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Abstract

We investigate the generalization capabilities of small language models under two popular adaptation paradigms:
few-shot prompting and supervised fine-tuning. While prompting is often favored for its parameter efficiency and
flexibility, it remains unclear how robust this approach is in low-resource settings and under distributional shifts.
This paper presents a comparative study of prompting and fine-tuning across task formats, prompt styles, and
model scales, with a focus on their behavior in both in-distribution and out-of-distribution (OOD) settings.

Beyond accuracy, we analyze the internal representations learned by each approach to assess the stability and
abstraction of task-specific features. Our findings highlight critical differences in how small models internalize
and generalize knowledge under different adaptation strategies. This work offers practical guidance for model
selection in low-data regimes and contributes empirical insight into the ongoing debate over prompting versus
fine-tuning. Code for the experiments is available at the following link.'

1. Introduction

Few-shot prompting and supervised fine-tuning are two widely adopted strategies for adapting pretrained language models
(LMs) to downstream tasks. Prompting adapts models by conditioning on in-context examples at inference time without
updating model parameters (Brown et al., 2020), whereas fine-tuning involves directly optimizing the model on labeled
data. While prompting is attractive for its flexibility and efficiency, its reliability in low-resource settings—particularly for
small-scale language models like GPT-2 (Radford et al., 2019) and DistilGPT2 (Sanh et al., 2019)—remains uncertain.

In this work, we present a systematic comparison of prompting and fine-tuning using three GPT-2 variants: distilgpt2,
gpt2, and gpt 2-medium, evaluated across a suite of language understanding tasks. We investigate three central questions:
(1) How does prompting performance scale with the number of in-context examples compared to fine-tuning under an
equivalent data budget? (2) How well does each method generalize to out-of-distribution (OOD) prompt templates? (3) How
stable are their internal representations across prompt variations?

We begin with prompting on synthetic multi-task tasks (sentiment, grammar correction, arithmetic, plural forms), followed
by fine-tuning on IMDb sentiment classification. In addition to standard accuracy comparisons, we use t-SNE to analyze the
structure of prompt and hidden-layer representations across models and prompt styles.

This study reveals important distinctions in how small LMs internalize supervision under different adaptation strategies,
with implications for generalization and representational robustness in low-data regimes.

2. Scaling and Shot Count: Accuracy and Representation Geometry

To understand how model scale affects few-shot generalization, we evaluated three GPT-2 variants—distilgpt?2, gpt?2,
and gpt2-medium—on synthetic classification tasks with varying numbers of in-context examples. Each model was

Work does not relate to position at Linkedin. ' Carnegie Mellon University, Pittsburgh, USA *LinkedIn, California, USA *Stanford
University, Palo Alto, USA *Boston University, Boston, USA. Correspondence to: Rahul Raja <rauhl.110392@gmail.com>, Arpita Vats
<arpita.vats09 @gmail.com>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.
1https ://anonymous.4open.science/r/moss—-small-1lm-experiments—-BD03/moss_small_lm.ipynb


https://anonymous.4open.science/r/moss-small-lm-experiments-BD03/moss_small_lm.ipynb

Evaluating Generalization and Representation Stability

prompted with k € {1,2,3,4,5} labeled examples and queried on a held-out test instance. The predicted label § was
derived from the model’s completion of the prompt

P =(z1,y15- 3 Ty Yk Tiests -2,

where the goal is to infer the label 5. As expected, accuracy improved with increasing k, with gpt 2-medium consistently
outperforming its smaller counterparts.

However, a t-SNE visualization (van der Maaten & Hinton, 2008) of the final hidden state embeddings from each model (see
Appendix 8.2, Figure 3) reveals an interesting asymmetry: although gpt 2-medium achieved the highest task classification
accuracy, its prompt representations did not form the most visually distinct clusters in the 2D projection. In contrast, gpt 2
(base) exhibited clearer task-level separation under t-SNE, suggesting that the embeddings of larger models may become
more abstract or compressed, making them less amenable to low-dimensional geometric partitioning.

This decoupling between performance and representational separability implies that scaling improves behavioral accuracy
but does not necessarily enhance interpretability via dimensionality-reduced visualization. These findings highlight that
few-shot generalization involves both behavioral alignment and latent structuring—two aspects that do not always co-occur
in small-scale diagnostic settings.
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Figure 1. Comparison of (a) few-shot accuracy trends and (b) training strategies under the same data budget.

3. Prompting vs. Fine-Tuning Accuracy

To quantify the performance gap between prompting and parameter tuning, we evaluate three GPT-2 variants on a binary
sentiment classification task using the IMDDb dataset. A random sample of 1000 examples is drawn and split into training
and test subsets (80%/20%). Each model is exposed to a fixed budget of & = 5 labeled examples from the training set, used
under two distinct paradigms.

In the first, prompting, the examples {(x;,y;)}7_, are formatted as in-context demonstrations within a prompt. The model
completes the sequence for a test query x to produce a label prediction ¢, without modifying model parameters. In the
second, fine-tuning, the same examples are used to optimize the cross-entropy loss via parameter updates:

k
1
—_2\7 .
Lt T ;=1 og po(yi | i),

where 6 denotes the model weights.

The table below summarizes accuracy scores on the held-out test set:
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Model Prompting Accuracy Fine-Tuning Accuracy
distilgpt?2 0.485 0.820
gpt2 0.495 0.855
gpt2-medium 0.535 0.870

Fine-tuning consistently outperforms prompting across all scales, with gains exceeding 30 absolute percentage points.
This highlights the efficacy of even minimal gradient-based adaptation when data is scarce. Prompting accuracy improves
modestly with model size, reflecting an increase in pre-trained capacity for in-context reasoning. However, these gains
remain small relative to the improvements achieved via fine-tuning. The performance gap, defined as A = Agr — Apmmpt, is
approximately constant across models and underscores that parameter tuning contributes orthogonal benefits to scaling.

These findings also carry implications for lightweight models. The smallest variant, despite having limited in-context learning
ability, achieves a substantial accuracy increase through fine-tuning. This suggests that even low-capacity models retain
latent flexibility when supervised adaptation is allowed. In practical scenarios such as edge deployment or privacy-sensitive
fine-tuning, small models may still deliver competitive performance when gradient access is available.

In summary, while prompting offers convenience, fine-tuning remains the dominant approach in small-data regimes
particularly when performance is critical and modest training is feasible.

4. Generalization to Out-of-Distribution (OOD) Prompts

We investigate how model behavior changes under variations in prompt formulation, using three semantically aligned but
structurally distinct formats: standard, QA-style, and good/bad. While the underlying task—binary sentiment classification
on IMDb—remains fixed, these prompt types differ in phrasing and label tokens (Reynolds & McDonell, 2021). Prompt
construction details are provided in Appendix 8.1.

Letz € X,y € {0,1}, and 7, be the prompt formatter for type p € P. For in-context prompting, a k-shot input is
constructed as: .

Prompt = Hizlﬂ-p(xi?yi) H ﬂ’p(ztestv ?)7
where “?” indicates a missing label to be predicted by the model. The operator || denotes newline-concatenation. Model
output is parsed to extract predicted tokens, mapping “positive”’/good” to 1 and “negative”/*bad” to 0.

Prompting results, shown in Figure 2(a), reveal that all models maintain consistent accuracy between the standard and
QA-style formats. However, performance drops sharply for the good/bad format, especially in gpt 2-medium, suggesting
strong dependence on lexical alignment (Webson & Pavlick, 2022). Interestingly, distilgpt2 is more stable, possibly
due to reduced reliance on pretraining-specific surface cues.

We next test whether fine-tuning improves robustness to such prompt variations. Each model is fine-tuned using the standard
prompt, then evaluated across all prompt types. Given a prompt 7, (), prediction is computed as:

§ = argmax fy(Tokenizer(my(z))),

where fy is the fine-tuned model. As shown in Figure 2(b), accuracy remains high across all prompt variants. The
performance gap seen in prompting vanishes, indicating that fine-tuning enables models to internalize task semantics beyond
surface form, improving generalization to OOD prompts.

5. Probing Internal Representations with Linear Classifiers

We investigate the extent to which different GPT-2 model variants encode task-discriminative information in their internal
representations. Using a set of synthetic prompts from three task types—sentiment analysis, arithmetic addition, and factual
QA—we extract final-layer hidden states from each model and evaluate whether a simple linear classifier can recover task
identity.

Given an input sequence x, we obtain its representation h € R? by mean-pooling the final-layer hidden states:

1 ()
h=—-3 hn'*
T;t’
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Fine-Tuned Model Accuracy on OOD Prompts
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Figure 2. Accuracy across prompt formats using (a) in-context prompting and (b) fine-tuned classifiers. Fine-tuning improves robustness
to surface variation.

where hEL) is the hidden state of token ¢ from the final layer and 7" is the number of tokens in the input. These representations
are used to train a logistic regression classifier to predict the task label.

To assess stability, we run the experiment 10 times with different train-test splits and report the mean classification accuracy.
We observe a consistent improvement with model scale: distilgpt2 achieves an average accuracy of 67%, gpt 2 reaches
60%, and gpt 2-medium peaks at 73%.

These results suggest that internal representations become increasingly task-aware and linearly decodable with scale. To
better understand the geometric structure of these embeddings, we visualize them using t-SNE in the Appendix (Figure 4).
The plots confirm that larger models form more compact and separable clusters for each task category, providing qualitative
support for the quantitative probe accuracy results.

6. Layer-wise Probing of Task Representations

To understand how task-discriminative information emerges across the model depth, we perform layer-wise probing on each
GPT-2 variant. For each transformer layer, we extract the mean-pooled hidden state from synthetic task inputs and train a
logistic regression classifier to predict the task category (sentiment, arithmetic, QA). This allows us to evaluate the linear
decodability of task identity at each layer.

Figure 5 shows the average probe accuracy per layer, aggregated over 10 runs. We observe that deeper layers consistently
encode more linearly separable task information. For gpt 2-medium, accuracy climbs sharply after the midpoint and
saturates in the final layers. In contrast, distilgpt2 achieves peak probe accuracy in the middle layers, suggesting a
compressed representational depth.

These results support the view that representational abstraction accumulates with depth and scale, and that later layers
consolidate semantic structure in a form more accessible to simple classifiers.

7. Conclusion and Future Directions

This study demonstrates that small-scale diagnostic experiments can reveal nuanced trends in language model representations
and generalization. We show that task identity becomes more linearly decodable with scale and depth, yet visualization via
t-SNE reveals that larger models do not always exhibit cleaner geometric separation—highlighting a disconnect between
abstraction and interpretability. Our probing results confirm that later layers encode more task-relevant information, and
fine-tuning yields greater robustness to prompt variation than in-context learning alone.

Future work may explore richer probing techniques (e.g., CKA, RSA), test robustness under syntactic or cross-lingual
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shifts, and investigate whether modular or retrieval-augmented models can improve both interpretability and performance at
smaller scales. These directions support the case for using small, controlled setups to build principled understanding of
model behavior.
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8. Appendix
8.1. Prompt Construction and OOD Evaluation Details

To evaluate generalization to prompt distribution shifts, we conducted few-shot prompting experiments across three distinct
prompt styles: standard, QA-style, and good/bad. All experiments used the IMDb dataset, from which a random sample of
1000 reviews was selected. The data was split into 80% training and 20% test sets using stratified sampling to preserve label
balance.

LABELING ACROSS PROMPT TYPES

Each review in the IMDDb dataset is annotated with a binary label:

y € {0,1}, where 1 = positive, 0 = negative.
Depending on the prompt style, the label is rendered differently:

* In standard and QA-style prompts, label 1 is represented as positive and 0 as negative.

¢ In the good/bad prompt variant, label 1 is mapped to good and label 0 to bad.

This variation in surface form allows us to probe how sensitive models are to label-space shifts, despite task semantics
remaining constant.

FEW-SHOT PROMPT FORMAT

Each model is prompted with k = 4 labeled examples from the training set, formatted according to the chosen prompt style.
These demonstrations are concatenated to a test input to form the final prompt:

P = [demoy] ||+ [demog] || [test_input],

where || denotes newline-separated concatenation. The prompt is passed to the model using a text-generation pipeline, and
the generated output is parsed to extract the final predicted label token.
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PROMPT STYLE EXAMPLES

Below are concrete examples for the same test instance under each style:

» Standard Prompt:

Review: The movie was surprisingly emotional and beautifully directed.
Sentiment:

¢ QA-style Prompt:

Question: What is the sentiment of this review?
"The movie was surprisingly emotional and beautifully directed.”
Answer:

* Good/Bad Prompt:

Review: The movie was surprisingly emotional and beautifully directed.
Label:

PREDICTION AND EVALUATION

The model’s output is parsed to extract the last match of a keyword (“label”, “sentiment”, or “answer”) followed by a
candidate class token. Predicted tokens are normalized and interpreted as:

positive/good —- 1, negative/bad — 0.

These predictions are then compared to ground-truth test labels to compute accuracy. This design isolates prompt-induced
performance variation while holding data and task objective constant.

8.2. t-SNE of Prompt Representations (Per Model)

To further investigate the structure of model representations across different prompt types, we conduct a t-SNE analysis using
four distinct tasks: sentiment, addition, grammar correction, and plurality classification. For each model—distilgpt2,
gpt2, and gpt 2-medium—we extract the final-layer mean-pooled hidden states for prompts belonging to these tasks and
visualize them using t-SNE (perplexity = 5).
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Figure 3. t-SNE visualization of prompt representations across four tasks: sentiment (blue), addition (orange), grammar (green), and
plural (red). Each column corresponds to a different GPT-2 model.

Observations: The visualization highlights the evolution of representational geometry with model scale:

* distilgpt2: Clusters are generally compact and well-separated, but task boundaries are rigid and uniform. This suggests
some hard-coded task awareness, possibly due to compression and distilled pretraining. However, the inter-cluster
margins are modest.
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e gpt2: Task clusters begin to spread out, reflecting more nuanced and semantically differentiated representations.
However, some overlap persists between grammar and plural, which may indicate shared syntactic cues in those
prompts.

¢ gpt2-medium: The largest model exhibits smooth task transitions and distributed separability—task types are more
linearly disentangled, with broader cluster geometry. Notably, unlike smaller models, gpt 2-medium doesn’t over-
cluster by prompt type, instead forming gradients of semantic similarity.

These trends suggest a shift from discrete partitioning in smaller models to more expressive and abstract task encoding in
larger ones. Moreover, the behavior of gpt 2-medium implies that as scale increases, the model builds richer internal
manifolds where prompt intent is represented more smoothly and generalizably across related tasks.

Overall, this analysis reinforces earlier findings: larger models do not just memorize templates—they develop latent
structures that organize prompts semantically, which may explain their stronger generalization to unseen prompt types or
task variants.

8.3. t-SNE Visualization of Internal Representations

To understand how internal representations encode task-specific structure, we visualize the mean-pooled hidden states
from the final transformer layer of each model using t-SNE. For each synthetic input belonging to one of three task
categories—sentiment classification, arithmetic addition, or question answering—we extract its representation and project it
to two dimensions using t-SNE (perplexity = 3).
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Figure 4. t-SNE visualization of final-layer mean-pooled hidden representations for distilgpt2, gpt2, and gpt 2-medium. Each
point represents a task input and is colored by task category.

Insights: The visualization reveals a clear progression in representational structure with increasing model size. In
distilgpt2, the points show partial overlap between classes, indicating that representations are somewhat entangled. For
gpt 2, the clusters begin to separate, but still exhibit intermixing at the boundaries. By contrast, gpt 2-medium displays
well-separated clusters with tighter intra-task grouping and clearer inter-task margins.

This qualitative trend aligns with the quantitative results in the probe accuracy table: the more distinct the clusters, the
higher the performance of a linear classifier trained to distinguish tasks. These findings suggest that larger models not only
encode richer semantics but also organize them in a more geometrically separable fashion—making them more accessible to
lightweight downstream classifiers.

Moreover, the fact that even distilgpt2 produces partially separable clusters supports the hypothesis that transformer
models begin to form task-aware abstractions early in scale, which become increasingly linearly decodable as capacity
increases.

8.4. Appendix: Layer-wise Task Probing

To complement our analysis of final-layer representations, we evaluate probe accuracy at every individual layer of each
model. For each synthetic input, we extract mean-pooled hidden states from all transformer layers. At each layer index [, a
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logistic regression classifier is trained to predict the task label using the corresponding representation h(®). Accuracy is
averaged over 10 randomized train-test splits.

Layer-wise Task Probing Accuracy
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Figure 5. Layer-wise probe accuracy for each GPT-2 variant. Accuracy improves monotonically with depth in larger models, while
distilgpt2 peaks earlier.

Insights: In distilgpt2, task-relevant features are most decodable around layers 5-6, after which accuracy flattens or de-
clines—possibly due to representational compression. For gpt 2, accuracy rises steadily with depth, while gpt2-medium
shows a dramatic increase in the second half of the network, with peak accuracy approaching 90% in the final layers.

These trends suggest that deeper and larger models progressively refine and separate task structure as information flows
forward. Additionally, the sharp gains in gpt2-medium highlight the benefit of scale in both capacity and depth for
learning linearly decodable abstractions.



