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Abstract

The majority of signal data captured in the real world uses numerous sensors with different
resolutions. In practice, however, most deep learning architectures are fixed-resolution; they
consider a single resolution at training time and inference time. This is convenient to im-
plement but fails to fully take advantage of the diverse signal data that exists. In contrast,
other deep learning architectures are adaptive-resolution; they directly allow various reso-
lutions to be processed at training time and inference time. This benefits robustness and
computational efficiency but introduces difficult design constraints that hinder mainstream
use. In this work, we address the shortcomings of both approaches by introducing Adaptive
Resolution Residual Networks (ARRNs), which inherit the advantages of adaptive-resolution
methods and the ease of use of fixed-resolution methods. We construct ARRNs from Lapla-
cian residuals, which serve as generic adaptive-resolution adapters for fixed-resolution layers,
and which allow instantly casting high-resolution ARRNs into low-resolution ARRNs by
simply omitting Laplacian residuals, thus reducing computational cost. We guarantee this
yields numerically identical evaluation on low-resolution signals when using perfect smooth-
ing kernels. We complement this novel component with Laplacian dropout, which regularizes
for robustness to a distribution of lower resolutions and regularizes for numerical errors that
may be induced by approximate smoothing kernels. We provide a solid grounding for the
advantageous properties of ARRNs through a theoretical analysis based on neural operators,
and empirically show that ARRNs embrace the challenge posed by diverse resolutions with
greater flexibility, robustness, and computational efficiency.

Efficient problem-solving strategies typically allocate effort according to difficulty. Efficient deep learning
architectures may therefore be created by incorporating a form of computational adaptivity that is con-
scientious of the difficulty of individual data points. The case of tasks involving image data, audio data,
volumetric data, or any other form of signal data is uniquely positioned to benefit from such an approach.
Signals have no universal resolution; there is, instead, a diversity of resolutions that are contingent on the
sensors used at the time of capture; there is, therefore, a concrete opportunity for impact given the varying
difficulty of individual data points across common data modalities. Signals also conform to a mathematical
structure that is well understood, which enables the implementation of inductive biases that can aid in
finely quantifying and decomposing this notion of difficulty within an architecture. We propose Adaptive
Resolution Residual Networks (ARRNs), a novel architecture for tasks involving signal data that addresses a
gap in the capabilities of prior methods, which either lack computational adaptivity, lack robustness, or lack
compatibility with mainstream layers. We begin by outlining a typology of existing methods. We identify
three categories: fixed-resolution; adaptive-resolution through variable sampling window; adaptive-resolution
through variable sampling density.

Fixed-resolution. In the case of transformer architectures and certain other architectures, resolution is a
property that must remain fixed for evaluation to be possible, although signals of different resolutions can
be interpolated to the resolution of the architecture to allow evaluation. This solution is sufficient for certain
applications. This solution is however incapable of delivering computational adaptivity in the sense that it
cannot leverage the information available at higher resolutions, and it cannot reduce its computational cost
at lower resolutions. We thus find this approach unsatisfactory for our purpose.
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Adaptive-resolution through variable sampling window. In the case of fully convolutional archi-
tectures and a range of other architectures, resolution is a property that can adapted at evaluation. This
solution achieves computational adaptivity through translation equivariant layers or permutation equivariant
layers that can conform to arbitrary resolutions. This solution more formally adapts its resolution by varying
its sampling window rather than its sampling density, which is a critically important consideration for robust-
ness. These two means of varying resolution are not equivalent: varying the sampling window is analogous
to resizing the frame delineating a painting to offer a larger or smaller field of view into the scene; varying
the sampling density is analogous to changing the quantity and size of brush strokes that make a painting
to convey the scene in a finer or coarser degree of detail. We illustrate this distinction in Figure 10 and
Figure 11. In the context of natural images, the sampling window tends to be consistent, as camera systems
have similar optics; the sampling density is however subject to vary significantly, as camera systems have
sensors that range widely in resolution. This hints at a mismatch between the nature of resolution changes
within mainstream architectures and within natural image datasets. In certain applications, it is possible
for architectures with an adaptive sampling window to learn some degree of invariance to sampling density,
which can attenuate this mismatch. In Figure 1, however, we demonstrate the adaptive sampling window of
mainstream architectures can be inappropriate for handling even mild distribution shifts between training
resolution and inference resolution in the case of natural images. The training resolution of each architecture
is set to be the maximal resolution of each dataset. The inference resolution of each architecture is then
swept across a range of lower resolutions, evaluating directly at that resolution. Further experimental details
are given in section 4. We observe a regression to near-random accuracy by the point inference resolution is
halved relative to training resolution, highlighting the lack of robustness of this approach.

Figure 1: Accuracy of mainstream architectures at various resolutions after training at the full dataset
resolution. Evaluation is performed directly at the inference resolution.

In Figure 2, we show these architectures display much greater robustness across various resolutions when
evaluating after an interpolation step that ensures the inference resolution matches the training resolution.
This effectively holds constant the sampling window while accounting for the change in resolution by varying
the sampling density, which addresses exactly the discrepancy we have described in the case of natural
images. This has the shortcoming of negating any computational benefit that would be gained by performing
inference at a lower resolution, as it amounts to treating the architectures as fixed-resolution. We cannot
find a satisfying solution to our problem through this approach, as it trades away computational adaptivity
for robustness.

Figure 2: Accuracy of mainstream architectures at various resolutions after training at the full dataset
resolution. Evaluation is performed after interpolation to the training resolution.
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Adaptive-resolution through variable sampling density. We wish to obtain both computational
adaptivity and robustness, therefore we must find a way to vary the sampling density of an architecture
directly. We effectively dedicate our contribution to solving this problem elegantly. We overview prior
methods that achieve this in section 1, which all lack compatibility with mainstream layers. We provide an
overview of the fundamental notions of signal processing that allow our work to be formulated and thor-
oughly define our notation in subsection A.1. We introduce Laplacian pyramids as a stepping stone towards
our contribution in section 2. We introduce Laplacian residuals and prove that high-resolution ARRNs can
shed high-resolution Laplacian residuals to instantly yield low-resolution ARRNs that are computationally
cheaper yet numerically identical when evaluated on low-resolution signals using perfect smoothing kernels
subsection 3.1. We formulate Laplacian dropout in subsection 3.2 as a training augmentation that randomly
omits Laplacian residuals and theoretically motivate its usefulness as a regularizer for low-resolution robust-
ness and as a regularizer for tolerance to approximate smoothing kernels in Laplacian residuals. We perform
a set of experiments showing (subsection 4.1) that our method yields stronger robustness at lower resolu-
tions compared to mainstream methods; (subsection 4.2) that our method enables significant computational
savings through adaptation; (subsection 4.3) that our method is capable of generalizing across layer types in
a way that far surpasses prior adaptive-resolution architectures; (subsection 4.4) that our theoretical guar-
antee for adaptation using perfect smoothing kernels holds empirically; (subsection 4.5) that our theoretical
interpretation of the dual regularizing effect of Laplacian dropout also holds empirically.

1 Related Works

We review related works that allow the formulation of adaptive-resolution architectures with varying sampling
density. We also survey other related works that implement residual connections that bear some similarity
to Laplacian residuals in section A.2.

Adaptive-resolution through variable sampling density with neural operators. We begin our
search for means of varying the sampling density of whole architectures by first considering a single convolu-
tional layer. We can see that varying the sampling density implies resizing the footprint of the kernel while
preserving the role it plays as a feature extractor. A useful tool to this end is functional analysis; we can think
of the kernel as a discrete function k[ · ]n : Xn → Rfl+1×fl defined over a discrete coordinate space Xn ⊂ Rd;
we can imagine that it that holds a finite number of samples |Xn| of an underlying continuous function
k( · ) : X → Rfl+1×fl defined over a continuous coordinate space X ⊂ Rd where Xn ⊂ X; we can then make
some assumptions about the space of functions we are working with to allow conversion into an equivalent
discrete function k[ · ]u : Xu → Rfl+1×fl that more finely (|Xu| > |Xn|) or coarsely (|Xu| < |Xn|) covers the
same continuous coordinate space; we can thus cast the layer from its original sampling density |Xn|/vol(X)
to a new sampling density |Xu|/vol(X). A next logical step is to conceptualize every layer that composes
an architecture as an operator that expresses a map between inputs and outputs that are functions; we gain
the ability to adapt the sampling density of the entire architecture if we ensure every layer can be converted
between a discrete operator form and a continuous operator form (Bartolucci et al., 2023); we dedicate part
of our appendix to a more formal definition of this constraint (subsection A.1, Equation 44). This is the
approach favored by neural operator methods Li et al. (2020); Kovachki et al. (2023); Fanaskov & Oseledets
(2023). This approach provides the ability to vary sampling density and sampling window independently.
This approach comes with an important drawback however: compatibility with mainstream layers is lost as
the conversion between operator forms cannot be achieved without substantial alterations to typical layers
(Bartolucci et al., 2023), which presents a significant barrier to more widespread adoption. In contrast, our
approach follows the general paradigm of neural operators, but it entirely absorbs the conversion constraints
within the fixed structure of Laplacian residuals, which provides compatibility with mainstream layers; our
approach also varies its sampling density by skipping layers, which enhances computational adaptivity.

Adaptive-resolution through variable sampling density with implicit neural representations.
We can derive architectures with variable sampling density by leveraging an alternate representation of
functions. While we can explicitly represent the input or output of layers as functions s( · ) : X → Rf

through a set of samples {(xi, s(xi))|xi ∈ Xn} that is tied to a discrete coordinate space Xn ⊂ X, we can
instead implicitly represent functions s( · ) through a parameter θ that is attached to a neural representation
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s( · , θ) ≈ s( · ) which approximates the function over the entire continuous coordinate space X. This later
approach is at the core of implicit neural representation methods Park et al. (2019); Mescheder et al. (2019);
Sitzmann et al. (2020); Mildenhall et al. (2021); Chen et al. (2021); Yang et al. (2021); Lee & Jin (2022);
Xu et al. (2022). Some of these methods directly leverage this scheme to reconstruct and render partially
observed volumetric data, image data and light field data with great success (Park et al., 2019; Mescheder
et al., 2019; Sitzmann et al., 2020; Mildenhall et al., 2021). Some of these methods expand on this scheme by
splitting the parameter θ into a fixed part ϑ that is shared across all data points, and a latent part z that is
specific to individual data points, which enables forming more complex and reusable representations (Chen
et al., 2021; Lee & Jin, 2022; Yang et al., 2021). This approach faces limited usefulness in the context of
classification tasks, segmentation tasks, and diffusion tasks. This shortfall comes from a lack of compatibility
with mainstream layers, and more broadly from a set of challenges that arise when mapping between implicit
representations s( · , ϑ, zl) 7→ s( · , ϑ, zl+1) through the latent space zl 7→ zl+1, which cannot easily preserve
the symmetries of signals. This even renders difficult the implementation of convolutional layers (Xu et al.,
2022) since there is a priori no simple relationship between the latent embedding zl of a signal s( · , ϑ, zl)
and the latent embedding zl+1 of the same signal convolved against a kernel kl; there is within zl 7→ zl+1 a
nonlinear constraint s( · , ϑ, zl+1) = s( · , ϑ, zl) ∗ kl that must be satisfied everywhere over the continuous
coordinate space X. In contrast, our method uses the most ubiquitous form of signal representation which
allows compatibility with mainstream layers.

2 Background

In our overview of background material, we introduce Laplacian pyramids as a stepping stone for the for-
mulation of Laplacian residuals. In addition, we provide a discussion of signals in subsection A.1 that
introduces the notation and fundamental concepts behind this work in a way that is broadly accessible to
readers unfamiliar with these ideas, and that should also clarify details valued by more experienced readers.

2.1 Laplacian pyramids

In this section, we introduce Laplacian pyramids (Burt & Adelson, 1987), as they closely relate to Laplacian
residuals, and as they have often been used in vision techniques to decompose signals across a range of
resolutions.

Laplacian pyramids take some signal s, and perform a series of m convolutions with smoothing kernels
ϕn to generate lower bandwidth signals plow

n that each are incrementally smoother than the previous one.
Laplacian pyramids then generate difference signals pdiff

n that isolate the part of the signal that was lost
at each incremental bandwidth reduction, which intuitively correspond to a certain level of detail of the
original signal. The operations that compose a Laplacian pyramid can be captured by a base definition and
two simple recursive definitions:

plow
0 = s ∗ ϕ1 ∈ S1 (1)
plow

n = plow
n−1 ∗ ϕn+1 ∈ Sn+1 (2)

pdiff
n = plow

n−1 − plow
n ∈ Sn ∩ Sn+1 (3)

In Figure 3, we summarize the recursive formulation of Laplacian pyramids in a three-block pyramid; this is
intended to allow easy comparison with the Laplacian residuals we illustrate in Figure 4.

Laplacian pyramids are convenient to implement, since each reduction in bandwidth Sn allows a reduction
in sampling density |Xn|/vol(X), as hinted by our notation, and as illustrated in Figure 3.

Laplacian pyramids allow reconstructing the original signal up to an arbitrary bandwidth using only the last
lower bandwidth signal plow

m and a variable number of difference signals pdiff
n ; we illustrate this in the lower

part of Figure 3; we can also more formally express this:

s ∗ ϕn = pdiff
n + pdiff

n+1 + · · · + pdiff
m−1 + pdiff

m + plow
m ∈ Sn (4)

Laplacian pyramids offer adaptive-resolution with variable sampling window, since they rely entirely on
convolutions that behave as in fully convolutional architectures.
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Figure 3: Visualization of a Laplacian pyramid showing blocks that correspond to recursion iterations. The
starting signal plow

0 is shown at the top left. The blocks are chained one after the other, from top-to-bottom,
and produce the difference signals pdiff

1 , pdiff
2 , pdiff

3 . The blocks each start with the signal plow
n−1, produce a

lower bandwidth signal plow
n moving right, and finally produce a difference signal pdiff

n moving right again.
Together, pdiff

1 , pdiff
2 , pdiff

3 and plow
3 sum to the original signal plow

0 ; the Laplacian pyramid produces a form of
linear decomposition.

Laplacian pyramids also offer adaptive-resolution
with variable sampling density by skipping computa-
tions, as we may intuit from Equation 4 and Figure 3;
if we were to start with an 8 × 8 image of the bird,
it would appear reasonable to skip the 16 × 16 level
of the Laplacian pyramid. We formally show this by
considering a signal in discrete form s[ · ]u with a sam-
pling density |Xu|/vol(X) and a corresponding low
bandwidth constraint Su. We are interested in what
happens up to the level n of the Laplacian pyramid,
where n is the highest level that sits just at or above
the sampling density |Xn|/vol(X) ≥ |Xu|/vol(X)
and the bandwidth constraint Sn ⊇ Su of the original
signal. We observe that all of the smoothing filters
ϕ1, · · · , ϕn associated with prior levels of the Lapla-
cian pyramids leave the original signal s unchanged
since s ∈ Su ⊆ Sn and since Sn ⊂ · · · ⊂ S1, which
induces a trail of zero terms in the expansion of the
recursive terms Equation 2 and Equation 3, as shown
in Equation 14.

=⇒ plow
0 = s ∗ ϕ1 (5)

= s (6)
=⇒ plow

1 = plow
0 ∗ ϕ2 (7)

= s (8)
=⇒ pdiff

1 = plow
0 − plow

1 (9)
= 0 (10)
...

=⇒ plow
n−1 = plow

n−2 ∗ ϕn (11)
= s (12)

=⇒ pdiff
n−1 = plow

n−2 − plow
n−1 (13)

= 0 (14)

This allows setting plow
n−1 = s and carrying out computation of difference terms starting at pdiff

n , skipping all
difference terms pdiff

1 , . . . , pdiff
n−1. We later design Laplacian residuals to reproduce exactly this ability to suit

lower sampling densities by leveraging computational adaptivity.
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Laplacian pyramids are typically formulated using Gaussian smoothing kernels, which violate Equation 43
and introduce errors in the sampling process. We require perfect Whittaker-Shannon smoothing kernels for
the computation reduction property we show in Laplacian pyramids above and in Laplacian residuals later
in subsection 3.1. We show in subsection 4.5 that Laplacian dropout can compensate for errors that may be
introduced by approximate smoothing kernels. We note that the form of decomposition yielded by Laplacian
pyramids built using Shannon-Whittaker smoothing kernels is equivalent to the decompositions yielded by
Shannon wavelets.

3 Method

In this section, we build towards Laplacian residuals (subsection 3.1), which are designed to allow the
construction of adaptive-resolution architectures from fixed-resolution layers, and Laplacian dropout (sub-
section 3.2), which both serves as a regularizer for robustness at lower resolutions, and a regularizer for
error-correction when imperfect smoothing kernels are used.

3.1 Laplacian residuals for adaptive-resolution deep learning

Laplacian residuals are alike to Laplacian pyramids in the way they separate a signal into a sum of pro-
gressively lower bandwidth signals, and in the way they are able to operate at lower resolution by simply
skipping computations. However, Laplacian residuals crucially differ in their ability to incorporate neural
architectural blocks that enable deep learning.

Laplacian residuals are formulated as adaptive-resolution layers with a variable sampling density rn : (X →
Rfn) ∈ Sn → (X → Rfn+1) ∈ Sn+1 that incorporate neural architectural blocks bn : (Xn → Rfn) → (Xn →
Rfn) that may be fixed-resolution layers or adaptive-resolution layers with a variable sampling window. In the
later case, Laplacian residuals inherit adaptive-resolution with a variable sampling window. This formulation
enables wide compatibility with mainstream layers that is unseen in prior adaptive-resolution methods. This
compatibility is only conditional on the neural architectural block bn producing a constant everywhere when
its input is zero everywhere Equation 15, which is trivially guaranteed by linear layers, activation layers,
convolutional layers, batch normalization layers, some transformer layers, and any composition of layers that
individually meet this condition:

bn{0} = a where a ∈ Rfn (15)
The base case and recursive cases seen in Laplacian residuals are nearly identical to those of Laplacian
pyramids, aside from including a linear projection A0 : Rf1×f0 to raise the feature dimensionality from
f0 ∈ N+ to f1 ∈ N+ before the first neural architectural block:

r0 = A0s ∗ ϕ1 ∈ S1 (16)
rlow

n = rn−1 ∗ ϕn+1 ∈ Sn+1 (17)
rdiff

n = rn−1 − rlow
n ∈ Sn ∩ Sn+1 (18)

The neural architectural block bn receives the difference signal rdiff
n as its input, and then sums its output with

the lower bandwidth signal rlow
n before passing it to the next Laplacian residual. The signals are combined

with some additional processing, which we define below and motivate more concretely next:

rn = An(bn{rdiff
n } ∗ ψ ∗ ϕn+1 + rlow

n ) ∈ Sn+1 (19)

In Figure 4, we summarize the recursive formulation of Laplacian residuals into a diagram that illustrates
a three-block ARRN, which allows easy comparison with the Laplacian pyramid shown in Figure 3. We
include a constant rejection kernel ψ in Equation 19 to replicate the same computation skipping behaviour
seen in Laplacian pyramids. This effectively subtracts the mean and ensures the neural architectural block
bn contributes zero to the residual signal rn if the difference signal rdiff

n is zero, as shown in Equation 20. We
obtain this result thanks to the constraint set on the neural architectural block bn in Equation 15:

bn{0} ∗ ψ = 0 (20)
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Figure 4: Visualization of a chain of three Laplacian residual blocks. The starting signal r0 is shown at the
top left. The blocks are chained one after the other, from top-to-bottom. The blocks each start with the
previous residual signal rn−1, and, moving left-to-right, produce a lower bandwidth signal rlow

n and difference
signal rdiff

n as in Laplacian pyramids, gate the difference signal against the chained Laplacian dropout variable
dchain

n , apply the neural architectural block bn, apply the zero-blocking filter ψ, sum the lower bandwidth
signal rlow

n , apply the smoothing kernel ϕn+1 and resample, then finally project through An.

We include a smoothing kernel ϕn+1 in Equation 19 to ensure the output bandwidth of rn coincides with
the input bandwidth of rn+1, which is necessary for Laplacian residuals to follow the same general structure
as Laplacian pyramids.

We also incorporate a projection matrix An : Rfn+1×fn in Equation 19 to allow raising the feature dimen-
sionality from fn ∈ N+ to fn+1 ∈ N+ at the end of each Laplacian residual, so that more capacity can be
allocated to later Laplacian residuals.

We note that the neural architectural block bn{ · } in Equation 19 is written in shorthand, and stands for the
more terse expression In{bn{Sn{ · }}}. This is a formal trick that enables our analysis by casting the neural
architectural block from an operator on discrete signals (Xn → Rfn) → (Xn → Rfn) to an operator on
continuous signals (X → Rfn) ∈ Sn → (X → Rfn) ∈ Sn that is equivalent in the sense of Equation 44. This
does not directly reflect the implementation of the method, as all linear operators are analytically composed
then cast to their discrete form to maximize computational efficiency.

We add that we can alter the formulation of Equation 19 to let the neural architectural block perform
a parameterized downsampling operation (Xn → Rfn) → (Xn+1 → Rfn) by changing the interpolation
operator discussed above from In : (Xn → Rfn) → (X → Rfn) ∈ Sn to In+1 : (Xn+1 → Rfn) → (X →
Rfn) ∈ Sn+1 and by dropping the smoothing kernel ϕn+1 from Equation 19.

Adaptation to lower resolution signals with perfect smoothing kernels. We guarantee that archi-
tectures built from a series of Laplacian residuals can adapt to signals of lower sampling density by simply
skipping the computation of higher sampling density Laplacian residuals without causing any numerical
perturbation when using perfect smoothing kernels; intuitively, this means evaluating while performing the
interpolation step typically used to provide adaptive-resolution capability to fixed-resolution architectures is
exactly identical to evaluating while skipping Laplacian residuals. This guarantee provides strong theoretical
backing to the validity of our method, and is also supported by empirical evidence in subsection 4.4.
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We show this property following the same argument leveraged to derive Equation 14 in the case of Laplacian
pyramids. We take a signal in discrete form s[ · ]u with a low sampling density |Xu|/vol(X) and a correspond-
ing low bandwidth constraint Su. We consider Laplacian residuals up to the level n of the architecture, where
n is the highest level that sits just at or above the sampling density |Xn|/vol(X) ≥ |Xu|/vol(X) and the
bandwidth constraint Sn ⊇ Su of the original signal. We observe that all of the smoothing filters ϕ1, · · · , ϕn

associated with prior levels of the architecture leave the original signal s unchanged since s ∈ Su ⊆ Sn and
since Sn ⊂ · · · ⊂ S1, which induces a trail of zero terms in the expansion of the recursive terms Equation 17,
Equation 18, and Equation 19, as shown in Equation 34:

=⇒ r0 = A0s ∗ ϕ1 (21)
= A0s (22)

=⇒ rlow
1 = r0 ∗ ϕ2 (23)

= A0s (24)
=⇒ rdiff

1 = r0 − rlow
1 (25)

= 0 (26)
=⇒ r1 = A1(b1{rdiff

1 } ∗ ψ ∗ ϕ2 + rlow
1 ) (27)

= A1A0s (28)
...

=⇒ rlow
n−1 = rn−2 ∗ ϕn (29)

= An−2 · · · A0s (30)
=⇒ rdiff

n−1 = rn−2 − rlow
n−1 (31)

= 0 (32)
=⇒ rn−1 = An−1(bn−1{rdiff

n−1} ∗ ψ ∗ ϕn + rlow
n−1) (33)

= An−1 · · · A0s (34)
This can be leveraged to evaluate a chain of Laplacian residuals at a lower sampling density by simply
discarding higher sampling density Laplacian residuals and only considering the chain of linear projections
An−1 · · · A0 that is carried over. This provides adaptive-resolution with variable sampling density through
computational adaptivity without compromise in robustness and without compromise in compatibility with
mainstream layers.

We can use this result precisely state the equivalence between evaluation using all Laplacian residuals (Equa-
tion 35) and evaluation using the strictly necessary Laplacian residuals (Equation 36):

Sm{rm{ · · · r0{S0{Iu{s[ · ]u}}} · · · }} (35)
= Sm{rm{ · · · rn{An−1 · · · A0Sn{Iu{s[ · ]u}}} · · · }} (36)

Adaptation to lower resolution signals with approximate smoothing kernels. We show that using
approximate smoothing kernels causes some numerical perturbation when skipping the computation of higher
sampling density Laplacian residuals. This observation motivates the use of Laplacian dropout, a training
augmentation we introduce in subsection 3.2 that addresses this limitation while also improving robustness.

When using approximate smoothing kernels ϕ̃n ≈ ϕn , the guarantee we provide does not hold exactly. We
consider the case case where ϕn would leave a signal s unchanged, and note that ϕ̃n would disturb the signal
s by a small error signal ϵn:

s ∗ ϕn = s =⇒ s ∗ ϕ̃n = s+ s ∗ (ϕ̃n − ϕn)︸ ︷︷ ︸
ϵn

(37)

We highlight that the discrepancy above would induce a small error term ϵn in every intermediate zero term
that leads to Equation 34, and therefore discarding unnecessary Laplacian residuals (Equation 36) would
not be exactly equivalent to retaining all Laplacian residuals (Equation 35). We note that this is not simply
constrained to a linear effect, as ϵ1 will for instance affect b1, which has nonlinear behavior.
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3.2 Laplacian dropout for effective generalization

In this section, we introduce Laplacian dropout, a training augmentation that is specially tailored to improve
the performance of our method by taking advantage of the structure of Laplacian residuals, and that comes
at effectively no computational cost.

We formulate Laplacian dropout by following the intuition that Laplacian residuals can be randomly disabled
during training to improve generalization. We only allow disabling consecutive Laplacian residuals using the
logical or operator to ensure that Laplacian dropout does not cut intermediate information flow:

dindep
n ∼ B(1 − pn) (38)
dchain

n = dindep
n ⊕ dchain

n−1 (39)
rdiff

n = dchain
n (rn−1 − rlow

n ) (40)

Next, we provide a theoretical interpretation that identifies two distinct purposes that Laplacian dropout
fulfills in our method. We see this dual utility as a highly desirable feature of Laplacian dropout.

Regularization of robustness at lower resolution. Since Laplacian dropout truncates Laplacian resid-
uals in the same way they are truncated when adapted to lower sampling densities, Laplacian dropout is
identical to randomly lowering sampling density when using perfect smoothing kernels. This acts as a train-
ing augmentation that promotes robustness over a distribution of lower resolutions. We perform a set of
classification tasks in subsection 4.1 that show this regularizing effect sometimes doubling accuracy over
certain lower resolutions without adversely affecting accuracy at the highest resolution.

Regularization of errors introduced by approximate smoothing kernels. Since Laplacian dropout
truncates Laplacian residuals in the same way they are truncated when adapted to lower sampling den-
sities, Laplacian dropout exactly replicates numerical errors produced by approximate smoothing kernels
in Equation 37. This allows learning a form of error compensation that offsets the effect of approximate
smoothing kernels. We demonstrate this allows the use of very coarsely approximated smoothing kernels in
subsection 4.5 that otherwise impart a significant performance penalty on our method.

4 Experiments

We present a set of experiments that demonstrate our method’s robustness across resolutions, its computa-
tional adaptivity, and its compatibility with mainstream layers. We show (subsection 4.1) that our method is
highly robust across diverse resolutions; (subsection 4.2) that adaptation provides our method with a signif-
icant computational advantage; (subsection 4.3) that our method can generalize across layer types in a way
that exceeds the capabilities of prior adaptive-resolution architectures; (subsection 4.4) that our theoretical
guarantee for adaptation to lower resolutions with perfect smoothing kernels holds empirically; and (subsec-
tion 4.5) that our theoretical interpretation of the dual regularization effect of Laplacian dropout coincides
with the behaviour we observe empirically when isolating the effect of approximate smoothing kernels, which
improves the robustness of our method through two distinct mechanisms.

Experiment design. We compare models in terms of their robustness across resolutions, their computa-
tional scaling relative to resolution, and their ease of construction. We follow a typical use case where we
train each model at a single resolution and then evaluate over a range of resolutions. We consider the fluctu-
ation of accuracy and inference time over resolution as the metrics of interest for our discussion. We perform
a set of classification tasks that require models to effectively leverage the information of low-resolution to
medium-resolution images; CIFAR10 (32×32) (Krizhevsky et al., 2009), CIFAR100 (32×32) (Krizhevsky
et al., 2009), TinyImageNet (64 × 64) (Le & Yang, 2015) and STL10 (96 × 96) (Coates et al., 2011).
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Model design and selection. For most of our experiments (subsection 4.1, subsection 4.2, subsection 4.4
and subsection 4.5), we construct ARRNs by using layers that take inspiration from MobileNetV2 (Sandler
et al., 2018) and EfficientNetV2 (Tan & Le, 2021); detailed design choices are documented in subsection A.3.
For the experiment that investigates generalization across layer types (subsection 4.3), we construct ARRNs
by transplanting layers that are found across a range of mainstream architectures that support adaptive-
resolution with variable sampling window but without variable sampling density: ResNet18, ResNet50,
ResNet101 (11.1M-42.5M) He et al. (2016), WideResNet50V2, WideResNet101V2 (66.8M-124M)
(Zagoruyko & Komodakis, 2016), MobileNetV3Small, MobileNetV3Large(1.52M-4.21M) Howard et al.
(2019). We splice the sequence of layers that composes each mainstream architecture at points where res-
olution changes occur and nest each resulting subsequence of layers in a Laplacian residual with matching
resolution. We discard the first two Laplacian residuals for MobileNetV3, as the resolution of the tailing
Laplacian residuals otherwise becomes very small. For our choice of baseline methods, we consider main-
stream architectures that again support adaptive-resolution with variable sampling window but without
variable sampling density. We show they compromise robustness across diverse resolutions, yet they have no
substantial advantage in ease of implementation or compatibility with mainstream layers compared to our
method, as demonstrated by our experiment on generalization across layer types. We include all mainstream
architectures discussed previously in this comparison, along with EfficientNetV2S, EfficientNetV2M,
EfficientNetV2L (20.2M-117.2M) (Tan & Le, 2021). For the experiments that validate our theoretical
analysis (subsection 4.4 and subsection 4.5), we perform an ablation study over the quality of the smoothing
kernel, the use of Laplacian dropout at training time, and the use of adaptation at inference time.

Model training and evaluation. All models are trained for 100 epochs at the full dataset resolution with
identical hyperparameters that are described in subsection A.3. All models are then evaluated at the full
dataset resolution and at a range of lower resolutions that are generated by interpolation. We have showed
in our introduction that the mainstream architectures we cover display very weak robustness when evaluated
directly (meaning with computational adaptivity; Figure 1), and that they perform much more reliably when
evaluated after an interpolation step that ensures the sampling window is kept constant (meaning without
computational adaptivity; Figure 2). In the comparisons we make between baseline methods and our method
(subsection 4.1, subsection 4.2 and subsection 4.3), we display baseline methods evaluated with interpolation,
as it provides the fairest chance to compete against our method. In our appendix (subsection A.3), we show
a complimentary comparison that displays baseline methods evaluated directly, which is most interesting in
terms of inference time; our method displays more aggressive computational savings as resolution decreases.
We underline that all baseline methods share the same set of training runs across these figures; their parame-
ters are exactly identical; only their mode of evaluation changes. In terms of evaluating our method, we skip
unnecessary Laplacian residuals unless performing an ablation over adaptation. We note that in principle,
we should always round up the number of required Laplacian residuals for in-between resolutions; however,
we sometimes achieve greater robustness if we round down. This is the case with TinyImageNet and STL10
in subsection 4.1 and subsection 4.2, and with TinyImageNet in subsection 4.3. This effect likely results
from more consistent statistical properties encountered when only evaluating Laplacian residuals that have
full access to the part of the signal they usually address.

4.1 Robustness and the effectiveness of Laplacian dropout

We demonstrate that our method allows for greater low-resolution robustness than mainstream methods with-
out compromise in high-resolution performance. Figure 5 shows four ablations of our method corresponding
to permutations of two sets: either with Laplacian dropout (red lines) or without Laplacian dropout (black
lines); and either with adaptation (solid lines) or without adaptation (dashed lines). We see that with
Laplacian dropout and with adaptation (full red lines), our method outperforms every baseline method
across every resolution and every dataset. We also find that, in contrast, without Laplacian dropout (black
lines), our method shows much weaker generalization across resolutions, clearly demonstrating Laplacian
dropout’s effectiveness as a regularizer for robustness to diverse resolutions.
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Figure 5: Accuracy of all architectures at various resolutions after training at the full dataset resolution.
Evaluation is performed after interpolation to the training resolution in the case of mainstream methods.
Our method (red full line) displays the best accuracy at the highest resolution and robustly maintains its
accuracy at lower resolutions.

4.2 Computational efficiency

We confirm the advantage granted by computational adaptivity by performing inference time measurements
on the previous experiment. We use CUDA event timers and CUDA synchronization barriers around the
forward pass of the network to eliminate other sources of overhead, such as data loading, and sum these
time increments over all batches of the full dataset. We repeat this process 10 times and pick the median to
reduce the effect of outliers. Figure 6 shows the inference time of ARRNs with adaptation (full red lines) and
without adaptation (dashed red lines). Our method significantly reduces its computational cost (highlighted
by the shaded area) by requiring the evaluation of a lower number of Laplacian residuals at lower resolutions.
Our method also has a reasonable inference time relative to well-engineered mainstream methods.

Figure 6: Inference time of all architectures at various resolutions. The inference time for the entire
dataset is considered. Evaluation is performed after interpolation to the training resolution in the case of
mainstream methods. Our method (red full line) can adapt to lower resolutions by skipping Laplacian
residuals, which results in significant computational savings (highlighted by the shaded area) compared to
using all Laplacian residuals (red dashed line). Our method also displays a reasonable inference time relative
to typical convolutional neural networks despite not having a highly optimized implementation.

4.3 Generalization across layer types

We demonstrate the ease of use of our method and its compatibility with mainstream layers by
constructing adaptive-resolution architectures from a range of mainstream architectures (ResNet18,
ResNet50, ResNet101, WideResNet50V2, WideResNet101V2, MobileNetV3Small and Mo-
bileNetV3Large). Figure 7 compares the accuracy of architectures in adaptive-resolution form (red box
plots) and in mainstream form (green box plots). The distribution of accuracies of the seven underlying
architectures in the adaptive-resolution group and mainstream group is visually conveyed by drawing a small
box plot at every resolution. Our method consistently delivers better low-resolution performance, and similar
or better high-resolution performance. Our method achieves this while generalizing beyond the abilities of
prior adaptive-resolution architectures, as it is compatible with the layers used in this experiment.
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Figure 7: Accuracy of two groups of methods at various resolutions, where 7 adaptive-resolution architec-
tures (in red) are constructed by taking 7 mainstream architectures (in green) and wrapping their layers
in Laplacian residuals. Evaluation is performed after interpolation to the training resolution in the case of
mainstream architectures. Our method yields architectures that have stronger low-resolution performance,
and similar or better high-resolution performance, which demonstrates ease of use and compatibility with
mainstream layers.

4.4 Adaptation with perfect smoothing kernels

We perform an ablation study to verify our theoretical guarantee for numerically identical adaptation.
Figure 8 displays a set of experiments that use perfect quality Whittaker-Shannon smoothing kernels (in
the upper row of graphs in green) implemented through the Fast Fourier Transform (Cooley & Tukey, 1965).
We showcase the usual set of ablations within this group of experiments; with Laplacian dropout (bright green
lines) or without Laplacian dropout (dark green lines); with adaptation (full lines) or without adaptation
(dashed lines). Our method evaluates practically identically whether unnecessary Laplacian residuals are
discarded (with adaptation, full lines, Equation 36), or whether all Laplacian residuals are preserved (without
adaptation, dashed lines, Equation 35), with imperceptible discrepancies that are exactly zero, or that are
small enough to be attributed to the numerical limitations of floating point computation. Our method is
able to skip computations without numerical compromises, as predicted by our theoretical guarantee.

4.5 Adaptation with approximate smoothing kernels and the dual effect of Laplacian dropout

We extend the previous ablation study to verify our theoretical analysis of the dual effect of Laplacian
dropout. Figure 8 introduces a set of experiments that relies on fair quality approximate Whittaker-Shanon
smoothing kernels (in the middle row of graphs in red), and on poor quality truncated Gaussian smoothing
kernels (in the bottom row of graphs in blue). Figure 9 displays these same results in the form of a decision
tree to help recognize the trends that are relevant to our discussion. This decision tree factors the impact of
choosing a specific filter quality, choosing whether to use Laplacian dropout or not, and choosing whether
to use adaptation or not. This analysis considers accuracy averaged over all resolutions and all datasets as
the metric of interest. The numerical values displayed on each node correspond to the average multiplicative
change in the metric once a decision is made. We claimed in subsection 3.2 that Laplacian dropout has two
distinct purposes: it regularizes for robustness across a wider distribution of resolutions; it also mitigates
numerical discrepancies caused by approximate smoothing kernels when using adaptation (Equation 37). We
have demonstrated the first effect in subsection 4.1 and can also observe this effect clearly in the decision tree.
We can only observe the second effect if we consider the choice of smoothing kernel, which motivates this
experimental setup. Our method will conform to our theoretical interpretation if absence of error terms ϵn
at training time yields better performance in the absence of error terms ϵn at inference time, and vice versa;
that is to say on the last two levels of the decision tree, on the black and white nodes, tracing a path across
two nodes of identical colour should yield a multiplier greater than 1 at the last node, and conversely, tracing
a path across two nodes of opposing colour should yield a multiplier smaller than 1 at the last node. Our
method displays exactly this behaviour, with the discrepancy at the last level of the decision tree growing
monotonically with decreases in filter quality. Our method therefore leverages Laplacian dropout not just to
improve robustness across a wider distribution of resolutions, but to compensate numerical errors induced
by imperfect smoothing kernels, which enables the use of computationally greedy implementations.
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Figure 8: Accuracy of ARRNs at various resolutions, where each ARRN is identical to the architecture used
in the main experiments aside from the choice of smoothing kernel. The smoothing kernels each correspond
to a different row of graphs and a different hue. The shaded area spanning pairs of curves highlights the
difference between the accuracy with adaptation and without adaptation. The overlaid tables display a
statistical breakdown of this discrepancy with Laplacian dropout and without Laplacian dropout.
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Figure 9: Multiplicative factor analysis showing an ablation over key components of ARRNs. The perfor-
mance metric considered for analysis is the average accuracy over all resolutions and all datasets. The three
levels of the decision tree show which filter is used, whether Laplacian dropout is used at training time, and
whether adaptation is used at inference time. The numerical ratios indicate how average accuracy changes
conditional to the decision associated with the node. The last two levels of nodes are coloured black or white
according to the absence or presence of error terms ϵn respectively; at training time, this is determined by
use of Laplacian dropout; at inference time, this is determined by use of adaptation. The symbols below the
leaf nodes of the decision tree show the line style used in Figure 8 to allow easily referencing the underlying
experiments in detail.
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5 Discussion

We have introduced ARRNs, a class of adaptive-resolution architectures that inherits the compatibility with
mainstream layers of fixed-resolution methods, and the computational adaptivity and robustness of adaptive-
resolution methods. ARRNs substitute standard residuals with Laplacian residuals which allow creating
adaptive-resolution architectures using only fixed-resolution layers, and which allow skipping computations
at lower resolutions without compromise in numerical accuracy. ARRNs also implement Laplacian dropout,
which allows training models that perform robustly at a wide range of resolutions.

Future Work. We have provided evidence on classification tasks over low-resolution and medium-
resolution image data; our method’s ability to generalize is well supported by theoretical justification, but
further experiments that include more challenging tasks and high-resolution data are desirable. We have in-
vestigated a form of Laplacian residual that decreases resolution, but Laplacian residuals may be generalized
to a form that increases resolution, which would allow constructing a greater variety of architectures. We
have applied our method in two dimensions on image data, but it is theoretically valid with any number of
dimensions; its application to audio data and volumetric data is of interest.

Impact Statement. This paper presents work whose goal is to advance fundamental research in the
field of deep learning and machine learning. No specific real-world application is concerned, although this
contribution may render certain forms of technology more accessible.
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A Appendix

A.1 Background

We survey fundamental concepts of signal processing and introduce our notation. We aim to provide mean-
ingful intuitions for readers who are not familiar with these principles, and to also rigorously ground our
method and satisfy readers who are knowledgeable in this topic.

In Figure 10, we illustrate how the sampling density and bandwidth of signals intuitively relate to each other
while also highlighting the notation and indexing scheme we use to designate these characteristics in our
analysis. In Figure 11, we illustrate the effect of the sampling window over a signal. In the paragraphs that
follow, we break down these notions in greater detail.
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Figure 10: Diagram showing the same signal captured with three distinct sampling densities
|Xn+1|/vol(X) < |Xn|/vol(X) < |Xn−1|/vol(X) (laid out horizontally) and three distinct bandwidths
Sn+1 ⊂ Sn ⊂ Sn−1 (laid out vertically). The sampling density corresponds to the number of samples
per unit of space used to cast the continuous signal into a discrete signal. The bandwidth corresponds to the
smoothness of the underlying continuous signal. A continuous signal may only be captured into a discrete
signal if sampling density is sufficiently fine to account for bandwidth; the blacked out signals show cases
where this condition is not met.
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Figure 11: Diagram showing the same signal captured with three distinct sampling windows Xnarrower ⊂
X ⊂ Xwider. The sampling window effectively consists in the region of space that is captured in the signal.
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Signals in continuous form. We can represent signals as functions s( · ) : X → Rf that map a continuous
spatial domain X that is a nicely behaved subset of Rd to a feature domain Rf . This representation is
useful because it allows us to leverage notions from functional analysis and calculus, and because it is fully
independent from the way a signal is captured. We often refer to the bandwidth of signals in this work, which
we can intuitively relate to the smoothness of continuous signals; low bandwidth signals are smooth, while
high bandwidth signals are detailed.

Signals in discrete form. We can also represent signals as functions s[ · ]n : Xn → Rf that map from
a discrete spatial domain Xn ⊂ X to a feature domain Rf . This representation enables us to perform
computations on signals as they are fully defined by a finite amount of information given by the |Xn|
individual samples xi ∈ Xn. We commonly point to the quantity of samples as the resolution of a discrete
signal. We associate indexing by n to distinct resolutions throughout this work, where resolution decreases
as n increases, meaning |Xn| > |Xn+1|.

Casting continuous signals into discrete signals by sampling. We can easily take a continuous
signal s( · ) and create a discrete signal s[ · ]n by sampling values at points xi ∈ Xn. We notate this process
as the sampling operator Sn : (X → Rf ) → (Xn → Rf ):

Sn{s( · )} = xi 7→ s(xi) ∀xi ∈ Xn (41)

Casting discrete signals into continuous signals by interpolation. We can reverse the process above
and derive a continuous signal s( · ) from a discrete signal s[ · ]n by applying a convolution with a smoothing
kernel ϕn, more formally known as a Whittaker-Shannon kernel (Whittaker, 1915; 1927). We note that
sampling and interpolation are only inverses of each under certain important conditions we come back to
later. We interpret the effect of the convolution against a smoothing kernel as filling in the gaps between the
samples. We notate the process outlined here as the interpolation operator In : (Xn → Rf ) → (X → Rf ):

In{s[ · ]n} = x 7→
∑

xi∈Xn

s[xi]nϕn(x − xi) ∀x ∈ X (42)

Restricting the bandwidth of signals. We need a slightly more formal way of designating signals that
respect certain bandwidth constraints in order to better discuss the equivalence between discrete signals and
continuous signals. We can use the smoothing kernels ϕn we just introduced to define sets of continuous
signals Sn = {s|s∗ϕn = s} that are already smooth enough to be left unchanged by the action of a smoothing
kernel. We underline that applying a smoothing kernel ϕn onto a signal s restricts its bandwidth such that
it belongs to the corresponding set of signals Sn, which is a useful tool for forcing membership to a set. We
finally note that bandwidth constraints form an ordering Sn ⊃ Sn+1, meaning a signal s that respects a low
bandwidth constraint Sn also respects any arbitrarily high bandwidth constraint Sn−k ∀ k > 0.

Equivalence of continuous signals and discrete signals. We can use discrete signals or continuous
signals to designate the same underlying information when the Nyquist-Shannon sampling theorem is satisfied
(Shannon, 1949; Petersen & Middleton, 1962). This theorem intuitively states that a continuous signal with
high bandwidth requires a discrete signal with correspondingly high sampling density for sampling to generally
be feasible without error. This theorem more formally states that a discrete signal s[ · ]n can uniquely
represent any continuous signal s( · ) that respects the bandwidth constraint encoded by membership to
Sn = {s′|s′ ∗ ϕn = s′}, where the expression for the smoothing kernel ϕn depends on the sampling density
|Xn|/vol(X) of the discrete spatial domain over the continuous spatial domain and on the assumptions on
the boundary conditions of the continuous spatial domain X (Whittaker, 1915; 1927; Petersen & Middleton,
1962). We summarize the Nyquist-Shannon sampling theorem by stating that the sampling operator and
interpolation operator are only guaranteed to be inverses of each other when the bandwidth constraint is
satisfied:

s ∈ Sn =⇒ In{Sn{s}} = s (43)
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Equivalence of operators acting upon continuous signals and discrete signals We can extend the
notion of equivalence between continuous signals s( · ) : X → Rf and discrete signals s[ · ]n : Xn → Rf

to encompass the actions that can be performed on the same signals using operators on continuous signals
O : (X → Rf ) → (X → Rf ) and operators on discrete signals On : (Xn → Rf ) → (Xn → Rf ). We are
especially interested in this notion as it enables us to think of our neural architecture as a chain of operators
that act on continuous signals which can be cast to act on discrete signals of any specific sampling density
|Xn|/vol(X). We often see this property formally labeled as discretization invariance in the neural operator
community and highlight this concept is key to other works which allow adaptation to different sampling
densities (Li et al., 2020; Kovachki et al., 2023; Fanaskov & Oseledets, 2023; Bartolucci et al., 2023). We
can formally express the equivalence between the continuous form O and discrete form On of some operator
as commutativity over the sampling operator when the bandwidth constraint is satisfied:

s ∈ Sn =⇒ Sn{O{s}} = On{Sn{s}} (44)

A.2 Related works

We shortly cover architectures that implement forms of residual connections that are similar to Laplacian
residuals.

Residual connections with filtering operations. Singh et al. (2021) incorporates filtering operations
within residuals to separate the frequency content of convolutional networks, although it provides no adaptive-
resolution mechanism. Lai et al. (2017) uses Laplacian pyramids to solve super-resolution tasks with adaptive
output resolution, with residuals ordered by increasing resolution. This is unlike our method, which is well
suited to tasks with adaptive input resolution, with residuals ordered by decreasing resolution.

Residual connections with dropout. Huang et al. (2016) implements a form of dropout where the
layers nested within residual blocks may be bypassed randomly. This is somewhat similar to Laplacian
dropout, however, this is not equivalent to a form of bandwidth augmentation and does not result in the
same improved robustness to various resolutions we show in subsection 4.1.

A.3 Experiments

We include an alternate evaluation of the experiments we present in subsection 4.1 and subsection 4.2. We
also provide further details on our experimental setup in this section.

In Figure 5 and Figure 6, we show baseline methods evaluated after an interpolation step, which yields
stronger robustness but negates their ability to lower their inference time at lower resolution. In Figure 12
and Figure 13, we instead show baselines evaluated directly, which yields weak robustness but provides
some reduction in inference time at lower resolution. We observe that our method provides vastly superior
robustness while also reducing its inference time more steeply at lower resolutions.

Figure 12: Accuracy of all architectures at various resolutions after training at the full dataset resolution.
Evaluation is performed directly in the case of mainstream methods. Our method (red full line) more
markedly dominates mainstream methods in terms of robustness under this alternate mode of evaluation.
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Figure 13: Inference time of all architectures at various resolutions. The inference time for the entire dataset
is considered. Evaluation is performed directly in the case of mainstream methods. Our method (red full
line) skips the computations of layers at lower resolutions, which more steeply reduces inference time relative
to mainstream methods, which must still evaluate all their layers.

Model design. We provide detailed illustrations for the full architecture designs we use with our method
according to each dataset: Figure 14 for CIFAR10 (5.33M-8.09M); Figure 15 for CIFAR100 (9.59M-14.5M);
Figure 16 for TinyImageNet (15.0M-19.8M); and Figure 17 for STL10 (13.8M-18.4M). We indicate not a
single parameter count, but a range of parameter counts for each architecture design, as adaptation enables
computation of the forward pass or backward pass using a variable subset of the underlying parameters. We
follow a general design pattern inspired by MobileNetV2 (Sandler et al., 2018) and EfficientNetV2 (Tan &
Le, 2021) to derive these architecture designs. We nest inner architectural blocks (bn in Equation 19) within
a series of Laplacian residual blocks of decreasing resolution and increasing feature count. We create these
inner architectural blocks by composing depthwise 3 × 3 convolutions and pointwise 1 × 1 convolutions in
alternation. We set all depthwise convolutions to use edge replication padding to satisfy Equation 15 and
ensure resolution remains fixed within each Laplacian residual block. We prepend this string of layers with
a pointwise convolution that expands the feature channel count. We conversely terminate the sequence of
layers with a pointwise convolution that contracts the feature channel count inversely. We separate each
convolution with a batch normalization (Ioffe & Szegedy, 2015) and a SiLU activation function (Elfwing et al.,
2018), chosen for its tendency to produce fewer aliasing artifacts. We apply different Laplacian dropout rates
(pn in Equation 38) depending on the dataset: 0.6 for CIFAR10; 0.3 for CIFAR100; 0.3 for TinyImageNet;
0.3 for STL10. We use a common classification head that consists of a single linear layer with a dropout
set to 0.2, which is applied after global average pooling. The designs were chosen by sweeping over different
configurations for inner architectural blocks, and over different resolutions and number of features for the
Laplacian residual blocks that contain them. The number of permutations per final sweep ranged between
18 to 216 for each dataset.

Model training hyperparameters. We provide the specific hyperparameters used during training.

For CIFAR10 and CIFAR100, across all methods, we use AdamW (Loshchilov & Hutter, 2017) with a learning
rate of 10−3 and (β1, β2) = (0.9, 0.999), cosine annealing (Loshchilov & Hutter, 2016) to a minimum learning
rate of 10−5 in 100 epochs, weight decay of 10−3, and a batch size of 128. We use a basic data augmentation
consisting of normalization, random horizontal flipping with p = 0.5, and randomized cropping that applies
zero-padding by 4 along each edge to raise the resolution, then crops back to the original resolution.

For TinyImageNet and STL10, across all methods, we use SGD with a learning rate of 10−2, cosine annealing
(Loshchilov & Hutter, 2016) to a minimum learning rate of 0 in 100 epochs, weight decay of 10−3, and a
batch size of 128. We use TrivialAugmentWide (Müller & Hutter, 2021) to augment training.
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Figure 14: Architecture design for our method on CIFAR10.
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Figure 15: Architecture design for our method on CIFAR100.
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Figure 16: Architecture design for our method on TinyImageNet.
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Figure 17: Architecture design for our method on STL10.
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