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ABSTRACT

Deep reinforcement learning algorithms have recently achieved significant success
in learning high-performing policies from purely visual observations. The ability
to perform end-to-end learning from raw high dimensional input alone has led
to deep reinforcement learning algorithms being deployed in a variety of fields.
Thus, understanding and improving the ability of deep reinforcement learning
policies to generalize to unseen data distributions is of critical importance. Much
recent work has focused on assessing the generalization of deep reinforcement
learning policies by introducing specifically crafted adversarial perturbations to
their inputs. In this paper, we approach this problem from another perspective and
propose a framework to assess the generalization skills of trained deep reinforce-
ment learning policies. Rather than focusing on worst-case analysis of distribution
shift, our approach is based on black-box perturbations that correspond to mini-
mal semantically meaningful natural changes to the environment or the agent’s
visual observation system ranging from brightness to compression artifacts. We
demonstrate that the perceptual similarity distance of the minimal natural pertur-
bations is orders of magnitude smaller than the perceptual similarity distance of
the adversarial perturbations to the unperturbed observations (i.e. minimal natu-
ral perturbations are perceptually more similar to the unperturbed states than the
adversarial perturbations), while causing larger degradation in the policy perfor-
mance. Furthermore, we investigate state-of-the-art adversarial training methods
and show that adversarially trained deep reinforcement learning policies are more
sensitive to almost all of the natural perturbations compared to vanilla trained poli-
cies. Lastly, we highlight that our framework captures a diverse set of bands in
the Fourier spectrum; thus providing a better overall understanding of the policy’s
generalization capabilities. We believe our work can be crucial towards building
resilient and generalizable deep reinforcement learning policies.

1 INTRODUCTION

Following the initial work of Mnih et al. (2015), the use of DNNs as function approximators in
reinforcement learning has led to a dramatic increase in the capabilities of RL agents Schulman
et al. (2017); Lillicrap et al. (2015). In particular, these developments allow for the direct learning
of strong policies from raw, high-dimensional inputs (i.e. visual observations). With the successes
of these new methods come new challenges regarding the robustness and generalization capabilities
of deep reinforcement learning agents.

Szegedy et al. (2014) showed that specifically crafted imperceptible perturbations can lead to mis-
classification in image classification. After this initial work a new research area emerged to inves-
tigate the abilities of deep neural networks against specifically crafted adversarial examples. While
various works studied many different ways to compute these examples (Carlini & Wagner, 2017;
Madry et al., 2018; Goodfellow et al., 2015; Kurakin et al., 2016), several works focused on study-
ing ways to increase the robustness against such specifically crafted perturbations, based on training
with the existence of such perturbations (Madry et al., 2018; Tramèr et al., 2018; Goodfellow et al.,
2015; Xie & Yuille, 2020).
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As image classification suffered from this vulnerability towards worst-case distributional shift in the
input, a series of work conducted in deep reinforcement learning showed that deep neural policies
are also susceptible to specifically crafted imperceptible perturbations (Huang et al., 2017; Kos &
Song, 2017; Pattanaik et al., 2018; Lin et al., 2017; Sun et al., 2020; Korkmaz, 2021). While one line
of work put effort on exploring these vulnerabilities in deep neural policies, another line in parallel
focused making them robust and reliable via adversarial training (Pinto et al., 2017; Mandlekar et al.,
2017; Huan et al., 2020).

While adversarial perturbations and adversarial training provide a notion of robustness for trained
deep neural policies, in this paper we approach the resilience problem of the deep neural policies
from a wider perspective, and propose a framework to test a more generic sense of robustness to-
wards minimal perceptually similar perturbations1. To be able to achieve this we go beyond `p-norm
bounded pixel perturbations and include semantically meaningful minimal realistic perturbations.
By this approach we seek answers to the following questions: (i) How perceptually similar are min-
imal semantically meaningful perturbed states to the original unperturbed states, and how does this
compare to `p-norm bounded adversarially perturbed states? (ii) What are the differences between
adversarial perturbations and minimal natural perturbations introduced to the policy observation in
terms of performance degradation of the trained deep reinforcement learning policy? (iii) How does
state-of-the-art adversarial training affect the performance degradation caused by perceptually sim-
ilar minimal natural perturbations compared to vanilla training? To be able answer these questions,
in this work we focus on the notion of robustness of trained deep reinforcement learning agents and
make the following contributions:

• We propose a framework consisting of a diverse set of minimalistic (i.e. perceptually simi-
lar) semantically meaningful natural perturbations.

• We run multiple experiments in the Arcade Learning Environment (ALE) in various games
with high dimensional state representation and provide the relationship between the percep-
tual similarities to unperturbed states under our proposed natural perturbation framework
and adversarial perturbations.

• We compare our proposed framework with the state-of-the-art adversarial method based on
`p-norm changes, and we show that our natural perturbation framework is competitive in
degrading the performance of the deep reinforcement learning agent with lower perceptual
similarity distance.

• We inspect state-of-the-art adversarial training under our proposed framework, and demon-
strate that the adversarially trained models become more vulnerable to various natural per-
turbations compared to vanilla trained models.

• Finally, we investigate the frequency domain of our framework and state-of-the-art targeted
attacks. We show that our framework captures different bands of the frequency spectrum,
thus yielding a better estimate of the model robustness.

2 BACKGROUND AND RELATED WORK

2.1 PRELIMINARIES

In this paper we consider Markov Decision Processes (MDPs) given by a tuple (S,A, P, r, γ, s0).
The reinforcement learning agent interacts with the MDP by observing states s ∈ S, and then taking
actions a ∈ A. Here s0 represents the initial state of the agent, and γ represents the discount factor.
The probability of transitioning to state s′ when the agent takes action a in state s is determined
by the Markovian transition kernel P : S × A × S → R. The reward received by the agent
when taking action a in state s is given by the reward function r : S × A → R. The goal of
the agent is to learn a policy πθ : S × A → R which takes an action a in state s that maximizes
the expected cumulative discounted reward

∑T−1
t=0 γtr(st, at) that the agent receives via interacting

with the environment. This goal is achieved via learning the state-action value function Q(s, a) =

Eπ[
∑T−1
t=0 γtr(st, at)|s = s0, a0 = 0] assigning a value to each state-action pair. We use F(s)

to denote the 2D discrete Fourier transform of state s in which each frequency is computed via

1Perceptual similarity is explained in detail in Section 2.4
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F(m,n) =
∑M−1
k=0

∑N−1
l=0 s(k, l)e−j2π(mk/M+nl/N) where k and l are the coordinates of the state,

and M and N correspond to ranges of the 2D state representation.

2.2 CRAFTING ADVERSARIAL PERTURBATIONS

Szegedy et al. (2014) proposed to minimize the distance between the original image and adversari-
ally produced image to create adversarial perturbations. The authors used box-constrained L-BFGS
to solve this optimization problem. Goodfellow et al. (2015) introduced the fast gradient method
(FGM)

xadv = x+ ε · ∇xJ(x, y)
||∇xJ(x, y)||p

, (1)

for crafting adversarial examples in image classification by taking the gradient of the cost function
J(x, y) used to train the neural network in the direction of the input, where x is the input, y is the
output label, and J(x, y) is the cost function for image classification. Carlini & Wagner (2017)
introduced targeted attacks in the image classification domain based on distance minimization be-
tween the adversarial image and the original image while targeting a particular label. In the deep
reinforcement learning domain the Carlini & Wagner (2017) formulation is

min
sadv∈Dε,p(s)

‖sadv − s‖p

subject to argmax
a

Q(s, a) 6= argmax
a

Q(sadv, a)

where s is the unperturbed input, sadv is the adversarially perturbed input, a∗(s) is the action taken
in the unperturbed state, and a∗(sadv) = argmaxaQ(sadv, a) is the action taken in the adversarial
state. This formulation attempts to minimize the distance to the original state, constrained to states
leading to sub-optimal actions as determined by the Q-network. In contrast to adversarial attacks,
in our proposed threat model we will not need any information on the cost function used to train the
network, the Q-network of the trained agent, or access to the visited states themselves.

2.3 ADVERSARIAL APPROACH IN DEEP REINFORCEMENT LEARNING

The first adversarial attacks on deep reinforcement learning introduced by Huang et al. (2017) and
Kos & Song (2017) adapted FGSM from image classification to the deep reinforcement learning
setting. Subsequently, Mandlekar et al. (2017) used FGSM perturbations for adversarial training
of deep reinforcement learning agents. Pinto et al. (2017); Gleave et al. (2020) focused on model-
ing the interaction between the adversary and the agent, while Lin et al. (2017); Sun et al. (2020)
focused on strategically timing when (i.e. in which state) to attack an agent using perturbations com-
puted with the Carlini & Wagner (2017) adversarial formulation. Quite recently, Huan et al. (2020)
proposed to model this dynamic as a State-Adversarial Markov Decision Process (SA-MDP), and
the authors claimed the SA-MDP model provides theoretically justified robust deep reinforcement
learning agents.

2.4 PERCEPTUAL SIMILARITY DISTANCE

Zhang et al. (2018) found that internal activations of networks trained for high-level tasks corre-
spond to human perceptual judgements across different network architectures Iandola et al. (2016),
Krizhevsky et al. (2012), Simonyan & Zisserman (2015) without calibration. Furthermore, the au-
thors propose a method to measure the perceptual distance between two images with the Learned
Perceptual Image Patch Similarity (LPIPS) metric. We compare the distance between adversarial
states sadv and the original states s with the LPIPS metric. We refer to the LPIPS metric as Psimilarity
throughout the paper. Psimilarity(s, sadv) returns the distance between s and sadv based on network
activations. Zhang et al. (2018) show that Psimilarity results in a reliable approximation of human
perception.

In more detail, the LPIPS metric in Zhang et al. (2018) is given by measuring the `2 distance be-
tween a normalized version of the activations of the neural network at several internal convolutional
layers. For each convolutional layer l let Wl be the width, Hl the height, and Cl the number of
channels. Further, let yl ∈ RWl×Hl×Cl denote the vector of activations in convolutional layer l.
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To compute the perceptual similarity distance between two states s and s0, first calculate the inter-
nal activations yl, yl0 ∈ RWl×Hl×Cl (corresponding to s and s0 respectively) for L internal layers.
Second, unit-normalize the activation vectors in the channel dimension, and denote the resulting
normalized activations by ŷl and ŷl0. Next scale each channel in ŷl and ŷl0 by the same, fixed weight
vector wl ∈ RCl . Here wl can either be a learned vector of weights for layer l or the vector of all
ones if no scaling is desired. The last step is then to compute the perceptual similarity distance by
first averaging the `2 distance between the scaled activations over the spatial dimensions, and then
summing over the L layers. Formally,

Psimilarity(s, s0) =
∑
l

1

HlWl

∑
h,w

∥∥wl � (ŷlhw − ŷl0hw)
∥∥2
2

(2)

2.5 IMPACT

To be able to compare between different algorithms and different games the performance degrada-
tion of the deep reinforcement learning policy is defined as the normalized impact of an adversary
on the agent:

I =
Scoreclean − Scoreadv

Scoreclean − Scorefixed
min

. (3)

Scorefixed
min is a fixed minimum score for a game, Scoreadv and Scoreclean are the scores of the agent

with and without any modification to the agent’s observations system respectively.

3 A GENERALIZATION TESTING FRAMEWORK WITH NATURAL
PERTURBATIONS

In our paper we focus on robustness and generalization issues that deep reinforcement learning poli-
cies encounter with a contrasting view compared to prior work focusing on worst-case distributional
shift within an imperceptibility bound (see Section 2.3). We propose a baseline to evaluate deep re-
inforcement learning policies with realistic and minimal corruptions to the environment with which
they interact. We essentially juxtapose adversarial perturbations and natural corruptions with re-
spect to their perceptual similarity distance (see Section 2.4) to the original states and their degree
of impact on the policy performance. More importantly, we question the imperceptibility of `p-norm
bounded adversarial perturbations in terms of perceptual similarity distance, and compare this im-
perceptibility notion to natural perturbations. While we categorize adversarial perturbations also
as a component in the framework majorly concentrated on the high frequencies, we embed several
realistic perturbations that aim to cover diverse bands in the frequency spectrum. We highlight that
prior work focused on the presence of a strong adversary model that requires prior access to training
details of the agent’s neural network Huang et al. (2017); Korkmaz (2021), real time access to the
agent’s perception system Pattanaik et al. (2018); Kos & Song (2017), and highly computationally
demanding adversarial formulations for computing simultaneous perturbations Lin et al. (2017); Sun
et al. (2020). From the security point of view we emphasize that natural corruptions at the edge of
imperceptibility can be more dangerous than a strong adversary assumption 2 without carrying any
of these requirements.

In our model we examine several natural environmental changes such as: changes in the brightness
of the environment, blurring of the observation, slight rotation of the observation, several geometric
transformations and compression artifacts. These changes from our model can be easily linked to
naturally occurring changes in the environment3. In Table 1 we compare our proposed framework
with the state-of-the-art targeted adversarial attack proposed by Carlini & Wagner (2017) in terms of

2Strong adversary assumption refers to an adversary that has access to the agent’s observation system,
training details of the policy (e.g. algorithm, neural network architecture, training dataset), ability to alter ob-
servations in real time, simultaneous modifications to the observation system of the policy with computationally
demanding adversarial formulations.

3These natural changes can be linked to the time of day for brightness in a self driving vehicle, or the
appearance of reflective objects or shadows. Rotation, perspective transformation, and shifting can be linked
to driving on a road with varied terrain. Blurring can be linked to a rainy day, foggy weather or a fogged up
camera lens utilized by the agent.
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Original State Shifted Rotated Perspective Blurred Compression Brightness

Figure 1: Original frame and environmental modifications. Columns: original frame, shifting, ro-
tation, perspective transformation, blurring, compression artifacts. brightness and contrast. Rows:
JamesBond, Pong and BankHeist.

perceptual similarity distances, and the impacts on the policy performance. While in the remainder
of this section we explain in detail each component of our proposed framework, we provide all the
experimental details in Section 5, as well as results on policy gradients, performance degradation in
the time domain, and complementary results for Section 5 in the appendix.

Note that the natural corruptions considered in our framework are as minimalistic as possible. Most
of the perturbations from the proposed framework cannot be recognized by human perception (see
Figure 1). More formally, the perceptual similarity distances for each corruption, and the resulting
policy performance degradation, are given in Table 1.

Brightness and Contrast: To inspect the effects of low frequency corruptions we included bright-
ness and contrast level changes using linear brightness and contrast transformation,

sadv(i, j) = s(i, j) · α+ β, (4)

where s(i, j) is the ijth pixel of state s, and α and β are the linear brightness parameters. In Table
1 we show the impacts and perceptual similarity distances with corresponding α, β values. In all of
the games except BankHeist brightness and contrast change results in higher impact than the Carlini
& Wagner (2017) formulation, while the perceptual similarity distance of brightness and contrast is
lower in every game.

Blurring: To observe the effects of high frequency corruptions we included blurring in our frame-
work. In particular, median bluring4 is a nonlinear noise removal technique that replaces the original
pixel value with the median pixel value of its neighbouring pixels. A kernel size k means that the me-
dian is computed over a k× k neighborhood of the original pixel. Only in BankHeist and TimePilot
we observe that the perceptual similarity distance required for blurring is higher compared to adver-
sarial perturbations to be able to cause higher impact on policy performance (see Table 1). For the
rest of the games impact is higher and perceptual similarity distance is lower for blurring.

Rotation: Rotation is one of the most fundamental geometric changes in an environment which
we incorporate in our framework. In Table 1 we show impact values and perceptual similarity
distance with corresponding rotation angle in degrees. In all of the games except Pong rotation
results in higher impact and orders of magnitude lower perceptual similarity distance than the Carlini

4Note that in the blurring category one might use several different type of blurring techniques as Gaussian
blurring, zoom blurring, defocus blur. Yet all these different types of blurring techniques occupy the same
frequency band in the Fourier domain.
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Table 1: Impacts on the policy performance, perceptual similarity distances Psimilarity to the un-
perturbed states, and raw scores for Carlini & Wagner (2017) formulation and natural perturbation
framework components. We report all of the results with the standard error of the mean.

Games BankHeist JamesBond Pong Riverraid TimePilot

Carlini & Wagner Impact 0.982±0.009 0.451±0.231 0.995±0.014 0.928±0.030 0.567 ±0.159
Brightness&Contrast Impact 0.966± 0.030 0.913 ±0.047 1.0±0.009 0.951 ±0.016 0.663±0.239
Blurring Impact 0.979±0.009 0.635±0.200 1.0±0.000 0.946±0.015 0.589±0.150
Rotation Impact 0.997±0.004 0.635±0.189 0.99±0.015 0.942±0.042 0.581±0.158
Shifting Impact 0.985 ±0.005 0.865±0.140 1.0±0.00 0.935 ±0.023 0.623±0.199
Compression Artifacts Impact 0.980 ±0.013 0.884 ±0.128 0.962±0.032 0.803 ±0.051 0.578 ±0.271
Perspective Transform Impact 0.998±0.003 0.865±0.087 0.996±0.009 0.968±0.006 0.624±0.198

Carlini & Wagner Psimilarity 0.0657±0.0073 0.2622±0.0312 0.6134±0.0271 0.2714±0.0285 0.1336± 0.0231
Brightness&Contrast Psimilarity 0.0307±0.0039 0.011± 0.0003 0.2190± 0.0046 0.2147±0.0212 0.1045± 0.0031
Blurring Psimilarity 0.1672±0.0192 0.0707±0.0074 0.0351±0.0072 0.1442±0.0107 0.2014±0.0645
Rotation Psimilarity 0.0520±0.0070 0.0275±0.0016 0.1020±0.0115 0.0422± 0.0033 0.1020±0.0115
Shifting Psimilarity 0.0492±0.0046 0.0650±0.0092 0.2455±0.0432 0.0945±0.0032 0.1167±0.0121
Compression Artifacts Psimilarity 0.0240±0.0037 0.1325±0.0301 0.2506±0.0559 0.2250±0.0202 0.1592±0.0369
Perspective Transform Psimilarity 0.0398±0.0067 0.012±0.0007 0.0140±0.0018 0.0422±0.0016 0.0440±0.0050

Carlini& Wagner Raw Scores 15.0±2.549 285.0±25.495 -20.8±0.189 1168.0± 140.696 4090.0±347.979
Brightness&Contrast Raw Scores 17.0±1.651 45.0±6.846 -21.0±0.000 744.0±76.957 3180.0±711.027
Blurring Raw Scores 18.0±3.405 190.0±33.015 -21.0±0.000 820.0±72.013 3880.0±329.484
Rotation Raw Scores 2.0±1.264 190.0± 27.203 -20.6±0.209 873.0±201.866 3150.0±482.959
Shifting Raw Scores 13.0±1.449 70.0±20.248 -21.0±0.000 988.0± 89.057 3560.0± 437.538
Compression Artifacts Raw Scores 17.0±3.478 60.0±18.439 -19.4±0.428 2589.0±389.679 3980.0±593.936
Perspective Transform Raw Scores 1.0±0.948 75.0±12.649 -20.9±0.126 486.0±29.127 3550.0±435.028

Brightness&Contrast [α, β] [1.2,40] [0.9,20] [1.7,40] [2.4,-275] [2.4,-260]
Blurring Kernel Size 5 3 3 5 5
Rotation Degree 1.4 1.6 3 1.8 5
Shifting [ti, tj] [1,1] [0,1] [2,1] [1,2] [2,2]
Perspective Transform Norm 1 1 3 2 3

& Wagner (2017) formulation. In Pong the impact is comparable and the perceptual similarity
distance is lower by a factor of 6.

Shifting: We included several plausible geometric transformations in our natural perturbation
framework, the first of which is shifting. In more detail, shifting an image moves the elements
of the image matrix along any dimension by any number of elements. For this modification we shift
the inputs in the x or y direction with as few pixels shifted as possible. We use [ti, tj] to denote
the distance shifted, where ti is in the direction of x and tj is in the direction of y. In Table 1 we
show the impact values and perceptual similarity distances for both Carlini & Wagner (2017) and
shifting with corresponding [ti, tj] values. For all of the games shifting yields higher impact and
lower perceptual similarity distance.

Compression Artifacts: With this natural perturbation component we look at JPEG compression
artifacts caused by the discrete cosine transform (DCT) resulting in the loss of high frequency com-
ponents (ringing and blocking). In Table 1 we show the impact values and perceptual similarities of
Carlini & Wagner (2017) and compression artifacts (CA). Only in Pong and Riverraid do we observe
a lower impact than Carlini & Wagner (2017) while the perceptual similarity distance is significantly
smaller for compression artifacts. While in TimePilot the perceptual similarity distance is higher, in
the rest of the games compression artifacts result in higher impact and lower perceptual similarity
distance compared to Carlini & Wagner (2017).

Perspective Transformation: The final component of our proposed natural perturbation framework
is perspective transformation. Given four points in the plane defining a convex quadrangle, there is
a unique perspective transformation mapping the corners of the square to these four points5. We
define the norm of a perspective transformation as the maximum distance that one of the corners
of the square moves under this mapping. Note that for most of the games the perspective norm is
small (see Table 1). Hence, the changes caused by the perspective transform are imperceptible (e.g.
fourth column of Figure 1). Furthermore, for all the games we observe perspective transformation
yields higher impact and lower perceptual similarity distance than the Carlini & Wagner (2017)
formulation.

5See Supplementary Material for details
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Figure 2: Performance drop of adversarially trained deep reinforcement learning policy and vanilla
trained deep reinforcement learning policy under the changes in rotation, compression artifacts, and
contrast.

4 ADVERSARIAL TRAINING UNDER NATURAL CORRUPTIONS

In this section we investigate state-of-the-art adversarially trained deep reinforcement learning poli-
cies within our proposed natural perturbation framework. In particular, we test State Adversarial
Double Deep Q-Network, a state-of-the-art algorithm (see Section 2.3). In this paper the authors
propose using what they call a state-adversarial MDP to model adversarial attacks in deep reinforce-
ment learning. Based on this model they develop methods to regularize Double Deep Q-Network
policies to be more robust to adversarial attacks. In more detail, letting B(s) be the `p-norm ball of
radius ε, this regularization is achieved by adding,

R(θ) = max{ max
ŝ∈B(s)

max
a 6=a∗(s)

Qθ(ŝ, a)−Qθ(ŝ, a∗(s)),−c}. (5)

to the temporal difference loss used in standard DQN. In particular, for a sample of the form
(s, a, r, s′) the loss is

L(θ) = LH

(
r + γmax

a′
Qtarget(s′, a′)−Qθ(s, a)

)
+R(θ) (6)

where LH is the Huber loss.

Figure 3: Performance drop
of adversarially trained model
and vanilla trained model to the
changes in brightness.

Table 2 shows the impact values of the components of our pro-
posed framework for the vanilla trained agent and the adversar-
ially trained agent. We find that while the adversarially trained
model gains robustness against blurring, no additional robustness
is gained against any other component of the framework under
adversarial training. Furthermore, in Figure 2 and Figure 3 we
show the effect of varying the degrees for rotation, α for contrast,
β for brightness, and jpeg quality κ for compression artifacts. We
find that, as these parameters are varied, the vanilla trained agent
is more robust than the adversarially trained one. For example,
modifying brightness with β in the range 3.1 to 20.0 causes im-
pact close to 1.0 (i.e. total failure) for the adversarially trained
policy, but has negligible impact on the vanilla trained policy. Thus, not only does our proposed
framework capture semantically meaningful perturbations that are not captured by adversarial ro-
bustness, but additionally adversarial training actively harms robustness to some of the natural per-
turbations from our proposed framework.

The results in Figure 2 and Figure 3 demonstrate that, across a wide range of parameters, adver-
sarially trained neural policies are less robust to natural perturbations than vanilla trained policies.
This occurs despite the fact that the central purpose of adversarial training is to increase robustness
to imperceptible perturbations, where imperceptibility is measured by `p-norm. Our results indicate
that an increase in robustness to `p-norm bounded perturbations can come at the cost of a loss in
robustness to other natural types of imperceptible corruptions. These results call into question the
use of adversarial training for the creation of robust deep reinforcement learning policies, and in
particular the use of `p-norm bounds as a metric of imperceptibility.

The fact that deep reinforcement learning policies are being widely deployed in many different do-
mains: self-driving automobiles Dosovitsky et al. (2017); Wolf et al. (2017), drug design Pereira
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Table 2: Impacts of adversarially and vanilla trained policies with natural perturbation framework:
brightness &contrast, blurring, rotation, shifting, compression artifacts and perspective transform.

Environment BankHeist BankHeist Pong Pong
Training Method Adversarially Trained Vanilla Trained Vanilla Trained Adversarially Trained

Brightness&Contrast (I) 0.881±0.010 0.971±0.030 0.996±0.009 1.0±0.000
Compression Artifacts (I) 0.960±0.0014 0.984±0.013 0.962±0.032 1.0±0.000
Perspective Transform (I) 1.0±0.000 1.0±0.003 0.996±0.009 0.992±0.0034
Blurring (I) 0.003±0.002 0.983±0.009 1.0±0.000 0.805±0.123
Rotation (I) 1.0±0.000 1.0±0.004 0.99±0.015 1.0±0.000
Shifting (I) 1.0±0.000 0.989±0.005 1.0±0.000 1.0±0.000

et al. (2021); Popova et al. (2018), autonomous aerial vehicles Zhang et al. (2020), medical diagno-
sis and treatment Thananjeyan et al. (2017); Yauney & Pratik (2018), natural language processing
He et al. (2016); Jaques et al. (2017), and industrial control and security Wang et al. (2019); Duan
et al. (2020), brings the term “robustness” into question. The decrease in resilience to overall distri-
butional shift that “certified robust” adversarial training methods encounter demonstrates the need
for further investigation into how robustness should be defined.

5 PERTURBATIONS IN THE FOURIER DOMAIN

In this section we provide frequency analysis of our proposed framework and state-of-the-art ad-
versarial formulations. The purpose of this analysis is to provide quantitative evidence that natural
perturbations cover a broader concept of robustness than adversarial perturbations alone. In par-
ticular, we demonstrate that each natural perturbation has distinctly different effects in the Fourier
spectrum, both from other natural corruptions and from adversarial perturbations. Furthermore, we
quantify these effects by measuring, for each type of perturbation, the change in total Fourier energy
at each spatial frequency level. Aside from outlining our methodology, Section 5 serves the pur-
pose of explaining results obtained in Section 4. In particular, training techniques (e.g. adversarial
training) solely focusing on building robustness towards high spatial frequency corruptions become
more vulnerable towards corruptions in different band of the spectrum.

Figure 4: Rows: F(s) for BankHeist, F(s) for Riverraid. Columns: unperturbed state, Carlini &
Wagner, brightness and contrast, blurring, rotation, shifting, perspective transformation, compres-
sion artifacts.

In Figure 4 we show the Fourier spectrum of the original state s and the perturbed states sadv from
our proposed framework based on natural perturbations and Carlini & Wagner (2017) formulated
perturbations. In these spectrums the magnitude of the spatial frequencies increases by moving out-
ward from the center, and the center of the image represents the Fourier basis function where spatial
frequencies are zero. We provide more detailed description of F(s) in Section 2.1. To investigate
which type of perturbations occupy which band in the Fourier domain we compute total energy E(f)
for all basis functions whose maximum spatial frequency is f . Hence, Figure 5 shows the power
spectral density of the original state compared to perturbed states computed via components from
our proposed natural perturbation framework and Carlini & Wagner (2017). Figure 5 demonstrates
that each component from our natural perturbation framework occupies different bands in the Fourier
domain. In particular, in Figure 5 we observe that while the Carlini & Wagner (2017) formulation
increases the magnitude of the higher frequencies, compression artifacts decrease the magnitude of
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the high frequency band. On the other hand, brightness and contrast decreases the magnitude of
the low frequency band, and shifting increases the mid-band. Blurring decreases the mid-band and
high frequencies together, and perspective transformation decreases the low frequencies and high
frequencies while increasing the mid-band.

Figure 5 shows that our proposed framework indeed captures a broader set of directions in the
frequency domain. Thus, capturing the susceptibilities towards perturbations in different bands of
the frequency domain represents a wider notion of robustness compared to only focusing on worst-
case distributional shifts.

Figure 5: Riverraid total energy E(f) spectrum with various perturbations: Carlini & Wagner, com-
pression artifacts, brightness and contrast, perspective transformation, shifting, rotation.

Experimental Details: In our experiments the vanilla trained deep neural policies are trained with
Double Deep Q- Network Wang et al. (2016) and the adversarially trained deep neural policy is
trained via the theoretically justified State-Adversarial MDP modelled State-Adversarial Double
Deep Q-Network (SA-DDQN) (see Section 2.3) in the OpenAI Gym Brockman et al. (2016) Arcade
Learning Environment Bellemare et al. (2013). We evaluate several trained policies from Arcade
Learning Environment with our proposed framework averaged over 10 episodes. In all of our tables
and figures we include the means and the standard error of the mean values. See more details in the
appendix.

6 CONCLUSION

In this paper we studied a realistic threat model based on basic environmental changes and pro-
posed a framework to asses the generalization capabilities of deep reinforcement learning policies.
We compared our natural perturbation framework with the state-of-the-art adversarial attacks in the
Arcade Learning Environment (ALE). We questioned the imperceptibility notion of the `p-norm
bounded adversarial perturbations, and demonstrated that the states with minimal natural perturba-
tions are more perceptually similar to the unperturbed states compared to adversarial ones. More-
over, we demonstrated that our framework achieves higher impact on policy performance with lower
perceptual similarity distance without having access to the policy training details, real time access
to the agent’s memory and perception system, and computationally demanding adversarial formu-
lations to compute simultaneous perturbations. Furthermore, we showed that each component of
our framework contains distinct bands in the frequency domain, resulting in a better estimate of
the generalization capabilities of trained agents. Most importantly, we investigated state-of-the-art
adversarial training methods and found that vanilla trained policies are more robust than adversar-
ially trained policies to minimal natural perturbations. We think that the robustness of the trained
deep neural policies should be investigated in a more diverse spectrum and we believe our frame-
work can be instrumental towards generalization and robustification of deep reinforcement learning
algorithms.
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