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Abstract

The multi-armed bandit (MAB) is a fundamental online decision-making frame-
work that has been extensively studied over the past two decades. To mitigate
the high cost and slow convergence of purely online learning, modern MAB ap-
proaches have explored hybrid paradigms that leverage offline data to warm-start
online learning. However, existing approaches face a significant limitation by
assuming that the offline and online data are homogeneous—they share the same
feedback structure and are drawn from the same underlying distribution. This
assumption is often violated in practice, where offline data often originate from
diverse sources and evolving environments, resulting in feedback heterogeneity
and distributional shifts. In this work, we tackle the challenge of learning across
this offline-online gap by developing a general hybrid bandit framework that incor-
porates heterogeneous offline data to improve online performance. We study two
hybrid settings: (1) using reward-based offline data to accelerate online learning
in preference-based bandits (i.e., dueling bandits), and (2) using preference-based
offline data to improve online standard MAB algorithms. For both settings, we
design novel algorithms and derive tight regret bounds that match or improve upon
existing benchmarks despite heterogeneity. Empirical evaluations on both synthetic
and real-world datasets further show the superior performance of our proposed
methods over baseline algorithms.

1 Introduction

The multi-armed bandit (MAB) problem is a fundamental online sequential decision-making frame-
work that has been extensively studied over the past two decades (Lattimore and Szepesvaril 2020).
In the standard MAB setting, a learning agent chooses one action (i.e., pulls one arm) at each round
and receives a stochastic reward (absolute value) as feedback. The goal of the agent is to maximize
the cumulative reward over time by balancing exploration and exploitation. This framework has been
widely applied in domains such as online advertising, recommendation systems, and information
retrieval (Bouneffouf and Rish, [2019).
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To deal with the limitations of cold start problem (Bubeck et al., 2009) in online learning and the
bias in absolute feedback (Wirth and Fiirnkranz, 2013), two extensions of MAB have been proposed:
The first is the warm-start bandits (Li et al., 2010), where the agent can access historical offline data
before online deployment. The second is the dueling bandits framework (Yue et al.| 2012, where
feedback is provided as a stochastic preference between two selected arms rather than stochastic
rewards.

However, existing warm-start bandit studies-whether under stochastic or dueling settings-typically
assume that offline data and online feedback share the same data structure (Oetomo et al., 2023},
Cheung and Lyul 2024; Zhang et al.l 2019) (e.g., both provide either stochastic rewards or preference
comparisons). But in real world scenarios, two types of data usually coexist. For example: Recom-
mendation systems may combine offline explicit ratings with online pairwise comparison feedback
(Zhang et al.l 2020), and reinforcement learning in Robotics frequently use offline preference-ranked
trajectories with online reward signals from environmental interactions (Brown et al.,2019). Further-
more, existing methods often overlook the potential distributional shift between offline and online
data (Bu et al.,[2020; Hao et al.}2023)). This raises a natural but fundamental research question:

How can we effectively leverage heterogeneous offline data with potential bias to accelerate online
bandit learning?

To answer the above questions, we made the following key contributions:

Problem Formulation: This work investigates the MAB problem under both absolute and relative
feedback settings, considering two transition scenarios: from relative to absolute feedback, and from
absolute to relative feedback. The framework captures the offline-to-online transition, where offline
data can be biased or distributionally shifted. Addressing this framework could significantly enhance
the flexibility in the choice of offline data. To the best of our knowledge, this is the first work to
propose and analyze such a hybrid MAB setting combining offline-online heterogeneous feedback.

Algorithm Design: The central challenge lies in effectively integrating these heterogeneous types of
data while mitigating bias inherent in the offline dataset. To tackle this, we propose a novel hybrid
estimator that leverages absolute feedback to enhance the learning efficiency of preference-based
models, along with a valid bias bound that quantifies the extent of distributional shift. Under the two
settings, we propose HybUCB-AR, which integrates offline absolute data with online dueling bandits,
and HybElimUCB-RA, which combines offline preference data with online stochastic bandits. While
the hybrid estimator enables effective combination of offline data, the pessimistic bias bound allows
selective utilization of offline data, ensuring performance aligns with classical MAB algorithms when
offline data is uninformative.

Theoretical Analysis: We provide a rigorous and comprehensive regret analysis for both algorithms,
including instance dependent regret upper bound, instance independent regret upper bound, instance
dependent regret lower bound and instance independent regret lower bound. To be specific, for
HybUCB-AR, and HybElimUCB-RA, we derive a instance-dependent regret upper bound of
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respectively, where the "Saving" term quantifies the benefit derived from offline data. We provided a
tighter and precise analysis compared to/Cheung and Lyu|(2024])), with a new discovered "intermediate
phase" where the existence of "Saving" is both determined by offline sample size and distribution
shift. A key insight in HypbUCB-AR is that, by maximizing informative pairs within the confidence
set, we improve the RUCB bound of Zoghi et al.[(2014) by replacing the denominator min{A?, A%}

with max{A2, A?}

Empirical Validation: Finally, we conduct extensive experiments on both synthetic and real-world
datasets. HybUCB-AR outperforms RUCB by 15% to 40%. Both algorithms outperform state-of-the-
art online baselines when leveraging offline heterogeneous data, demonstrating their effectiveness.



2 Related Work

Our work is closely related to research on multi-armed bandits, dueling bandits, and bandits with
offline data. Below, we provide a brief overview of the relevant literature. A detailed comparison
with closely related works is presented in Appendix

Multi-armed Bandits and Dueling Bandits The concept of Multi-armed Bandits (MAB) was first
introduced in [Robbins| (1952), and has since been extensively studied (Bubeck et al.| 2009} Karnin
et al., 2013} Slivkins et al., 2019; Lattimore and Szepesvari, [2020). Building on this foundation,
dueling bandits were proposed as a variant of MAB to model settings where only relative feedback
between pairs of actions is available (Yue and Joachims| 2011} [Yue et al.l2012). This framework
has gained increasing attention due to the prevalence of preference-based feedback in practical
applications such as recommendation systems and reinforcement learning from human feedback
(RLHF) (Zhao et al.| 2016; |Christiano et al., 2017 [Wirth et al., |2017). Early works on dueling
bandits focused on fundamental algorithms and theoretical guarantees (Urvoy et al., [2013}|Zoghi
et al., 2015} |Dudik et al., 2015; [Komiyama et al., |2016; |Chen and Frazier, 2017). More recent
research has expanded the framework to various settings such as acceleration in multi-user settings
Wang et al.|(2025b), robustness to corrupted feedback (Agarwal et al., [2021), best-of-both-worlds
guarantees (Saha and Gaillard, [2022)), adversarial environments (Saha et al.,[2021)), and delayed or
biased feedback (Y1 et al., 2024). Despite extensive literature on multi-armed and dueling bandits,
few studies have explored hybrid settings where agents leverage both absolute and relative feedback
simultaneously. The closest work is by [Wang et al.|(2025a), who proposed a framework that allows
the agent to access both types of feedback in each round. However, their setting differs from ours, as
it does not consider either offline data or potential bias.

Bandits with Offline Data Multi-armed bandits (MAB) with offline data have been studied in
several prior works. Early approaches, such as those by [Shivaswamy and Joachims| (2012) and
Banerjee et al.| (2022)), primarily assumed that the offline and online environments share the same
distributions, and assume homogeneity between offline and online data—either both are stochastic or
relative (Bu et al.,|2020; Hao et al.| [2023;|Gur and Momenil [2022)). Only recently have researchers
started addressing the challenge of biased offline data (Zhang et al., 2019} |/Agnihotri et al.| [2024;
Cheung and Lyul 2024} |Qu et al.l2024). Other studies, such as|Sentenac et al.|(2025)), examine the
tradeoff between online exploration budget and offline sample size. But works of heterogeneous
offline-online feedback remains understudied, with only recent works making preliminary progress.
Xia et al.| (2024) investigated hybrid data for linear bandits, albeit without theoretical guarantees,
while|Agnihotri et al.| (2024) adopted a Bayesian posterior approach for the same setting. However,
under the MAB framework, none of the previous works simultaneously address both heterogeneous
offline data and potential distributional bias—a critical gap our work bridges for the first time.

3 Preliminaries

In this paper, we propose a hybrid multi-armed bandit (MAB) framework designed to enhance the
efficiency of online learning by incorporating offline heterogeneous data with potential bias. The
problem is formulated as a K -armed bandit model, where K € Z_ is the number of arms, and the
arm set A is {1,2, ..., K}.

Initially, we focus on a scenario in which the agent explores its preferences using relative feedback by
selecting pairs of arms during the online interaction process, while the offline data provides absolute
feedback. Another scenario involving heterogeneous feedback will be provided later.

The learning agent sequentially interacts with the environment for 7' € Z time steps. At each step
t € [T), the agent selects a pair of arms (A (¢), A2(t)), and receives a pairwise comparison feedback.
For simplicity, if the selected pair is (a;, a;), the agent receives the feedback Y; ;(¢) with 1 denoting
a; wins a; and 0 vice versa. For the preference model, we follow the widely adopted Bradley-Terry
(BT) model (Yue et al.l2012; Sun et al.l 2024; Zhu et al., 2023} Dong et al., [2024])) to characterize
the winning probability. Specifically, let 5" denote the expected reward of arm ¢ during the online



process. The winning probability of arm a; over a; is

exp (p3")
exp (ug") + exp (ug")

piy = o(pg" — pj') = , 1)

where o (-) denotes the logistic sigmoid function. The comparison result Y; ;(¢) can be regarded as a
Bernoulli random variable with expectation p;";. Following prior works (Zoghi et al.l 2014;|Chen
and Frazier, [2017; Saha and Gaillard, 2022)), we assume the existence of a Condorcet winner - an arm
that is preferred over all other arms. Without loss of generality, we assume this to be arm a7, which
satisfies p"; > 1/2 for all j # 1.

The agent typically possesses a substantial amount of offline data, such as historical user click data in
a recommendation system (Cheung and Lyu, [2024; Bu et al., [2020; |/Agnihotri et al.} 2024). However,
the format of these data may not be entirely consistent with the online tasks. For instance, offline
data may exist in the form of absolute click feedback, but the online task aims to identify the relative
preference of the users. Besides, the changes in user preferences may lead to differences in expected
rewards between offline and online environments. To characterize this phenomenon, we consider that
the offline data set contains heterogeneous feedback from the online task. Specifically, for each arm
i € [K], let N; € N denote the number of offline observations associated with arm 4. The offline data
set D = {(i, X; ) : i € [K], k € [IN;]} consists of absolute feedback from the arms, where X; ;, is
assumed to be 1-subgaussian with expectation p™. Further define {pffg}i’ je[k) as the preference

value derived from {4$"};¢ (] under the BT model.

The objective of the agent is to maximize its cumulative reward over a given horizon 7" by effectively
utilizing the heterogeneous feedback available in the offline dataset. Equivalently, this objective can
be framed as minimizing the cumulative regret:

XT: <AA1(t) + A, >]
2 9

t=1

Reg(T)=E

where the expectation is taken over the randomness of the agent’s policy, and A; := p{"; — % denotes
the sub-optimality gap of arm i € [K].

3.1 Alternative Setting: Stochastic Bandits with Offline Relative feedback

In some applications such as recommendation system (Silva et al., [2022), robotics (Nemlekar et al.,
2023; [Brown et al., 2019) and RLHF (Das et al.| [2024), the learning agent is tasked with making
decisions or providing recommendations and observes absolute feedback, such as whether the user
accepts or rejects a given option. However, the offline dataset often consists of relative feedback
because, during the "hot start" phase when a new user first arrives, many platforms gather information
through relative preferences rather than absolute ratings. In this scenario, users are typically asked to
express their preferences between pairs of options, such as choosing between two different alternatives.
So we further consider the learning task where the online agent is faced with stochastic bandits but
with access to an offline data set consisting of relative (pairwise) feedback.

In this setting, the online interaction process follows the standard stochastic bandit formulation. At
each time step ¢, the agent selects an arm A(t) and receives a stochastic reward X 44)(t), which is
assumed to be 1-subgaussian with mean u‘;;‘( #)-

The agent additionally has access to an offline dataset D = {(i,4,Y; ;%) : 4,5 € [K],k € Ny},
where IV; ; denotes the number of recorded comparisons between arms a; and a;, and Y; ; 5, represents
the k-th comparison outcome. Following prior works on relative feedback (Yue et al., 2012} Ji et al.|
2023), we assume the comparisons are generated according to the BT model. That is, Y; ;1 is a

Bernoulli random variable with mean p{" = o (u™ — pS').

Without loss of generality, we assume arm a; is the optimal arm in the online setting, i.e., u" > p"
for all ¢ € [K]. To ensure consistency in our definitions throughout the paper, we define the
sub-optimality gap for each arm ¢ as A; = p1; = o(u1 — ;) — % The agent aims to minimize
the cumulative regret over the online horizon by leveraging information from the offline dataset.



Specifically, the regret is defined as:

Reg(T) =E

T
ZAM] |
t=1

where the randomness is taken over the stochastic rewards of the arms.

For notational convenience, throughout the remainder of the paper, we continue to use the ‘off’
superscript to indicate quantities derived from offline data, and omit the ‘on’ superscript where no
ambiguity arises.

4 Dueling Bandits with Offline Absolute Feedback

In this section, we present HybUCB-AR for the dueling bandits with an offline data set consisting of
absolute feedback.

4.1 Algorithm

Constructing a reliable estimator for the utility of each arm is essential for effective learning in
the hybrid bandit problem with heterogeneous feedback considered in this work. Since dueling
feedback provides only relative information among arms, directly estimating the absolute utility of
individual arms based on relative data remains a challenging task. To leverage the offline dataset
containing absolute feedback, we transform its data format into a unified relative feedback type. For
data collected during online interactions, it is natural to estimate the relative preference of arm a;
over arm a; as p; ; = ZZ:JI Y: i x/T; ;. For the offline dataset, we apply the Bradley-Terry (BT)

model to construct an estimation of p; ; as P = o(i9" — 39T), where 49 = ST | X /N is the

o . i, J
empirical mean of the offline data set.

The key challenge is to integrate these two heterogeneous sources of feedback into a single estimator
that maximizes information utility while maintaining unbiasedness. To this end, we construct
the Minimum Variance Unbiased Estimator (MVUE) for p; ; by optimally combining empirical
observations from both sources. Specifically, since p; ; is 1 v j-subgaussian with mean p; ;, [);’%

is \/ N;+ N,/ \/ 4(N;N;)-subguassian with mean p;’f§, and p; ;, ﬁffg are independent of each other,

~hyb
we construct p, j as

N,;N]‘
“hyb _ Ti,, R NitN;  off )
i7j - T NiNj p’L,j + N,;N]‘ iJ’ ( )
i T N, +N; it N;+N;

which is 1//4(T; ; + N;N;/(N; + N;)) subgaussian with mean pl;?. The proof of the sub-
Gaussianity is deferred to Appendix [C.1}

Due to the distributional mismatch in rewards between the offline data set and online setting, directly
applying such a hybrid estimator may lead to the offline data bias adversely affecting the online
learning process. To mitigate this issue, the reward estimator for each arm should explicitly account
for the potential bias present in the offline data. Inspired by [Cheung and Lyu| (2024)), we introduce
a hyper-parameter V; ; to characterize the difference in the offline and online reward distributions.
Specifically, V; ; plays the role of an upper bound for p‘jfjf — pi,j, where

Vij > pj’f; —pij|, foreacharm pair (a;,a;) € A x A.

The quantity V; ; serves as an upper bound on the amount of distributional shift from offline to online.
In the extreme case, setting V; ; > 1 corresponds to having no additional knowledge about the shift.
In contrast, V; ; < 1 imply nontrivial prior knowledge regarding the difference | pg’f; — pi,;|, a tighter
bound leads to better utility of the offline dataset.

Remark 1. In practice, directly computing V; ; is often challenging, as the probabilities p; ;, p; i,
and p; 1. are typically dependent—especially when the number of arms K is large. When V; ; is

unavailable for all i, j € [K], we instead require that V; > |u? — 1;|, Vi € K], and define the
pairwise term as V; ; = o(V;+V;). The justification for this construction is provided in Appendix



The construction of HybUCB-AR is based on the upper confidence bound (UCB) estimators. Specifi-
cally, we can construct two UCBs for each arm pair (a;, a;) based on the pure online data and the
hybrid offline and online data as below:

log(1/6
UCB(GZ',G,J‘) :ﬁi,j +2 M y (3)
2T; 5
log(1/,) En
R o} N+ N;
UCBhyb(ai,aj) = p%b + g NiNj +1\f]iN7- g - “)
2(Ti; + N1;+Nj) Tij + Ni+N;

We will later show in Appendix [C.3]that both UCBs represent upper bound estimates on the real
online reward p; j, i.e., p; ; < min{UCB(a;, a;), UCB™®(a;,a;)} with high probability. However,
they reflect different levels of reliance on the offline data. When the offline data is highly informative
and the variance term V; ; is small, the hybrid UCB provides a tighter upper bound. Conversely, when
the offline data is less informative, the online-only UCB offers a more reliable upper bound estimate.

Algorithm 1 HybUCB-AR (Hybrid UCB: Offline Absolute to Online Relative)

Require: Arm set A, offline dataset D = {(i, X, ;) : i € [K],k € [N;]}, hyperparameter ¢, and
estimated bias V; ; for all (a;, a;) pairs.

Initialization:
1: forall a;,a; € Ado
2: T;; = 0. > Number of comparisons between a; and a;
3: UCB(ai,aj) = +o0.
~O ~ O / log(1/8;
4: UCBhyb(ai, CLj) = U(,Uiff - ujﬁ) + m + ‘/;‘7]'.
5: end for
6: fort =1to T do
7: Construct candidate sets:
1
C" ={a; € A| UCB(a;,a;) > 3 Va; € A}, )
1

€ = {a; € A| UCB™(a;,05) > 5, Va; € A} (6)
8  C,=cmnek.
9:  if Cy # () then
10: (A1(t), As(t)) = arg max,, q,cc, min{UCB(a;, a;), UCB™(a;, a;)}.
11: else
12: (A1(t), A2(t)) = argmax,, qa;e4 min{UCB(a;, a;), UCB™(a;,a;)}.
13: end if

14: Select the arm pair (A;(t), Aa(t)).

15: Update the selection times T'4, (1), a4,(t)+ = 1, Ta,(¢),4, )+ = 1.

16: Record the observation Y; ;  and Y} ;  fori = Ay (t),j = A2(t), k = Ta, (1), 45()-
17: For all pairs i, j € [K], update UCB, UCB™? according to equation , .

18: end for

In general, the core idea of HybUCB-AR is to construct a candidate set of optimal arms and to
explore the arms within this set that have the highest UCBs. To fully leverage the advantages of
offline data while mitigating the impact of bias, we employ both a hybrid UCB and a purely online
UCB for constructing the candidate set and selecting arms. Specifically, the candidate set includes
all arms that could potentially be optimal. Therefore, once an arm is defeated by another—i.e., its
corresponding hybrid UCB or pure online UCB falls below 1/2—it is removed from the candidate set
(Line[7H8). After constructing the candidate set, the agent would select the arm pair with the highest

min{UCB(a;, a;), UCB™"(a;, a;)} (Line 9-12).

4.2 Theoretical Results

In this section, we provide the regret upper bound for HybUCB-AR and the corresponding lower
bound for the problem.



Theorem 1. Choosing §; = m
(a) Instance-dependent bound:

the regret of HybUCB-AR satisfies:

O Z Az + Aj 10gT _ NlN] max {Il’laX{Ai, A]} — 4(4}1'7]‘, 0}
2 max{A?, A%} N;+ N; max{A;, A} ’

1<j

Saving(a;,a;)

where wi j = Vi + p — pig with Vij > |pl; = pig|

(b) Instance-independent bounds:

Tx

logT
O [min<{ +/K2TlogT — E Saving(a;, a;), ( %8 +ma_xVi’j> -T ,
i,

1<j

where T, is the optimal solution to the following linear program:

max T @)
T, ti,5
N;N; .
subjectto T < NZTJJVJ +t 4, Vi.je[K],
Dty =T,

i<j
T Z O, ti,j Z 0.

Remark 2. In Theorem[I] we have provided two versions of instance-independent bound. The first is
an extension of instance-dependent bounds, while the second combines the saving term with the term
proportional to T. According to the linear programming formulation in (), the effect of offline data
is maximized when the offline data are uniformly distributed and decreases as the offline data become
highly skewed, especially when T is relatively small. This achieves a similar result to|Sentenac et al.

(2023).

Remark 3 (Saving). The complete proof is deferred to Appendix[C.3] From the instance dependent
case, it is obvious that the effectiveness of offline data is summarized in the "Saving" term. First,
note that the Saving is always non-negative. When the condition 4w; ; > max{A;, A;} holds for all
i,j € A, the total Saving become zero, and the result degenerates to the pure online regret upper
bound. In contrast, when max{A;, A;} > 4w; ;, the offline data becomes beneficial. Specifically,
this implies either (i) the offline and online distributions are sufficiently close such that the bias is
small, or (ii) p;’ﬁ; < pi,j, so the direction of the distributional shift is correctly estimated by V ;.
This aligns with our intuition that small distribution bias leads to greater utility of offline data, and
the bias created by the distributional shift could be neutralized if the shift direction is well-predicted.
Furthermore, under the second condition (that is, max{A;, A;} > 4w; ;,), the Saving is proportional
to the harmonic mean of the offline sample sizes, namely N;N; /(N; + N;). This value is maximized
when the offline data for N; and N is uniformly distributed, which is consistent with our discussion
of the instance-independent bound in Remark[2] A more precise and comprehensive analysis of the
Saving, including the "intermediate phase", is deferred to Appendix|[C.6]

Corollary 1. If'V; ; = 0 and the offline data are uniformly distributed such that N; = n for all
i € [K, then the regret upper bound simplifies to:

A+ A logT n 2K(K +1)T?1ogT
012 =3 {max{maX{Az,A?} 2’0H , and O<¢ nK(K + 1) + 4T

i<j i

respectively. Under this setting, the contribution of offline data to regret reduction is captured by the
terms — 5 and nK (K + 1), respectively. As the amount of offline data becomes sufficiently large, the
regret upper bound approaches a constant.



Remark 4 (Comparisons with homogeneous offline data). Under this setting, a natural ques-
tion arises: Compared to homogeneous offline data (absolute feedback), is heterogeneous of-
fline data (preference feedback) less informative or harder to leverage? For HybUCB-AR,
if we replace the offline stochastic data with preference feedback, the resulting hybrid estima-

tor ﬁi”]b would depend on a confidence radius of \/1/2 -log(1/6;)/(T;; + N; ;), rather than

V1/2 - 1og(1/6,)/(T;; + NiN;j/(N; + N;)) as in equation [@). This suggests that preference data
can yield a tighter bound for a given pair (i, j) under the same amount of data. However, this
result critically relies on the Bradley—Terry model and the 1-subGaussian assumption. As shown in
Appendix (C1), transforming stochastic data into relative data via the BT model enlarges the esti-
mation variance, and such variance misalignment directly impacts the utility of heterogeneous data.
If these assumptions are altered, the subGaussian properties of the estimator p;  under stochastic
feedback may also change, potentially leading to different concentration behaviors or confidence
bounds. Despite this, as the number of arms K grows, stochastic data will eventually provide more
information, since each stochastic sample X; can be jointly utilized to estimate pairwise preferences
across all arms, whereas preference feedback only provides information about the specific pair (i, j)

being compared.

Finally, we establish the regret lower bound of the proposed algorithm, whose analysis relies on the
definition of Cp-consistency, which is a generalization to the consistent policy in stochastic bandits
(La1 and Robbins,, [1985)).

Definition 1. For C > 0, p € (0,1) and a collection T of instances, an Algorithm is said to be
Cyp-consistent on Z, if for all I € Z, it holds that Reg(T) < CTP.

Corollary 2. Define Iy be a collection of instance satisfies V; > |,ugﬁ — w;| for alli € [K]. By
Theorem|[I|and Definition[I] HybUCB-AR is Cp-consistent on Iy, .

Theorem 2 (Regret Lower Bounds). (a) Instance-dependent bound: Let V be an arbitrary bias

bound, and let A € (0, %) be the gap between the optimal arm and all suboptimal arms. For all
T € Iy. the regret of HybUCB-AR satisfy the following lower bounds:

K A 1 max{2A — w;, 0}?

where C, p are constants from Deﬁnition and w; = V; + uoﬁ — g with Vi > |u;’ﬂ — -

(b) Instance-independent bound: Let V.. be fixed and arbitrary, and let V; = Vipax for all i € [K],
then there exists a Gaussian instance T € Ty satisfying the following regret lower bound:

Q (min{\/ﬁ, <\/7_T/+Vmax> T}) , ®)

where 7., is the optimal solution to the following Linear Programming problem:

/
max T
7't

subjectto T <t;+ N;, Viel[K],

d ti=2T, 7 >0t >0.
i€[K]

The proof of Theorem [2]is deferred to Appendix and Both the gap-dependent and gap-
independent lower bounds closely match the regret upper bound provided in Theorem [T} In particular,
for the special case where N; = n and A; = A, we show in Appendix [D.1]that the upper and lower
bounds differ by at most a factor of K. Notice that the term v/ KT in Equation (8) does not contain
“Saving”, as under our construction the worst case could be that the Saving is zero.

5 Stochastic Bandits with Offline Relative Feedback

In contrast to the previous setting, we now consider a classical MAB problem augmented with

offline preference data. Due to the switch between offline and online data, we redefine ;[)gfg =



Zk” Yiik/Nij, Dij = o(fu; — /:L]) where 1, = Y21, X, /Ty, Vi € [K]. andp” = apf”l +
(1 —a)p, ;, where « = N; ;/ (T T+ N .7)- The upper confidence bound becomes:

. log(1/6:) T; +1T;
UCB(a;, a;) = pi j +2\/ . L 9)
J J 2 T,T;
log(1 N
UCB™(a;,a;) = p + 0g(1/9:) + I A (10)

2(T+7J“ + N, ) T+T + Ni;j

Algorithm 2 HybElimUCB-RA (Hybrid Elimination UCB: Offline Relative Online Absolute)
Require: an arm set A, offline dataset D = {(¢,4,Y ;«),%,J € [K],k € [N; ]}, hyperparameter
d; and estimated bias V; ; for all (a;, a;) pairs.
Initialization: Let C = A, T; = 0,Vi € [K], and for all 4, j € [K], let UCB(a;,a;) = 400,
~ o, ¢
UCB™ (a5, a5) = p3f + /5L
I: fort=1,---,Tdo
2 Select ACthH A(t) = argming,ec T; ().
3: Update selection times T4y = T4 o 1.
4: Record observation X j, fori = A(t), k = Ta).
5
6
7

For all pairs i, j € [K], update UCB, UCB™" according to equation (3), (T0).
: C=C\{a; €C,3a; € C\{a;} s.t. min{UCB(a;,a;), UCB™"(a;,a;)} < 3}
: end for

In Section |4 we used absolute offline data to estimate p; ; based on BT model. However, using
preference data to estimate u; is hard, as it provides less information. in HybElimUCB-RA, we
approach this problem by continuing using preference based estimation model, with an elimination
approach. In each round, we select the arm that has been played the least, and eliminate suboptimal
arm a; if 3 a; € As.t. min{UCB(a;, a;)UCB™"(a;,a;)} < 1/2. Under the worst case where the
hybrid terms provides no additional information, it’s performance matches the vanilla elimination
UCB algorithm.

Remark 5. One might question how to align with vanilla UCB when offline data cannot provide
additional information. As mentioned, estimating | from preference data is mathematically chal-
lenging due to the absence of explicit reward signals. An alternative approach is to maintain pure
online UCB and hybrid UCB separately, which is similar to the ElimFusion Algorithm in|Wang et al.
(2025d)). A detailed implementation of this approach is provided in Appendix|[F]

Theorem 3. Let §; =
satisfies:

m. The instance dependent regret upper bound of HybElimUCB-RA

lo
O Z gA(l)_QNzlmaX{A —2wi1,0) ]
i€[K]

Saving(a;)

where w;1 = Vi1 +p{) — pig with Vix > [pd) — pial.

Remark 6. Due to space limits, we defer the instance-independent regret bound and lower bound to
Appendix[E2]and[E3| The proof of Theorem[3|is provided in the Appendix[E-1} The regret bound
follows a form similar to that in Section ] a larger offline dataset and smaller bias in the offline
data lead to greater regret reduction. Notably, one key insight is that, under the relative to stochastic
setting, uniformly distributed offline data no longer leads to good Saving. As shown in Theorem|[3} the
regret reduction for each suboptimal arm a; € [K|\{1} depends critically on the comparisons with
the optimal arm a1. Specifically, offline data concentrated on comparisons with a1 leads to higher
efficiency in the online phase.



6 Experiments

We evaluate HybUCB-AR and HybElimUCB-RA on synthetic and real-world datasets to assess their
performance in hybrid feedback bandit settings. Figure [I] presents four subplots comparing their
performance against classic bandit baselines. Specifically, for online preference setting, we compared
our result with IF (Yue et al., 2012) and RUCB (Zoghi et al.|, 2014), while for online stochastic setting
we set the baseline as ETC, vanilla UCB (Lattimore and Szepesvari, |2020) and Thompson Samping
(Agrawal and Goyall, |2013)). Without offline data, HybUCB-AR, by maximizing the informative
pair in the candidate set, outperforms RUCB by 15 to 40%. Both algorithms surpass baseline
when heterogeneous offline data is included. These results highlight the robust performance of our
algorithms across diverse scenarios. Details and supplemental experiments, including algorithm’s
performance across varying K, sensitivity to parameters, and efficacy in real-world datasets, are
provided in Appendix
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Figure 1: Cumulative regret comparison of HybUCB-AR (left) and HybElimUCB-RA (right) against
baselines. Left two subplots: HybUCB-AR on synthetic data and the MovieLens dataset; right two
subplots: HybElimUCB-RA on the same datasets.

7 Conclusion

This paper investigates multi-armed bandits with heterogeneous offline data, we propose a novel
hybrid estimator that effectively leverages hybrid data to enhance online learning, with comprehensive
theoretical guarantees. This significantly expands the practical applicability of bandit frameworks by
offering greater flexibility in incorporating offline data. Future directions include generalization to
linear bandits and adversarial environments, as well as more flexible settings where heterogeneity
exists within offline or online data.
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Formulation, Algorithm Design, Theoretical Analysis and Empirical Validation, each of them has
a clear map to the content in the paper: Problem Formulation is in Section 3] Algorithm Design
and Theoretical Analysis are in SectionE]andE], Empirical Validation is in Section@ Furthermore,
In Section 2] we detailedly discussed existed works, which matches to the brief introduction in the
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* The answer NA means that the abstract and introduction do not include the claims made in the
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* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes

Justification: As discussed in Section[d when comparing with homogeneous offline data, we point
out that ﬁ??b relies on both BT model assumption and the sub-Gaussian assumption. Furthermore, In
Section [ Offline Relative to Online Stochastic, our hybrid algorithm HybElimUCB-RA does not
match vanilla UCB when offline data is uninformative. Even though we provided an approach in the

Appendix, it’s theoretical guarantee is not desired.
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¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
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¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
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assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
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they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
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* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?
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Justification: Assumptions are provided in[3] All theorems in the main text are formally proven in
Appendix, with explicit pointers linking each theorem to its proof. For auxiliary lemmas whose proofs
are omitted, we cite prior works (e.g., [Author et al., Year]) that contain complete derivations, ensuring
full verifiability without redundancy.
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* The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed experimental setup in Appendix |G| along with additional experi-
mental results. Furthermore, the source code of our experiment will be attached in the supplementary
materials.
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* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
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Justification: The paper states that source code will be provided in supplemental materials, with
plans for full open access upon acceptance. The README.md file contains sufficient instructions
for reproduction. All datasets used are publicly available, ensuring full reproducibility of the main
experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer:[Yes]

Justification: The setup and details, including the selection of hyperparameters, are provided in
Appendix|[G] the complete code is provided in the supplemental materials.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: In each plot of the result, we not only plot the means but also the error bands: In bandit
experiment, we set it as: Std Error / # of experiments. Furthermore, The provide a brief report about
the experiment in Section [f]and detail information in Appendix [G]

Guidelines:

¢ The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

« Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.
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» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

10.

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper specifies that experiments were run on a workstation with an AMD Ryzen
Threadripper PRO 7985WX 64-core CPU (128 threads, up to 5.367 GHz), 124GB of RAM, and a
926GB NVMe SSD (with 761GB available), meeting the requirements for compute worker type,
memory, and storage. Each experiment’s setup is detailed, including the number of rounds (e.g., 50,000
for Algorithm 1 synthetic experiments, 10,000 for real-world experiments), trials (100 and 3), and arms
(K = 8to 32). The datasets are small (MovieLens-20M at 533.4 MB, Yelp at 196.1 MB, totaling 729.5
MB), well within the workstation’s memory and storage capacity. The workstation’s high-performance
configuration (64-core CPU, 124GB RAM, NVMe SSD) ensures efficient experiment execution, and
the detailed experiment parameters allow estimation of total compute requirements.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

¢ The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We ensure that all claims made in the paper are either rigorously proven or supported
by appropriate citations. When our proofs are based on the frameworks of prior work, we explicitly
acknowledge the original sources before presenting our own contributions. All individuals who
contributed to the research are included in the author list. To the best of our knowledge, the research
does not raise concerns related to safety, security, discrimination, surveillance, environmental impact,
or human rights.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: In Section[7} we mention that this work could enhance the flexibility in selecting offline
data for online learning. This has the potential to influence online algorithms used in industry by
improving their robustness and overall performance.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

» The authors should consider possible harms that could arise when the technology is being used
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Safeguards
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Answer: [NA]

Justification: This paper primarily focuses on learning theory and does not involve the development
or release of high-risk models (e.g., pretrained language models or image generators) or potentially
sensitive datasets. The experiments serve only to validate our theoretical guarantees using standard,
non-sensitive data (Yelp and MovieLens). Therefore, safeguards for responsible release were not
necessary in this context.
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All experimental code used in the paper was developed by the authors. For real-world
experiments, we use the MovieLens and Yelp datasets. These datasets are properly cited in the
Appendix, and their licenses and terms of use have been respected in accordance with their respective
guidelines.

Guidelines:
* The answer NA means that the paper does not use existing assets.
» The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?
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15.

Answer: [NA]

Justification: This is primarily a theoretical contribution. While we include a small-scale experimental
validation with code provided in supplemental materials, no substantial new assets (datasets, models,
or benchmarks) were created. The code merely reproduces analytical results from our theoretical
framework.

Guidelines:

¢ The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects or user studies, and therefore no IRB
approval was required.

Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: We used LLMs to assist with writing refinement and to help implement the baselines
of compared algorithms. These uses do not affect the core methodology or the scientific rigor of our
work.

Guidelines:
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* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Notations and Models

Notation Meaning
K # of arms
a; arm ¢
%, i, the estimated mean reward of a;, offline and online respectively
pot the ground truth mean reward of a;, for offline and online respectively
Di,js p2f§ ground truth Ber(p) s.t. a; wins against a; for offline and online data respectively
Pij the estimated value of p; ; only using online data
ot the estimated value of p; ; using offline data
A?f;’ the estimated value of p; ; using offline and online data(hybrid)
A; D1, — %, a1 refers to the Condorcet winner
T; ; # of times that played (a;, a;) online,
especially, we use T; ;(t) to refer the # of times that play (a;, a;)at the start of t
T;(t) # of times that a; is selected for online comparison
N; # of times that played a; in the offline dataset
Xik the k" reward of a;
Yiik the k-th feedbcak of (a;, a;)
Vi a input valid bound for pairwise data, where V; ; > |pff§ — Dijl
& good event, & = ); ;¢ (k] (&s(}%,j) N €thyb(pi,j))
Wi Vi + 080 = pij
UCB, UCB™®  the UCB using pure online data and hybrid data
o) sigmoid function

B More Detail Comparisons with Existing Works

B.1 Comparison with|Cheung and Lyu| (2024)

Cheung and Lyu|(2024) proposed Policy MIN-UCB algorithm, which is the first to deal with bias dataset under
MAB setting with input valid bias bound V' (a), our work extends it to heterogeneous data setting and refine its
regret upper bound. According to Lemma 4.8 in|Cheung and Lyu|(2024),

a . log(4Kt") — Tela) - maxd 1 — w(a) 2
et > a2 R 10w {1 S0

where Ny (a) is the number of times arm a is selected online, and T’s (a) denotes its offline sample size. Following
the derivation in Appendix B.2 of |Cheung and Lyu|(2024), and adapting it to our setting, we simplify the above
inequality into the following form, as used in our Lemma [5]and[6}

One difference in our setting lies in the preference-based feedback model, which assumes a 1/2 - \/1/T; ;

sub-Gaussian distribution. This changes the confidence radius from +/21og(1/5;)/T; to \/log(1/3:)/(2T5 ;),
leading to a different constant factor in the inequality.

However, the theoretical analysis in|Cheung and Lyu| (2024) is limited in that it only examines the Saving when
there is no online data at all (Case la in Appendix B.2, where it directly scales online data N¢(a) = 0). To
achieve a regret bound with a "Saving" term, their analysis doubles the coefficient of the standard log T'/A
term of UCB. Specifically, traditional online UCB yields a regret of the form C'log T'/A where C'is a constant
term, but the regret upper bound for the hybrid setting in|Cheung and Lyu (2024) is 2C'log T'//A — Saving
. This means that when the Saving term is small, their regret can even exceed that of pure online UCB. Our
analysis resolves this issue from a different theoretical analysis perspective, and restores the regret bound back
to C'log T'/A — Saving. Furthermore, the Case 1a in|{Cheung and Lyu(2024) is actually a subcase of our more
general analysis, as the following chain of inequalities shows:
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Ww\?_ 8
N’ (1 - E) > 7
48 20" — '
A2 A/
48 (2A" — W)
A3 ’

where the first inequality corresponds to the condition in Case 1a in|Cheung and Lyu|(2024)), the second holds
due to the assumption A" > w’, and the resulting expression aligns with the condition stated in our Lemma

B.2 Comparison with Wang et al.| (2025a)

Wang et al.| (2025a) proposed an online hybrid MAB setting where the agent could observes both rewards and
pairwise preferences per round. To be specific,|Wang et al.|(2025a) proposed two algorithms to address the hybrid
feedback multi-armed bandit (MAB) problem: Elimination Fusion (EIIMFUSION) and Decomposition Fusion
(DECOFUSION). EIIMFUSION eliminates an arm a; if either UCB(a;) < LCB(a;) or UCB(a;,a;) < %
holds, this method closely related to our HybElimUCB-RA. DECOFUSION employs a more complex and
cooperative policy between dueling and reward-based feedback, randomly using one of the feedback to explore
the arm space and the other to exploit. Under the regret definition Rt = aRY. + (1 — o) R}, where D refers
"dueling" and R refers "reward", and « is an input parameter. The regret upper bound of EIIMFUSION and

DECOFUSION algorithms are:

(aAgcR) +(1- a)A,(Cm) logT

E[Rr] <O
iz max{(AY)2, (A)2/ K}
and
logT
E[Rr] <O | Y
= max{A{V Ja, AL /(1 - a)}
respectively.

In our setting, the fusion arises from the integration of offline and online data. Within each source (offline or
online), the data is homogeneous; therefore, in the online learning phase, only one type of feedback is available.
To effectively leverage both sources, we adopt the Bradley—Terry model and construct a unified estimator for
pi,j, capturing the pairwise preference probability. In contrast, the method in|Wang et al.[(2025a)) treats the
estimation of each arm or arm pair independently, the joint utility of heterogeneous data comes by constructing
candidate set together.

B.3 Comparison with Zoghi et al. (2014)

Zoghi et al.|(2014) proposed the RUCB algorithm to address preference-based feedback without relying on the
strong stochastic transitivity and stochastic triangle inequality assumptions required by earlier works such as
Yue et al.|(2012). However, RUCB does not fully exploit the information in its candidate set, as it selects the
second arm c (corresponding to A2 (¢) in HybUCB-AR) uniformly at random. As a result, it can only guarantee
a regret bound of

0] T
; min{AZ, A?}
In this work, we improve upon this by maximizing informative pair in the candidate set:

(A1(t), A2(t)) = argmax UCB(as,a;).

aj,a; €ECtXCt

This change allows us to better utilize candidate set information, leading to a tighter regret bound of

= max{A?, A%}

B.4 Comparison with Qu et al.|(2024)

Qu et al.| (2024) proposed a hybrid transfer reinforcement learning (HTRL) algorithm, HySRL, which selectively
uses historical data exhibiting shifted dynamics to reduce the sample complexity of online reinforcement learning.
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Similar to the findings in|Cheung and Lyu| (2024), it proved in general HTRL, when no addition knowledge or
restriction in applied to historical dataset, the sample complexity could not be improved.

To address the distributional shift between offline and online samples, HySRL introduces the concept of -
separable shift, which classifies offline data as either distributionally identical to or different from the online
environment. For offline samples deemed identical, the algorithm directly incorporates them into online
estimation. In contrast, samples identified as distributionally different are entirely excluded during the online
learning phase. Under this framework, the sample complexity of HySRL is:
6 (min H3SA H*B| N H?S?A
22 ) g2 CEE )

where a, 3, € are their input parameters, H is the length of episode, S, A refer to state and action space
respectively.

In|Qu et al.| (2024), the distribution shift region is detected online, and under the theoretical sample complexity
bounds, the shifted region can be correctly identified with high probability. Despite its flexibility, this approach
relies on strong assumptions regarding the [-separability definition and the choice of 3. Moreover, it does not
account for the sample size of the historical dataset. In contrast, our method assumes a valid bias bound as input,
which eliminates the need for warm-start estimation of the shift region, but requires prior knowledge about the
arms or the transition probability functions.

C Proof for Theorem [

C.1 Sub-Gaussian Properties

Lemma 1 (sub-Gaussian Properties of Estimators). Let p;,; denote an estimator of the preference probability
between arms i and j. The sub-Gaussian parameter of p; ; depends on the type of data used for estimation:

1. For relative preference data, where

1
Dij = T ZYi,j,ka

R
the estimator is %4 /% sub-Gaussian.
K2V

2. For stochastic utility data, where

J

N, N
) 1 1
Dij =0 EZXW - EZX““ ;
k=1 T k=1
1 N;+N;

2\ NN, sub-Gaussian.

the estimator is

3. For a hybrid estimator combining both types of data:

1 & S 1 1 &
~hyb - i J . _ .
Pig = NN, D Yisk | + N0 N D> Xk N, 2Nk |
ij 1 Ni+N; \ k=1 i T N +N; b k=1 J k=1

the sub-Gaussian parameter is %

Proof. We prove each case separately.

1. Pure Relative Preference Estimator. Let Y ~ Bernoulli(p) with values in [0, 1]. By |[Hoeffding’s
forany A € R,

E fexp (\(Y — E[Y]))] < exp (%) — exp (%) |

This corresponds to a % sub-Gaussian variable, since
AP N%(1/2)
8 2
As p;; is the average of T; ;(t) independent Bernoulli samples, Lemma 5.4 in [Lattimore and

Szepesviri| (2020) imply that p; ; is 3, /ﬁ sub-Gaussian.
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2. Pure Stochastic Utility Estimator. Assume that each X; ; and X ; is 1 sub-Gaussian. Since
sub-Gaussianity is preserved under averaging, we have:

Xk ~ b-G X b-G
N Z k \/7 sub-Gaussian, N Z Jk ™~ \/]7 sub-Gaussian.

7 k=1

Therefore, the difference of these averages is sub-Gaussian with parameter \/1/N; + 1/N; Since
sigmoid function is 1/4-Lipschitz continuous, applying Lemma yields the final sub-Gaussian

parameter:

NS EUE U FU

4 N, N; 2\ N; N;°
3. Hybrid Estimator. Let
N; N;
N:N; 1 1
a:=1T;;, =—""J  Z.=0|-= Xip — — X
o =N, N; ; *TN; ; o

The estimator is a convex combination:

~hyb
by = a+ﬂ <ZYZM+BZ)

Since > 5_, Yi sk is 531/« sub-Gaussian and Z is 5,/ + 7 sub-Gaussian, by Lemma 5.4 Latti-
i J
more and Szepesvari (2020), the entire sum has a sub-Gaussian parameter:

— 1 i_|_/32 1 7+i #
Jioz—i—ﬁ da 4\N;, N;) 2J/a+p

Substituting back yields the desired result.

C.2 Justification of Valid Bias Bound

Lemma 2. Given V; > |u$® — |, Vi € [K), under the Bradley-Terry model, we could derive the valid bias
upper bound for pairwise term as V; j > |pfﬂj —pijl, Vi,75 € [K]

Proof. Since Vi > pi — p™ and V; > p§™ — 5, we have Vi + V; > (wi — py) — (™ — pg™), which further
derives

o(Vi+ Vi) = o((pi — ) — (8" — 15™)) = o(ui — pg) — o (us™ — p3™) = piy — i

The first inequality is by the monotonically increasing property of sigmoid function, and the second inequality is
by the property of sigmoid function where o(z + y) < o(z) + o(y), Vz,y € R.

Similarly, we could derive o (V; + V) > pi — p; j, hence o(Vi + V;) > |p¢™ — pi.;|, completes the proof. [
C.3 Good Event and High Probability Bound

Define good event & = [, ;< (x (5,5 (pi,;) N 5,5}’yb(pi,]-)) where

log(1/4.
Ex(piy) = {Pz’,j < UCB(ai,a;) < pi; +2 OgQ(T_/_t)} 1
1,7

log(1
gthyb(pi,j) =<¢pi; < UCBhyb(ai,aj) <pij;+2 2( ?g)(_"_/ ]3 ) = (t) LY
&g Ni+N;

Wi, j (12)

withw; ; ==V ; + pm pi,;, we have the following lemma:
Lemma 3. The good event satisfies the following lower bound: Pr(&;) > 1 — 2K (K + 1)4;.
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Proof. This proof largely follows the argument of Appendix B.1 in [Cheung and Lyu| (2024). We begin by
applying the Chernoff bound for sub-Gaussian random variables. Consider the estimator p; ; of the true pairwise

comparison probability p;, ;. Since the difference X = p; ; — p;,; is sub-Gaussian with parameter s/ 1/T5,5(t)
by Lemmal[T] we can apply the Chernoff inequality (see Lemmal) to obtain:

A log(1/6,)
i — il > < .
r (lp »J Pijl = 2Ti,j (t) = 26

This establishes the condition for the "bad event’ £ (p;,;) by rearranging the inequality above.

Next, we analyze the *bad event’ &, by, *“(ps,5), which occurs when either of the following two conditions is

violated. The first case corresponds to a violation of the first inequality in Equation (T2)). For this case, we aim
to derive an upper bound on the probability of violation:

Pr (piy > UCB"(a;,05))

where
5 NN,
b Tos (s + w0 (X — X5) log(1/6:) NN
UCB ((J,i7 CL]') = NN, + NN, N; N, ‘/ivj'
Tt )+ R 2 (T () + o) Tl + mrg

This probability can be rewritten as:

NiN; o N;N; off
T ( )pZJ + N; +N Dij . N; ]\JrJ (pi,j _pifg)
r + N.N;
Ti;j( ) + Ni+Nj Tiyj(t) + N, +N;
R NiN;
Ti 5 (t)Pi + N + o (X; — X;) log(1/6: Ni+1\ij
T, N * NN T ) 1 Vas
i(t )Jr Nt 2 (Tw () + N, Nj> 55 (t) + NN
T (Opig + e Tii(0)pis + mirg-o(Xi — X;) log(1/5
<Pr N+N > , N,-+N1{]N n og(1/0:)
To(t) + x5 T () + % 2 (T () + 5% )
g 6t7

off.

where the penultimate inequality uses the fact that V; ; > | pi.; — Dij|, and the last inequality comes by applying

the |Chernoff inequality|to the hybrid estimator, which is 5 ~— sub-Gaussian (by Lemmal|l).

— 1
T (H)+ j_Héj

For the second case, consider:

log(1/3: .
Pr | UCB™(ai,a;) > pij + 2 og(1/ A)]‘NV o (Vi T )
2(Ts () + o) Tus) + miw;

This can be written as:

P N;N;
Ty (Obes + wisno(Xe = %) log(1/0,) NN oo
Pr NN, > pij+ + v (Pi; — Dij)
N;N. idiVj
T;,(t) + N+N 2( 5 (6) + N+N ) T;,;(t) + NN,
N; N, % N;Nj o
b T,5(0)pi; + 7m0 (Xi — X;) . Tii ()i + w50 i N log(1/6;
=Ir N, N; = N; N, N; N,
Tus () + vt Tis () + w55 2(Ths(®) + e )
< 0.

The final inequality is by applying the|Chernoff inequality}

Since there are w distinct pairs of arms, and for each pair the probability of & is at most 49, applying

this to all arms gives:
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1 —Pr(&) = Pr(&)
K
< Z Z Pr(&f(pij) + EP™(pi;))  (union bound)
i=1i<j
<2K(K +1)8, (since Pr(&¢ (pig) + EX(pi ) < 46t)
and hence,

which concludes the proof. O

C.4 Property of Algorithm 1|

Lemma 4. (HybUCB-AR’s property) Conditioned on E:, the arm pair (a;, a;) will not be selected in round t if
it satisfies the following Inequality:

max{A;, A;} > min 4\/1;%1(1/(5;)’4 log(1/4+) I N+
i

2 (Tz’,j(t) + NI.H\J]].) Ti;(0) + w57,

Wi, j

Proof. Conditioned on &, Suppose arm pair (a;, a;) is selected, there are two possible cases for this selection:
L (Aw(t), A2(t)) = (as, aj),
2. (Aw(t), A2(t)) = (aj, ai).

We analyze the first case, while the second case follows symmetrically. By HybUCB-AR’s selection criterion
(Line-7), when (a;, a;) is chosen, it must hold that:

log(1/5:) log(1/5,) 1
—Pij = DPj,i > jy Qi > 5
1—ps;+2 2T, (1) pji + 2 2T, (1) = UCB(aj, a;) 5 (13)
and
log(1/6:) log(1/4:) 1
1—pji+2 = =pij + 24| ="+ > B(ai,a;) > =. 14
Piit ZTi,j (t) Pij + QTZ‘,]‘ (t) 2UC (a aj) 2 14

Equation (T3) and (T4) implies that

1 fog(1/5) 1 [log(1/5,)
i < =+ 2 = d pj:i < =42y —=—+~. 15
R 7 P B A B 17 AT ) ()
Given A; > 4,/ 1;%3(?)), we have the following:

log(1/6:) _ 1 log(1/6:)
2T, S 2N e,

UCB(G,Z'7 aj) < pi7j+2 < pi1, < min {UCB(al,ai), UCBbyb(al, al)} s

(16)
The first and fourth inequalities in Equation (I6) follow from condition &, while the second inequal-
ity is derived from the first inequality in Equation (I3). The third inequality holds by the given condi-
tion A; > 4,/ % Recalling that HybUCB-AR’s selection criterion (Line 10) satisfies (a;,a;) =

2,3

arg maxa, a,ec, min{UCB(a;, a;), UCB™"(a;, a;)}, we observe that (T6) leads to a contradiction.
log(1/5+)
2T, ,; (V)
This implies that the arm pair (a;, a;) cannot be selected when the following holds:

Following the same reasoning, the condition A; > 4 would also lead to an analogous contradiction.

o fes/a)
max{A;,A;} >4 20,0 17

Since the candidate set is constructed by C; = C{" N C?yb, applying the same argument to C?yb yields that

(as,a;) will also not be selected if:

N; N,
max{A;, A, } > 4 og( /fvf)N_ p2— (18)
2(Tos+ wiwy) Tt Wi
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Combining Equation (I7) and (I8) leads to the desired result. By symmetry, the analysis for the second case
(A1(t), A2(t)) = (a;, a;) mirrors that of (as, a;) and leads to the same conclusion, as desired. O

C.5 Proof of Instance Dependent Regret Upper Bound
Before we provide the proof, we present a general lemma concerning the solution to the key inequalities derived
in Lemma]

Lemma 5. Consider the notation N', T', &', §', and A, these variables are defined to simplify the structure
of the equations while preserving their form, enhancing clarity and generality. Let T’ be the smallest integer

satisfying
A’>min{2\/§,2,/T,iN,+T,]1/N/w'}7 (19)
then
s max { 26,+N’A,(“/_AIE; ol A , O} if Condition Saving,
i‘f; otherwise,
where:

. . / 46" (2w" — A')
Condition Saving= (2w’ < A') or (N’ > AN —an )

Proof. As established, Equation represent bounds derived from the HybUCB-AR’s framework, correspond-
ing to pure online and pure hybrid data scenarios, respectively. Our proposed algorithm requires that 7" satisfies
at least one of these conditions. The use of offline data reduces regret when the smallest 7" satisfying

A'>2 % (20)
is less than that required by
A>2 /= iN, + T,]_\:N/w/. @21
For Equation (20), direct manipulation yields:
T > z‘f;. (22)

For Equation (1)), define /T’ + N' =z, A = 21/8’, and B = N'w’. The inequality becomes:

A B /
—+— <AL
x T
Solving this for z > 0, we obtain:
. A+ A2+ 4BA
2A/
5 A2+ 2BA' + AY + 4A2BA’
x> .
2072
This implies:
s 26" + N'w' A’ + /482 + 46’ N'w' A’ N — 208" + N'A'(w' — A') + /46" + 48 N'w' A/
A2 T A2 '

Since 7”7 > 0, we have:

2/ N/A/ /—A/ 4/2 45’ N'w' A/
T > max{ 8 + (w )A_; 07 4N ,0} . (23)
Combining these, the general bound is:
46’ 20" + N'A'(w' — A’ 46" + 46' N'w' A’
T’>min{M,max{ + (w )AJ; + w ,o}}. (24)

26



Next, we identify conditions under which Equation (ZT)) yields a smaller 7" than Equation (Z0). Define the
Saving as:

45" — (25’ FN'A (W — A+ V20 + 45’N’w’A’>
A? '

From Equation ( . Savmg are positive only if A’ > w’, since w’ — A’ < 0 is the sole negative contribution,
potentially reducing 7”. This condition also ensures the left-hand side of the subsequent second inequality
(Equation (23)) remains non-negative.

Saving =

We require Saving > 0:

46" — 28" — N'A'(w' — A') — /482 + 45 N'w/ A’

A7

>0

26" — N'A'(w' — A') > /462 + 45 N'w/ A/ (25)
NZA? (W — A)2 =48 N'A (W' — A') > 45 N'w' A
NZA? (W — A')? > 45 N'A' (2w’ — A').

Hence the final inequality, guaranteeing that saving > 0, holds if either

i 2w <A
.. / ’ ’ 46’ (2w _ A/)
or (i) 2A">2w' >A’ and N' > m
These conditions together validate the case distinction stated in the lemma. O

Proof. (Complete Proof of Instance Dependent Regret Upper Bound in Theorem|T)

By Lemma 3 and Lemma 4, take A" = £ max{A;, A;}, 6’ = 1log(1/6:), w' = wi;, N' = NNy =
J

T;,;(t), under the good event &, the number of times the arm pair (a;, a;) is played satisfies:

2log(1/6 )(Qwi)_~7max{Ai,A_'}) .
If 2max{A;, A;} > 2w; ; > max{A;, A;} and N +N > max{Ai’At]_}(wiﬁjimax{AhA;})Q,then.

4log(1/6:) + NNﬁV max{A:, A;}(2wi; — max{A:, A;}) + VD

i,J < )
T; ;(t) < max max (A7, A7) ,0 (26)
where D = log?(1/6;) + log(1/5;) - N +N ;s max{A;, Aj},
otherwise:
8log(1/d:)
L (1) <
Ta(t) < max{A7, A%}’ @7

Define g(ai, a;) and f(a;, a;) as follows. Here, g(a;, a;) denotes the upper bound of 7} ;(t) in the presence
of Saving, while f(a;, a;) characterizes the condition under which Saving occur. Specifically, Saving exist if
f(ai7 aj) <0.

41og(1/68+) N +N - max{A;, Aj} - (2wi; — max{Ai, Aj}) +vD
max{A?, AZ} + max{A? AQ} 00

g(ai,a;) = max

—1 if 4(4.)2‘,]' < max{Ai, Aj},
41 1/6¢)(4w; s —max{A;,A, .
flai, a;) = maxzi,.,,/;}((zw;fj_;laa:mi,ﬁj}})p — Nij if 2max{Ai, A;} > dw;; > max{A;, A;},

1 otherwise.

(28)

The expected regret is:
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T
A A
Reg _ Z [( A (t) + Aax(t) ) ) [1(€t)+1(gtc)]:|
T T
A
< Z [( A (t) + Az(t)) 1(5t)] + AmaxZE[l( )
t=1 t=1
+
=" SEIEIT(T) 1) + A ZE 1)
i<j
Let 6, = 1/(2K (1 + K)t?), under the bad event, the regret is:
T T T 1 2
max Z]E gt ] - max Z]E [1(8156)] = Z ZK(l + K)étAmax = Z Amaxt*Q < FAmaX7 (29)
t=1 t=1 t=1
under the good event, the regret is:
A+ A A+ A 8(As + Aj) log( 2K(1—|—K)T)
———IR[T;, -1 = i, Q) ————
Y ESTELMAEN = Y a5 T e tAE AT

i<j
f(al 7><0 f(al ])>0
(30)

Combining Equation (29) and (30), we obtain the desired result. The simplified regret upper bound is obtained
by applying the following inequality to g(a;, a;) in Equation (30):

Va2 +2axr <a+x, 31

NN,
: max{A;, A }w; ;, we derive:

where x = log(1/6:), a = W

2

Reg(T) S %Amax + Z max { AZ ; Aj
1<y

16log(\/2K(K +1)T)  N;N; max{max{A;, A;} —4wi,;, 0} 0
maX{AiA?} N; +Nj max{Ai,Aj} ’ ’
(32)

O

C.6 Saving: Further Analysis
Remark 7. To facilitate concise notation, we denote by T;;(UCB) and T;;(UCB™") the upper bounds on Tj;
under the UCB and UCB™? selection rules, respectively. Specificaily,

46’

Ti]‘ (UCBhyb) = max

28" + N'A'(w' — A") + /482 + 45’ N'w' A
NG ,0 0.
This is the result we derived from Equation 22)) and @3)) in LemmaEl In the context of Theorem T:;(UCB)
and T;;(UCB™") becomes Equation 7) and 20 respectively.

After establishing Theorem[I] we provided a brief analysis of the "Saving" term in its regret bound in Remark
El Note that Theoremmls a simplified version derived by applying Equation (3I) to Equations (29) and (30).
Below, we present a more precise analysis of the conditions under which "Saving" exists. By Equation 28), we
could divide the condition into three different cases:

1. Significant Saving: When max{A;, A;} > 4w; ;, offline data guarantees regret reduction.

2. Data-Dependent Saving: If 4w; ; > max{A;, A;} > 2w; j, Saving exist only when the offline data
size satisfies:
N»;Nj > 410g(1/5t)(4w¢,j — max{Ai7Aj})
N; + N]' - maX{Ai, Aj}(Zwi,j — Il’laX{Ai, Aj})g ’

3. No Saving: For max{A;, A;} < 2w; ;, offline data provides no benefit.
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This result aligns with our Saving analysis in Section [3} which shows that Saving depends on the similarity
between offline and online data distributions, with the magnitude of Saving influenced by the offline data size.
But the detail analysis further shows there exist an intermediate phase: where the existence of Saving is data
dependent. Here, we provide deeper insight into the three regimes. When the distributions are sufficiently close
(max{A;, A;} > 4w ;), the T;;(UCB) is consistently at most that of T}; (UCB™"), ensuring Saving regardless
of the offline data size. As w;,; increases, indicating greater distributional divergence, the T;;(UCB) grows,
potentially exceeding that of T};(UCB™P). In this intermediate regime (4w;; > max{A;, A;} > 2w; ;),
Saving is possible only if the offline data size N; ; is large enough to reduce T;; (UCB™"), compensating for the
increased w; ;. However, when the distributions are too dissimilar (max{A;, A;} < 2w; ;), T;;(UCB™) is
dominated by w;, ;, and no amount of offline data can yield Saving. These cases illustrate a spectrum of outcomes
driven by distributional similarity and the size of offline data.

In Lemma@ we established conditions for the existence of Saving, but their magnitude remains unanalyzed. For
instance, when A’ > 2w’, Saving are guaranteed regardless of the offline dataset size N'. However, if N’ is
small, the confidence radius may remain large, resulting in negligible Saving. To further quantify the saving
term, we analyze a specific setting where inferior arms can be identified without online data, thereby maximizing
Saving.

Given the following Lemmal[@] this implies no online exploration is needed for HybUCB-AR when the following
condition holds:
N;N; S 16log(1/6;)(max{A;, A;} — w; ;)
N; + Nj - max{Ai, Aj}(?&)@j — max{Ai, Aj})Q

and 2w;; < max{A;, A;}.

Lemma 6. Suppose w’ < A and
L4520 — )
N 2 A/(A/ _ w/)2 :

Then, under the good event, no online exploration is needed for this suboptimal arm.

Proof. Continuing from Equation (23), we aim to identify the condition under which the following expression
becomes non-positive:
25 + N'A' (W' — A') +/46"% + 45’ N'w' A/
A2
It is clear that this inequality can only hold when w’ < A’; otherwise, all terms in the numerator would be
positive and the entire expression strictly positive.

<0.

Under the substitution from Equation 23), we consider the equivalent condition:
N'A(A = ') = 26" > V452 + 46 N'w/ A
Squaring both sides yields:
NZA? (A =) =48 N'A (A —w') > 45 N'w' A
Rearranging terms, we obtain:

;48 (2A" — W)
>~ - 7
Nz A(A — w2’

as desired. O

Remark 8. Specifically, when w' = 0, the condition simplifies to N’ > 85§’ /A"?, which degenerate to the
algorithm property of vanilla UCB. In contrast, under the Saving condition in LemmaEl(2A’ > 2w > A),
Saving begin when the offline data size N;N; /(N; + N;) meets a certain threshold, but fully replacing online
exploration requires a larger N;N;/(N; + Nj). The difference in N;N;/(N; + N;) between these two
thresholds is given by:

46'(2A" —w') 462w — A') 48’ (3A" —3w')

A/(A’ _ w/)Q A’(w’ _ A/)2 - A’(A’ _ w/)z .

C.7 Proof of Instance Independent Regret Upper Bounds

As shown in Theorem [I] we provide two instance-independent regret upper bounds, and the final bound is
obtained by taking the minimum of the two. The details of these bounds are presented in the following two

Sections (C:7-1]and [C.7.2).
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C.7.1 Analysis 1

Proof. We derive the instance independent upper bound through modification of the instance dependent regret
upper bound. Let A be a variable between (0, 1). For (a;, a;) € A x A such that max{A;, A;} > A, take

L = m, the core term in the instance regret upper bound (Equation (32), e.g., the leading A-dependent

term) is bounded by:

4(A; + Aj)log(1/6) < 8log(1/6:) 8log(1/67)  16log(\/2K(K + 1)T')
max{AZ, AQ} ~ max{A;,A;} < A - A ’

where the first inequality comes by taking A; + A; < 2max{A;, A, }.
For any arm pair (a;,a;) € A x A satisfying max{A;,A;} < A, the total regret incurred by these sub-

optimal pairs is upper bounded by T'A. Let Saving(a;, a;) = A’:Aj . I\I,Vf]]\’, . m“{mlmxif{?fi }4“” a0}
and Saving'(ai,a]—) — min Ai;AJ . ]\i\:;]\]]\;] . max{ma;;ciﬁ“AA“A} }4wL J,O} 8(A; +Am)al;:){gix2/2AI§§K+1)T)} for
all 4, j € [K]. Combining these results yields:
2
s 16 1o 2K(K+1)T .
Reg(T) < FAmax + ;jmax { il(aX{A?(, A?} ) ) — Savmg(ai, aj)7 O}
2 SK(K+1)-1 2K(K+1)T
< Apue + TA 4 SEE AL -log(V2K(K + 1) )—ZSaving/(ai,aj)
6 A —
i<j
2
< —Amax + 4\/2K(K +1)-log(v/2K(K 4+ 1)T) — ZSaVing/(ai, aj),
i<j
where the last inequality follows by taking A = \/ SK(KH)‘IOg(T‘/QK(KH)T) , as desired. O

C.7.2 Analysis 2

This theoretical analysis extends the framework of Appendix B.3 in|Cheung and Lyu|(2024), generalizing its
regret analysis from the classical multi-armed bandit (MAB) setting to a preference-based model.

Lemma 7. Let {T;;};<;c[K] is the optimal solution to the following maximization problem:

Ti,j

1
max —_—
(Ti5)i<;

N; N
icjt=1 \| t+ N; +N
S't'ZTi«j :T,
i<j
Ti,j S Nzo,Vi S] S [K]

then it must hold that T} ; < max{[7.] — ]\]]fo\’, ,0} forall a;,a; € A.
i TV

Proof. We proof this lemma by contradiction. Suppose there’s an arm pair (a;, a; ) such that 73"

i,j =
Nilg 0} + 1, then it must hold that there exist at least one arm pair (a;/, a;/) such that T;;;, < max{[7.]| —

> max{[7.|—

NFN
I\J,V/'J:\]f\,'/ ,0} — 1, otherwise we have: T}, > max{[7.] — Ny, 0} for all i”,5"” € A. Particularly,
T7; > max{[7.] — N +N L0} + 1, this implies:
Z ;> > max{[r.] N+N 0}>Zmax{n—N+N 0}=>t,=T, (33
i<j i<j i<y i<

where the penultimate equality comes by the property of the optimal solution of the Linear Programming
problem in Theorem Since by the Linear Programming problem, Vk,l € [K], k < I, let ey = t;; —

max{7. — A],V’ig\l, ,0} > 0. If 3K',I' € [K] such that € ;s > 0, then the solution (7, {Zxi }x1e(x]) defined
as T = 7. + % teg = thy + Iff};’;;) for all (k,1) € [K] x [KI\{(K',1),(,k")}, and ty =
thry — %ewx could also be a feasible solution to the linear programming problem. This implies

7 > 7", hence the optimal case could only have ¢ = 0, implying the establishment of the equality.
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Hence, Equation (33) violated the feasible region of the Linear Programming problem in Lemma[7] Thereby, we
have two distinct arm pairs (a;, a;) and (a,/, a;/) such that:

N;N; N;N;
> % |y ;-Z ’
T’J+N N max{[7] Nt N ————1} + 1, in particular T} ; > 1
Ny Nj Ny Nj

T// 7< *,7 —1: *—1

b S max{[n ) - 1=

To establish the contradiction argument, let k < [ with k, [ € [K] x [K], consider another feasible solution:
le,l -1 if (kvl) = (7'7.7)7

Tk,l = TI:,Z +1 if (kvl) = (i,aj,)a
Ty otherwise.

but then we have:

" -
1
Z:X; WZZ oy

Nk+Nl k<ltg ;=1 Ne+N;

1

N/N/
*
Ti/’+N/+N/+1

> >0,
[EA] max{T*,N+N}—|—1

this implies 7}"; is not the optimal solution, thereby 7;"; < max{[7.] —

N +N .0}, as desired. O

Proof. (Complete Proof of Instance Independent Upper Bound) By Lemma@ arm pair (a;, a;) has the chance
to be selected only if:

log(1/8 1 R
. O, N;+N;
max{Ai,Aj} S min 4 gZET/t)’Zl NN log ((1/61})) + me
"I (T i,j + JJ) ,J + N; +N
iNj
Denote rad; ; l(’g(l/ ‘m and radhyb log(1/ 5f) . +Ilvviﬂvj V;.;» hence we have:
Ti,j"rm - )

T
AA t +AA t
Reg(T) = 3 =8 =20
< max{Aa, @), Day)

T
. hyb
S Z m1n{4radA1(t)’A2(t), 41‘21(1Ay1 (t),Ag(t)}

< min 4ZZrad”,4ZZradhyb

i<j t=1 1<j t=1

The Inequality (*) established due to LemmaE'and the fact that w; j = Vi ; + p‘l’fg pi,; < 2V; ;. For the first
term43°, thl rad;,j, we have:

422 log 1/5t <8 VT log(1/0r) = 8/log(1/67) > 1-\/Ti;

1<j t=1 i<j i<j
< 8\/log(1/6r) [> 12 /ZTi,j:S\/WTlog(l/z;T). (34)
1<j i<j

The last inequality follows from applying the Cauchy—Schwarz inequality. Since this bound corresponds to the
vanilla UCB setting without offline data, it is already covered by the result provided in Section [C.7-1] and is
therefore omitted from the final regret bound.
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For the Second term 43~ _ Zt “J rad™", we have:

1,7
<[ log(1/6 %
33 By
i<j t=1 2(t+ N_+N.) t+ 5
<4maXV” :rJr,/log(S Z (35)
i<j t=1
Let T;"; be the optimal solution of the LP problem in Lemmal By applying Lemmal we obtain:
max{ ]—T*'\f%,o}
' 1
ZZ <ZZ e 7. D DENEDD P
1<j t=1 N1 N- 1<j t=1 Ni N- 1<jJ t=1 N;+Nj
thus:
NN
max{[7.]— x50} .
sy S i U w0 SNE
i<j =1 t+ N +N i<j [7] oVt
N;N; 2
< max{[7.] — ——2—,0} -
; N; + Nj / Tx
S
i<j
where the last inequality follows by applying the feasibility of the LP problem in Theorem@
Replacing term 3=, S g W with 22% in Equation (33) leads to the desired result. O
= 2( t+ Ni;Nj T

D Proof of Theorem

The proof of the regret lower bound builds upon the approach in (Cheung and Lyu| (2024)), which we have
extended to accommodate the hybrid setting.

Theorem 4. Letr P, Q be probability distributions on (2, F). For an event E € o(F), it holds that
Pr(E) + Pr(E") 2 5 exp (~KL(P, Q).

Theorem 5. Consider two instances Zp and Lq that share the same arm set A, online phase horizon T,
and offline sample size {N;}ic(x), but have different reward distributions P = (P, Pf#)ie[K] and Q =
(Qa, Q)i (k). For any non-anticipatory policy T, it holds that

= Ep«[Ti;(T)]-KL(P:j,Qiy) + Y Ni-KL(PY,QY).

i<j i€[K]

Theorem[d]is a direct restatement of Lemma 15.1 from [Cattimore and Szepesvari| (2020), while Theorem [3]is
adapted from Theorem C.2 in|Cheung and Lyu|(2024). The only difference in our setting is that the relative
feedback data follows a discrete distribution; nonetheless, by following the original proof strategy, we are able to
derive Theorem [5]accordingly.

Claim 1. For P; = N (i, 0?), where i € {1,2}, we have
(11 — p2)®
KL(P17P2) == T

Claim 2. For P; = Bernoulli(p;), where i € {1,2}, we have

P1 1—p (p1 — p2)?
KL(Py, P3) = pilog 22 + (1 —p1)lo < ,
(P, P) =p g0 (1—p1) g(l_pZ)_pZ(l_m)

where the last inequality of Claim [2]comes by applying logz < z — 1.
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D.1 Instance dependent lower bound

Proof. We begin by denoting 12 and p; as the means of the Gaussian distributions of PP and P;, respectively,
for each arm a € A. Assume ;1 corresponds to the optimal arm, while the remaining arms are suboptimal, with

w; = pj for all 4, j # 1. The gap between the optimal arm a; and the suboptimal arms (a2, . . ., ax ) is denoted
by A, where A = 1 — p1; € (0, 3).
Next, we introduce an alternative distribution Q. Let k be a fixed arm in {2, - - - , K'} and T;(t) represents the

number of times arm 1 is selected in pairs and pulled up to time ¢. For all ¢ € [K ] \ {k}, define Q5" = PP and
Qi = P;. Forarm k, let Q1 = N (s + 2, 1). Define Q3" as follows:
o _ JN (3 1) if g >, + 208 — Vg,
Qr = off (36)
N(Mk—I—QA—Vk,l) lfu <Mk+2A—Vk7

where Vi, > |u$" — pux|. The construction of Q5 in Equation (36) is governed by V. The high-level idea
behind it is to maximize the regret lower bound by minimizing the KL divergence between Q5" and PST.
However directly setting Q3T = P2 may violate the constraint (Q € Zy. When the constraint is violated
(e.g. 2 < g +2A — Vi), we 1nstead define Q5" = N (uy + 2A — Vi, 1), which yields the smallest KL
divergence possible while preserving Q € Zy .
Under the dueling bandit setting with the Bradley—Terry model, the pairwise preference gaps under distribution
P is given by:

1 1.

Ai=p1i— == U(A) —=,Vi € [K]

2 2
Under the perturbed distribution Q, the pairwise gaps are defined as
1 1. 1
5= o(2A) — §,Vz € [KI\{1,k}, and Ay1=0(A)- 3

Using the definition of regret under distribution P, we derive:

Api = Pryi —

Regp(T) =T (U(A) - %) - WEP [T2(T) 1y, (ry<r + T (T) L1y (157
o(A) -1 o(A) -1
>T (U ) ( : ; “E [Tl(T)1T1<T><T] - ( 2 )EP [Tl(T)lTl(T)>T]
o(A) -1
= (a 2) ( (2) 2) Pr(Tu(T)<T) T(O’(A) )1?3r(T1(T)>T)
(U —3) Pr(Ty(T) < T)
For distribution @), the regret is lower bounded as
o -1 o(A) -1
Regq (T Z Biparr) = ) " 2rgmny » O pnyry 5 ),

Combining these, we obtain:

2CT" > Regp(T) 4 Reg, (T)

ST (”(AQ) ), (I;r[Tl (T) < T) + Pr(T3(T) > T])
> LB ) ok p(pQ)
> % exp(— KL(P,Q)). 37)

where the first inequality follows from the definition of Cp-consistent, the penult inequality apphes TheoremEI,
and the final inequality comes by our restriction on A: Since A € (0, 1), we have o(A) > A + 1.

By Theorem[5] the KL divergence is:

=Y Ep[Ti;(T)] - KL(Pi;, Qi) + > Ni - KL(P, Q).

i<j 1€[K]
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For the first term, using d(p, q) = plog (g) + (1 —p)log (%Z) < 511(71_3; , we have:

Il
M=

1
> Ep[Ti (T)KL(P, 5, Qi) Ep [Tk, (T))d (5,0(2ﬁ)> +Ep[Ti1(T)]d (1 — o(A),0(A))
2% i=2
@ & 11, 1 1 1,1 1
< . - = - A 4=
< ;EP[T;M(T)]d(Q, SO+ 2) +EP[Tk,1(T)}d<2 A5t 4A>
K
A2 A2
S ;EP[Tk,i(T)]m + EPTk,l(T)@
AQ
< EP[Tk(T)]m
< Ep[Ti(T)]24%, (38)
where inequality (a) follows by o(A) < 1A + 1, this implies:
1 11 1 1 1 1 1
el <d(=z,= - - <d(=—-=A,=+>A].
d (Q,J(A)) <d (2, 7O+ 2) and d(1—o(A),0(A) <d (2 10,5+ 4A>

For the second term, by our setup, we have:

5 5 max{2A — wy, 0}2
ZNi'KL(Piff:Qiﬁ):Nk { ) : }7

i€[K]

(39)

where wi, = Vi + ¢ — 1. Combining Inequality (37), (38) and Equation (39), we get:

max{2A — wg, 0}?
5 Ni ¢ .

2077 > T2 exp {—EP (T (T)] 20 —

To isolate Ep [Ty (T")], we take the natural logarithm of both sides and rearrange the inequality, yielding:

1 A max{2A — wg, 0}?
E[Te(T)] > —— (1 — T +log —— — Ni |-
[T(T) = 55z <(1 p)log T +log 77 2 k

Summing over all arms ¢ € [K], the total regret lower bound becomes:

A K A 1 max{2A — w;,0}?
g 2IE[TZ(T)] 2y ((1 p)InT +1n 640) A 3 N;
i€[K] i€[K]

as desired. O

Discussion about upper and lower bounds. Consider the special case where N; = n for all ¢ € [K]
and A; = A for all sub-optimal arms. In this case, the upper and lower bounds differ by at most a factor of K.

Proof. We compare the upper and lower bounds separately for the instance-independent and instance-dependent
cases. For the instance-independent bounds, we first compare the first term in the upper bound (Theorem
Ekb)) and the lower bound (Theorem b)). Specifically, the first term in the upper bound is O(\/K?T log T)),
while the corresponding term in the lower bound is Q(\/Ki ). This implies a gap of /K logT between the
upper and lower bounds for this term. We then compare the second terms. The second term in the upper
bound can be written as O((y/1og T/« + Vinax) - T'), and the corresponding term in the lower bound is
Q((+/1/7L + Vinax) - T'). To compare the different parameter 7, and 7, we consider a special case where
N; =nforalli € [K]. In this case,
n 2T ;o 2T

T*7§+7K(K+1), T*fn-i-?.
Under this setting, it can be shown that the gap between the upper and lower bounds for the second term is again
at most a factor of /K logT".

For the instance-dependent case, to better compare the upper and lower bounds, we consider the special case
where N; = n forall i € [K] and A; = A for all sub-optimal arms. Then the upper bound in Theorem 2(a)
simplifies to

K%logT K2n

—x "1 Zmax{A — 4w; 5,0} |,

i<y

o
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and the lower bound is in the form of:

KlogT K
+7

@ A 4A

log % — Kn Z max{A — w;/2,0}”
i€[K]

From this comparison, we observe that the upper bound is approximately a factor of K worse than the lower
bound in this case. O

D.2 Instance independent regret lower bound

Proof. The divide the proof into three distinct cases:

Case 1: 2V KT > T - (Vinax + /2/7%), and Vinax < 1/+/7L, we derive a regret lower bound of:

(o (L) 7)) ()

At this point, we consider a setting where the bias between offline and online feedback is negligible. We define
the Gaussian reward distributions as follows, assuming no discrepancy between offline and online feedback:
e N(A 1) ifi=1,
’ T N(0,1)  ifie [K]\{k, 1}.

where A = 1/+/7, and k = arg min;e(x) Ni + Ep(T3).

Obviously P, Q € Zy, since |u" — ;| = 0 < Vinax. Without loss of generality, we assume that arm 1 has the

largest offline sample size, that is, 1 = arg max;c(x] Ni.
Subcase 1.1: £ = 1.
In this case, we have:

Since we assume 1 = arg max;c (k] Ni, it follows that:
EP[Tﬂ < EP[Tl] + N, — N1 < EP[TZ‘], forall 7 € [K] \ {1}
Therefore, arm 1 has both the largest offline sample size and the smallest expected number of online pulls among

all arms. By the pigeonhole principle, this implies that the optimal arm ¢ # 1 is pulled at most 27/ K times.
Thereby, the expected cumulative regret can then be bounded as:

2T\ A (K-1)AT (K-1)T
> _A) . 2 _ .
R 2 (27 - 50 ) - 5 = K
Subcase 1.2: k # 1 :
1 1
Reg(T) + Reeg(T) 2 [o(a) = 3 | (Br(BIT] < 7) + Py(el] > 7))
T [o(A) = L K
2 w - exXp (7 Z]E[TZ} . KL(P]““ ka) — Nk . I{L(F)Z_Off7 Q(i)ff))
=1
O TA ) )
z geXp(—%E[Tk}A — 2N, A )
@) TA )
2 372€Xp(—2T;A )
®» 1 T
T 322 /7l

where inequality (1) follows by applying the same technique in inequality (2) hold since &k =
arg min;e (k] N; + Ep[T;] < 7, and the final equality (3) comes by applying A = 1//7.

Case 2: 2V KT > T - (Viax + +/2/7L), and Vinax > 1/4/74, we derive a regret lower bound of:
1
Q <min {\/KT7 (Q [ = + Vm-dx> . T}) =Q(T - Vimax) -
Tx
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We construct another instance such that:
. N(A L) ifi=1
off . ) )
PE=NO.1), vie k], P {N(o, 1) ifi#l
N(A 1) ifi=1,
M N(0,1), Vie [K], Qi=<N(2A,1) ifi=k,
N(0,1) ifi € [K]\{k,1}.
where k = arg min;c[x) E[T;], and take A = 1/2 - Vigax.
Since |M‘{ff — wi| < 2A = Vipnax = V; forall ¢ € [K], this implies P, Q € Zy . Furthermore:
1 1
Reg,(T) + Regy () = 5 {O(A) - 5] (P;r(E[Tl] < T) + Pr(E[T}] > T))
T [J(A) — %]
4

Y

K
- exp (f > E[T3]) - KL(Py.i, Qx.i) — Ny - KL(P", Q;-’ff))
=1

> A exp (—2]E[Tk]A2)

32
o TVinax ( TViiax
=6t TP\UTK -1
1
> Yy maxs
~ 64e8 e

where the last inequality comes by the condition 2v KT > TViaz + \/2/74 > TVimaa, this implies
TVigax/ (K —1) <4K/(K - 1) < 8.

Case 3: When 2V KT < T - (Vinax + /2/7i), we derive a lower bound of

Q (min {\/KT, (, /Ly Vmax> T}) = (VKT).
Tx
The analysis for this case largely follows that of Case 2. We use the same construction of reward distributions P,

Q, but now take A = /(K —1)/(4T).

From the properties of the associated Linear Program problem in Theorem we know that 7, > 27"/ K, this
implies: V2r /71 < VKT, them by the condition under this case, we get:

VET < TVinax + V2T /7. = VKT < TViax,
which further leads to:

K-1
T

- 1
19" — | < 2A = STMKTSVMX, Vi € [K].

Hence, the constructed distributions P, () satisfy the bias constraint and belong to the class Zy .

Following the same procedure in Case 2, we have:

Reg, (T) + Rego(T) = § [o(2) = 5| (RH(EIT] < 7) + Py(E(ri] > 7))

% exp(—QIE[Tk]A2>

L
— 64e
The Theorem is proved. O

(K —1)T.

E Proof of Theorem [3and Supplementary Regret Bounds

E.1 Instance Dependent Regret Upper Bound

The analysis of this algorithm is similar to Algorithm[I] the only key change here is the position of the relative
data and the stochastic data, therefore, the UCBhyb, UCB and good event £ changed to the structure below. Note
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that elimination based algorithm shuold consider all cases fromt = 1,--- | T, first we define good events for
both hybrid and online UCBs, let

log(1 5 Ni i
£ (piy) = { piy < UCB™(as,a5) < pij + 2 &( /(t))T 0] T OT 0 Wi (
2Nii + marym) N+ moihm
i J

log(1/6, T, +T;
Ei(pij) = {#z‘ < UCB(as,a;) < pij +2\/ Og(z/ J. T—tf ’ }
oy

with
&= m ﬂ ( t(pii) N & yb(pm))
1,jE€[K]
Following the proof of Lemmawill derive Pr(€) > 1 - 2K (K + 1) 3:1 0.

Then we move to the analysis of the property of this algorithm, which is to detect the point of which an arm is
eliminated at time ¢. we claim the result as follows:

Claim 3. For Algorithm@under good event E, arm a; will be eliminated if it satisfies the following inequality:

: log(1/6:) 2Ny, log(1/6:)
A 2 : b 2y 220
= min { 9N1. + Ti(t) | 2N1. + Ti(t) ™ Ti(t)

Proof of the claim. According to the elimination criterion of HybUCB-RA (Line 6), arm a; will be eliminated
if either of the following inequalities holds:

1. UCB(ai,a;) < 3,Va; € A,
2. UCBhyb(ai,aj) < %,Vaj € A.

This also includes:

1 1
UCB(ai,a1) < and UCB™" (a4, a1) < 3
When A; > 2,/ %, and the event £ holds, we derive
log(l/ét) Ti +Tj log(l/ét) 1
UCB(as, <p; 2 . ~ D 9, =7t =
(a a1)p,1+\/ 5 T pi,1 + o) <2

where the first inequality follows from the definition of event £, and the final inequality results from the

. log(1/64)
condition A; > 2,/280/%) Tpe approximation holds because when arm a; remains active in round ¢, we have

T3 ()
|T;(t) — T1(t)| < 1, making % = %l 4 O(1). The case for UCB™® (a1, a;) follows symmetrically,
log(1/6¢) 2N11

we derive when AA; > 2 wi.1, the following condition holds:

2Ny i +T;i(t) + 2Ny i +T;(t)

log(1/6:) 2N1,;
UCB"™"(ai,a1) 2 | M
(0 B2\ oN 1 10 T 2N+ T < 2

Combining them together completes the proof. O
Now we move on to the complete proof of this algorithm.

Proof. (Complete Proof of Algorithm [2) Define

g(a;) = max { Az {2 log(1/6:) 4+ 2N;,1 A (wi;1 — As) + \/410g2 (1/6:) + 8log(1/6t)N¢,1wi,1Ai} , O} ,

-1 if 2(4.)1'71 S Ai,
flai) = ZIog(Al:fiz(ffZli;Ai) — Nix if2A; > 2wi1 > A,
1 otherwise.
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By Lemmaand Claim taking A’ = A;, W' = w; 1, N' = 2N; 1, T =T;,8 = 1/8; we could derive:

4log(1/6:) .
—=5— if f(a:) >0,
Ti(t) < A? {a:) 20
g(aq) otherwise.
Take §; = m, the expected regret for bad event becomes:
1
TAmax X Pr(€°) < TApmax - 2K(K + )T ————— = Apnax.
X Pr(&) = R T ESIE
Combining the good event together, the regret is:
T
Regr(T) = Y E[A; - [1(E) + 1(&)]]
t=1
T T
<Y TE[A - 1(E)] + Amax Y E[1(E)]
t=1 =1
8log(v/2K (K +1)T)
< Amax i i °
< + Z g(ai)Ai + Z A,
f(a;)<0 f(ai)>0

Applying V22 4 2az < a + x to the final regret leads to the simplified version, which is:

8log(\/2K(K + 1)T)

Reg(T) = Amax + Z max { A — 2N;1 max{A; — 2w; 1,0}, O} .
1€[K] *

E.2 Instance Independent Regret Upper Bound

Theorem 6. Choosing §; = m the gap independent bound of HybElimUCB-RA satisfies:

O | ming /KT log(T) — Z Saving(a;), ( M + Vmax) -T
iElK] T
where Saving(a;) = min {W— W, 2N; 1 max{A; — 2w; 1, 0}} and T is the optimal solution to
the below linear programming problem:

max T,
T,t;

s.1. TSti/Qﬂ-NiJ Vi e [K],
i€[K]
T>0,t; >0 Vi,je[K].

Proof. The proof of this instance regret lower bound is symmetric to the proof of the instance dependent bound

of HybUCB-AR, which is in [C.7.1]and [C.7.2] By the definition of regret bound and Claim 3] the expected
regret is upper bounded by:

T
Reg(T) = Z Aay)
t=1
T
. 1 1 2N1 A(t) log(l/dt)
< mn<2y/—————log| — |+ ——-—""——w £y 24 | ———=
; { \/ 2Ny A + Ta, (1) ° (6) 2Ny aq) + Ta, () 7\ T, (1)
T
: 1 1 4Ny A1) log(1/4¢)
< min 2/ ——— 1o — |+ TV 2| = .
t; { \/ 2Ny A + Ta (1) ° (6) 2Ny gy + Ta, () O\ T, (1)

(40)

The second term of Equation (#0) follows the conventional regret analysis, as provided in Appendix [C.7.2}
Equation (34). The upper bound for the first term can be derived similarly by following the same technique
in Section |C.7.2] where we replace the term N; N; /(N; + N;) with N1 ; and ¢; ; with ¢; /2. For the sake of
conciseness, we omit the detailed of the proof here. O
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E.3 Regret Lower Bound

Theorem 7. Let A € (0, %) be the gap between the optimal arm and all suboptimal arms. The regret lower
bounds of HybElimUCB-RA satisfy:

(a) Instance-dependent bound:

8K

“1a

2
(1 —p)logT + log % — Z 7‘““{2%{%’0} N; ,
i€[K]

where C, p are constants from Definition and wi; =Vi+ u;?[f — i with Vi > |legf/' — pil -

(b) Instance-independent bound:

Q (min {\/ﬁ (\/TI + Vmax) T}) .

where T, is the optimal solution to the following Linear Programming problem:

!
max T,
Tt

subjectto T < t;+ N;, Vic[K],

oti=T, 7>0,t>0.
i€[K]

Proof. This proof follows a similar structure to the lower bound argument presented in Appendix[D] Specifically,
let k be a fixed arm in {2, - - - , K}, we construct two instances P and @ such that

N(p+A1) ifi=1,

P = N 1) Ve (K P, =
] (v, 1) Vi € [K], {N(u,l) if i # 1.

Np+Aa1)  ifi=1,
Qi =S N(u+2A,1) ifi=k,

N, 1) ifi e [K]\{1,k}.
where £2°T and p could be any values such that | — | < V; forall i € [K]\{1} and |p°T — (u + A)| < V1.
In addition, P € Zy implies Q) € Zy . Following the conventional analysis, we have:

off _ JN(p+2A -V, 1) ifi=kand p°" < p+2A -V,
L NwE ) otherwise,

Regp (1) =T (a(8) - 5 ) = (018) = ) Bp [TD)r, caycrso + T3(T)ry o517

>T <U(A) - %) - (U(A) - %) Ep [T1(T)1r (ry<7/2] — (U(A) - %) Ep [Ty(T)1ry(1)>1/2]

_7 <J(A) _ %) _ g <U(A) _ %) Pr(T3(T) < T/2) ~ T (U(A) _ %) Pr(Ty > T/2)

_T ("(Az) =3 prry(ry < 7/2)
and

NS AEAT 1 (0(A) = 3)
Rego(T) = 30 AEQIT(T)] > (o(8) — 2)Ea(mi(1)) > V72 =2 by (1) > 72)
Following the same procedure we obtain:
2CT? > Regp(T) + Regg(T) > ra exp(—KL(P,Q)), 41

32
where
KL(P,Q) = > Ep[Ti(T)]-KL(P;, Q:) + Y _ Nij - KL(PYY, Q%F).
i€[K] 1<j
For the first term, we have:

(0(2A) —1/2)? < ]EP[T,C(T)}AQ.

2 - 8 (“42)

> Ep[Ti(T)] - KL(P;, Qi) = Ep[T(T)]
1€[K]
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For the second term, let N, denotes the number of time we selected ay, in each pair, we have:

K
off o 1 1
ZNM ‘KL(Pi,?in,f;) = ZNk,i ’ d(§,max{§,a(2A —wk)})
i<j i=2
1 1 2A —w 1

< Sd(= e A R

< Ni - d(5, max{y, —— +3})
max{2A — wg,0}?

<N,
= 4 (max{2A — wy)2, 0}

< = N max{2A — wy,)?,0}. (43)

Wl

Putting Equation and Inequality and together, we have:

EP [Tk(t)]AQ max{?A — Wk, 0}2 N, )
- 8 - 3 b

20" > Regp(T) 4 Regy (T) > % exp <

reorganize the structure of the above equation following Appendix [D-]leads to the gap independent bound,
which is:

8K A

N (1 —p)logT +log — — Z

64C
1€[K]

max{2A — w;,0}? N
3 2

as desired. O

Gap-Independent Regret Bound. The proof of the gap-independent lower bound largely follows the argument
in Appendix with the only difference being the switch of the offline and online data. Therefore, we
provide only a sketch of the modified proof. In Case 1, since the offline and online share the same distributions,
the switch does not affect the analysis. In Case 2 and Case 3, where the discrepancy between P and
appears only in the online distributions, the KL divergence term is updated from the original expression to
Zfil T; - KL(P;, Qi) = 2T} - A, but the conclusion remains unchanged. The only modification lies in the
boundary condition for each case, which now compares 2/ KT with T - (Vinax + 1/+/T7). This adjustment
arises because, in the online-stochastic setting, we have Zfi 1 T; = T rather than 27 O

F Stochastic Bandits with Offline Relative Feedback: An Alternative
Approach

As previously discussed, preference data typically provide less information compared to stochastic feedback.
Estimating the underlying utility values p; for all ¢ € [K] solely from preference data is extremely challenging,
unless additional structural assumptions are imposed. For the sake of theoretical completeness, we still adopt
a preference-based model in Algorithm [2] and build upon the elimination framework. However, this class of
algorithms cannot match the performance of vanilla UCB when offline data is absent (i.e., when the offline
dataset is empty) or provides no additional information.

Algorithm 3 Offline Relative Online Stochastic: An Alternative Approach

Require: anarm set.A, offline dataset D = {(A4;, A4,,Y; ; x),%,j € [K], k € [N; ;]} hyperparameter
0; and estimated bias V; ; for all (a;, a;) pairs.
Initialization: Let C = A, T; = 0,V: € [K], and for all 4, j € [K], let UCB(a;,a;) = 400,

A~ lo, Ot
UCB"(a;,a,) = 3 + /5125,
fort=1,--- ;T do
: Select Action A(t) = arg max,,cc UCB(a;).

1
2
3: Update selection times T'4(y) = T'a ot +1L

4: Record observation X; ;. for i = A(t), k = Ta).

5 For all pairs i, j € [K], update UCB, UCB™" according to equation (9), (T0).
6: C=C\{a; €C,3a; € C\{a;} s.t. UCB™"(q;,a;) < i

7: end for

In practice, more flexible algorithmic designs can be considered. In Algorithm 3] we present an alternative
approach that aligns with vanilla UCB by utilizing UCB and UCB™” separately. Specifically, we construct the
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candidate set C:yb using hybrid data, and then apply the standard UCB selection rule to choose A(t) within this
set.

While such variants may perform well empirically, they lack the strong theoretical guarantees provided by
Algorithm 2} In particular, these methods no longer ensure balanced exploration across arms during the online
phase. As a result, the sample counts T;(t) for each arm a; € C; can become highly imbalanced.

Moreover, since vanilla UCB does not guarantee a theoretical lower bound on min{7;(¢)} for all i € [K], the

confidence radius in UCB™*—given by \/ 1/ (Ni, i+ %) —can degrade to \/1/N; ; in the worst case.
Thereby, the theoretical analysis falls back to a naive two-stage procedure: (i) using offline data to eliminate
suboptimal arms, followed by (ii) applying vanilla UCB to the surviving set. Under this simplified strategy, the
regret bound becomes:

log

Reg(T) =0 | > |

a; €C

7

where C C A denotes the set of arms retained after offline filtering. Compared to Algorithm [T} such two-
phase strategies lack a continuous and elegant theoretical guarantee throughout the learning process. Bridging
this gap—by designing practical algorithms that maintain strong regret guarantees even under hybrid and
heterogeneous feedback—remains an important direction for future work.

G Supplemental Experiments

We conduct a comprehensive evaluation of HybUCB-AR and HybElimUCB-RA in hybrid bandit settings
with heterogeneous offline-online feedback. The experiments aim to demonstrate the algorithms’ robustness
and superiority over established baselines across diverse scenarios. Our evaluation encompasses two primary
environments: (1) synthetic datasets, where we assess scalability with varying numbers of arms K and sensitivity
to key parameters, (2) real-world datasets, where we validate practical efficacy using authentic data. For all
experiments, we set a set of random seeds to ensure the reproducibility of the experiments. Our experiments
were implemented in Python.

G.1 Synthetic Data Experiments

To evaluate the performance of HybUCB-AR and HybElimUCB-RA in controlled settings, we conduct experi-
ments on synthetic datasets. In the first set of experiments, we assess the algorithms’ scalability by varying the
number of arms K, comparing their performance against established baselines to demonstrate their effectiveness
across different scales. In the second set of experiments, we analyze the sensitivity of HybUCB-AR and
HybElimUCB-RA to key parameters (IV;, A, and V;), focusing on how different parameter values affect their
convergence behavior. The synthetic environment allows precise control over reward distributions and feedback
mechanisms, enabling robust analysis of algorithmic behavior.

G.1.1 Data Generation

We generate a synthetic K-armed bandit environment to simulate the heterogeneous feedback setting. For each
arm a; € A, we generate the offline and online reward means, 13" and p;, as follows. The offline mean of the
best arm, u$", is drawn uniformly from [0.5 4+ A, 1], where A € (0, 0.5) denotes the gap between u$" and p3";
we then set u3" = pS™ — A. For the remaining K — 2 arms, pS" is drawn uniformly from [0, 113"]. The online

reward mean is defined as

i = pd" 4 d; - bias, where d; € {—1, 1} is chosen uniformly at random, Vi € [K].
All absolute feedback {7, X;} for each i € [K] is generated from a Gaussian distribution NV (1;, 1), and relative
feedback {3, j, Y; ; } forall 4, j € [K] is generated from a Bernoulli distribution Bernoulli(p; ;) according to
the Bradley-Terry model.

G.1.2 Experiments for HybUCB-AR

HybUCB-AR leverages offline absolute rewards to enhance online dueling bandit learning. We compare it
against three baselines: HybUCB-AR without offline data (/V; = 0), Relative Upper Confidence Bound (RUCB)
(Zoghi et al., 2014), and Interleaved Filter 2 (IF2) (Yue et al.,[2012).

Performance Comparison and Scalability (K = 8, 16, 24, 32) Setup. We evaluate HybUCB-AR’s
scalability across K = 8, 16, 24, 32 arms. We set the sub-optimal gap A = 0.1, the offline-online bias to
0.1, and the number of offline samples N; = 500. Each algorithm runs for 7" = 50, 000 rounds with 100
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Figure 2: Average cumulative regret of HybUCB-AR for K = 8§, 16,24, 32 over 100 runs, with
shaded area indicating standard deviation.
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Figure 3: Parameter sensitivity of HybUCB-AR, showing effects of IV;, A, and V; on cumulative
regret, with vertical lines indicating standard deviation every 6,000 rounds.

independent trials. We set ; = 0.02, for RUCB, we set the confidence parameter o = 0.51, following |Zoghi
et al.|(2014).

Results. Figure |Z| shows the average cumulative regret over 100 trials, with shaded area indicating standard
deviation. Without offline data, HypUCB-AR, by maximizing the informative pair in the confidence set, achieves
a regret reduction of 15-40% compared to RUCB across all K. The performance advantage grows with larger
K, highlighting its scalability. And across all K, HypbUCB-AR surpass baseline when heterogeneous offline
data is included.

Parameter Sensitivity Analysis Setup. We analyze HybUCB-AR’s sensitivity to three parameters:For all
i € [K], we set the number of offline samples, N; € {100, 300, 500} the sub-optimal gap A € {0.05,0.1, 0.2},
and the offline-online bias, V; € {0.01,0.05,0.1}. We fix K = 20, run for 30,000 rounds with 100 trials, and
use default values (/V; = 500, A = 0.1, V; = 0) for all parameters unless otherwise specified.

Results. Figure [3]shows the cumulative regret. As N; increases, the algorithm converges faster, leading to
lower cumulative regret. Smaller A increases regret due to harder arm differentiation. Larger V; reduces the
ability to utilize offline data, resulting in slower convergence. One key insight is that the accumulated regret
does not decrease linearly with the size of the offline data, while the increase in regret caused by bias shift grows
approximately linearly with the magnitude of the bias. This observation is consistent with our theoretical regret
analysis in Theorem [I]

G.1.3 Experiments for HybElimUCB-RA

HybElimUCB-RA uses offline relative preferences to improve online stochastic learning. We compare it against
four baselines: HybElimUCB-RA without offline data (with N; = 0), Explore-Then-Commit (ETC) (Robbins)}
1952)), Upper Confidence Bound (UCB) (Lai and Robbins| |1985)), and Thompson Sampling (TS) (Agrawal and:
Goyall [2013).

Performance Comparison and Scalability (K = 8, 16, 24, 32) Setup. We evaluate HybElimUCB-
RA’s scalability across K = 8, 16, 24, 32 arms. The sub-optimal gap A is set to 0.1, the offline-online bias to
0.01, and the number of offline samples to N; = 500. Each algorithm runs for 7" = 30, 000 rounds with 100
independent trials. HybElimUCB-RA and UCB use §; = 0.05, ETC uses an exploration phase of 500, and TS
assumes a Gaussian prior with variance 1.

Results. Figure [f] shows the average cumulative regret over 100 trials, with shaded area indicating standard
deviation. When leveraging offline relative preferences, HybElimUCB-RA outperforms all baselines. The
performance advantage grows with larger K, highlighting its scalability. Without offline data, HybElimUCB-RA
matches the performance of elimination-based UCB.
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Parameter Sensitivity Analysis Setup. We analyze HybElimUCB-RA’s sensitivity to three parameters:
For all ¢ € [K], we set the number of offline samples N; € {100,200, 500}, the sub-optimal gap A €
{0.05,0.1,0.2}, and the offline-online bias, V; € {0.01,0.05,0.1}. We fix K = 10, run for 25,000 rounds
with 100 trials, and use default values (N; = 100, A = 0.1, V; = 0.01) for all parameters unless otherwise
specified.

Results. Figure 5] shows the cumulative regret, with vertical lines indicating standard deviation every 6,000
rounds. As N; increases, the algorithm converges faster, leading to lower cumulative regret. Smaller A increases
regret due to harder arm differentiation. Larger V; reduces the ability to utilize offline data, resulting in slower
convergence. This result is similar to the result we obtained in Figure[3] demonstrating the consistent of our
algorithm.

G.2 Real Data Experiments

We evaluate HybUCB-AR and HybElimUCB-RA on MovieLens-20M and Yelp datasets to validate their
performance in real-world hybrid bandit settings. Experiments compare both algorithms against established
baselines, leveraging offline data to enhance online learning. All experiments are implemented in Python.

G.2.1 Data Preparation

The MovieLens-20M dataset contains 20,000,000 ratings (1-5) for movies. We normalize ratings to [0,1]
by dividing by 5, select movies with at least 100 ratings, take the top 100 by rating count, and randomly
sample K = 10 movies as arms. For HybUCB-AR, offline data consists of 100,000 normalized ratings. For
HybElimUCB-RA, offline data includes 1,000 preference duels per arm pair, generated by sampling ten ratings
per arm and comparing their means.

The Yelp dataset, sourced from the Yelp Academic Dataset, includes business reviews with star ratings (1-5).
We normalize ratings to [0, 1], select businesses with at least 100 ratings, take the top 100 by rating count, and
randomly sample K = 10 businesses. Offline data follows the same structure as MovieLens.

Online feedback is generated using the environment module designed by us. For HybUCB-AR, duels sample
3 ratings per arm, with the higher average rating winning (ties resolved randomly). For HybElimUCB-RA,
rewards are the average of 30 sampled ratings per arm.
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Figure 7: Performance of HybElimUCB-RA on MovieLens-20M and Yelp with () = 10). Shaded
areas showing standard deviation across 50 runs.

G.2.2 Experiments for HybUCB-AR

HybUCB-AR leverages offline absolute rewards to improve online dueling bandit learning, using a V-matrix
defined as V' = (V; ;):,je[x). We compare it against HybUCB-AR without offline data (V; = 0), RUCB (Zoghi
et al.| 2014), and Interleaved Filter 2 (IF2) (Yue et al., 2012)).

Performance Comparison Setup. We set K = 10, run each algorithm for 10,000 rounds over 50 trials.
The environment module samples 3 ratings per arm for duels. We set 6; = 0.02. Offline data comprises 100,000
normalized ratings.

Results. Figures[6]show the average cumulative regret, with shaded areas indicating standard deviation. Without
offline data, HybUCB-AR outperforms RUCB by 15-25% on both datasets. HybUCB-AR shows the same good
performance as in the synthetic experiments.

G.2.3 Experiments for HybElimUCB-RA

HybElimUCB-RA uses offline relative preferences to enhance online absolute reward learning, employing
the same V-matrix as HybUCB-AR. We compare it against HybElimUCB-RA without offline data (IV; = 0),
Explore-Then-Commit (ETC) (Robbins, |1952)), Upper Confidence Bound (UCB) (Lai and Robbins|,[1985)), and
Thompson Sampling (TS) (Agrawal and Goyal, 2013).

Performance Comparison Setup. We set K = 10, run each algorithm for 10,000 total arm pulls over 50
trials. The environment module samples 30 ratings per arm to compute rewards. HybElimUCB-RA and UCB
use §; = 0.05, ETC uses an exploration phase of 200 pulls per arm, and TS assumes a Gaussian prior with mean
0.5 and variance 1. Offline data consists of 1,000 relative preference duels per arm pair.

Results. Figure [/| shows the average cumulative regret. In two real data environments, HybElimUCB-RA
combined with offline data can achieve good results and is better than the baseline.
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H Useful Lemmas

Lemma 8 (Chernoff Inequality, Theorem 5.3 in|Lattimore and Szepesvari|(2020)). If X is o sub-Gaussian, then
forany e > 0,

2
Pr(X >¢) <exp (—25—2) .
o

Lemma 9 (Hoeffding’s Lemma). Let X be any real-valued random variable such that a < X < b almost
surely, i.e., with probability one. Then, for all A\ € R,

E [e”‘} < exp (A]E[X} + M) ,

or equivalently,

E [ex(xfm[x])] < exp ()\2(1;8— a)2> .

Lemma 10 (sub-Gaussian Property of Lipschitz Transformations). Let X be a random variable that is o

sub-Gaussian, meaning E[e**] < eA2°2/2for all X € R.If f : R — R is L-Lipschitz continuous, then f(X)
is 2Lo sub-Gaussian.

Proof. A related result appears in Theorem 5.5 of Boucheron et al.[(2013), which shows that f(X) is Lo
sub-Gaussian when X is strictly Gaussian. For a general o sub-Gaussian X, we establish that f(X) is 2Lo
sub-Gaussian.

Let Y be an independent copy of X. We aim to bound the moment-generating function of (f(X) — E[f(X)])>.
Consider a constant ¢ > 0:

. {exp (L fEmX)W)} . {exp ((f(X) *E[f(Y)])QH

CZ [ rixea p(<f<>—E[f<Y>D>
R c?
< /RP(X € dx)E [exp <(f(m)—672f(Y))2>}

<E |[exp

& o (U0 —j(Y))?)}
o (2222

I (2L X2+2L2Y2>]
exp| ———

c2

Ele ()]
cn o ()] <2

Here, the second equality uses the law of total expectation; the first inequality applies Jensen’s inequality;
the second inequality uses the L-Lipschitz property, |f(z) — f(y)| < L|z — y|; the third inequality uses
(X —Y)? <2X? +2Y?; and the final steps exploit the independence of X and Y. The last inequality holds
because X is o sub-Gaussian, so E[eX /o? ] < 2. Setting 4L /c* = 1/0?, we get ¢ = 2Lo. Thus, f(X) is

2 Lo sub-Gaussian, as desired.

IN

Lemma 11 (MVUE). Let X 1, X5 be 2 independent estimator of j1, with variance o3 and o3, then the minimum
variance unbiased estimator of X is:

2 2

A 0'2 0'1 A

X=— A1+ — 5 X2,

01 + 03 1+o03

2 _2
. . ogjo
with variance —5—2.
oit+os
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