimension 1024 and heads
number 16.

DENSE (MS/EXEC) SPARSE (MS/EXEC) ACCELERATION
RATIO S

FREQUENCY
(EXEC/ITER)

FFN

LINEAR

FWD GEMM 12173.8 7305.78 1.666324472 -

BWD
GEMM 23295 14080.82 1.654378083 -

MVUE+PRUNE 0 171.4 - -
TOTAL 23295 14252.22 1.634482207 -

TOTAL 35468.8 21558 1.645273216 -

OTHERS4
FWD 167 118.17 - -
BWD 65.5 20.03 - -
TOTAL 232.5 138.2 - -

TOTAL
FWD 12340.8 7423.95 1.662295678 -
BWD 23360.5 14272.25 1.636777663 -
TOTAL 35701.3 21696.2 1.645509352 -

OTHERS
FWD 6874.3 7090.55 - -
BWD 13920.7 14117.45 - -
TOTAL 20795 21208 - -

TOTAL
FWD 19215.1 14514.5 1.323855455 -
BWD 37281.2 28389.7 1.313194574 -

TOTAL 56496.3 42904.2 1.316801152 -
MASKED

DECAY
0 45.2 - 1

m

PRUNE
WEIGHTS

0 320.3 - 1
m

TRANSPOSABLE
MASK SEARCH

0 634.8 - 1
40m

4All functions in FFN except linear layers, i.e., activation function and dropout.

13


