
Published in Transactions on Machine Learning Research (06/2025)

Adaptive Resolution Residual Networks — Generalizing
Across Resolutions Easily and Efficiently

Léa Demeule
lea.demeule@mila.quebec
Mila - Quebec AI Institute, Université de Montréal

Mahtab Sandhu
mahtab.sandhu@mila.quebec
Mila - Quebec AI Institute, Université de Montréal

Glen Berseth
glen.berseth@mila.quebec
Mila - Quebec AI Institute, Université de Montréal, and CIFAR

Reviewed on OpenReview: https: // openreview. net/ forum? id= kTh5tFd1Mq

Abstract

The majority of signal data captured in the real world uses numerous sensors with different
resolutions. In practice, most deep learning architectures are fixed-resolution; they consider
a single resolution at training and inference time. This is convenient to implement but
fails to fully take advantage of the diverse signal data that exists. In contrast, other deep
learning architectures are adaptive-resolution; they directly allow various resolutions to be
processed at training and inference time. This provides computational adaptivity but either
sacrifices robustness or compatibility with mainstream layers, which hinders their use. In
this work, we introduce Adaptive Resolution Residual Networks (ARRNs) to surpass this
tradeoff. We construct ARRNs from Laplacian residuals, which serve as generic adaptive-
resolution adapters for fixed-resolution layers. We use smoothing filters within Laplacian
residuals to linearly separate input signals over a series of resolution steps. We can thereby
skip Laplacian residuals to cast high-resolution ARRNs into low-resolution ARRNs that are
computationally cheaper yet numerically identical over low-resolution signals. We guarantee
this result when Laplacian residuals are implemented with perfect smoothing kernels. We
complement this novel component with Laplacian dropout, which randomly omits Laplacian
residuals during training. This regularizes for robustness to a distribution of lower resolu-
tions. This also regularizes for numerical errors that may occur when Laplacian residuals
are implemented with approximate smoothing kernels. We provide a solid grounding for the
advantageous properties of ARRNs through a theoretical analysis based on neural operators,
and empirically show that ARRNs embrace the challenge posed by diverse resolutions with
computational adaptivity, robustness, and compatibility with mainstream layers.

Efficient problem-solving strategies typically allocate effort according to difficulty. Efficient deep learning
architectures may therefore be created by incorporating a form of computational adaptivity that is con-
scientious of the difficulty of individual data points. The case of tasks involving image data, audio data,
volumetric data, or any other form of signal data is uniquely positioned to benefit from such an approach.
Signals have no universal resolution; there is, instead, a diversity of resolutions that are contingent on the
sensors used at the time of capture; there is, therefore, a concrete opportunity for impact given the varying
difficulty of individual data points across common data modalities. Signals also conform to a mathematical
structure that is well understood, which enables the implementation of inductive biases that can aid in finely
quantifying and decomposing this notion of difficulty within an architecture.

1

https://openreview.net/forum?id=kTh5tFd1Mq

Published in Transactions on Machine Learning Research (06/2025)

To this end, we propose Adaptive Resolution Residual Networks (ARRNs), a novel architecture for tasks
involving signal data that addresses a gap in the capabilities of prior methods, which either lack computational
adaptivity, lack robustness, or lack compatibility with mainstream layers. We begin by outlining a typology
of existing methods. We identify three categories: fixed-resolution; adaptive-resolution through variable
sampling window; adaptive-resolution through variable sampling density.

Fixed-resolution. In the case of transformer architectures and certain other architectures, resolution is a
property that must remain fixed for evaluation to be possible, although signals of different resolutions can
be interpolated to the resolution of the architecture to allow evaluation. This solution is sufficient for certain
applications. This solution is however incapable of delivering computational adaptivity in the sense that it
cannot reduce its computational cost at lower resolutions. We thus find this approach unsatisfactory for our
purpose.

Adaptive-resolution through variable sampling window. In the case of fully convolutional architec-
tures and a range of other architectures, resolution is a property that can be adapted at evaluation. This
solution achieves computational adaptivity through translation equivariant layers or permutation equivariant
layers that can conform to arbitrary resolutions. This solution more formally adapts its resolution by varying
its sampling window rather than its sampling density, which is a critically important consideration for robust-
ness. These two means of varying resolution are not equivalent: varying the sampling window is analogous
to resizing the frame delineating a painting to offer a larger or smaller field of view into the scene; varying
the sampling density is analogous to changing the quantity and size of brush strokes that make a painting
to convey the scene in a finer or coarser degree of detail. We illustrate this distinction in Figure 10 and
Figure 11. In the context of natural images, the sampling window tends to be consistent, as camera systems
have similar optics; the sampling density is however subject to vary significantly, as camera systems have
sensors that range widely in resolution. This hints at a mismatch between the nature of resolution changes
within mainstream architectures and within natural image datasets. In certain applications, it is possible
for architectures with an adaptive sampling window to learn some degree of invariance to sampling density,
which can attenuate this mismatch. In Figure 1, however, we demonstrate the adaptive sampling window of
mainstream architectures can be inappropriate for handling even mild distribution shifts between training
resolution and inference resolution in the case of natural images. The training resolution of each architecture
is set to be the maximal resolution of each dataset. The inference resolution of each architecture is then
swept across a range of lower resolutions, evaluating directly at that resolution. Further experimental details
are given in section 4. We observe a regression to near-random accuracy by the point inference resolution is
halved relative to training resolution, highlighting the lack of robustness of this approach.

Figure 1: Accuracy of mainstream architectures at various resolutions after training at the full dataset
resolution. Evaluation is performed directly at the inference resolution.

In Figure 2, we show these architectures display much greater robustness across various resolutions when
evaluating after an interpolation step that ensures the inference resolution matches the training resolution.
This effectively holds constant the sampling window while accounting for the change in resolution by varying
the sampling density, which addresses exactly the discrepancy we have described in the case of natural
images. This has the shortcoming of negating any computational benefit that would be gained by performing
inference at a lower resolution, as it amounts to treating the architectures as fixed-resolution. We cannot
find a satisfying solution to our problem through this approach, as it trades away computational adaptivity
for robustness.

2

Published in Transactions on Machine Learning Research (06/2025)

Figure 2: Accuracy of mainstream architectures at various resolutions after training at the full dataset
resolution. Evaluation is performed after interpolation to the training resolution.

Adaptive-resolution through variable sampling density. We wish to obtain both computational
adaptivity and robustness, therefore we must find a way to vary the sampling density of an architecture
directly. We effectively dedicate our contribution to solving this problem elegantly. We first overview prior
methods that achieve both computational adaptivity and robustness, but which all lack compatibility with
mainstream layers (section 1). We provide an overview of the fundamental notions of signal processing that
allow our work to be formulated and thoroughly define our notation (subsection A.1). We introduce Lapla-
cian pyramids as a stepping stone towards our contribution (section 2). We introduce Laplacian residuals
and show that high-resolution ARRNs can be turned into low-resolution ARRNs that are computationally
cheaper by simply skipping Laplacian residuals (subsection 3.1). We prove that skipping Laplacian residuals
yields numerically identical results compared to using all Laplacian residuals when the input signal has a
low-resolution and when Laplacian residuals are implemented using perfect smoothing kernels. We formulate
Laplacian dropout as a training augmentation that randomly omits Laplacian residuals (subsection 3.2). We
theoretically motivate its usefulness as a regularizer for low-resolution robustness and as an error correction
mechanism for Laplacian residuals implemented using approximate smoothing kernels. We perform a set of
experiments showing (subsection 4.1) that our method yields stronger robustness at lower resolutions com-
pared to mainstream methods; (subsection 4.2) that our method enables significant computational savings
through adaptation; (subsection 4.3) that our method is capable of generalizing across layer types in a way
that far surpasses prior adaptive-resolution architectures with variable sampling density; (subsection 4.4)
that our theoretical guarantee for adaptation using perfect smoothing kernels holds empirically; (subsec-
tion 4.5) that our theoretical interpretation of the dual regularizing effect of Laplacian dropout also holds
empirically.

1 Related Works

We review related works that allow the formulation of adaptive-resolution architectures with varying sampling
density. We also survey other related works that bear some similarity to Laplacian residuals in section A.2.

Adaptive-resolution through variable sampling density with neural operators. We begin our
search for means of varying the sampling density of whole architectures by first considering a single con-
volutional layer. We can see that varying the sampling density of the layer implies changing the sampling
density of the kernel itself while preserving the role it plays as a feature extractor. A useful tool to this
end is functional analysis; we can think of the kernel as a discrete function k[·]n : Xn → Rfl+1×fl defined
over a discrete coordinate space Xn ⊂ Rd; we can imagine that it that holds a finite number of samples
|Xn| of an underlying continuous function k(·) : X → Rfl+1×fl defined over a continuous coordinate space
X ⊂ Rd where Xn ⊂ X; we can then make some assumptions about the space of functions we are working
with to allow interpolation into an equivalent discrete function k[·]u : Xu → Rfl+1×fl that more finely
(|Xu| > |Xn|) or coarsely (|Xu| < |Xn|) covers the same continuous coordinate space; we can thus cast
the layer from its original sampling density |Xn|/area(X) to a new sampling density |Xu|/area(X). A next
logical step is to conceptualize every layer that composes an architecture as an operator that expresses a map
between inputs and outputs that are functions; we gain the ability to adapt the sampling density of the entire
architecture if we ensure every layer can be converted between a discrete operator form and a continuous
operator form (Bartolucci et al., 2023); we dedicate part of our appendix to a more formal definition of

3

Published in Transactions on Machine Learning Research (06/2025)

this constraint (subsection A.1, Equation 36). This is the approach favored by neural operator methods
Li et al. (2021); Kovachki et al. (2023); Fanaskov & Oseledets (2023). This approach provides the ability
to vary sampling density and sampling window independently. This approach comes with an important
drawback however: compatibility with mainstream layers is lost as the conversion between operator forms
cannot be achieved without substantial alterations to typical layers (Bartolucci et al., 2023), which presents
a significant barrier to more widespread adoption. In contrast, our approach follows the general paradigm of
neural operators, but it entirely absorbs the conversion constraints within the fixed structure of Laplacian
residuals, which provides compatibility with mainstream layers; our approach also skips layers as it reduces
its sampling density, which enhances computational adaptivity.

Adaptive-resolution through variable sampling density with implicit neural representations.
We can derive architectures with variable sampling density by leveraging an alternate representation of
functions. While we can explicitly represent the input or output of layers as functions s(·) : X → Rf

through a set of samples {(xi, s(xi))|xi ∈ Xn} that is tied to a discrete coordinate space Xn ⊂ X, we can
instead implicitly represent functions s(·) through a parameter θ that is attached to a neural representation
n(· , θ) ≈ s(·) which approximates the function over the entire continuous coordinate space X. This later
approach is at the core of implicit neural representation methods Park et al. (2019); Mescheder et al. (2019);
Sitzmann et al. (2020); Mildenhall et al. (2021); Chen et al. (2021); Yang et al. (2021); Lee & Jin (2022);
Xu et al. (2022). Some of these methods directly leverage this scheme to reconstruct and render partially
observed volumetric data, image data and light field data with great success (Park et al., 2019; Mescheder
et al., 2019; Sitzmann et al., 2020; Mildenhall et al., 2021). Some of these methods expand on this scheme by
splitting the parameter θ into a fixed part ϑ that is shared across all data points, and a latent part z that is
specific to individual data points, which enables forming more complex and reusable representations (Chen
et al., 2021; Lee & Jin, 2022; Yang et al., 2021). This approach faces limited usefulness in the context of
classification tasks, segmentation tasks, and diffusion tasks. This shortfall comes from a lack of compatibility
with mainstream layers, and more broadly from a set of challenges that arise when mapping between implicit
representations n(· , ϑ, zl) 7→ n(· , ϑ, zl+1) directly through the latent space zl 7→ zl+1, as such maps cannot
easily preserve the symmetries of signals. This even renders difficult the implementation of convolutional
layers (Xu et al., 2022) since there is a priori no simple relationship between the latent embedding zl of a
signal n(· , ϑ, zl) and the latent embedding zl+1 of the same signal convolved against a kernel kl; there is
within zl 7→ zl+1 a nonlinear constraint n(· , ϑ, zl+1) = n(· , ϑ, zl) ∗ kl that must be satisfied everywhere
over the continuous coordinate space X. In contrast, our method uses the most ubiquitous form of signal
representation, which straightforwardly enables compatibility with mainstream layers.

2 Background

In our overview of background material, we introduce Laplacian pyramids as a stepping stone for the formu-
lation of Laplacian residuals. In addition, we provide a discussion of signals in subsection A.1 that introduces
the notation and fundamental concepts behind this work in a way that aims for accessibility.

2.1 Laplacian pyramids

Laplacian pyramids (Burt & Adelson, 1987) closely relate to Laplacian residuals, and are often used in vision
techniques to decompose signals across a range of resolutions.

Laplacian pyramids take some signal s, and produce a series of lower and lower bandwidth signals
plow

1 , . . . , plow
m+1 by convolving against a sequence of smoothing kernels ϕ1, . . . , ϕm+1. Laplacian pyramids

then generate difference signals pdiff
1 , . . . , pdiff

m that isolate the part of the signal that was smoothed away at
each step, which intuitively correspond to a certain level of detail of the original signal. The operations that
compose a Laplacian pyramid can be captured by a base definition and two simple recursive definitions:

plow
1 = s ∗ ϕ1 ∈ S1 (1)
plow

n = plow
n−1 ∗ ϕn ∈ Sn = {s|s ∗ ϕn = s} (2)

pdiff
n = plow

n − plow
n+1 ∈ Dn = {d|d ∗ ϕn − d ∗ ϕn+1 = d} ⊂ Sn (3)

4

Published in Transactions on Machine Learning Research (06/2025)

In Figure 3, we summarize the recursive formulation of Laplacian pyramids in a three-block pyramid; this is
intended to allow easy comparison with the Laplacian residuals we later illustrate in Figure 4.

Laplacian Pyramid Block

× +

-1

Smooth Resample

plow
2 pdiff

1plow
1

Laplacian Pyramid Block

× +

-1

Smooth Resample

plow
3 pdiff

2plow
2

Laplacian Pyramid Block

× +

-1

Smooth Resample

plow
4 pdiff

3plow
3

plow
1 pdiff

1 pdiff
2 pdiff

3 plow
4

Figure 3: Visualization of three Laplacian pyramid blocks.

Laplacian pyramids are convenient to implement as each level reduces its computational cost relative to the
preceding one. Each level fits within a stricter and stricter bandwidth constraint S1 ⊃ · · · ⊃ Sm. Each level
therefore can be represented with a lower and lower sampling density |X1|/area(X) > · · · > |Xm|/area(X).
We illustrate this in Figure 3. We represent signals in this way both in Laplacian pyramids and Laplacian
residuals.

Laplacian pyramids enable reconstructing the original signal up to an arbitrary bandwidth Sn using only
the last lower bandwidth signal plow

m+1 and a variable number of difference signals pdiff
n , . . . , pdiff

m . We illustrate
this in the lower part of Figure 3. We express this as a linear decomposition more formally below:

plow
n︸ ︷︷ ︸

∀ ∈ Sn

= pdiff
n︸ ︷︷ ︸

∃! ∈ Dn

+ · · · + pdiff
m︸ ︷︷ ︸

∃! ∈ Dm

+ plow
m+1︸ ︷︷ ︸

∃! ∈ Sm+1︸ ︷︷ ︸
∃! ∈ Sm︸ ︷︷ ︸

∃! ∈ Sn

(4)

Laplacian pyramids offer adaptive-resolution with variable sampling window, since they rely entirely on
convolutions that are equivariant to translation.

Laplacian pyramids also offer adaptive-resolution with variable sampling density through computation skip-
ping. We can intuit this from Figure 3; if we were to start with an 8 × 8 image of the bird, it would
appear reasonable to skip the 16 × 16 level of the Laplacian pyramid. We can deduce this is formally cor-
rect from Equation 4. We observe that any discrete signal s[·]u that is correctly sampled must respect
the bandwidth constraint Su associated with its sampling pattern Xu. We can therefore locate the band-
width constraint of the signal relative to the bandwidth constraint of each level of the Laplacian pyramid —
S1 ⊃ · · · ⊃ Sn ⊇ Su ⊃ · · · ⊃ Sm — thus revealing the level of the Laplacian pyramid plow

n that fully captures
the signal. We know that all prior difference signals pdiff

1 , . . . , pdiff
n−1 must be zero in this case. We can ignore

the computation of earlier levels of the Laplacian pyramid and start the computation immediately at pdiff
n ,

5

Published in Transactions on Machine Learning Research (06/2025)

thus enabling computational adaptivity. We explicitly write the chain of zero terms that unravels in this
scenario to later aid in understanding the case of Laplacian residuals, which is more complex:

plow
1 = s ∗ ϕ1

= s
=⇒

plow
2 = plow

1 ∗ ϕ2

= s

pdiff
1 = plow

1 − plow
2

= 0

=⇒ · · · =⇒

plow
n = plow

n−1 ∗ ϕn

= s

pdiff
n−1 = plow

n−1 − plow
n

= 0

(5)

Laplacian pyramids are typically formulated using Gaussian smoothing kernels, which violate Equation 35
and introduce errors in the sampling process. We require perfect Whittaker-Shannon smoothing kernels for
the computation skipping property we show in Laplacian pyramids above and in Laplacian residuals later
in subsection 3.1 to hold exactly. We note that the form of decomposition yielded by Laplacian pyramids
built using Shannon-Whittaker smoothing kernels is equivalent to the decompositions yielded by Shannon
wavelets.

3 Method

In this section, we build towards Laplacian residuals (subsection 3.1), which are designed to allow the
construction of adaptive-resolution architectures from fixed-resolution layers, and Laplacian dropout (sub-
section 3.2), which both serves as a regularizer for robustness at lower resolutions, and a regularizer for
error-correction when imperfect smoothing kernels are used.

3.1 Laplacian residuals for adaptive-resolution deep learning

Laplacian residuals are alike to Laplacian pyramids in the way they decompose a signal into lower and lower
bandwidth signals using smoothing filters, and in the way they are able to operate at lower resolution by
simply skipping computations. However, Laplacian residuals crucially differ in their ability to incorporate
neural architectural blocks that enable deep learning.

In Figure 4, we summarize the formulation of Laplacian residuals in a diagram that illustrates a chain of
three Laplacian residuals, which allows easy comparison with the Laplacian pyramid shown in Figure 3.

Laplacian residuals are formulated as adaptive-resolution layers with variable sampling density rn : (X →
Rfn) ∈ Sn → (X → Rfn+1) ∈ Sn+1 that incorporate neural architectural blocks bn : (Xn → Rfn) → (Xn →
Rfn) that may be fixed-resolution layers or adaptive-resolution layers with a variable sampling window. In
the later case, Laplacian residuals also inherit adaptive-resolution with a variable sampling window.

Laplacian residuals are compatible with any neural architectural block bn so long as it produces a constant
everywhere when its input is zero everywhere (Equation 6), which is trivially the case for linear layers,
activation layers, convolutional layers, batch normalization layers, some transformer layers, and for any
composition of layers that individually meet this condition. This wide compatibility with mainstream layers
is unseen in prior adaptive-resolution architectures with variable sampling density.

bn{0} = a where a ∈ Rfn (6)

Each Laplacian residual block rn incorporates a single Laplacian pyramid block that is applied on the result
of the preceding Laplacian residual rn−1:

plow
n {rn−1} = rn−1 ∗ ϕn ∈ Sn (7)
pdiff

n {rn−1} = plow
n {rn−1} − plow

n+1{rn−1} ∈ Dn ⊂ Sn (8)

The value of the zeroth Laplacian residual is taken to be a linear projection A0 : Rf1×f0 that raises the
feature dimensionality from f0 ∈ N+ to f1 ∈ N+ before the first neural architectural block:

r0 = A0s (9)

6

Published in Transactions on Machine Learning Research (06/2025)

Laplacian Residual Block

+Inner Architectural
Block

~Bernoulli(1 - Dropout)

+

-1

× ×
Smooth

Linear

p { }low
2 r 0 p { }diff

1 r 0r 0

d 1
indep d 1

chain

r 1

A1

ResampleConstant

Laplacian Residual Block

Constant
+Inner Architectural

BlockSmooth

+

~Bernoulli(1 - Dropout)

+

-1

× × Linear

r 1

d 1
chain d 2

indep d 2
chain

r 2

A2

p { }low
3 r 1 p { }diff

2 r 1

Resample

Laplacian Residual Block

+Inner Architectural
BlockSmooth

+

~Bernoulli(1 - Dropout)

+

-1

× × Linear

r 2

d 2
chain d 3

indep d 3
chain

r 3

A3

p { }low
4 r 2 p { }diff

3 r 2

ResampleConstant

Figure 4: Visualization of a chain of three Laplacian residual blocks.

The value of each subsequent Laplacian residual is obtained by applying a neural architectural block bn on
the difference signal pdiff

n {rn−1}, by summing the lower bandwidth signal plow
n+1{rn−1}, and by applying some

some additional processing, which we define below and motivate more concretely next:

rn{rn−1} = An

(
bn{pdiff

n {rn−1}} ∗ ψ ∗ ϕn+1 + plow
n+1{rn−1}

)
∈ Sn+1 (10)

We include a constant rejection kernel ψ in Equation 10 to replicate the same computation skipping behaviour
seen in Laplacian pyramids. This effectively subtracts the mean and ensures the neural architectural block bn

contributes zero to the residual signal rn if the difference signal pdiff
n {rn−1} is zero, as shown in Equation 11.

We obtain this result thanks to the constraint set on the neural architectural block bn in Equation 6:

bn{0} ∗ ψ = 0 (11)

We include a smoothing kernel ϕn+1 in Equation 10 to ensure the output bandwidth of rn coincides with
the input bandwidth of rn+1, which is necessary for Laplacian residuals to follow the same general structure
as Laplacian pyramids.

We also incorporate a projection matrix An : Rfn+1×fn in Equation 10 to allow raising the feature dimen-
sionality from fn ∈ N+ to fn+1 ∈ N+ at the end of each Laplacian residual, so that more capacity can be
allocated to later Laplacian residuals.

We note that the neural architectural block bn{ · } in Equation 10 is written in shorthand, and stands for the
more terse expression In{bn{Sn{ · }}}. This is a formal trick that enables our analysis by casting the neural
architectural block from an operator on discrete signals (Xn → Rfn) → (Xn → Rfn) to an operator on
continuous signals (X → Rfn) ∈ Sn → (X → Rfn) ∈ Sn that is equivalent in the sense of Equation 36. This
does not directly reflect the implementation of the method, as all linear operators are analytically composed
then cast to their discrete form to maximize computational efficiency.

We add that we can alter the formulation of Equation 10 to let the neural architectural block perform
a parameterized downsampling operation (Xn → Rfn) → (Xn+1 → Rfn) by changing the interpolation
operator discussed above from In : (Xn → Rfn) → (X → Rfn) ∈ Sn to In+1 : (Xn+1 → Rfn) → (X →
Rfn) ∈ Sn+1 and by dropping the smoothing kernel ϕn+1 from Equation 10.

7

Published in Transactions on Machine Learning Research (06/2025)

Adaptation to lower resolution signals with perfect smoothing kernels. We guarantee that evalu-
ating ARRNs while skipping Laplacian residuals is exactly identical to evaluating ARRNs while performing
the interpolation step typically used to provide adaptive-resolution capability to fixed-resolution architec-
tures. We specifically require the use of perfect smoothing kernels for this to hold. This guarantee provides
strong theoretical backing to the validity of our method, and is also supported by empirical evidence in
subsection 4.4.

We prove this property following the same argument leveraged to show computational adaptivity in the case
of Laplacian pyramids. We are given a discrete signal s[·]u that respects the bandwidth constraint Su

implied by its sampling pattern Xu. We know that this bandwidth constraint can be located relative to
the bandwidth constraints of the Laplacian residuals — S1 ⊃ · · · ⊃ Sn ⊇ Su ⊃ · · · ⊃ Sm — however we
cannot immediately jump to claiming pdiff

1 , . . . , pdiff
n−1 must be zero because of the nonlinear effect of the inner

architectural blocks bn, . . . , bn−1. We must instead follow the terser process hinted at in Equation 5 with
Laplacian pyramids and explicitly unroll the chain. We can see that the membership of s to the bandwidth
constraints Su ⊆ Sn ⊂ · · · ⊂ S1 tells us s is left unchanged by all of their smoothing filters. We can thus
unroll the chain of Laplacian residuals while leveraging that s = s ∗ ϕu = s ∗ ϕn = · · · = s ∗ ϕ1 and that
bn{0} ∗ ψ = 0 to arrive at our desired result:

r0 = A0s (12)
plow

1 {r0} = r0 ∗ ϕ1 (13)
= A0s (14)

plow
2 {r0} = r0 ∗ ϕ2 (15)

= A0s (16)
pdiff

1 {r0} = plow
1 {r0} − plow

2 {r0} (17)
= 0 (18)

r1{r0} = A1

(
b1{pdiff

1 {r0}} ∗ ψ ∗ ϕ2 + plow
2 {r0}

)
(19)

= A1A0s (20)
...

plow
n {rn−2} = rn−2 ∗ ϕn (21)

= An−2 · · · A0s (22)
pdiff

n−1{rn−2} = plow
n−1{rn−2} − plow

n {rn−2} (23)
= 0 (24)

rn−1{rn−2} = An−1

(
bn−1{pdiff

n−1{rn−2}} ∗ ψ ∗ ϕn + plow
n {rn−2}

)
(25)

= An−1 · · · A0s (26)

We can therefore evaluate a chain of Laplacian residuals at a lower sampling density by skipping higher sam-
pling density Laplacian residuals r1, . . . , rn−1 and instead starting the computation at rn while carrying over
the linear projection An−1 · · · A0. This provides adaptive-resolution with variable sampling density through
computational adaptivity — without compromise in robustness — and without compromise in compatibility
with mainstream layers.

We can use this result to precisely state the equivalence between evaluation using all Laplacian residuals after
interpolation (Equation 27) and evaluation using the strictly necessary Laplacian residuals (Equation 28):

Sm{rm{ · · · r0{S0{Iu{s[·]u}}} · · · }} (27)
= Sm{rm{ · · · rn{An−1 · · · A0Sn{Iu{s[·]u}}} · · · }} (28)

8

Published in Transactions on Machine Learning Research (06/2025)

Adaptation to lower resolution signals with approximate smoothing kernels. We show that
using approximate smoothing kernels causes some numerical perturbation when skipping the computation
of higher sampling density Laplacian residuals. This observation motivates the use of Laplacian dropout, a
training augmentation we later introduce in subsection 3.2 that addresses this limitation while also improving
robustness.

When using approximate smoothing kernels φn ≈ ϕn , the guarantee we provide does not hold exactly. We
consider the case case where ϕn would leave a signal s unchanged, and note that φn would disturb the signal
s by a small error signal ϵn:

s ∈ Sn =⇒ s ∗ ϕn = s =⇒ s ∗ φn = s+ s ∗ (φn − ϕn)︸ ︷︷ ︸
ϵn

(29)

We note the error above would cascade through every intermediate zero term that leads to Equation 26,
therefore discarding unnecessary Laplacian residuals (Equation 28) would not be exactly equivalent to re-
taining all Laplacian residuals (Equation 27). We observe this is not simply constrained to a linear effect,
as ϵ1 will for instance affect b1, which has nonlinear behavior.

3.2 Laplacian dropout for effective generalization

In this section, we introduce Laplacian dropout, a training augmentation that is specially tailored to improve
the performance of our method at effectively no computational cost.

We formulate Laplacian dropout by following the intuition that Laplacian residuals can be randomly disabled
during training to improve generalization. We only allow disabling consecutive Laplacian residuals (using
the logical or operator) to ensure that Laplacian dropout does not cut intermediate information flow:

dindep
n ∼ B(1 − drate

n) (30)
dchain

n = dindep
n ⊕ dchain

n−1 (31)
pdiff

n {rn−1} = dchain
n (plow

n {rn−1} − plow
n+1{rn−1}) (32)

Next, we provide a theoretical interpretation that identifies two distinct purposes that Laplacian dropout
fulfills in our method. We see this dual utility as a highly desirable feature of Laplacian dropout.

Regularization of robustness at lower resolution. Since Laplacian dropout truncates Laplacian resid-
uals in the same way they are truncated when adapted to lower sampling densities, Laplacian dropout is
identical to randomly lowering sampling density when using perfect smoothing kernels. This acts as a train-
ing augmentation that promotes robustness over a distribution of lower resolutions. We perform a set of
classification tasks in subsection 4.1 that show this regularizing effect sometimes doubling accuracy over
certain lower resolutions without adversely affecting accuracy at the highest resolutions.

Regularization of errors introduced by approximate smoothing kernels. Since Laplacian dropout
truncates Laplacian residuals in the same way they are truncated when adapted to lower sampling densities,
Laplacian dropout exactly replicates numerical errors produced by approximate smoothing kernels in Equa-
tion 29. This allows learning a form of error compensation that offsets the effect of approximate smoothing
kernels. We demonstrate in subsection 4.5 that this allows the use of very coarsely approximated smoothing
kernels that otherwise impart a significant performance penalty on our method.

4 Experiments

We present a set of experiments that demonstrate our method’s robustness across resolutions, its computa-
tional adaptivity, and its compatibility with mainstream layers. We show (subsection 4.1) that our method
is highly robust across diverse resolutions; (subsection 4.2) that adaptation provides our method with a
significant computational advantage; (subsection 4.3) that our method can generalize across layer types in
a way that exceeds the capabilities of prior adaptive-resolution architectures with variable sampling density;

9

Published in Transactions on Machine Learning Research (06/2025)

(subsection 4.4) that our theoretical guarantee for adaptation to lower resolutions with perfect smoothing
kernels holds empirically; and (subsection 4.5) that our theoretical interpretation of the dual regulariza-
tion effect of Laplacian dropout coincides with the behaviour we observe empirically when isolating the
effect of approximate smoothing kernels, which improves the robustness of our method through two distinct
mechanisms.

Experiment design. We compare models in terms of their robustness across resolutions, their computa-
tional scaling relative to resolution, and their ease of construction. We follow a typical use case where we
train each model at a single resolution and then evaluate over a range of resolutions. We consider the fluctu-
ation of accuracy and inference time over resolution as the metrics of interest for our discussion. We perform
a set of classification tasks that require models to effectively leverage the information of low-resolution to
medium-resolution images; CIFAR10 (32×32) (Krizhevsky et al., 2009), CIFAR100 (32×32) (Krizhevsky
et al., 2009), TinyImageNet (64 × 64) (Le & Yang, 2015) and STL10 (96 × 96) (Coates et al., 2011).

Model design and selection. For most of our experiments (subsection 4.1, subsection 4.2, subsection 4.4
and subsection 4.5), we construct ARRNs by using layers that take inspiration from MobileNetV2 (Sandler
et al., 2018) and EfficientNetV2 (Tan & Le, 2021); detailed design choices are documented in subsection A.3.
For the experiment that investigates generalization across layer types (subsection 4.3), we construct ARRNs
by transplanting layers that are found across a range of mainstream architectures that support adaptive-
resolution with variable sampling window but without variable sampling density: ResNet18, ResNet50,
ResNet101 (11.1M-42.5M) (He et al., 2016), WideResNet50V2, WideResNet101V2 (66.8M-124M)
(Zagoruyko & Komodakis, 2016), MobileNetV3Small, MobileNetV3Large(1.52M-4.21M) (Howard
et al., 2019). We splice the sequence of layers that composes each mainstream architecture at points where
resolution changes occur and nest each resulting subsequence of layers in a Laplacian residual with matching
resolution. We discard the first two Laplacian residuals for MobileNetV3, as the resolution of the tailing
Laplacian residuals otherwise becomes very small. For our choice of baseline methods, we consider main-
stream architectures that again support adaptive-resolution with variable sampling window but without
variable sampling density. We show they compromise robustness across diverse resolutions, yet they have
no substantial advantage in ease of implementation or compatibility with mainstream layers compared to
our method. We include all mainstream architectures discussed previously in this comparison, along with
EfficientNetV2S, EfficientNetV2M, EfficientNetV2L (20.2M-117.2M) (Tan & Le, 2021). For the ex-
periments that validate our theoretical analysis (subsection 4.4 and subsection 4.5), we perform an ablation
study over the quality of the smoothing kernel, the use of Laplacian dropout at training time, and the use
of adaptation at inference time.

Model training and evaluation. All models are trained for 100 epochs at the full dataset resolution with
identical hyperparameters that are described in subsection A.3. All models are then evaluated at the full
dataset resolution and at a range of lower resolutions that are generated by interpolation. We have showed
in our introduction that the mainstream architectures we cover display very weak robustness when evaluated
directly (meaning with computational adaptivity; Figure 1), and that they perform much more reliably when
evaluated after an interpolation step that ensures the sampling window is kept constant (meaning without
computational adaptivity; Figure 2). In the comparisons we make between baseline methods and our method
(subsection 4.1, subsection 4.2 and subsection 4.3), we display baseline methods evaluated with interpolation,
as it provides the fairest chance to compete against our method. In our appendix (subsection A.3), we show
a complimentary comparison that displays baseline methods evaluated directly, which is most interesting in
terms of inference time; our method displays more aggressive computational savings as resolution decreases.
We underline that all baseline methods share the same set of training runs across these figures; their parame-
ters are exactly identical; only their mode of evaluation changes. In terms of evaluating our method, we skip
unnecessary Laplacian residuals unless performing an ablation over adaptation. We note that in principle,
we should always round up the number of required Laplacian residuals for in-between resolutions; however,
we sometimes achieve greater robustness if we round down. This is the case with TinyImageNet and STL10
in subsection 4.1 and subsection 4.2, and with TinyImageNet in subsection 4.3. This effect likely results
from more consistent statistical properties encountered when only evaluating Laplacian residuals that have
full access to the part of the signal they usually address.

10

Published in Transactions on Machine Learning Research (06/2025)

4.1 Robustness and the effectiveness of Laplacian dropout

We demonstrate that our method allows for greater low-resolution robustness than mainstream methods with-
out compromise in high-resolution performance. Figure 5 shows four ablations of our method corresponding
to permutations of two sets: either with Laplacian dropout (red lines) or without Laplacian dropout (black
lines); and either with adaptation (solid lines) or without adaptation (dashed lines). We see that with
Laplacian dropout and with adaptation (full red lines), our method outperforms every baseline method
across every resolution and every dataset. We also find that, in contrast, without Laplacian dropout (black
lines), our method shows much weaker generalization across resolutions, clearly demonstrating Laplacian
dropout is effective as a regularizer for robustness to diverse resolutions.

Figure 5: Accuracy of all architectures at various resolutions after training at the full dataset resolution.
Evaluation is performed after interpolation to the training resolution in the case of mainstream methods.
Our method (red full line) displays the best accuracy at the highest resolution and robustly maintains its
accuracy at lower resolutions.

4.2 Computational efficiency

We confirm the advantage granted by computational adaptivity by performing inference time measurements
on the previous experiment. We use CUDA event timers and CUDA synchronization barriers around the
forward pass of the network to eliminate other sources of overhead, such as data loading, and sum these
time increments over all batches of the full dataset. We repeat this process 10 times and pick the median to
reduce the effect of outliers. Figure 6 shows the inference time of ARRNs with adaptation (full red lines) and
without adaptation (dashed red lines). Our method significantly reduces its computational cost (highlighted
by the shaded area) by skipping the evaluation of Laplacian residuals at lower resolutions. Our method also
has a reasonable inference time relative to well-engineered mainstream methods.

Figure 6: Inference time of all architectures at various resolutions. The inference time for the entire
dataset is considered. Evaluation is performed after interpolation to the training resolution in the case of
mainstream methods. Our method (red full line) can adapt to lower resolutions by skipping Laplacian
residuals, which results in significant computational savings (highlighted by the shaded area) compared to
using all Laplacian residuals (red dashed line). Our method also displays a reasonable inference time relative
to typical convolutional neural networks despite not having a highly optimized implementation.

11

Published in Transactions on Machine Learning Research (06/2025)

4.3 Generalization across layer types

We demonstrate the ease of use of our method and its compatibility with mainstream layers by
constructing adaptive-resolution architectures from a range of mainstream architectures (ResNet18,
ResNet50, ResNet101, WideResNet50V2, WideResNet101V2, MobileNetV3Small and Mo-
bileNetV3Large). Figure 7 compares the accuracy of architectures in adaptive-resolution form (red box
plots) and in mainstream form (green box plots). The distribution of accuracies of the seven underlying ar-
chitectures in the adaptive-resolution group and mainstream group is visually conveyed by drawing a small
box plot at every resolution. Our method consistently delivers better low-resolution performance, and simi-
lar or better high-resolution performance. Our method achieves this while generalizing beyond the abilities
of prior adaptive-resolution architectures with variable sampling density, which are incompatible with the
layers used in this experiment.

Figure 7: Accuracy of two groups of methods at various resolutions, where 7 adaptive-resolution architec-
tures (in red) are constructed by taking 7 mainstream architectures (in green) and wrapping their layers
in Laplacian residuals. Evaluation is performed after interpolation to the training resolution in the case of
mainstream architectures. Our method yields architectures that have stronger low-resolution performance,
and similar or better high-resolution performance, which demonstrates ease of use and compatibility with
mainstream layers.

4.4 Adaptation with perfect smoothing kernels

We perform an ablation study to verify our theoretical guarantee for numerically identical adaptation.
Figure 8 displays a set of experiments that use perfect quality Whittaker-Shannon smoothing kernels (in
the upper row of graphs in green) implemented through the Fast Fourier Transform (Cooley & Tukey, 1965).
We showcase the usual set of ablations within this group of experiments; with Laplacian dropout (bright green
lines) or without Laplacian dropout (dark green lines); with adaptation (full lines) or without adaptation
(dashed lines). Our method evaluates practically identically whether unnecessary Laplacian residuals are
discarded (with adaptation, full lines, Equation 28), or whether all Laplacian residuals are preserved (without
adaptation, dashed lines, Equation 27). The discrepancies are either exactly zero, or are small enough to
be attributed to the numerical limitations of floating point computation. The discrepancies are quantified
thoroughly in the tables overlaid over each plot. Our method is thus able to skip computations without
numerical compromise, as predicted by our theoretical guarantee.

4.5 Adaptation with approximate smoothing kernels and the dual effect of Laplacian dropout

We extend the previous ablation study to verify our theoretical analysis of the dual effect of Laplacian
dropout. Figure 8 introduces a set of experiments that relies on fair quality approximate Whittaker-Shanon
smoothing kernels (in the middle row of graphs in red), and on poor quality truncated Gaussian smoothing
kernels (in the bottom row of graphs in blue). Figure 9 displays these same results in the form of a decision
tree to help recognize the trends that are relevant to our discussion. This decision tree factors the impact of
choosing a specific filter quality, choosing whether to use Laplacian dropout or not, and choosing whether
to use adaptation or not. This analysis considers accuracy averaged over all resolutions and all datasets as
the metric of interest. The numerical values displayed on each node correspond to the average multiplicative

12

Published in Transactions on Machine Learning Research (06/2025)

Figure 8: Accuracy of ARRNs at various resolutions, where each ARRN is identical to the architecture used
in the main experiments aside from the choice of smoothing kernel. The smoothing kernels each correspond
to a different row of graphs and a different hue. The shaded area spanning pairs of curves highlights the
difference between the accuracy with adaptation and without adaptation. The overlaid tables display a
statistical breakdown of this discrepancy with Laplacian dropout and without Laplacian dropout.

Fi
lte

r
Q

ua
lit

y
Tr

ai
ni

ng
T

im
e

In
fe

re
nc

e
T

im
e

without Laplacian dropout
(error terms present)

×0.835

with Laplacian dropout
(error terms absent)

×1.165

with adaptation
(error terms absent)

×1.000

without adaptation
(error terms present)

×1.000

with adaptation
(error terms absent)

×1.000

without adaptation
(error terms present)

×1.000

Fourier
(Perfect)

×1.045

without Laplacian dropout
(error terms present)

×0.808

with Laplacian dropout
(error terms absent)

×1.192

with adaptation
(error terms absent)

×1.022

without adaptation
(error terms present)

×0.978

with adaptation
(error terms absent)

×0.954

without adaptation
(error terms present)

×1.046

Approximate Whittaker
(Fair)

×1.026

without Laplacian dropout
(error terms present)

×0.782

with Laplacian dropout
(error terms absent)

×1.218

with adaptation
(error terms absent)

×1.023

without adaptation
(error terms present)

×0.977

with adaptation
(error terms absent)

×0.891

without adaptation
(error terms present)

×1.109

Truncated Gaussian
(Poor)

×0.928

Figure 9: Multiplicative factor analysis showing an ablation over key components of ARRNs. The perfor-
mance metric considered for analysis is the average accuracy over all resolutions and all datasets. The three
levels of the decision tree show which filter is used, whether Laplacian dropout is used at training time, and
whether adaptation is used at inference time. The numerical ratios indicate how average accuracy changes
conditional to the decision associated with the node. The last two levels of nodes are coloured black or white
according to the absence or presence of error terms ϵn respectively; at training time, this is determined by
use of Laplacian dropout; at inference time, this is determined by use of adaptation. The symbols below the
leaf nodes of the decision tree show the line style used in Figure 8 to allow easily referencing the underlying
experiments in detail.

13

Published in Transactions on Machine Learning Research (06/2025)

change in the metric once a decision is made. We claimed in subsection 3.2 that Laplacian dropout has two
distinct purposes: it regularizes for robustness across a wider distribution of resolutions; it also mitigates
numerical discrepancies caused by approximate smoothing kernels when using adaptation (Equation 29). We
have demonstrated the first effect in subsection 4.1 and can also observe this effect clearly in the decision tree.
We can only observe the second effect if we consider the choice of smoothing kernel, which motivates this
experimental setup. Our method will conform to our theoretical interpretation if absence of error terms ϵn
at training time yields better performance in the absence of error terms ϵn at inference time, and vice versa;
that is to say on the last two levels of the decision tree, on the black and white nodes, tracing a path across
two nodes of identical colour should yield a multiplier greater than 1 at the last node, and conversely, tracing
a path across two nodes of opposing colour should yield a multiplier smaller than 1 at the last node. Our
method displays exactly this behaviour, with the discrepancy at the last level of the decision tree growing
monotonically with decreases in filter quality. Our method therefore leverages Laplacian dropout not just to
improve robustness across a wider distribution of resolutions, but to compensate numerical errors induced
by imperfect smoothing kernels, which enables the use of computationally greedy implementations.

5 Discussion

We have introduced ARRNs, a class of adaptive-resolution architectures that inherits the compatibility with
mainstream layers of fixed-resolution methods, and the computational adaptivity and robustness of adaptive-
resolution methods. ARRNs substitute standard residuals with Laplacian residuals which allow creating
adaptive-resolution architectures using only fixed-resolution layers, and which allow skipping computations
at lower resolutions without compromise in numerical accuracy. ARRNs also implement Laplacian dropout,
which allows training models that perform robustly at a wide range of resolutions.

Future Work. We have provided evidence on classification tasks over low-resolution and medium-
resolution image data; our method’s ability to generalize is well supported by theoretical justification, but
further experiments that include more challenging tasks and high-resolution data are desirable. We have
investigated a form of Laplacian residual that decreases resolution, which addresses only a limited variety
of architectures. We have applied our method in two dimensions on image data, but it is theoretically valid
with any number of dimensions; its application to audio data and volumetric data is of interest.

Impact Statement. This paper presents work whose goal is to advance fundamental research in the
field of deep learning and machine learning. No specific real-world application is concerned, although this
contribution may render certain forms of technology more accessible.

References
Francesca Bartolucci, Emmanuel de Bezenac, Bogdan Raonic, Roberto Molinaro, Siddhartha Mishra, and

Rima Alaifari. Representation equivalent neural operators: a framework for alias-free operator learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=7LSEkvEGCM.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In Readings in
computer vision, pp. 671–679. Elsevier, 1987.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local implicit
image function. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8628–8638, 2021.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pp. 215–223, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL https:
//proceedings.mlr.press/v15/coates11a.html.

14

https://openreview.net/forum?id=7LSEkvEGCM
https://openreview.net/forum?id=7LSEkvEGCM
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v15/coates11a.html

Published in Transactions on Machine Learning Research (06/2025)

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297–301, 1965.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady Mathematics,
volume 108, pp. S226–S232. Springer, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochas-
tic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 448–456,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/ioffe15.html.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid networks
for fast and accurate super-resolution. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 624–632, 2017.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Jaewon Lee and Kyong Hwan Jin. Local texture estimator for implicit representation function. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1929–1938, 2022.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equations. In
International Conference on Learning Representations, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2022.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmentation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 774–782, 2021.

15

https://proceedings.mlr.press/v37/ioffe15.html

Published in Transactions on Machine Learning Research (06/2025)

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 165–174, 2019.

Daniel P. Petersen and David Middleton. Sampling and reconstruction of wave-number-limited functions in
n-dimensional euclidean spaces. Information and Control, 5(4):279–323, 1962. ISSN 0019-9958. doi: https:
//doi.org/10.1016/S0019-9958(62)90633-2. URL https://www.sciencedirect.com/science/article/
pii/S0019995862906332.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Claude E Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, 1949.

Satya Rajendra Singh, Roshan Reddy Yedla, Shiv Ram Dubey, Rakesh Kumar Sanodiya, and Wei-Ta Chu.
Frequency disentangled residual network. Multimedia Systems, 30(1), 2024.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:
7462–7473, 2020.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International conference
on machine learning, pp. 10096–10106. PMLR, 2021.

ET Whittaker. On the functions which are represented by the expansion of interpolating theory. In Proc.
Roy. Soc. Edinburgh, volume 35, pp. 181–194, 1915.

John Macnaughten Whittaker. On the cardinal function of interpolation theory. Proceedings of the Edinburgh
Mathematical Society, 1(1):41–46, 1927.

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. Signal processing for implicit
neural representations. Advances in Neural Information Processing Systems, 35:13404–13418, 2022.

Jingyu Yang, Sheng Shen, Huanjing Yue, and Kun Li. Implicit transformer network for screen content image
continuous super-resolution. Advances in Neural Information Processing Systems, 34:13304–13315, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference
2016. British Machine Vision Association, 2016.

16

https://www.sciencedirect.com/science/article/pii/S0019995862906332
https://www.sciencedirect.com/science/article/pii/S0019995862906332

Published in Transactions on Machine Learning Research (06/2025)

A Appendix

A.1 Background

We survey fundamental concepts of signal processing and introduce our notation. We aim to provide mean-
ingful intuitions for readers who are not familiar with these principles, and to also rigorously ground our
method and satisfy readers who are knowledgeable in this topic.

In Figure 10, we illustrate how the sampling density and bandwidth of signals intuitively relate to each other
while also highlighting the notation and indexing scheme we use to designate these characteristics in our
analysis. In Figure 11, we illustrate the effect of the sampling window over a signal. In the paragraphs that
follow, we break down these notions in greater detail.

Sampling Density

B
andw

idth

X| |n+1 X| |n

S
n

< <

insufficient

sampling density

insufficient

sampling density

insufficient

sampling density

X| |n-1

S
n+1

S
n-1

vol(X) vol(X) vol(X)

Figure 10: Diagram showing the same signal captured with three distinct sampling densities
|Xn+1|/area(X) < |Xn|/area(X) < |Xn−1|/area(X) (laid out horizontally) and three distinct bandwidth
constraints Sn+1 ⊂ Sn ⊂ Sn−1 (laid out vertically). The sampling density corresponds to the number of
samples per unit of space used to cast the continuous signal into a discrete signal. The bandwidth corresponds
to the smoothness of the underlying continuous signal. A continuous signal may only be captured into a
discrete signal if sampling density is sufficient for the bandwidth; the blacked out signals show cases where
this condition is not met.

Sampling Window

X
narrower

X
wider

X

Figure 11: Diagram showing the same signal captured with three distinct sampling windows Xnarrower ⊂
X ⊂ Xwider. The sampling window effectively consists in the region of space that is captured in the signal.

17

Published in Transactions on Machine Learning Research (06/2025)

Signals in continuous form. We can represent signals as functions s(·) : X → Rf that map a continuous
spatial domain X that is a nicely behaved subset of Rd to a feature domain Rf . This representation is
useful because it allows us to leverage notions from functional analysis and calculus, and because it is fully
independent from the way a signal is captured. We often refer to the bandwidth of signals in this work, which
we can intuitively relate to the smoothness of continuous signals; low bandwidth signals are smooth, while
high bandwidth signals are detailed.

Signals in discrete form. We can also represent signals as functions s[·]n : Xn → Rf that map from
a discrete spatial domain Xn ⊂ X to a feature domain Rf . This representation enables us to perform
computations on signals as they are fully defined by a finite amount of information given by the |Xn|
individual samples xi ∈ Xn. We commonly point to the quantity of samples as the resolution of a discrete
signal. We associate indexing by n to distinct resolutions throughout this work, where resolution decreases
as n increases, meaning |Xn| > |Xn+1|.

Casting continuous signals into discrete signals by sampling. We can easily take a continuous
signal s(·) and create a discrete signal s[·]n by sampling values at points xi ∈ Xn. We notate this process
as the sampling operator Sn : (X → Rf) → (Xn → Rf):

Sn{s(·)} = xi 7→ s(xi) ∀xi ∈ Xn (33)

Casting discrete signals into continuous signals by interpolation. We can reverse the process above
and derive a continuous signal s(·) from a discrete signal s[·]n by applying a convolution with a smoothing
kernel ϕn, more formally known as a Whittaker-Shannon kernel (Whittaker, 1915; 1927). We note that
sampling and interpolation are only inverses of each under certain important conditions we come back to
later. We interpret the effect of the convolution against a smoothing kernel as filling in the gaps between the
samples. We notate the process outlined here as the interpolation operator In : (Xn → Rf) → (X → Rf):

In{s[·]n} = x 7→
∑

xi∈Xn

s[xi]nϕn(x − xi) ∀x ∈ X (34)

Restricting the bandwidth of signals. We need a slightly more formal way of designating signals that
respect certain bandwidth constraints in order to better discuss the equivalence between discrete signals and
continuous signals. We can use the smoothing kernels ϕn we just introduced to define sets of continuous
signals Sn = {s|s∗ϕn = s} that are already smooth enough to be left unchanged by the action of a smoothing
kernel. We underline that convolving a smoothing kernel ϕn against a signal s restricts its bandwidth such
that it belongs to the corresponding set of signals Sn. We finally note that bandwidth constraints form
an ordering Sn ⊃ Sn+1, meaning a signal s that respects a low bandwidth constraint Sn also respects any
arbitrarily high bandwidth constraint Sn−k ∀ k > 0.

Equivalence of continuous signals and discrete signals. We can use discrete signals or continuous
signals to designate the same underlying information when the Nyquist-Shannon sampling theorem is satisfied
(Shannon, 1949; Petersen & Middleton, 1962). This theorem intuitively states that a continuous signal with
high bandwidth requires a discrete signal with correspondingly high sampling density for sampling to generally
be feasible without error. This theorem more formally states that a discrete signal s[·]n can uniquely
represent any continuous signal s(·) that respects the bandwidth constraint encoded by membership to
Sn = {s|s ∗ ϕn = s}, where the expression for the smoothing kernel ϕn depends on the sampling density
|Xn|/area(X) of the discrete spatial domain over the continuous spatial domain and on the assumptions on
the boundary conditions of the continuous spatial domain X (Whittaker, 1915; 1927; Petersen & Middleton,
1962). We summarize the Nyquist-Shannon sampling theorem by stating that the sampling operator and
interpolation operator are only guaranteed to be inverses of each other when the bandwidth constraint is
satisfied:

s ∈ Sn =⇒ In{Sn{s}} = s (35)

18

Published in Transactions on Machine Learning Research (06/2025)

Equivalence of operators acting upon continuous signals and discrete signals We can extend the
notion of equivalence between continuous signals s(·) : X → Rf and discrete signals s[·]n : Xn → Rf

to encompass the actions that can be performed on the same signals using operators on continuous signals
O : (X → Rf) → (X → Rf) and operators on discrete signals On : (Xn → Rf) → (Xn → Rf). We are
especially interested in this notion as it enables us to think of our neural architecture as a chain of operators
that act on continuous signals that can be cast to act on discrete signals of any specific sampling density
|Xn|/area(X). We often see this property formally labeled as discretization invariance in the neural operator
community and highlight this concept is key to other works which allow adaptation to different sampling
densities (Li et al., 2021; Kovachki et al., 2023; Fanaskov & Oseledets, 2023; Bartolucci et al., 2023). We
can formally express the equivalence between the continuous form O and discrete form On of some operator
as commutativity over the sampling operator when the bandwidth constraint is satisfied:

s ∈ Sn =⇒ Sn{O{s}} = On{Sn{s}} (36)

A.2 Related works

We shortly cover architectures that implement forms of residual connections that are similar to Laplacian
residuals.

Residual connections with filtering operations. Singh et al. (2024) incorporates filtering operations
within residuals to separate the frequency content of convolutional networks, although it provides no adaptive-
resolution mechanism. Lai et al. (2017) uses Laplacian pyramids to solve super-resolution tasks with adaptive
output resolution, with residuals ordered by increasing resolution. This is unlike our method, which is well
suited to tasks with adaptive input resolution, with residuals ordered by decreasing resolution.

Residual connections with dropout. Huang et al. (2016) implements a form of dropout where the
layers nested within residual blocks may be bypassed randomly. This is somewhat similar to Laplacian
dropout, however, this is not equivalent to a form of bandwidth augmentation and does not result in the
same improved robustness to various resolutions we show in subsection 4.1.

A.3 Experiments

We include an alternate evaluation of the experiments we present in subsection 4.1 and subsection 4.2. We
also provide further details on our experimental setup in this section.

In Figure 5 and Figure 6, we show baseline methods evaluated after an interpolation step, which yields
stronger robustness but negates computational adaptivity. In Figure 12 and Figure 13, we instead show
baselines evaluated directly, which yields weak robustness but provides some reduction in inference time at
lower resolution. We observe that our method provides vastly superior robustness while also reducing its
inference time more steeply at lower resolutions.

Figure 12: Accuracy of all architectures at various resolutions after training at the full dataset resolution.
Evaluation is performed directly in the case of mainstream methods. Our method (red full line) more
markedly dominates mainstream methods in terms of robustness under this alternate mode of evaluation.

19

Published in Transactions on Machine Learning Research (06/2025)

Figure 13: Inference time of all architectures at various resolutions. The inference time for the entire dataset
is considered. Evaluation is performed directly in the case of mainstream methods. Our method (red full
line) skips the computations of layers at lower resolutions, which more steeply reduces inference time relative
to mainstream methods, which must still evaluate all their layers.

Model design. We provide detailed illustrations for the full architecture designs we use with our method
according to each dataset: Figure 14 for CIFAR10 (5.33M-8.09M); Figure 15 for CIFAR100 (9.59M-14.5M);
Figure 16 for TinyImageNet (15.0M-19.8M); and Figure 17 for STL10 (13.8M-18.4M). We indicate not a
single parameter count, but a range of parameter counts for each architecture design, as adaptation enables
computation of the forward pass or backward pass using a variable subset of the underlying parameters. We
follow a general design pattern inspired by MobileNetV2 (Sandler et al., 2018) and EfficientNetV2 (Tan &
Le, 2021) to derive these architecture designs. We nest inner architectural blocks (bn in Equation 10) within
a series of Laplacian residual blocks of decreasing resolution and increasing feature count. We create these
inner architectural blocks by composing depthwise 3 × 3 convolutions and pointwise 1 × 1 convolutions in
alternation. We set all depthwise convolutions to use edge replication padding to satisfy Equation 6 and
ensure resolution remains fixed within each Laplacian residual block. We prepend this string of layers with
a pointwise convolution that expands the feature channel count. We conversely terminate the sequence of
layers with a pointwise convolution that contracts the feature channel count inversely. We separate each
convolution with a batch normalization (Ioffe & Szegedy, 2015) and a SiLU activation function (Elfwing et al.,
2018), chosen for its tendency to produce fewer aliasing artifacts. We apply different Laplacian dropout rates
(drate

n in Equation 30) depending on the dataset: 0.6 for CIFAR10; 0.3 for CIFAR100; 0.3 for TinyImageNet;
0.3 for STL10. We use a common classification head that consists of a single linear layer with a dropout
set to 0.2, which is applied after global average pooling. The designs were chosen by sweeping over different
configurations for inner architectural blocks, and over different resolutions and number of features for the
Laplacian residual blocks that contain them. The number of permutations per final sweep ranged between
18 to 216 for each dataset.

Model training hyperparameters. We provide the specific hyperparameters used during training.

For CIFAR10 and CIFAR100, across all methods, we use AdamW (Loshchilov & Hutter, 2019) with a learning
rate of 10−3 and (β1, β2) = (0.9, 0.999), cosine annealing (Loshchilov & Hutter, 2022) to a minimum learning
rate of 10−5 in 100 epochs, weight decay of 10−3, and a batch size of 128. We use a basic data augmentation
consisting of normalization, random horizontal flipping with p = 0.5, and randomized cropping that applies
zero-padding by 4 along each edge to raise the resolution, then crops back to the original resolution.

For TinyImageNet and STL10, across all methods, we use SGD with a learning rate of 10−2, cosine annealing
(Loshchilov & Hutter, 2022) to a minimum learning rate of 0 in 100 epochs, weight decay of 10−3, and a
batch size of 128. We use TrivialAugmentWide (Müller & Hutter, 2021) to augment training.

20

Published in Transactions on Machine Learning Research (06/2025)

Inner Architectural Block

Pointwise
Expand by 8

Pointwise
Contract by 8

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

Laplacian Residual Block

Inner Architectural
Block

32 features

32×32

Laplacian Residual Block

Inner Architectural
Block

48 features

24×24

Laplacian Residual Block

Inner Architectural
Block

64 features

16×16

Laplacian Residual Block

Inner Architectural
Block

96 features

12×12

Laplacian Residual Block

Inner Architectural
Block

128 features

8×8

Inner Architectural
Block

256 features

4×4

Average
Pooling

LinearLinear

Figure 14: Architecture design for our method on CIFAR10.

Pointwise
Expand by 8

Pointwise
Contract by 8

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

Inner Architectural Block

Laplacian Residual Block

Inner Architectural
Block

32 features

32×32

Laplacian Residual Block

Inner Architectural
Block

48 features

24×24

Laplacian Residual Block

Inner Architectural
Block

64 features

16×16

Laplacian Residual Block

Inner Architectural
Block

96 features

12×12

Laplacian Residual Block

Inner Architectural
Block

128 features

8×8

Inner Architectural
Block

256 features

4×4

LinearLinear Average
Pooling

Figure 15: Architecture design for our method on CIFAR100.

21

Published in Transactions on Machine Learning Research (06/2025)

Inner Architectural Block

Pointwise
Expand by 4

Pointwise
Contract by 4

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

Laplacian Residual Block

Inner Architectural
Block

32 features

64×64

Laplacian Residual Block

Inner Architectural
Block

128 features

32×32

Laplacian Residual Block

Inner Architectural
Block

256 features

16×16

Inner Architectural
Block

512 features

8×8

LinearLinear Average
Pooling

Figure 16: Architecture design for our method on TinyImageNet.

Laplacian Residual Block

Inner Architectural
Block

16 features

96×96

Laplacian Residual Block

Inner Architectural
Block

32 features

48×48

Laplacian Residual Block

Inner Architectural
Block

64 features

24×24

Laplacian Residual Block

Inner Architectural
Block

128 features

12×12

Inner Architectural
Block

256 features

6×6

LinearLinear Average
Pooling

Inner Architectural Block

Pointwise
Expand by 8

Pointwise
Contract by 8

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

Figure 17: Architecture design for our method on STL10.

22

	Related Works
	Background
	Laplacian pyramids

	Method
	Laplacian residuals for adaptive-resolution deep learning
	Laplacian dropout for effective generalization

	Experiments
	Robustness and the effectiveness of Laplacian dropout
	Computational efficiency
	Generalization across layer types
	Adaptation with perfect smoothing kernels
	Adaptation with approximate smoothing kernels and the dual effect of Laplacian dropout

	Discussion
	Appendix
	Background
	Related works
	Experiments

