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Decentralized Collaborative Learning with Adaptive Reference
Data for On-Device POI Recommendation

ABSTRACT
In Location-based Social Networks (LBSNs), Point-of-Interest (POI)

recommendation helps users discover interesting places. There is

a trend to move from the conventional cloud-based model to on-

device recommendations for privacy protection and reduced server

reliance. Due to the scarcity of local user-item interactions on in-

dividual devices, solely relying on local instances is not adequate.

Collaborative Learning (CL) emerges to promote model sharing

among users. Central to this CL paradigm is reference data, which

is an intermediary that allows users to exchange their soft decisions

without directly sharing their private data or parameters, ensuring

privacy and benefiting from collaboration.While recent efforts have

developed CL-based POI frameworks for robust and privacy-centric

recommendations, they typically use a single and unified reference

for all users. Reference data that proves valuable for one user might

be harmful to another, given the wide range of user preferences.

Some users may not offer meaningful soft decisions on items out-

side their interest scope. Consequently, using the same reference

data for all collaborations can impede knowledge exchange and

lead to sub-optimal performance. To address this gap, we introduce

the Decentralized Collaborative Learning with Adaptive Reference

Data (DARD) framework, which crafts adaptive reference data for

effective user collaboration. It first generates a desensitized public

reference data pool with transformation and probability data gen-

eration methods. For each user, the selection of adaptive reference

data is executed in parallel by training loss tracking and influence

function. Local models are trained with individual private data

and collaboratively with the geographical and semantic neighbors.

During the collaboration between two users, they exchange soft

decisions based on a combined set of their adaptive reference data.

Our evaluations across two real-world datasets highlight DARD’s

superiority in recommendation performance and addressing the

scarcity of available reference data.

1 INTRODUCTION
In recent years, location-based social networks (LBSNs) like Yelp,

and Foursquare [6] have become more significant in e-commerce

[21, 27]. Within LBSNs, users share their physical locations and

experiences with check-in data. Utilizing this check-in data with

Point-of-Interest (POI) recommendations is essential to aid users in

discovering new POIs, and enhance location-based services, such

as mobile advertisements [20]. It is common practice to rely on

a powerful cloud server, which not only hosts all user data but

also manages the training and inference of the recommendation

model [22]. However, this approach raises user privacy concerns

since personal check-in histories are frequently shared with ser-

vice providers. Such centralized recommendations are at risk of

violating new privacy regulations (e.g., the General Data Protection

Regulation (GDPR)
1
). Additionally, the system’s reliance on server

capabilities and stable internet connections [33] compromises the

service reliability of cloud-based POI recommendations.

1
https://gdpr-info.eu/

This has driven on-device POI recommendation systems [9, 25,

33], which deploy models to edge devices (e.g., smartphones and

smart cars), enabling recommendations to be generated locally with

minimal reliance on centralized resources. Considering the limited

memory capacities of devices in contrast to abundant cloud servers,

there’s an essential push towards memory compression techniques

[1, 5, 10]. One popular strategy is on-device deployment [5, 10],

including embedding quantization [38] and the "student-teacher"

framework [33], which deploys the same compact model derived

from a sophisticated cloud model for all user devices. However, such

techniques neglect diverse user interests, and the varied capabili-

ties of devices. As an alternative, on-device learning [2, 25] actively

involves each user in the model training process, which utilizes

the computational power of devices and crafts personalized mod-

els tailored to individual user preferences and device constraints.

Given the scarcity of local user-item interactions, rather than solely

relying on local instances, Collaborative Learning (CL) [9, 39] has

been introduced for on-device POI recommendation, promoting

model sharing between users, and avoiding the need for complex

cloud-based model designs.

Collaborative Learning (CL) for recommendation has been seg-

mented into two approaches: centralized CL-based recommenda-

tion represented by federated learning-based methods [9, 23], and

decentralized CL-based recommendation [25, 39]. In the federated

recommendation, users train their models locally for data privacy,

and a central server is continuously engaged to aggregate these

models to counter data sparsity, then distribute an aggregated ver-

sion back to users. On the other hand, for decentralized CL-based

recommendations, the central server’s primary role is limited to an

initial phase, providing users with pretrained model parameters,

specifically POI embeddings, and grouping similar users. Subse-

quently, these user-specific models are refined through a combina-

tion of local training and communication with nearby users within

the same group [39]. Intra-group collaboration cloud be facilitated

by directly exchanging gradients or raw model parameters between

users, assuming identical local model architectures [9, 23]. How-

ever, this approach compromises communication efficiency and

user privacy by revealing users’ sensitive data. Furthermore, the

assumption of model homogeneity significantly limits the appli-

cability of such decentralized POI recommendation methods. In

real-world scenarios, on-device models often require unique struc-

tures tailored to individual device capacities (e.g., memory budget

and computation resources) [33]. Therefore, a dataset called "refer-

ence data" is introduced as an intermediary for user collaboration

across heterogeneous models. Reference data serves as a set of data

points, aiding in communication among users. Essentially, it func-

tions as a medium that allows users to exchange their soft decisions

without directly sharing their private data. This indirect method of

knowledge exchange through reference data preserves user privacy

while still benefiting from collaborative model refinement. Users in-

terpret and respond to the reference data based on their individual

2023-10-13 11:50. Page 1 of 1–10.
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preferences and histories, enabling a collaborative and personalized

learning experience.

However, existing decentralized CL-based recommendation sys-

tems [2, 26, 39] commonly utilize a uniform reference dataset for

all users, often neglecting spatial dynamics and user preference

diversity. Prompted by the underlying question — do different users

necessitate tailored reference datasets? We undertake a preliminary

investigation using the Foursquare dataset [6]. The experimental

setting is introduced in Appendix A. Following [26], we derive

the desensitized public candidate pool from the private check-in

sequence and compose different sets of reference data. These ref-

erence data are chosen at random, based on POI popularity, or

adaptively selected for individual users. For the collaboration be-

tween two users, two users will share and align their soft decisions

on the joint set of their selected reference data. Figure 1 depicts

the performance for a typical POI recommendation system STAN

[27] in the CL paradigm, measured via the hit ratio, when these

diverse reference dataset selections are employed. Two clear con-

clusions can be made: (i) Adapting the same original candidate

pool for all users is sub-optimal. Users’ local models are unlikely

to provide accurate predictions on distant items or items out of

their interest, which runs the risk of introducing noise, thereby

hampering the recommendation quality. (ii) The selection of ref-

erence data markedly impacts recommendation results. Both the

adaptive reference data and data stemming from popular POI items

demonstrate better performance than random selection. It becomes

apparent that data closely aligned with user preferences enhances

the model’s effectiveness. Unlike traditional CL tasks, such as de-

centralized computer vision model training [30, 32] that employs

a shared public reference dataset, POI recommendation presents

unique challenges. In conventional tasks, each local model shares

a uniform data distribution (e.g., flowers) and pursues a common

objective (e.g., classifying flower types). However, in POI recom-

mendations, users exhibit varied data distributions due to their

distinct interests [31]. The aim of each model is to deliver personal-

ized recommendations for its specific user. Consequently, reference

data that proves valuable for one user might be harmful to another,

given the wide range of user preferences. Some users may not offer

meaningful soft decisions on items outside their interest scope, em-

phasizing the vital need for a CL recommendation paradigm with

an adaptive reference dataset.

To this end, we introduce a novel framework: Decentralized

Collaborative Learning with Adaptive Reference Data (DARD). It

involves a server that identifies user clusters based on similarities,

subsequently enabling collaborative learning among neighbors. The

core of this adaptive approach is an innovative Knowledge Distilla-

tion (KD) mechanism, designed to facilitate seamless knowledge

exchange via soft decisions on a combined set of their adaptive

reference data. Notably, the adoption of soft decisions on adap-

tive reference data avoids the traditional requirement that models

within the CL paradigm remain identical, paving the way for greater

real-world applicability, where varying devices (e.g., mobile phones

or Internet-of-Things [42]) possess diverse memory capacities or

model architectures. Concerning the availability of public reference

data and user privacy, many current methodologies directly allo-

cate a portion of private historical check-in data for public use. To

Figure 1: Impact of reference data selection on recommen-
dation performance. "Original" refers to no selection, whole
reference data candidate pool for all users.

address this, we utilize two check-in data generationmethods: trans-

formation and probability generation, ensuring robust reference

data candidate pools while safeguarding user privacy.

A straightforward approach to identifying this adaptive refer-

ence data from the public reference data candidate pool would entail

retraining the CL paradigm using all possible combinations from

a public reference dataset. Such an approach is clearly infeasible

due to its computational demands. To resolve this, we first track

individual training loss to delete the noisy instances with large

losses from the candidate pool during the training for every user

and then utilize the influence function to estimate the influence of

each instance after convergence. adaptive reference data for indi-

vidual users are filtered out on the devices in parallel. Subsequently,

the model is retrained within the CL paradigm using the adaptive

reference data. In contrast to exhaustive retraining, DARD offers a

one-time selection of optimal adaptive reference data.

The contributions of this paper are summarized as follows:

• The introduction of the DARD framework, designating het-

erogeneous models to engage in knowledge exchange with

soft decisions on adaptive reference data. It accommodates

different on-device recommenders, tailors for distinctive user

preferences, and lessens the dependency on servers.

• The introduction of the training loss tracking and influence

function on the devices to select adaptive reference data for

individual users.

• A comprehensive evaluation of DARD using two real-world

datasets, emphasizing its effectiveness in recommendation

performance, and addressing the scarcity of available refer-

ence data.

2 RELATEDWORK
This section will review the main related works including on-device

recommender systems and decentralized collaborative learning (CL)

recommender systems.

2.1 On-device Recommender Systems
Unlike cloud-based recommendations [16, 29, 41], where models

operate on the cloud, on-device recommender systems transfer the

model processing from the cloud directly to the device. This para-

digm encompasses two main approaches: (1) On-device deployment

[33, 38]: model is fully trained on the cloud server and subsequently

deployed solely on the device. Techniques like embedding quan-

tization [38] and the "student-teacher" framework [33] deploy a

compact version of a sophisticated cloud model across all user de-

vices. (2) On-device learning [2, 9]: model is trained directly on the

device. Given the limited local user-item interactions, Collaborative

2023-10-13 11:50. Page 2 of 1–10.
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Learning (CL) [30, 32] is often utilized. CL-based methods can be

split into centralized and decentralized techniques. In the central-

ized CL, federated recommendation [9, 23] has gained prominence:

users train their local models while a central server aggregates

these models to address data sparsity and then redistributes the

combined model to users. In contrast, decentralized CL [2, 26, 39]

limits the central server’s role to the initial phase, supplying users

with pretrained model parameters. These user-specific models are

then enhanced by a mix of local training and interaction with users

within the same cluster.

2.2 Decentralized Collaborative Learning (CL)
Recommender Systems

Decentralized CL-based recommendations [2, 4, 25, 26, 39] depend

on the server only during the initial stage, primarily to obtain pre-

trained models and to determine the neighbor set. Following this,

user-specific models are first trained locally using private data, and

then collaboratively with neighbors. For knowledge exchange, raw

parameters or gradients are shared directly [4, 25]. With a height-

ened emphasis on privacy and ensuring collaboration between

heterogeneous models, reference data is introduced as an inter-

mediary. Instead of direct parameter exchange, users only share

their soft decisions made on this reference data. D-Dist [2] allows

local models to communicate with randomly chosen heterogeneous

neighbors, and SQMD [39] determines neighbors based on shared

responses to the reference dataset. MAC [26] prioritizes commu-

nication via a public reference dataset and prunes non-essential

neighbors during training. Since the reference data facilitates user

collaboration and knowledge exchange, the selection of reference

data is vital. However, existing methods neglect it, and utilize one

single reference data for all users.

3 PRELIMINARY
In this section, we first introduce some important definitions fre-

quently used in POI recommendation and problem formulation.

Definition 1: Check-in SequenceA check-in sequenceX(𝑢 𝑗 ) =
{𝑝1, 𝑝2, · · ·, 𝑝𝑛 𝑗

} contains 𝑛 𝑗 chronologically visited Point-of-Interet
(POI) by the user 𝑢 𝑗 ∈ U, where POI data 𝑝 ∈ P.

Definition 2: Category Sequence For user 𝑢 𝑗 , a category se-

quence X𝑐 (𝑢 𝑗 ) = {𝑐𝑝1
, 𝑐𝑝2

, · · ·, 𝑐𝑝𝑛𝑗
} includes the corresponding

category 𝑐𝑝 𝑗
for POI 𝑝 𝑗 , and C represents the set for all categories.

Definition 3: Geographical Segment (Region). A region 𝑟

represents a geospatial division of POIs. Following [25, 26], we

derive a collection of regions R by performing 𝑘-means clustering

[28] on the geographical coordinates of all POIs in this study.

Definition 4: Public Reference Candidate Pool. A public ref-

erence candidate pool D = D𝑔 ∪D𝑠
, comprises both geographical

reference data D𝑔
and semantic reference data D𝑠

. These cater to

collaborative processes among geographical and semantic neigh-

bors, respectively. The methodologies for formulating D𝑔
and D𝑠

are elucidated in Section 4.1. Concerning a particular user 𝑢 𝑗 , an

adaptive reference data, designated as
ˆD(𝑢 𝑗 ) ⊆ D, is selected from

D and discussed in Section 4.3.

Problem Formulation: Decentralized CL POI Recommen-
dation with Adaptive Reference Data. In the DRAD framework,

we assign specific roles to the devices/users and the central server

as detailed below:

• Device/User Role: An individual user 𝑢 𝑗 possesses her dis-

tinct check-in sequences X(𝑢 𝑗 ), category sequences X𝑐 (𝑢 𝑗 ),
and a tailor-made model 𝜙 𝑗 (·) that is collectively trained

using local data and further refined via user collaborations.

For efficient storage, model 𝜙 𝑗 (·) only retains embeddings

corresponding to POIs within regions the user has visited

or is currently in 𝑟 ∈ R(𝑢 𝑗 ). D is stored on the device and

then replaced by adaptive reference data
ˆD(𝑢 𝑗 ).

• Server Role: The server’s main task is to determine neighbor

sets for all users with the collected low-sensitivity data and to

generate the reference data candidate pool. Once the server

sends this data to users, it remains uninvolved during the

subsequent local model training phase.

The adaptive reference data
ˆD(𝑢 𝑗 ) is selected on each user𝑢 𝑗 device

from the public reference data pool D. The on-device model 𝜙 𝑗 (·)
is then leveraged to predict a prioritized list of potential POIs for

the user’s next movement.

4 DARD
This section introduces DARD framework, where an overview is

depicted in Figure 2. The main components include: (1) Reference

data candidate pool generation. (2) Model collaborative learning

paradigm for both Step 2model training and Step 4model retraining.

(3) Select adaptive reference data for an individual user based on

its own training loss during training, and influence function after

convergence. (4) Model retraining under the CL paradigm with

adaptive reference data.

4.1 Reference Data Candidate Pool Generation
Inspired by [26], for each user 𝑢𝑖 , there are two methods to gen-

erate non-sensitive check-in and categories sequences locally and

upload them to the cloud server to aggregate the reference data

candidate pool D = D𝑔 ∪ D𝑠
, where D𝑔 (𝑢𝑖 ) = {X𝑣}𝑉𝑣=1

is the

geographic reference data and D𝑠 (𝑢𝑖 ) = {X𝑐𝑧 }𝑍𝑧=1
is the semantic

reference data. The neighbor identification is universal to all CL-

based recommendations. We introduce it in Appendix C.1, since

our contribution lies in the reference data.

Transformation Generation: Instead of directly revealing

users’ check-in sequences, for Sequence {𝑝1, · · ·, 𝑝𝑖 , · · ·, 𝑝𝑛} and
{𝑝2, · · ·, 𝑝𝑖 , · · ·, 𝑝𝑚} we generate the desensitized check-in sequence

by exchanging sequences after the same POI (i.e., 𝑝𝑖 ) to form {𝑝1, · ·
·, 𝑝𝑖 , · · ·, 𝑝𝑚} and {𝑝2, · · ·, 𝑝𝑖 , · · ·, 𝑝𝑛}. For all these new sequences,

their region(s) 𝑟 is defined based on the most frequently visited

locations, excluding POIs outside region 𝑟 to ensure region-specific

sequences. If users do not want to reveal any specific POIs, the

probability generation method generates check-in sequences only

with category-level sequences.

Probability Generation: For semantic neighbors who might

be geographically distant, probability generation relies exclusively

on statistics derived from users’ non-sensitive category sequences,

which are initiated by computing the conditional probabilities for all

categories, informed by the aggregated category sequences of users.

Specifically, P(𝑐𝑛) = {𝑃 (𝑐𝑛 |𝑐1), 𝑃 (𝑐𝑛 |𝑐2), · · ·, 𝑃 (𝑐𝑛 |𝑐 |𝐶 | )} encapsu-
lates all conditional probabilities for 𝑐𝑛 . Each probability 𝑃 (𝑐𝑛 |𝑐𝑚)
is derived as:

2023-10-13 11:50. Page 3 of 1–10.
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Step 1: Candidate Pool Generation

Target User

Geographical
Neighbors
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Neighbors

Combined Adaptive Reference Dataset

Individual Check-in Data

Update

Reference Dataset Candidate Pool

Desensitized Category
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Desensitized Check-
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Reference Dataset Candidate Pool
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Under Model CL Paradigm
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Retraining With Adaptive Reference data
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Server  Regions
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Distillation Loss
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Step 2: Training

Step 4: Retraining

Target User Model
Update

Local Cross-Entropy Loss

From individual users
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Figure 2: The overview of DARD. a) Step 1: generate desensitized sequences on-device and upload to server to aggregate as
candidate pool. Server only involves in the initial stage to deploy pool and defines neighbors for the user. b) Model CL paradigm:
user models are trained with individual data and collaboratively with neighbors. c) Step 2: train under CL paradigm with
candidate pool and track loss to delete noisy reference data instances for target user. d) Step 3: utilize influence function to
select adaptive reference data. e) Step 4: retrain under CL paradigm with adaptive reference data.

𝑃 (𝑐𝑛 |𝑐𝑚) =
𝑐𝑜𝑢𝑛𝑡 (𝑐𝑛 |𝑐𝑚)∑ |𝐶 |

𝑚′=1
𝑐𝑜𝑢𝑛𝑡 (𝑐𝑛 |𝑐𝑚′ )

, (1)

where 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑛 |𝑐𝑚) is the total number of 𝑐𝑚 following 𝑐𝑛 . A

generated category sequenceX𝑐 emerges by (1) randomly choosing

a category as the initiator; and (2) iteratively determining subse-

quent categories based on the preceding category’s conditional

probabilities. Through iterative generation of numerous X𝑐 se-

quences, a comprehensive semantic reference data candidate pool

D𝑠
encompassing all categories is created. Subsequently, for each

specific region, we generate sequences of POIs aligned with the

category sequence X𝑐 ∈ D𝑠
, further imposing a 5km distance

constraint between consecutive POIs.

4.2 Collaborative Learning Paradigm
DARD utilizes the general model collaborative learning (CL) para-

digm both for training and retraining, as shown in Figure 2, where

models are trained with private data on local cross-entropy loss and

collaboratively with others on distillation loss. The difference is

that, for reference data D(𝑢𝑖 ) in the collaboration procedure, Step

2 training uses the candidate poolD(𝑢𝑖 ) = D, but Step 4 retraining

uses the adaptive reference data D(𝑢𝑖 ) = ˆD(𝑢𝑖 ).
4.2.1 Local Cross-entropy Loss Function. X(𝑢𝑖 ) is the private check-
in data, and the local loss function is defined as [26]:

𝐿𝑙𝑜𝑐 (𝑢𝑖 ) = 𝑙 (𝜙𝑖 (X(𝑢𝑖 )) ,Y(𝑢𝑖 )) , (2)

where 𝑙 stands for the cross-entropy loss function [8] in our case,

and 𝜙𝑖 (·) is the model for user 𝑢𝑖 . The model is optimized through

the local loss function on the private check-in data.

4.2.2 Distillation Loss Function. For user 𝑢𝑖 , D(𝑢𝑖 ) = D𝑔 (𝑢𝑖 ) ∪
D𝑠 (𝑢𝑖 ) consists geographical and semantic reference data. We em-

ploy the distillation loss to learn insights from soft decisions shared

by geographical neighbors G(𝑢𝑖 ) and semantic neighbors S(𝑢𝑖 ).
Collaboration with Geographical Neighbors. For user𝑢𝑖 , the

CL with geographical neighbors 𝑢 𝑗 is achieved by reducing their

difference in soft decisions over D𝑔 (𝑢𝑖 ) ∪ D𝑔 (𝑢 𝑗 ). The distillation
loss is measured as:

𝐿𝑔𝑒𝑜 =
1

|G(𝑢𝑖 ) |
∑︁

𝑢 𝑗 ∈G(𝑢𝑖 )

( ∑︁
X∈D𝑔 (𝑢𝑖 )∪D𝑔 (𝑢 𝑗 )

����𝜙𝑖 (X) − 𝜙 𝑗 (X)����2
2

)
,

(3)

where 𝜙𝑖 (·) and 𝜙 𝑗 (·) are the local recommendation models for 𝑢𝑖

and her neighboring users. | | · | |2
2
is the normalization term.

Collaboration with Semantic Neighbors. Similar to the ge-

ographical neighbor collaboration, we align the soft decisions of

𝑢𝑖 and her semantic neighbor 𝑢 𝑗 ∈ S(𝑢𝑖 ) on the join set of their

semantic reference data D𝑠 (𝑢𝑖 ) ∪ D𝑠 (𝑢 𝑗 ) with distillation loss:

𝐿𝑠𝑒𝑚 =
1

|S(𝑢𝑖 ) |
∑︁

𝑢 𝑗 ∈S(𝑢𝑖 )

( ∑︁
X𝑐 ∈D𝑠 (𝑢𝑖 )∪D𝑠 (𝑢 𝑗 )

����𝜙𝑖 (X𝑐 ) − 𝜙 𝑗 (X𝑐 )����2
2

)
,

(4)

Therefore, the final loss function for the collaborative learning

paradigm is the combination of local loss and collaboration loss,

where 𝛾 and 𝜇 control the preference for individual components:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑙𝑜𝑐 + 𝛾𝐿𝑔𝑒𝑜 + 𝜇𝐿𝑠𝑒𝑚 . (5)
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4.3 Adaptive Reference Data Selection
In this section, we propose to track the loss function during the Step

2 training, and utilize the influence function after training in Step 3

to identify the harmful data instances and select adaptive reference

data for individual users, which is conducted on the device side in

parallel without the reliance on the cloud server.

4.3.1 Loss Tracking During Training. For each user, we track the

training loss during her collaboration with semantic (or geograph-

ical ) neighbors to identify harmful instances in the semantic (or

geographical) reference data, respectively. Both geographical and

semantic data instances require refinement. While data selection

for each user occurs concurrently, we focus on the selection pro-

cess for a single user. For notation simplicity, we omit the neighbor

notation and represent individual reference data with D.

For a given𝑚𝑡ℎ
mini-batch of training instances, symbolized as

¯D𝑚 ∈ D. DARD processes every sample in
¯D𝑚

, and sequences

them based on their training losses. Large loss instances are re-

garded as noisy, while their counterparts with small losses are

tagged as "clean", denoted by
¯D𝑚
+ :

¯D𝑚
+ = arg min

¯D𝑚
: | ¯D𝑚 | ≥𝜌 | ¯D𝑚 |

𝐿( ¯D𝑚, 𝜃 ), (6)

where 𝜃 is the set of the model of the target user and her neighbors,

𝜌 is the selection ratio, and 𝐿(·) is the distillation loss 𝐿𝑔𝑒𝑜 in Eq. 3

or 𝐿𝑠𝑒𝑚 in Eq. 4, depending on neighbor types. For𝑚𝑡ℎ
mini-batch,

the noisy instances are recorded in the set
¯D𝑚
_

= ¯D \ ¯D𝑚
+ . The

adaptive reference data is selected as D′ = D \ { ¯D𝑚
_
}𝑀
𝑚=1

.

4.3.2 Influence Function After Training. After Step 2model training

is finished, given adaptive reference data D′, we further examine

the contribution of each data instance over the model’s perfor-

mance. A naive method is leave-one-out retraining, which deletes

one instance and retrains the model to record the performance

difference between two models. Such an approach is clearly infeasi-

ble due to its computational demands. Instead, influence functions,

stemming from Robust Statistics [12] have been provided as an

efficient way to estimate how a small perturbation of a training

sample would change the model’s predictions [14, 40]. Let 𝑙 (X𝑗 , 𝜃 )
be loss on instanceX𝑗 . For notation simplification, we omit the user

index and use 𝑙 𝑗 (𝜃 ) to present 𝑙 (X𝑗 , 𝜃 ). Considering the standard

empirical risk minimization (ERM) as the optimization objective,

the empirical risk is defined as 𝐿(𝐷 ;𝜃 ) = 1

|D′ |
∑ |D′ |
𝑖=1

𝑙𝑖 (𝜃 ).
let

ˆ𝜃 = arg min𝜃
1

|D′ |
∑ |D′ |

𝑗=1
𝑙 𝑗 (𝜃 ) be the optimal model parame-

ters. when upweighing a training instance X𝑗 by an infinitesimal

step 𝜖 𝑗 on its loss term, we could acquire the new optimal parame-

ters:
ˆ𝜃𝜖 𝑗 = arg min𝜃

1

|D′ |
∑ |D′ |

𝑗=1
𝑙 𝑗 (𝜃 ) + 𝜖 𝑗 𝑙 𝑗 (𝜃 ). Based on influence

functions [13, 15], we have the following expression to estimate

the changes of the model parameters when upweighting X𝑗 by 𝜖 𝑗 :

𝜓𝜃 (X𝑗 ) =
𝜕 ˆ𝜃𝜖 𝑗

𝜕𝜖 𝑗
|𝜖 𝑗=0 = −𝐻−1

ˆ𝜃
▽𝜃 𝑙 𝑗 ( ˆ𝜃 )

𝐻
ˆ𝜃
=

1

|D′ |

|D′ |∑︁
𝑗=1

▽2

𝜃
𝑙 𝑗 ( ˆ𝜃 )

(7)

where𝐻
ˆ𝜃
is the Hessian matrix and ▽2

𝜃
𝑙 𝑗 ( ˆ𝜃 ) is the second derivative

of the loss at the training instance X𝑗 with respect to 𝜃 . After

applying the chain rule, we are able to estimate the changes in

model prediction at the validation instance X𝑣
𝑘
:

Ψ𝜃 (X𝑗 ,X𝑣
𝑘
) =

𝜕𝑙𝑘 ( ˆ𝜃𝜖 𝑗 )
𝜕𝜖𝑖

|𝜖 𝑗=0 = −▽𝜃 𝑙 𝑗 ( ˆ𝜃 )𝐻−1

ˆ𝜃
▽𝜃 𝑙 𝑗 ( ˆ𝜃 ) (8)

Assume we have a validation set 𝑄 = {X𝑣
1
,X𝑣

2
, · · ·,X𝑣

𝑛′ } to eval-

uate the performance of the model after collaborative learning

between neighbors by exchanging soft labels on the reference data.

we compute D′
_
⊆ D′ which contains harmful training samples. A

training sample is harmful to the model performance if removing

it from the training set would reduce the test risk over Q. Based on

influence functions, we can measure one sample’s influence on test

risk without prohibitive leave-one-out retraining. According to Eq.

(7) (8), if we add a small perturbation 𝜖 𝑗 on the loss term of X𝑗 to
change its weight, the change of test loss at a validation instance

X𝑘 can be estimated as follows:

𝑙 (X𝑣
𝑘
, ˆ𝜃𝜖 𝑗 ) − 𝑙 (X𝑣

𝑘
, ˆ𝜃 ) ≈ 𝜖 𝑗 × Ψ𝜃 (X𝑗 ,X𝑣

𝑘
) (9)

whereΨ𝜃 (·, ·) is computed by Eq. (8).We then estimate the influence

of perturbing X𝑗 on the whole test risk as follows:

𝑙 (Q, ˆ𝜃𝜖 𝑗 ) − 𝑙 (Q, ˆ𝜃 ) ≈ 𝜖 𝑗 ×
𝑛′∑︁
𝑘=1

Ψ𝜃 (X𝑗 ,X𝑣
𝑘
) (10)

Henceforth, we denote by Ψ𝜃 (X𝑗 ) =
∑𝑛′

𝑘=1
Ψ𝜃 (X𝑗 ,X𝑣

𝑘
) the influ-

ence of perturbing the loss term of X𝑗 on the test risk over Q. It
is worth mentioning that given 𝜖 𝑗 ∈ [− 1

|D′ | , 0), Eq. (10) computes

the influence of discarding or downweighting the instance X𝑗 . We

denote D′
_
= {X𝑗 ∈ D

′ |Ψ𝜃 (X𝑗 ) > 0} as harmful samples. In con-

trast to the leave-one-out strategy which requires |D′ | (i.e., size of
reference data) times retraining, DARD offers a one-time selection

of optimal adaptive reference data. Similar to [15, 36], we assume

that each training sample influences the test risk independently.

We derive the Lemma 1 and the proof is provided in Appendix B.

Lemma 1. Discarding or downweighting the training samples in
D′_ = {X𝑗 ∈ D

′ |Ψ𝜃 (X𝑗 ) > 0} from D′ could lead to a model with
lower test risk over Q:

𝐿(Q, ˆ𝜃𝜖 ) − 𝐿(Q, ˆ𝜃 ) ≈ − 1

𝑚

∑︁
X∈D′_

Ψ𝜃 (X𝑗 ) (11)

where ˆ𝜃𝜖 denotes optimal model parameters obtained by updating
parameters with discarding or downweighting samples in D_.

Lemma 1 elucidates why identifying harmful instances and se-

lecting beneficial adaptive reference data, denoted as
ˆD′ (𝑢𝑖 ) =

D′ (𝑢𝑖 ) \D
′
_
(𝑢𝑖 ) for each user𝑢𝑖 , is feasible and essential for DARD.

Instead of downweighting the harmful instances, we choose to

directly exclude them to save the device budget. To account for po-

tential estimation errors in Ψ𝜃 (X𝑗 ), which could misidentify harm-

ful training samples, we define D′
_
(𝑢𝑖 ) = {X𝑗 ∈ D|Ψ𝜃 (X𝑗 ) > 𝛼},

where hyper-parameter 𝛼 is further studied in Section 5.4.
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Algorithm 1: Optimizing DARD. Processes are imple-

mented on device side.

1 foreach 𝑢𝑖 ∈ U in parallel do
2 Receive G(𝑢𝑖 ), 𝑆 (𝑢𝑖 ),D(𝑢𝑖 ) ;

// Train under CL paradigm and loss tracking

3 for 𝑛 = 1 to 𝑁 do
4 Receive soft decisions from G(𝑢𝑖 ), S(𝑢𝑖 );
5 for𝑚 = 1 to𝑀 do
6 Fetch𝑚-th mini-batch

¯D𝑚 (𝑢𝑖 ) from D(𝑢𝑖 );
7 ¯D𝑚

+ = arg min ¯D: | ¯D|≥𝜌 | ¯D| 𝐿( ¯D, 𝜃 );
8 ¯D𝑚

_
= ¯D𝑚 \ ¯D𝑚

+ ;
9 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑙𝑜𝑐 + 𝛾𝐿𝑔𝑒𝑜 ( ¯D+) + 𝜇𝐿𝑠𝑒𝑚 ( ¯D+);

10 Update the model: 𝜙𝑖 ← 𝜙𝑖 − 𝜂▽𝐿𝑡𝑜𝑡𝑎𝑙 ;
11 D′ (𝑢𝑖 ) = D(𝑢𝑖 ) \ {D𝑚

_
}𝑀
𝑚=1

;

// Select data with influence function

12 for 𝑗 = 1 to |D′ (𝑢𝑖 ) | do
13 Calculate the influence of the reference data

instance X𝑗 ∈ D′ (𝑢𝑖 ) using Eq. (10);
14 if Ψ𝜙 (X𝑗 ) ≥ 𝛼 then
15 D′ (𝑢𝑖 ) = D

′ (𝑢𝑖 ) \ X𝑗 ;

16 ˆD(𝑢𝑖 ) = D
′ (𝑢𝑖 ) ;

// Retrain under CL paradigm with ˆD(𝑢𝑖 )
17 for 𝑛 = 1 to 𝑁 do
18 Receive soft decisions from G(𝑢𝑖 ), S(𝑢𝑖 );
19 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑙𝑜𝑐 + 𝛾𝐿𝑔𝑒𝑜 ( ˆD(𝑢𝑖 )) + 𝜇𝐿𝑠𝑒𝑚 ( ˆD(𝑢𝑖 ));
20 Update the model: 𝜙𝑖 ← 𝜙𝑖 − 𝜂▽𝐿𝑡𝑜𝑡𝑎𝑙 ;
21 Output

ˆD(𝑢𝑖 ) and ˆ𝜙𝑖 ;

4.4 The Optimization Method
We look into the optimization of DARD in this section. The cloud

server only participates in the initial stage, where it aggregates

the desensitized sequences locally generated by users to form the

reference data candidate pool, identify neighbors, and deploy the

candidate pool to the individual users. All the processes are exe-

cuted on the device side as shown in Algorithm 1. First, users are

trained with local data and with neighbors under CL paradigm

(lines 3-11), where noisy data is identified by loss tracking. After

training, the refined reference data D′ is further examined by in-

fluence function to isolate the harmful instances by estimating the

performance difference (lines 12-16). At last, the model is retrained

under CL paradigm with adaptive reference data
ˆD(𝑢𝑖 ) to output

the personalized recommendation model
ˆ𝜙𝑖 (·).

5 EXPERIMENTS
To validate the effectiveness of the proposed method, we perform

comprehensive experiments to respond to the following research

questions (RQs):

• RQ1: How does our proposed method compare against exist-

ing centralized and decentralized recommendation methods?

• RQ2: How effective is our method, especially in situations

where the reference data is limited?

• RQ3: How do various hyper-parameters impact the perfor-

mance of the proposed method?

• RQ4: How do individual components within our method

influence its overall performance?

• RQ5: Can the proposed method be incorporated into differ-

ent CL-based recommendation approaches?

Table 1: The statistics of datasets.
#users #POIs #check-ins #check-ins per user # categories

Weeplace 4,560 44,194 923,600 202.54 625

Foursquare 7,507 80,962 1,214,631 161.80 436

5.1 Experimental Settings
5.1.1 Datasets. We utilize two widely recognized real-world Loca-

tion Social Network datasets for the assessment of our proposed

DARD: Weeplace [24] and Foursquare [6]. Both datasets encom-

pass users’ check-in histories in different cities. Following [3, 18],

POIs and users with less than 10 interactions are excluded. The key

features of these datasets are presented in Table 1.

5.1.2 Evaluation Protocols. Following [34, 35], for each check-in

sequence, the last check-in POI is for testing, the second last for

validation, and the rest for training. Sequences exceeding a length

of 200 are truncated to the latest 200 check-ins. In the evaluation

phase, instead of evaluating against all items as in [17], each ground

truth is ranked against 200 unvisited POIs, located within the same

region. This approach recognizes the location-sensitive nature of

POI recommendations; users are unlikely to consecutively visit

distant POIs [19, 25]. Recommender produces a ranked list of 201

POIs based on scores, with the ground truth ideally ranking highest.

Two ranking metrics are used: Hit Ratio at Rank 𝑘 (HR@𝑘) and

NormalizedDiscounted Cumulative Gain at Rank𝑘 (NDCG@𝑘) [37].

While HR@𝑘 focuses on the frequency the ground truth appears in

the top-𝑘 list, NDCG@𝑘 emphasizes its high rank.

5.1.3 Baselines. We compared DARD with various recommenda-

tion approaches, which include centralized cloud-based methods

( where the model is deployed on the cloud side), centralized on-

device methods (where on-device recommendations are performed

and a cloud server is heavily involved), and decentralized CL meth-

ods (where the server engages primarily during initialization, fol-

lowed by user collaboration).

Centralized Cloud Recommendation: MF [22] is a traditional
centralized POI system based on matrix factorization. LSTM[11]

employs a recurrent neural network to capture the sequential data

dependencies. STAN [27] discerns spatiotemporal correlations in

check-in paths using a bi-attention mechanism.

Centralized On-device Recommendation: It refers to meth-

ods that deploy a recommendation model on the device, but still

heavily rely on a central server. LLRec [33] uses a teacher-student
strategy to derive a locally deployable compressed model. PREFER
[9] as a federated POI recommendation paradigm, uses a could

server to gather and aggregates locally optimized models, and re-

distribute the federated model.

Decentralized CL Recommendation: DCLR [25] facilitates

knowledge sharing among similar neighbors through attentive ag-

gregation and mutual information optimization. D-Dist [2] focuses
on allowing local models to engage with randomly heterogeneous

2023-10-13 11:50. Page 6 of 1–10.
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Table 2: The top-k recommendation performance of DARD and baselines on two datasets. The best results are marked in bold.

Category Method

Weeplace Foursqaure

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Centralized Cloud

MF 0.1071 0.0734 0.1323 0.0918 0.0842 0.0624 0.0958 0.0675

STAN 0.3151 0.1788 0.4570 0.2735 0.2957 0.1710 0.4032 0.2535

LSTM 0.2394 0.1382 0.3209 0.1644 0.1954 0.1226 0.2914 0.1663

Centralized On-device

PREFER 0.2898 0.1801 0.3644 0.2253 0.2848 0.1619 0.3619 0.2162

LLRec 0.2875 0.1723 0.3615 0.2295 0.2767 0.1404 0.3365 0.1826

Decentralized CL

D-Dist 0.2490 0.1270 0.3573 0.1939 0.2227 0.1120 0.2874 0.1667

DCLR 0.3281 0.1858 0.4610 0.2708 0.3052 0.1740 0.4291 0.2549

SQMD 0.2913 0.1507 0.4306 0.2171 0.2784 0.1433 0.4053 0.2311

MAC 0.3338 0.1889 0.4786 0.2808 0.2967 0.1735 0.4261 0.2606

DARD 0.3408 0.1967 0.4863 0.2951 0.3098 0.1798 0.4311 0.2689

neighbors, leveraging their soft decisions based on a shared refer-

ence dataset. SQMD [39] like D-Dist, operates on a decentralized

distillation framework, defining neighbors by their shared reference

dataset responses. MAC [26] also adopts a decentralized knowl-

edge distillation framework, emphasizing communication based on

a public reference dataset while pruning non-essential neighbors

during training.

5.1.4 Hyper-parameters Setting. Following [25, 26]we utilize STAN
as the base model for DARD. For general parameters in decentral-

ized CL recommendations, the number of neighbors is defined as 50,

𝛾 is 0.5, and 𝜇 is 0.7. We set the dimension to 64, learning rate 𝑒𝑡𝑎

to 0.002, dropout to 0.2, batch size M to 16, and training epoch 𝑁 to

50 for all methods. As the key hyper-parameters for data selection

in DARD, 𝛼 and 𝜌 are set as 0.001 and 0.8. Furthermore, 5% users

are randomly selected to generate desensitized check-in data with

the same amount of local private data and upload it to the cloud

for candidate pool generation. Experimental results are executed

five times and averaged.

5.2 Top-k Recommendation (RQ1)
To validate the effectiveness of DARD, we compare it with different

categories of baselines on the Top-k recommendation task. Table

2 presents recommendation performance results, and our analysis

yields several key observations.

Within the centralized POI recommenders category, STAN ex-

hibits superior accuracy compared to LSTM and MF. Despite this,

DARD surpasses STAN’s performance. A potential reason for STAN’s

limitations might be its training on check-ins spanning multiple

cities. This approach risks integrating knowledge from one region

that may be irrelevant or harmful to recommendations in another,

thereby reducing STAN’s efficacy. Furthermore, DARD consistently

achieves better results than centralized on-device methods, where

devices rely on the server for the entire time. Instead of collaborat-

ing with all users through the server, DARD implements collabo-

ration between similar neighbors to enhance personalization. In

contrast, centralized models with a faint cloud model tend to accom-

modate the majority’s preferences, neglecting diverse user interests.

Finally, when compared to decentralized CL methods that use a

reference dataset, such as D-Dist, SQMD, and MAC, DARD retains

its superiority. This can be attributed to DARD’s innovative use of

an adaptive reference dataset, which better supports collaborative

user learning and more effective knowledge exchange.

5.3 Limited Reference Data (RQ2)
To investigate the performance of various decentralized CLmethods

under limited amounts of reference data, the proportion of data

was systematically reduced from 0.8 to 0.1 on the Weeplace dataset.

A value of 0.8 indicates that only 80% of the reference data from

the cloud candidate pool is transferred to the device for usage. The

recommendation performance is evaluated with HR@10 on the

Weeplace dataset, as shown in Figure 3.

The diminishing performance of most CL-based methods with

reduced reference data underscores the critical role of this data in

recommendation quality. In contrast, our proposed DARD method

shows resilience, with onlyminor performance drops from 0.8 to 0.3,

highlighting its effective reference data selection capability. This

suggests that DARD efficiently identifies key instances vital for

knowledge exchange; thus, reducing the on-device reference data

doesn’t drastically impact knowledge exchange quality. However,

DARD’s performance does decline when the data portion is cut

from 0.3 to 0.1. A possible explanation is that the 0.1 threshold

may be too restrictive to encompass all essential instances in the

reference data, causing the exclusion of some valuable instances and

a subsequent drop in performance. Notably, DARD with reduced

reference data (e.g., 0.3) still outperforms othermethods using larger

data sets. DARD not only yields superior results but also efficiently

manages the communication load, given that the communication

cost is intrinsically linked to the volume of reference data whose

soft decisions are exchanged.

5.4 Hyper-parameter Study (RQ3)
To investigate the effects of the key hyper-parameters for adaptive

reference data selection, we examine the selection ratio for tracking

training loss, 𝜌 , ranging between {0.1, 0.2, 0.3, 0.4, 0.5} and influence
function parameter, 𝛼 in the set {0.01, 0.005, 0.001, 0.0005, 0.0001}.
We adjusted each 𝜌 and 𝛼 value individually, maintaining another

hyper-parameter constant, and documented the recommendation

outcomes by HR@10, depicted in Figure 4.

Impact of 𝜌 . A larger 𝜌 indicates retaining more instances in

the reference data pool. If the 𝜌 value is too large, it does not serve

as a selection procedure and might include more noisy instances

2023-10-13 11:50. Page 7 of 1–10.
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Figure 3: The performance
with different amounts of ref-
erence data on Weeplace.

Figure 4: The performance of DARD with loss tracking pa-
rameter 𝜌 and influence function selection parameter 𝛼 .

Figure 5: Result of ablation ex-
periment on different parts of
DARD on Weeplace.

Figure 6: Performance of DARD integrated with different
Recommendation Models.

hampering the influence function’s performance post-convergence.

A 𝜌 range of 0.8 to 0.6 delivers relatively satisfactory results. How-

ever, when 𝜌 is overly small, fewer instances are utilized for both

model training and influence function selection, which may reduce

the performance.

Impact of 𝛼 . A smaller 𝛼 means that more instances are iden-

tified as harmful by the influence function. Optimal results are

achieved when 𝛼 lies between 0.01 and 0.001, as more harmful

instances are excluded. However, as 𝛼 approaches 0.0001, the per-

formance starts to decline. A potential reason might be the mis-

classification of beneficial instances as harmful due to estimation

errors from the influence function.

5.5 Ablation Study (RQ4)
In this section, we aim to demonstrate the effect of transformation

generation, probability generation, data selection via training loss,

and data selection via influence function. As shown in Figure 5, we

implement DARD without one component, while keeping other

components unchanged. we conduct experiments on Weeplace

while similar trends are observed with datasets.

𝑤/𝑜 𝑇𝑟𝑎𝑛𝑠 discards the transformation generation method and

generates check-in sequences by randomly changing the items on

the private reference data to preserve privacy. The performance

decreases because randomly changing items cannot generate a

meaningful and accurate reference data candidate pool.

𝑤/𝑜 𝑃𝑟𝑜𝑏 discards the probability method and generates cate-

gory sequences randomly. Similarly, random generation cannot

guarantee a proper candidate pool.

𝑤/𝑜 𝑇𝐿 deletes the process of identifying noisy reference data

instances during the training, which unavoidably introduces ex-

cessive noisy data, and impedes the effectiveness of the influence

function after convergence.

𝑤/𝑜 𝐼𝐹 ignores the process of selection instances by influence

function. One possible explanation for the performance decrease

is that using training loss alone might not be sufficient for data

selection.

5.6 Model-agnostic Study (RQ5)
The objective of this section is to determine whether the proposed

DARD framework can seamlessly integrate with other conventional

recommendation models (e.g., LSTM) and decentralized CL models

(e.g., SQMD). The comparative outcomes are displayed in Figure 6.

A careful analysis of these results reveals the following insights:

• The model-agnostic nature of DARD permits its compat-

ibility with classical recommendation models, serving as

the on-device model for users. This compatibility is attrib-

uted to the reference data mechanism that facilitates knowl-

edge exchange even between heterogeneous models. Both

DARD+LSTM and DARD+STAN exhibit superior perfor-

mance compared to their standalone counterparts, validating

the efficacy of the proposed DARD framework.

• Furthermore, themodel-agnostic DARD can be seamlessly in-

corporated into other decentralized CL approaches that lever-

age reference data. The performance boost in DARD+SQMD,

when contrasted with traditional CL methodologies, under-

scores the importance of adaptive reference data selection

in enhancing knowledge exchange.

6 CONCLUSION
In this paper, we proposed the Decentralized Collaborative Learning

with Adaptive Reference Data (DARD) framework, which allows for

adaptive reference data, enhancing user collaboration and ensuring

effective knowledge exchange. DARD first establishes a compre-

hensive yet desensitized public reference data pool, followed by

collaborative pretraining and an adaptive selection of user-specific

reference data, grounded in monitoring training loss and leveraging

influence functions. Loss tracking identifies the noisy instances dur-

ing the training, and the influence function identifies the harmful

instances by estimating the difference in the model performance

with and without the instances. Extensive experiments spotlight

DARD’s commendable performance in recommendations and its

adeptness at addressing the limited reference data available.
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A PRELIMINARY EXPERIMENTAL SETTINGS
To investigate whether the selection of reference data will influence

the recommendation performance of a decentralized CL model. We

utilize the general CL paradigm introduced in Section 4.2 on the

Foursquare dataset [6]. The key characteristics of the dataset are

presented in Table 1.

A.1 Base Model and Hyper-parameters
We exploit the frequently used POI recommendation model STAN

[27] as the on-device model for all users. For the base model, we

follow the authors’ suggestion to set the latent dimension to 50. For

the CL paradigm, we follow [26] to set the neighbor number to 50,

learning rate to 0.002, dropout to 0.2, batch size to 16, and training

epoch to 50.

A.2 Different Selection Strategies
To simulate the real-world situationwhere users are unlikelywilling

to share their sensitive private check-in data to the cloud or others.

We utilize two data generation methods introduced in Section 4.1 on

1% users of the total dataset, locally on their own device, to generate

the reference data candidate pool. Different reference data selection

strategies are implemented, and the performance is evaluated by

Hit Ratio@5:
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• Original: The original candidate pool is taken as the refer-

ence data for all users.

• Random: The same amount of data instances are randomly

selected from the candidate pool for every user collaboration.

• Popular: The same amount of data instances are selected

from the candidate pool for every user collaboration based

on the popularity of the POIs. More popular items have a

higher chance of being chosen as the reference data.

• Adaptive: The proposed method DARD is utilized to select

adaptive reference data for each user.

B PROOF OF LEMMA
Lemma 2. Discarding or downweighting the training samples in

D_ = {X𝑗 ∈ D|Ψ𝜃 (X𝑗 ) > 0} from D could lead to a model with
lower test risk over Q:

𝐿(Q, ˆ𝜃𝜖 ) − 𝐿(Q, ˆ𝜃 ) ≈ − 1

𝑚

∑︁
X∈𝐷_

Ψ𝜃 (X𝑗 ) (12)

where ˆ𝜃𝜖 denotes the optimal model parameters obtained by updating
the model’s parameters with discarding or downweighting samples in
D_.

Proof. Recall that
ˆ𝜃 = arg min𝜃

1

𝑚

∑𝑚
𝑗=1

𝑙 𝑗 (𝜃 ). In this way, down-
weighting the training sampleX𝑗 inD_ means setting 𝜖 𝑗 = [− 1

𝑚 , 0)
(Noticed that 𝜖𝑖 = − 1

𝑚 means discarding training sample X𝑗 ).
For convenience of analysis, we set all 𝜖 𝑗 equal to − 1

𝑚 and have

Ψ𝜃 (X𝑗 ) ≜
∑𝑚′

𝑘=1
Ψ𝜃 (X𝑗 ,X𝑐𝑘 ). According to Eq. (10), we can esti-

mate how the test risk is changed by discarding or downweighting

X𝑗 ∈ D_ as follows:

𝐿(Q, ˆ𝜃𝜖 ) =
∑︁
X𝑗 ∈D_

𝑚′∑︁
𝑗=1

𝑙 (X𝑐
𝑘
, ˆ𝜃𝜖 𝑗 ) − 𝑙 (X𝑐𝑘 , ˆ𝜃 )

≈
∑︁
X𝑗 ∈D_

𝜖 𝑗 ×
𝑚′∑︁
𝑗=1

Ψ𝜃 (X𝑖 ,X𝑐𝑘 )

= − 1

𝑚

∑︁
X𝑗 ∈D_

Ψ𝜃 (X𝑗 ) ≤ 0

(13)

□

C GENERAL CL-BASED RECOMMENDATION
DETAILS

In this section, we introduce the details of general CL-based recom-

mendations.

C.1 Neighbor Identification
In the DARD approach, each user’s local models are trained using

their own check-in sequences. However, limited check-ins on in-

dividual user devices can hinder the development of a precise POI

recommender. To address this, DARD enables each user device 𝑢𝑖
to share knowledge with its neighbors. These neighbors are users

who have high similarity to 𝑢𝑖 , namely geographical neighbors

G(𝑢𝑖 ) and semantic neighbors S(𝑢𝑖 ). The set G(𝑢𝑖 ) includes users
within the same region 𝑟 , which is the most recent region that user

𝑢𝑖 visited.

Semantic neighbors are users that are seen as highly related if

the POIs they visit belong to the same categories [19]. This rel-

evance holds even if the users are far apart geographically. We

measure this semantic similarity using category-based user prefer-

ences. Specifically, we represent each user’s category distribution

with𝐶𝑃 (𝑢𝑖 ) = {P(𝑐1),P(𝑐2), ...P(𝑐 | C | )}, derived fromX𝑐 (𝑢𝑖 ). We

use Kullback-Leibler (KL) divergence [7] to calculate the difference

between two users’ category preferences:

𝑑𝑐𝑎𝑡 (𝑢𝑖 , 𝑢 𝑗 ) = 𝐾𝐿
(
𝐶𝑃 (𝑢𝑖 ) | |𝐶𝑃 (𝑢 𝑗 )

)
. (14)

For user 𝑢𝑖 , the ℎ users with the smallest values of 𝑑𝑐𝑎𝑡 (𝑢𝑖 , 𝑢 𝑗 ) are
chosen as semantic neighbors.
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