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ABSTRACT

Hyperparameter optimization (HPO) is crucial for machine learning algorithms
to achieve satisfactory performance. Its research progress has been boosted by
existing HPO benchmarks. Nonetheless, existing efforts in benchmarking all focus
on HPO for traditional centralized learning while ignoring federated learning (FL),
a promising paradigm for collaboratively learning models from dispersed data.
In this paper, we first identify some uniqueness of HPO for FL algorithms from
various aspects. Due to this uniqueness, existing HPO benchmarks no longer
satisfy the need to compare HPO methods in the FL setting. To facilitate the
research of HPO in the FL setting, we propose and implement a benchmark suite
FEDHPO-BENCH that incorporates comprehensive FedHPO problems, enables
flexible customization of the function evaluations, and eases continuing extensions.
We also conduct extensive experiments based on FEDHPO-BENCH to provide the
community with more insights into FedHPO. We open-sourced FEDHPO-BENCH
at https://github.com/FedHPO-Bench/FedHPO-Bench-ICLR23

1 INTRODUCTION

Most machine learning (ML) algorithms expose many design choices, which can drastically impact
the ultimate performance. Hyperparameter optimization (HPO) (Feurer & Hutter, |2019) aims at
making the right choices without human intervention. To this end, HPO methods usually attempt
to solve minyea, x.--xAx f(A), where each Ay corresponds to the candidate choices of a specific
hyperparameter, e.g., taking the learning rate from A; = [0.01, 1.0] and the batch size from Ay =
{16, 32, 64}. For each specified A, f(A) is the output result (e.g., validation loss) of executing the
considered algorithm configured by A. A solution A* found for such a problem is expected to make
the considered algorithm lead to superior generalization performance. Research in this line has been
facilitated by HPO benchmarks (Gijsbers et al., |2019; [Eggensperger et al.| 2021} |Pineda-Arango
et al.| 2021)), which prepare many HPO problems so that different HPO methods can be effortlessly
compared, encouraging fair, reliable, and reproducible empirical studies.

However, existing HPO benchmarks all focus on traditional learning paradigms, where the functions
to be optimized correspond to centralized learning tasks. Federated learning (FL) (McMahan et al.,
2017; L1 et al.l 2020al), as a privacy-preserving paradigm for collaboratively learning a model from
distributed data, has not been considered. Actually, along with the increasing privacy concerns from
the whole society, FL has been gaining more attention from academia and industry. Meanwhile, HPO
for FL algorithms (denoted by FedHPO from now on) is identified as a critical and promising open
problem in FL (Kairouz et al.,[2019).

In this paper, we first elaborate on several differences between FedHPO and traditional HPO (see
Section[2.2)), which essentially come from FL’s distributed nature and the heterogeneity among FL’s
participants. These differences make existing HPO benchmarks inappropriate for studying FedHPO
and, in particular, unusable for comparing FedHPO methods. Consequently, several recently proposed
FedHPO methods (Zhou et al., [2021} |Dai et al., [2020; |Khodak et al., |2021; Zhang et al., 2021} |Guo
et al.| 2022)) are evaluated on respective problems and have not been uniformly implemented in one
FL framework and well benchmarked.

Motivated by FedHPO’s uniqueness and the successes of existing HPO benchmarks, we propose and
implement FEDHPO-BENCH, a dedicated benchmark suite, to facilitate the research and application
of FedHPO. FEDHPO-BENCH is featured by satisfying the desiderata as follows:
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Comprehensiveness. FL tasks are diverse in terms of domain, model architecture, heterogeneity
among participants, etc. The objective functions of their corresponding FedHPO problems are thus
likely to be diverse. Hence, FEDHPO-BENCH provides a comprehensive collection of FedHPO
problems for drawing an unbiased conclusion from comparisons of HPO methods.

Flexibility. Users may have different levels of privacy and fairness concerns, which may correspond
to different multi-objective optimization problems. Meanwhile, the execution time for function
evaluation depends on the system condition. Thus, FEDHPO-BENCH allows users to flexibly tailor
the FedHPO problems to their privacy protection needs, fairness demands, and system conditions.

Extensibility. As a developing field, new FedHPO problems and novel FedHPO methods constantly
emerge, and FL’s best practice continuously evolves. Thus, we build FEDHPO-BENCH on a popular
FL framework, FederatedScope (FS) (Xie et al.}2022), and make it more of a benchmarking tool that
can effortlessly incorporate novel ingredients.

To our knowledge, FEDHPO-BENCH is the first FedHPO benchmark. We conduct extensive empirical
studies with it to validate its usability and attain more insights into FedHPO.

2 BACKGROUND AND MOTIVATIONS

We first give a brief introduction to the settings of HPO and its related benchmarks. Then we present
and explain the uniqueness of FedHPO to show the demand for dedicated FedHPO benchmarks. Due
to the space limitation, more discussions about related works are deferred to Appendix [B]

2.1 PROBLEM SETTINGS AND EXISTING BENCHMARKS

In the literature (Feurer & Hutter, [2019), HPO is often formulated as solving minyea, x...xax f(A),
where each Ay, corresponds to candidate choices of a specific hyperparameter, and their Cartesian
product (denoted by x) constitute the search space. In practice, such Ay is often bounded and can
be continuous (e.g., an interval of real numbers) or discrete (e.g., a set of categories/integers). Each
function evaluation at a specified hyperparameter configuration A means to execute the corresponding
algorithm accordingly and return the value of considered metric (e.g., validation loss) as the result
f(A). HPO methods generally solve such a problem with a series of function evaluations. As a full-
fidelity function evaluation is extremely costly, multi-fidelity methods exploit low-fidelity function
evaluation, e.g., training for fewer epochs (Swersky et al.,|2014; Domhan et al., [2015) or on a subset
of data (Klein et al.,|2017; [Petrak, |2000; Swersky et al., 2013)), to approximate the exact result. Thus,
it would be convenient to treat f as f(A\,b), A € Ay X -+ X Ag,b € By x -+ x By, where each B;
corresponds to the possible choices of a specific fidelity dimension.

HPO benchmarks (Gijsbers et al., 2019; [Eggensperger et al., 2021} |Pineda-Arango et al.,2021)) have
prepared many HPO problems, i.e., various kinds of objective functions, for comparing HPO methods.
To evaluate these functions, HPO benchmarks, e.g., HPOBench (Eggensperger et al., [2021)), often
provide three modes: (1) “Raw” means truly executing the corresponding algorithm; (2) “Tabular”
means querying a lookup table, where each entry corresponds to a specific f(\, b); (3) “Surrogate”
means querying a surrogate model that might be trained on the tabular data.

2.2 UNIQUENESS OF FEDERATED HYPERPARAMETER OPTIMIZATION

Generally, traditional HPO methods are applicable to FedHPO problemﬂ where, in each trial, the
value f(\,b) is evaluated, that is to say, an accordingly configured FL training course is conducted,
as the dashed black box in Figure[T]illustrates. Conceptually, there are N clients, each of which has
its specific data, and a server coordinates them to learn a model € collaboratively by an FL algorithm
such as FedAvg (McMahan et al.,[2017)) and FedOpt (Asad et al.l[2020). Such FL algorithms are
iterative. In the ¢-th round, the server broadcasts the global model 0 to sampled clients; then, these
clients make local updates and send the updates back; finally, the server aggregates the updates to
produce 0(*t1) . After executing the FL algorithm configured by X for several such rounds, e.g.,
#round= T according to the specified fidelity b, the performance, e.g., best validation loss ever
achieved during this FL course, is returned as f (), b).

1Df:spitf: the various scenarios in literature, we restrict our discussion about FedHPO to one of the most
general FL scenarios that have been adopted in existing FedHPO works (Khodak et al.;, 2021} Zhang et al.|[2021).
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Figure 1: Solving a FedHPO problem by a traditional HPO method solely or as the wrapper of a FedHPO
method: the ¢-th round of a trial is shown in the dashed black box and dashed blue box, respectively. The faded
clients are not sampled in that round; “aggr” denotes a certain aggregation operation; here FedEXx is considered

as the wrapped FedHPO method, which learns a policy 7 to determine A©*: cach ffc) (+) is regarded as a
client-specific approximation of f(A®,.).

As a distributed ML scenario, the procedure of each FL training round consists of two subroutines—
local updates and aggregation. Thus, A can be divided into server-side and client-side hyperparameters
according to which subroutine each hyperparameter influences. Denoting it as A = (A, \(¢)),
the original optimization problem can be straightforwardly restated as its bi-level counterpart
miny e FA®, A9 st A% = min, e f(A®), X)), With such a point of view, let’s see how
some FedHPO methods leverage the distributed nature of FL to solve the lower-level sub-problem
efficiently and approximately.

Concurrent exploration. In each FL training course, all sampled clients have executed local updates
configured by client-side hyperparameters for one or more rounds. Given a specific \(¥), if we regard
clients as replicas of the black-box function f(A®), ) or, at least, similar such functions whose evalu-
ation results help fitting f(A(*), -), it is natural to try out client-side hyperparameter configurations
client-wisely so that we evaluate f(A(*), \()) for more than one A(®)s in each FL training course.
We summarize this idea as concurrent exploration, which recently proposed FedHPO methods, such

as FedEx (Khodak et all 2021)) and FTS (Dai et al.| [2020), have instantiated. Specifically, FedEx

incorporates concurrent exploration with the weight-sharing trick to achieve one-
shot learning (i.e., by one FL training course) of a policy 7 for determining the optimal lower-level
response A(©* = min, ) f(A®), A(©). Hence, we could solve the bi-level optimization problem by
letting a traditional HPO method, as a wrapper, choose )\(S)EI and replace each standard FL training
course with a FedHPO method, as the dashed blue box in Figurem shows.

As FedHPO methods are fused with the training course, existing HPO benchmarks become unusable
for comparing them. Moreover, since this fusion makes the implementations of such FedHPO methods
tightly coupled with that of FL training courses, and no existing FL. framework has incorporated such
FedHPO methods, researchers cannot compare them in a unified way. How we incorporate several
recent FedHPO methods into FEDHPO-BENCH and make it extensible is discussed in Section[3.3]
and whether concurrent exploration is useful is empirically answered in Section .2}

Personalization. The non-IIDness among clients’ data is likely to make them have different optimal
configurations (Koskela & Honkelal [2020), where making decisions by the same policy, such as
FedEx, would become unsatisfactory This phenomenon tends to become severer when federated
hetero-task learning (Yao et al., [2022) is considered. Trivially solving the personalized FedHPO

°) , where A!”) denotes the client-side hyperparameter

problem min, A LA© f( QD

SN
configuration of the - th client, is 1ntractable, as the search space exponentially increases with N.
To promote studying personalized FedHPO, we provide a personalized FedHPO problem featured
by heterogeneous tasks among the clients and the corresponding tabular benchmark (see [H.I]for a
detailed description).

*In practice, the traditional HPO method also determines the FedHPO algorithm’s hyperparameters and a
subset of the original client-side search space to be explored. We omit these to keep brevity.
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Multi-objective optimization. Despite the model’s performance, researchers are often concerned
about other issues, such as privacy protection and fairness. Regarding privacy, the FL algorithm is
often incorporated with privacy protection techniques such as differential privacy (DP)
[2019), where the DP algorithm also exposes its hyperparameters. Intuitively, a low privacy budget
specified for such algorithms indicates a lower risk of privacy leakage yet a more significant degrada-
tion of the model’s performance. As for fairness, namely, the uniformity of the model’s performances
across the clients, more and more FL algorithms have taken it into account (Li et al.} [2021a; [Wang
[2021b), which contains some hyperparameter(s) concerning fairness. Therefore, researchers
may be interested in searching for a hyperparameter configuration that guarantees an acceptable

privacy leakage risk (e.g., measured by Rényi-DP [2017)) and fairness measurement (e.g.,
the standard deviation of client-wise performances) while optimizing the model’s performance.

Thus, a FedHPO benchmark is expected to expose a vector-valued objective function instead of
a scalar-valued one, where the entries of a returned vector could be the quantitative measures
corresponding to performance, privacy leakage risk, fairness, etc. Then, researchers are allowed to
study multi-objective HPO (Hernéndez et al. 2021} [Deb et all [2002; [Abdolshah et al., 2019).

Runtime estimation and system-dependent trade-offs. For the research purpose, an FL train-
ing course is usually simulated in a single computer rather than executed in a distributed sys-
tem. As a result, simply recording the consumed time is meaningless for measuring the cost of
a function evaluation in studying FedHPO. Meanwhile, FL's distributed nature introduces a new
fidelity dimension—client_sample_rate, which determines the fraction of clients sampled in each
round. When considering a client_sample_rate less than that of a full-fidelity function evaluation,
each round of the FL course would take less time because there is less likely to be a straggler.
However, client_sample_rate correlates with another fidelity dimension—#round, where a lower
client_sample_rate often leads to federated aggregation with larger variance, which is believed to need
more rounds for convergence. How we should balance these two fidelity dimensions to achieve more
economical accuracy-efficiency trade-offs strongly depends on the system condition, e.g., choosing
large #round but small client_sample_rate when the straggler issue is severe.

As existing HPO benchmarks focus on centralized learning tasks, they overlook a runtime estimation
functionality for studying FedHPO. In Section[3.2] we present FEDHPO-BENCH’s system model,
with which we conduct an empirical study to show the effect of balancing client_sample_rate and
#round in Appendix [G]

Due to the uniqueness mentioned above, existing HPO benchmarks are inappropriate for studying
FedHPO. FedHPO calls for dedicated benchmarks that incorporate objective functions corresponding
to FL algorithms and respecting realistic FL settings.

3  OUR PROPOSED BENCHMARK SUITE: FEDHPO-BENCH

We present an overview of FEDHPO-BENCH in Figure 2] Conceptually, FEDHPO-BENCH en-
capsulates function evaluation and provides a unified interface for HPO methods to interplay with
it. Following the design of HPOBench (Eggensperger et al., 2021)), function evaluations can be
conducted in either of the three modes: raw, tabular, or surrogate. For the raw mode, we chose to
build FEDHPO-BENCH upon the well-known FL platform FederatedScope (FS) 2022),
which has provided its docker images so that we can containerize FEDHPO-BENCH effortlessly by
executing each FL algorithm in an FS docker container. To generate the lookup table for tabular
mode, we truly execute the corresponding FL algorithms with the grids of search space as their
configurations. These lookup tables are adopted as training data for the surrogate models, which are
expected to approximate the objective functions (more details about this approximation are discussed
in Appendix [H:4.2). It’s important to note that the distributed nature of FL makes it very expensive
to run an FL course, so, in FedHPO, the tabular and surrogate modes are much in demand to meet
the efficiency requirement. For the convenience of users, we keep FEDHPO-BENCH’s interface
basically the same as HPOBench’s. Meanwhile, we expose extra arguments for users to customize the
instantiation of a benchmark. We defer the discussion of the relationship between FEDHPO-BENCH
and HPOBench to Appendix [B.1]

In this section, we elaborate on three highlights of FEDHPO-BENCH. In addition to the off-the-shelf
FL-related components that FS already provides, we contribute new datasets, models, and algorithms
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Figure 2: Overview of FEDHPO-BENCH.

to FS to prepare a comprehensive collection of FedHPO problems (see Section [3.1)). Moreover, users
are allowed to flexibly tailor these problems to their specific cases (see Section [3.2). Also, FS’s
event-driven framework allows us to easily extend FEDHPO-BENCH by incorporating more FedHPO
problems and methods, which is valuable for this nascent research direction (see Section @

3.1 COMPREHENSIVENESS

There is no universally best HPO method (Gijsbers et al., 2019). Therefore, for the purpose of
fairly comparing HPO methods, it is necessary to compare them on a variety of HPO problems that
correspond to diverse objective functions and thus can comprehensively assess their performances.

To satisfy this need, we leverage FS to prepare various FL tasks, where their considered datasets and
model architectures are quite different. Specifically, the data can be images, sentences, graphs, or
tabular data. Some datasets are provided by existing FL. benchmarks, which are readily distributed
and thus conform to the FL setting. Some are centralized initially, which we partition by FS’s splitters
to construct their FL version with various kinds of Non-IIDness among clients. All these datasets are
publicly available and can be downloaded and preprocessed by our prepared scripts. More details of
these datasets can be found in Appendix D] Then the corresponding suitable neural network model
is applied to handle each dataset, involving fully-connected networks, convolutional networks, the
latest attention-based model, etc. It is worth noticing that our prepared FL tasks cover both cross-silo
and cross-device scenarios. In cross-device scenario, there are a lot more clients and a much lower
client_sample_rate than in cross-silo scenario.

For each such FL task, we basically employ two FL algorithms, FedAvg and FedOpt, to learn the
model, respectively. Then the FedHPO problem is defined as optimizing the design choices of the
FL algorithm on each specific FL task. So, without further explanation, we use the triple <dataset,
model, algorithm> to index a particular benchmark in the remainder of this paper. We summarize our
currently provided FedHPO problems in Table[I] and more details can be found in Appendix [H] For
each problem, #round and client_sample_rate are adopted as the fidelity dimensions.

We study the empirical cumulative distribution function (ECDF) for each model type in the cross-silo
benchmarks. Specifically, in creating the lookup table for tabular mode, we have conducted function
evaluations for the hyperparameter configurations located on a very dense grid over the search space,
resulting in a finite set {()\, f(\))} for each benchmark. Then we normalize the performances
(i.e., f(\)) and show their ECDF in Figure [3] where these curves exhibit different shapes. For
example, the amounts of top-tier configurations for GNN on PubMed are remarkably less than on
other graph datasets, which might imply a less smoothed landscape and difficulty in seeking the
optimal configuration. As the varying shapes of ECDF curves have been regarded as an indicator
of the diversity of benchmarks (Eggensperger et al., 2021), we can conclude from Figure [3] that
FEDHPO-BENCH enables evaluating HPO methods comprehensively.
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Table 1: Summary of benchmarks in current FEDHPO-BENCH: MF refers to matrix factorization. Rec. and
Algo. are short for recommendation and algorithm, respectively. #Cont. and #Disc. denote the number of
hyperparameter dimensions corresponding to continuous and discrete candidate choices, respectively. The unit
of the budget is either day (d) or second (s).

Scenario Model #Dataset Domain #Client #Algo. #Cont. #Disc. Budget
CNN 2 [6\Y 200 2 4 2 20d
BERT 2 NLP 5 2 4 2 20d
Cross-Silo GNN 3 Graph 5 2 4 1 1d
GNN 1 Hetero 5 1 1 1 1d
LR 7 Tabular 5 2 3 1 21,600s
MLP 7 Tabular 5 2 4 3 43,200s
Cross-Device MF 1 Rec. 480,189 2 3 1 -
LR 1 NLP ~3300 2 3 1 1d
1.0 P T 1.0 — 1.0 7/ ——
- 0.8 //_/ - 0.8 - 0.8 /’ﬁ
%0.4 / éOA 1‘2,04 /] o
(a) CNN (b) BERT (¢) GNN (d) LR (e) MLP

Figure 3: Empirical Cumulative Distribution Functions: The normalized regret is calculated for all evaluated
configurations of the respective model on the respective FL task with FedAvg.

3.2 FLEXIBILITY

We allow users to instantiate each benchmark with arguments other than the <dataset, model, algo-
rithm> triple. So, both the underlying objective function and the amount of time it takes to calculate
its value can be customized according to the cases specified by the users.

Objective function. FEDHPO-BENCH provides the basic interface to support multi-objective
optimization concerning arbitrary specified performance metrics and privacy and fairness-related
metrics. For privacy protection, we employ a representative FL+DP algorithm NbAFL (Wei et al.|
2020) provided by FS, where users can specify any valid value for the privacy budget. As for fairness,
FS has provided many personalized FL algorithms and fairness-aware aggregations, and FEDHPO-
BENCH can record client-wise performances. In designing the interface of FEDHPO-BENCH, we
allow users to specify their preferred measurements of privacy leakage risk and fairness. Then the
execution of an FL algorithm can be regarded as evaluating a vector-valued function rather than a
scalar-valued one. By default, FEDHPO-BENCH transforms the vector result into a scalar one by
treating privacy and fairness-related values as soft constraints to penalize.

System model. In addition to customizing the objective function, it is also very helpful to customize
the execution time of function evaluation because the execution time of the same FL course can
vary a lot when deployed in environments with different system conditions. Many existing HPO
benchmarks record the execution time of the training courses, which cannot be adapted regarding
users’ system conditions. Despite a recorded execution time, we provide a system model to estimate
the time consumed by evaluating f(\, b) in realistic scenarios, which is configurable so that users
with different system conditions can calibrate the model to their cases (Mohr et al.| [2021]). Based
on the analysis of such a system model and a basic instance (Wang et al., [2021a), we propose and
implement our system model, where the execution time 7'( f, A, b) for each round in evaluating f (A, b)
is the summation of time consumed by computation and communication. Roughly, the time for
communication is the summation of the time for downloading and uploading transferred information
and the latency for establishing connections. The time for computation is the summation of the
time for the server’s aggregation step and that for the straggler client’s local updates. Our system
model exposes several adjustable parameters, for which we provide default choices based on the
records collected from creating the tabular benchmarks. Meanwhile, users are allowed to specify
these parameters according to their scenarios or other system statistic providers, e.g., estimating the
latency of stragglers by sampling from FedScale (Lai et al.l2022). We defer the details about our
system model to Appendix
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3.3 EXTENSIBILITY

As FedHPO is springing up, we must reduce the effort of introducing more FedHPO problems and
novel FedHPO methods to FEDHPO-BENCH.

Recall that a FedHPO problem is characterized by the <dataset, model, algorithm> triple. With FS,
we can apply the off-the-shelf data splitters to transform an arbitrary centralized dataset into an FL
dataset, reuse any open-sourced model implementation by registering it in FS, and develop a novel
FL algorithm via plugging in the hook function that expresses its unique step(s).

Traditional HPO methods are decoupled from the procedure of function evaluation, with a concep-
tually standard interface for interaction (see Figure[I]and Figure[2). Thus, any new method in this
line can readily interplay with FEDHPO-BENCH. However, FedHPO methods, such as FTS and
FedEx, are fused with the FL training course to make concurrent exploration, as the dashed blue box
in Figure[I]and the red color “FedHPO” module in Figure [2 shows. Thus, we need to implement such
methods in FS if we want to benchmark them on FEDHPO-BENCH.

At a high level, such FedHPO methods essentially aim to learn a policy 7 collaboratively, along with
the original FL course. As FS is featured by its event-driven programming paradigm, a standard
FL course is modularized into event-handler pairs that express all the subroutines. Benefiting from
this event-driven paradigm, all we need to develop are augmenting the messages exchanged by FL.
participants (i.e., re-defining events) and plugging those policy learning-related operations into the
event handlers. As a result, we have implemented FTS, FedEx, and a personalized FedEx in FS,
where their differences mainly lie in just the definition and implementation of those plug-in operations.
We defer more implementation details to Appendix [F]

4 EXPERIMENTS

We conduct extensive empirical studies with our proposed FEDHPO-BENCH. Basically, we ex-
emplify the use of FEDHPO-BENCH in comparing HPO methods, which, in the meantime, can
somewhat validate the correctness of FEDHPO-BENCH. Moreover, we aim to gain more insights
into FedHPO, answering two research questions: (RQ1) How do traditional HPO methods behave in
solving FedHPO problems? (RQ2) Do recently proposed FedHPO methods that exploit “concurrent
exploration” (see Section [2.2) significantly improve traditional methods? We conduct empirical
studies in Section[4.1and Section4.2]to answer RQ1 and RQ2, respectively. All scripts concerning
the studies here have been committed to FEDHPO-BENCH so that the community can quickly
reproduce our established benchmarks.

4.1 STUDIES ABOUT APPLYING TRADITIONAL HPO METHODS IN THE FL SETTING

To answer RQ1, we largely follow the experiment conducted in HPOBench (Eggensperger et al.}
2021) but focus on the FedHPO problems FEDHPO-BENCH provided.

Protocol. We employ up to ten optimizers (i.e., HPO methods) from widely adopted libraries (see
Table E] for more details). For black-box optimizers (BBO), we consider random search (RS), the
evolutionary search approach of differential evolution (DE (Storn & Pricel [1997;|Awad et al.| 2020)),
and bayesian optimization with: a GP model (BOgp), a random forest model (BOg (Hutter et al.|
2011b))), and a kernel density estimator (BOkpg (Falkner et al., 2018b)), respectively. For multi-
fidelity optimizers (MF'), we consider Hyperband (HB (Li et al., 2017)), its model-based extensions
with KDE-based model (BOHB (Falkner et al., 2018a))), and differential evolution (DEHB (Awad
et al.,|2021)), and Optuna’s implementations of TPE with median stopping (TPE)p) and TPE with
Hyperband (TPEyp) (Akiba et al.,2019). We apply these optimizers to solve the cross-silo FedHPO
problems summarized in Table [I} where the time budget is relaxed for these traditional HPO methods
to satisfy multiple full-fidelity function evaluations rather than a one-shot setting. For the sake of
efficiency, we conduct this experiment with the tabular mode of FEDHPO-BENCH, and consider
#round as the fidelity dimension for HPO methods to control (while keeping client_sample_rate=1.0).
To compare the optimizers uniformly and fairly, we repeat each setting five times in the same runtime
environment but with different random seeds. The best-seen validation loss is monitored for each
optimizer (for multi-fidelity optimizers, higher fidelity results are preferred over lower ones). We
sort the optimizers by their best-seen results and compare their mean ranks on all the considered
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FedHPO problems. Following HPOBench, we use sign tests to judge (1) whether advanced methods
outperform their baselines and (2) whether multi-fidelity methods outperform their single-fidelity
counterparts. We refer our readers to Appendix [C]for more details.
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Figure 4: Mean rank over time on all FedHPO problems (with FedAvg).

Results and Analysis. We show the overall results in Figure 4] and we defer detailed results to
Appendix [} Overall, their eventual mean ranks do not deviate remarkably. For BBO, the performances
of optimizers are close at the beginning but become more distinguishable along with their exploration.
Ultimately, BOgp has successfully sought better configurations than other optimizers. In contrast
to BBO, MF optimizers perform pretty differently in the early stage, which might be rooted in the
vast variance of low-fidelity function evaluations. Eventually, HB and BOHB become superior to
others while achieving a very close mean rank. We consider optimizers’ final performances on all the
considered FedHPO problems, where, for each pair of optimizers, one may win, tie, or lose against
the other. Then we can conduct sign tests to compare pairs of optimizers, where results are presented
in Table[2]and Table[3] (1) Comparing these advanced optimizers with their baselines, only BOgp,
BOgp, and DE win on more than half of the problems but have no significant improvement, which
is inconsistent with the non-FL setting. It is worth noting that a similar phenomenon can also be
observed for HPO problems in general (Pushak & Hoos| [2022). (2) Meanwhile, no MF optimizers
show any advantage in exploiting experience, which differs from non-FL cases. We presume the
reason lies in the distribution of configurations’ performances (see Figure [3). From Table 3] we draw
part of the answer to RQ1 as that MF optimizers always outperform their corresponding single-fidelity
version, which is consistent with the non-FL settings.

Table 2: P-value of a sign test for the hypothesis—these advanced methods surpass the baselines.

BOGP BORF BOKDE DE
p-value agains RS 0.0637 0.2161 0.1649 0.7561
win-tie-loss 13/0/7 12/0/8 7/0/13 11/0/9

BOHB DEHB TPEyp TPEyp
p-value against HB  0.4523 0.9854 0.2942 0.2454
win-tie-loss 7/0/13 9/0/11 9/0/11 9/0/11

Table 3: P-value of a sign test for the hypothesis—MF methods surpass corresponding BBO methods.

HBvs. RS DEHBvs. DE  BOHB vs. BOkpg
p-value 0.1139 0.2942 0.0106
win-tie-loss  13/0/7 13/0/7 16/0/4

4.2 STUDIES ABOUT CONCURRENT EXPLORATION

To answer RQ2, we select the superior optimizers from Section4.1|to compare with FedEx (Khodak
et al| 2021). As mentioned in Section[2.2] FL allows HPO methods to take advantage of concurrent
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exploration, which somewhat compensates for the number of function evaluations. We are interested
in methods designed regarding these characteristics of FedHPO and design this experiment to see
how much concurrent exploration contributes.

Protocol. We consider the FedHPO problem <FEMNIST, CNN, FedAvg), i.e., FedAvg is applied
to learn a 2-layer CNN on FEMNIST. As a full-fidelity function evaluation consumes 500 rounds
on this dataset, we specify RS, BOgp, BOgr, BOgpg, HB, and BOHB to limit their total budget to
2,500 (i.e., 5 times budget of a full-fidelity evaluation) in terms of #round. Precisely, each BBO
method consists of 50 trials, each of which runs for 50 rounds. For MF optimizers, we set the 7 of
Successive Halving Algorithm (SHA) (Jamieson & Talwalkar, [2016)) to 3, the minimal budget to 9
rounds, and the max budget to 81 rounds. Then we adopt these optimizers and FedEx wrapped by
them (X+FedEx) to optimize the design choices of FedAvg, respectively. The wrapper is responsible
for determining the arms for each execution of FedEx. We consider validation loss the metric of
interest, and function evaluations are conducted in the raw mode. We repeat each method three times
and report the averaged best-seen value at the end of each trial. Meanwhile, for each considered
method, we entirely run the FL course with the optimal configuration it seeks. Their averaged test
accuracies are compared.

4.0 SRS
BO_GP
3.5 BO_RF Methods W/O FedEx W/ FedEx
3.0 BO_KDE
"> He RS 79.93+2.45 82.03+2.08
925 e BOgp 82.18 £0.94 83.20+1.24
—12.0 BO_GP+Fedix  BOgp 81.86 £1.10 82.20+0.54
1.5 bokbroressx  BOxpe 8134175 82.11+0.46
1.0 — HB+FedEx HB 80.26 +£2.02 82.47 +£0.04
05 : BOMBtfedtx  BOHB  79.59 £2.09  84.02 + 0.50

le-2 le-1 1

Fraction of budget Table 5: Compare the searched configura-

tions: Mean test accuracy (%) + standard de-
Figure 5: Mean validation cross-entropy loss over time.  viation. Underline indicates improvements.

Results and Analysis. We present the results in Figure [5|and Table[5] For FedAvg, the best-seen
mean validation losses of all wrapped FedEx decrease slower than their corresponding wrapper.
However, their searched configurations’ generalization performances are significantly better than
their wrappers, which strongly confirms the effectiveness of concurrent exploration. Thus, we have a
clear answer to RQ2: concurrent exploration methods significantly improve traditional methods.

5 CONCLUSION AND FUTURE WORK

In this paper, we first identify the uniqueness of FedHPO, which we ascribe to the distributed nature
of FL and its heterogeneous clients. This uniqueness prevents FedHPO research from leveraging
existing HPO benchmarks, which has led to inconsistent comparisons between some recently proposed
methods. Hence, we suggest and implement a comprehensive, flexible, and extensible benchmark
suite, FEDHPO-BENCH. We further conduct extensive HPO experiments on FEDHPO-BENCH,
validating its correctness and applicability to comparing traditional and FedHPO methods. We have
open-sourced FEDHPO-BENCH with an Apache-2.0 license and will actively maintain it in the future
(Maintenance of FEDHPO-BENCH is discussed in Appendix[A]). We believe FEDHPO-BENCH can
serve as the stepping stone to developing reproducible FedHPO works.

In our next step, tasks other than federated supervised learning will be incorporated. At the same time,
we aim to extend FEDHPO-BENCH to include different FL settings, e.g., HPO for vertical FL (Zhou
et al., |2021). Another issue the current version has not touched on is the risk of privacy leakage
caused by HPO methods (Koskela & Honkela, [2020), which we should provide related metrics and
testbeds in the future.
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A MAINTENANCE OF FEDHPO-BENCH

In this section, we present our plan for maintaining FEDHPO-BENCH following [Eggensperger et al.
(2021)).

* Who is maintaining the benchmarking library? FEDHPO-BENCH is developed and
maintained by FedHPO-Bench team (to be de-anonymized later).

* How can the maintainer of the dataset be contacted (e.g., email address)? Users can
reach out to the maintainer via creating issues on the Github repository with FEDHPO-
BENCH label.

¢ Is there an erratum? No.

* Will the benchmarking library be updated? Yes, as we discussed in Section[5] we will
add more FedHPO problems and introduce more FL tasks to the existing benchmark. We
will track updates and Github release on the README. In addition, we will fix potential
issues regularly.

 Will older versions of the benchmarking library continue to be sup-
ported/hosted/maintained? All older versions are available and maintained by
the Github release, but limited support will be provided for older versions. Containers will
be versioned and available via AliyunOSS.

» If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? Any contribution is welcome, and all commits to
FEDHPO-BENCH must follow the guidance and regulations athttps://github.com/
FedHPO-Bench/FedHPO-Bench-ICLR23/blob/main/README . md.

B RELATED WORK

Hyperparameter Optimization (HPO). Generally, HPO is an optimization problem where the
objective function is non-analytic, non-convex, and even non-differentiable. Therefore, most HPO
methods solve such an optimization problem in a trial-and-error manner, with different strategies for
balancing exploitation and exploration. Model-free methods such as random search (RS) (Bergstra
& Bengio, [2012) and grid search query a set of initially determined hyperparameter configurations
without any exploitation. Model-based methods such as Bayesian Optimization (BO) (Shahriari et al.|
2016) employ a surrogate model to approximate the objective function. Methods in this line (Hutter
et al., 2011a} |Lindauer et al.| 2022} [Hutter et al.|[2011b; |[Falkner et al.; 2018b)) mainly differ from each
other in their surrogate model and how they determine the next query. There are also Evolutionary
Algorithms (EAs) that iteratively maintain a population. We consider differential EAs (Storn & Price]
1997;|Awad et al., [2020) in our experiments.

As training a deep neural network on a large-scale dataset is very costly, the full-fidelity function
evaluations made by BO methods are often unaffordable in practice. Naturally, researchers consider
trading off the precision of a function evaluation for its efficiency by, e.g., training fewer epochs
and training on a subset of the data. Hyperband (Li et al., [2017) is a representative multi-fidelity
method that calls the Successive Halving Algorithm (SHA) (Jamieson & Talwalkar, 2016) again and
again with a different number of initial candidates. However, in each execution of SHA, the initial
candidates are randomly sampled without any exploitation. To exploit the experience of previous
SHA executions, researchers combine BO methods with Hyperband (Falkner et al.| [2018a; |Awad
et al.l [2021)).

Benchmarking HPO. AutoML-related optimization benchmarks have been proved helpful for
promoting fair comparisons of related methods and reproducible research works. There have been
many successful examples (Hutter et al., 2014; [Hansen et al., 2021} [Hase et al., 2021} [Turner &
Eriksson, 2019; |Dong & Yang, 2020; Dong et al., 2021} |Gijsbers et al.| [2019). Noticeably, HPO-
B (Pineda-Arango et al.,|2021)) is highlighted by its support for benchmarking transfer-HPO methods,
and HPOBench (Eggensperger et al.| [2021) fills the gap of missing multi-fidelity HPO benchmarks.

However, existing HPO benchmarks mainly focus on centralized ML, yet FL, as a promising learning
paradigm, has been ignored. In this paper, we identify the uniqueness of FedHPO (see Section [2.2)
and implement FEDHPO-BENCH to satisfy the demand for a FedHPO benchmark suite.
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Federated Learning (FL). In this paper, we restrict our discussion of FL to the “standard” scenario
introduced in Section [2.2] where FedAvg (McMahan et al, [2017) is widely adopted. Fancy FL
optimization algorithms, including FedProx (Li et al., 2020b) and FedOpt (Asad et al.,[2020), are
mainly designed to improve the convergence rate and/or better handle the non-IIDness among
clients (Wang et al., 2021a). Despite these synchronous optimization algorithms, asynchronous
ones (Huba et al., 2022} [Xie et al.,|2022) are proposed to keep a high concurrency utility.

Sometimes, learning one global model is insufficient to handle the non-IIDness, which calls for
personalized FL (Kairouz et al., 2019; Wang et al.} 2021a). Many popular pFL algorithms, such as
FedBN (Li et al.| 2021b) and Ditto (Li et al., [2021a)), have been incorporated into FS (Xie et al.|
2022), with their unique hyperparameters exposed. Thus, we can further extend FEDHPO-BENCH
by considering FedHPO tasks of optimizing the hyperparameters of such algorithms.

FedHPO. When we consider HPO in the FL setting, as mentioned in Section @], there is some
uniqueness that brings in challenges while, at the same time, it can be leveraged by deliberately
designed FedHPO methods. For example, in contrast to traditional HPO methods that query one
configuration in each trial, FedEx (Khodak et al.,|2021) maintains one policy for determining the client-
side hyperparameters and independently samples each client’s configuration in each communication
round. Different configurations may be evaluated with the same model parameters, which is in analogy
to the weight-sharing idea in neural architecture search (NAS) (Liu et al.l |2019)), as summarized
by the authors of FedEx. However, due to the non-IIDness among clients, clients” HPO objective
functions tend to be different, where determining their configurations by only one policy might be
unsatisfactory. Regarding this issue, FTS (Dai et al,[2020) can be treated as a personalized FedHPO
method, where each client maintains its own policy. During the learning procedure, the clients
benefit each other by sharing the policies in a privacy-preserving manner and conducting Thompson
sampling.

It is worth mentioning that parallel algorithms have been utilized in HPO (Jones, |2001}; |Hutter et al.,
2012). However, in FedHPO, the clients actually do not correspond to the same black-box function
due to the heterogeneity among them. Essentially, FedHPO methods instantiate the concurrent
exploration idea with extra assumptions. Besides, vanilla parallel HPO methods may leak privacy in
the aggregation step, which has been carefully taken into account by FTS.

Dynamic algorithm configuration methods (Biedenkapp et al.,|2020; |Adriaensen et al.l 2022) employ
reinforcement learning to learn policies for online adjustments of algorithm parameters, since different
parameter values can be optimal at different stages. In contrast to DAC methods, the policy 7 learned
in FedEx is responsible for determining the optimal lower-level response of the bi-level optimization
problem discussed in Section which can be regarded as a multi-armed bandit problem rather
than a Markov decision process. In other words, combined with the concurrent exploration strategy,
FedEx tries out one arm at a client in each round, where the underlying reward function is assumed to
be unchanged across the clients and the whole training course.

As an emerging research topic, existing works relating to FedHPO include Fed-Tuning (Zhang et al.,
2021)) concerning about system-related performance, learning rate adaptation (Koskela & Honkela),
2020), FLoRA for Gradient Boosted Decision Trees (GBDT), online adaptation scheme-based
method (Mostatal 2020), Auto-FedRL (Guo et al.| 2022) for RL-based hyperparameter adaptation,
and an insightful comparison between local and global HPO (Holly et al.,[2021)). These methods can
also be easily incorporated into FS, enabling FEDHPO-BENCH to benchmark them.

B.1 RELATION TO HPOBENCH

HPOBench (Eggensperger et al., 2021) is a collection of multi-fidelity HPO benchmarks, highlighted
by their efficiency, reproducibility, and flexibility. These benchmarks can be accessed in either tabular,
surrogate, or raw mode. On the one hand, the tabular and surrogate modes enable function evaluation
without truly executing the corresponding ML algorithm and thus are efficient. On the other hand, the
raw mode means execution in a docker container, which ensures reproducibility. HPOBench provides
twelve families of benchmarks that correspond to different data domains, model types, fidelity spaces,
etc., and thus flexible usages to validate HPO methods. This collection of HPO benchmarks can
promote fair comparisons of related works and reproducible research work, so HPOBench has gained
more and more attention from the community.
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As pointed out in Section[2.2]that evaluating the objective function that corresponds to an FL algorithm
is extremely expensive, FEDHPO-BENCH also prepares tabular and surrogate modes for users to
avoid truly executing FL courses. Meanwhile, we provide the raw mode to truly execute an FL course
in the docker container of FederatedScope (FS) (Xie et al.,[2022).

Sharing the same modes, a question naturally arises—is it possible to reuse HPOBench’s interface
for FEDHPO-BENCH? We answer this question by discussing their commonality and the unique
ingredients of FEDHPO-BENCH:

Commonality. As the code snippet in Figure 2] shows, the instantiation of a benchmark class, the
“ConfigSpace” package based specification of search space, and the protocol for the interaction
between an HPO method and a benchmark object are roughly consistent with HPOBench.

Uniqueness. In addition to a collection of benchmarks, FEDHPO-BENCH is flexible in terms of
enabling users to tailor one benchmark to their scenarios (see Section [3.2)). To this end, users are
allowed to instantiate a specific benchmark object with extra optional arguments:

* Privacy budget with which function evaluation corresponds to the execution of NbAFL (Wei
et al., |2020) instead of vanilla FedAvg. Taking the tabular mode, for example, this means
looking up a privacy budget-specific table.

e The type of fairness metric and its strength with which FEDHPO-BENCH will consider
a vector-valued objective function (i.e., client-wise results) rather than a scalar-valued
objective function. Besides, the return value of calling the function evaluation will be the
mean performance regularized by the specified fairness regularizer.

* The parameter(s) for our system model with which the execution time is estimated regarding
the user’s system condition. Without using a system model, FEDHPO-BENCH can provide
the recorded execution time in the creation of this benchmark.

Currently, we implement the interfaces of FEDHPO-BENCH by ourselves, where the style of
our interfaces is kept similar to HPOBench for the convenience of users who are familiar with
HPOBench. We also provide several examples (https://github.com/FedHPO-Bench/
FedHPO-Bench-ICLR23/tree/main/demo) to access our tabular, surrogate, and raw bench-
marks by implementing HPOBench’s abstract base class. As a first step, we are going to contribute
more such subclasses to the repository of HPOBench so that users can access our benchmarks via
HPOBench'’s interfaces, where flexible customization cannot be provided temporarily. In our next
step, we plan to extend the interfaces of HPOBench such that the benchmarks of FEDHPO-BENCH
can be accessed with our proposed flexible customization.

C HPO METHODS

As shown in Table@ we provide an overview of the optimizers (i.e., HPO methods) we use in this
paper.

Table 6: Overview of the optimizers from widely adopted libraries.

Name Model Packages version

RS (Bergstra & Bengio, 2012) - HPBandsterr 0.7.4
BOgp (Hutter et al., 2011a; [Lindauer et al.,[2022) GP SMAC3 1.3.3
BOgr (Hutter et al., 2011b) RF SMAC3 1.3.3
BOgpg (Falkner et al.| [2018b) KDE HPBandster, 0.7.4

DE (Storn & Price, [1997;|Awad et al.}, [2020) - DEHB git commit
HB (Li et al[[2017) - HPBandster, 0.7.4
BOHB (Falkner et al.,[2018a) KDE HPBandster, 0.7.4
DEHB (Awad et al.,[2021) - DEHB git commit
TPE;p (Akiba et al.|[2019) TPE Optuna 2.10.0
TPEyp (Akiba et al., 2019) TPE Optuna 2.10.0
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C.1 BLACK-BOX OPTIMIZERS

RS (Random search) is a priori-free HPO method, i.e., each step of the search does not exploit
the already explored configuration. The random search outperforms the grid search within a small
fraction of the computation time.

BOgp is a Bayesian optimization with a Gaussian process model. BOgp uses a Matérn kernel for
continuous hyperparameters, and a hamming kernel for categorical hyperparameters. In addition, the
acquisition function is expected improvement (EI).

BOgp is a Bayesian optimization with a random forest model. We set the hyperparameters of the
random forest as follows: the number of trees is 10, the max depth of each tree is 20, and we use the
default setting of the minimal samples split, which is 3.

BOgpg is a Bayesian optimization with kernel density estimators (KDE), which is used in
BOHB (Falkner et al., 2018a). It models objective function as Pr(z | ¥eo0a) and Pr(z | ¥baa)-
We set the hyperparameters for BOgpg as follows: the number of samples to optimize EI is 64, and
1/3 of purely random configurations are sampled from the prior without the model; the bandwidth
factor is 3 to encourage diversity, and the minimum bandwidth is 1e-3 to keep diversity.

DE uses the evolutionary search approach of Differential Evolution. We set the mutation strategy to
randl and the binomial crossover strategy to binﬂ In addition, we use the default settings for the
other hyperparameters of DE, where the mutation factor is 0.5, crossover probability is 0.5, and the
population size is 20.

C.2 MULTI-FIDELITY OPTIMIZERS

HB (Hyperband) is an extension on top of successive halving algorithms for the pure-exploration
nonstochastic infinite-armed bandit problem. Hyperband makes a trade-off between the number of
hyperparameter configurations and the budget allocated to each hyperparameter configuration. We set
7 to 3, which means only a fraction of 1/7 of hyperparameter configurations goes to the next round.

BOHB combines HB with the guidance and guarantees of convergence of Bayesian optimization with
kernel density estimators. We set the hyperparameter of the BO components and the HB components
of BOHB to be the same as BOkpg and HB described above, respectively.

DEHB combines the advantages of the bandit-based method HB and the evolutionary search approach
of DE. The hyperparameter of DE components and BO components are set to be exactly the same as
DE and HB described above, respectively.

TPE)p is implemented in Optuna and uses Tree-structured Parzen Estimator (TPE) as a sampling
algorithm, where on each trial, TPE fits two Gaussian Mixture models for each hyperparameter.
One is to the set of hyperparameters with the best performance, and the other is to the remaining
hyperparameters. In addition, it uses the median stopping rule as a pruner, which means that it will
prune if the trial’s best intermediate result is worse than the median (MD) of intermediate results of
previous trials at the same step. We use the default settings for both TPE and MD.

TPEgg is similar to TPE)p described above, which uses TPE as a sampling algorithm and HB as
pruner. We set the reduction factor to 3 for HB pruner, and all other settings use the default ones.

D DATASETS

As shown in Table[/| we provide a detailed description of the datasets we use in current FEDHPO-
BENCH. For comprehensiveness, we use 16 FL datasets from 5 domains, including CV, NLP, graph,
tabular, and recommendation (Xie et al.,|2022; |Wang et al.| 2022} Eggensperger et al.| 2021). Some
of them are inherently real-world FL datasets, while others are simulated FL datasets split by the
splitter modules of FS. Notably, the name of datasets from OpenML is the ID of the corresponding
task.

3Please refer tolhttps: //github.com/automl/DEHB/blob/master/README . md for details.
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Table 7: Statistics of the datasets used in current FEDHPO-BENCH.

Name #Client  Subsample #Instance #Class Split by
FMNIST 3,550 5% 805,263 62 Writer
CIFAR-10 5 100% 60,000 10 LDA
CoLA 5 100% 10,657 2 LDA
SST-2 5 100% 70,042 2 LDA
Cora 5 100% 2,708 7 Community
CiteSeer 5 100% 4,230 6 Community
PubMed 5 100% 19,717 3 Community
Hetero-task 5 100% 6,760 2~6 Task
credit-g4; 5 100% 1,000 2 LDA
vehicless 5 100% 846 4 LDA
k013917 5 100% 2,109 2 LDA
blood-transf..1g101 5 100% 748 2 LDA
Australiany 46s1s 5 100% 690 2 LDA
cari46821 5 100% 1 ,728 4 LDA
segment, 44599 5 100% 2,310 7 LDA
FedNetflix 480,189 100% ~100,000,000 5 User
Twitter 660,120 0.5% 1,600,498 2 User

FEMNIST is an FL image dataset from LEAF (Caldas et al., | 2018)), whose task is image classification.
Following (Caldas et al.,[2018)), we use a subsample of FEMNIST with 200 clients, which is round
5%. And we use the default train/valid/test splits for each client, where the ratio is 60% : 20% : 20%.

CIFAR-10 (Krizhevsky et al.,[2009) is from Tiny Images dataset and consists of 60,000 32 x 32
color images, whose task is image classification. We split images into 5 clients by latent dirichlet
allocation (LDA) to produce statistical heterogeneity among these clients. We split the raw training
set to training and validation sets with a ratio 4 : 1, so that ratio of final train/valid/test splits is
66.7%:16.67%:16.67%.

SST-2 is a dataset from GLUE (Wang et al., |2018) benchmark, whose task is binary sentiment
classification for sentences. We also split these sentences into 5 clients by LDA. In addition, we use
the official train/valid/test splits for SST-2.

CoLA is also a dataset from GLUE benchmark, whose task is binary classification for sentences—
whether it is a grammatical English sentence. We exactly follow the experimental setup in SST-2.

Cora & CiteSeer & PubMed (Sen et al., 2008 [Yang et al.,2016) are three widely adopted graph
datasets, whose tasks are node classification. Following FS-G (Wang et al.| [2022), a community
splitter is applied to each graph to generate five subgraphs for each client. We also split the nodes
into train/valid/test sets, where the ratio is 60%:20%:20%.

Hetero-task is a graph classification dataset adopted from Graph-DC (Yao et al., |2022), which
contains 5 clients. Each client has different but similar graph classification task, such as molec-
ular attribute prediction. In addition, we set the ratio of train/valid/test splits in each client to
80%:10%:10%.

Tabular datasets are consist of 7 tabular datasets from OpenML (Bischl et al., 2017), whose task ids
(name of source data) are 31 (credit-g), 53 (vehicle), 3917 (kel), 10101 (blood-transfusion-service-
center), 146818 (Australian), 146821 (car) and 146822 (segment). We split each dataset into 5
clients by LDA, respectively. In addition, we set the ratio of train/valid/test splits to 80%:10%:10%.

FedNetflix is a recommendation dataset from The Netflix Prize (Bennett & Lanning}, 2007)), whose
task is to predict the ratings between users and movies. Netflix consists of around 100 million ratings
between 480,189 users and 171,770 movies. We split the Netflix dataset into 480,189 clients by
users. In addition, we set the ratio of train/valid/test splits to 80%:10%:10%.

Twitter is a sentiment analysis dataset from LEAF (Caldas et al., [2018), whose task is to determine
sentiment of sentences. We use a subsample of Twitter with around 3300 clients. Moreover, we use
the train/valid/test splits for each client, where the ratio is 80% : 10% : 10%. It is worth noting that

19



Under review as a conference paper at ICLR 2023

the average number of samples is only 1.94, which means some clients do not have valid split or test
split, and we evaluate the performance on a shared test split merged by all clients.

E SYSTEM MODEL

In this section, we will discuss the system model in detail we have proposed and implemented. The
total execution time of FL consists of the time consumed by communication and the time consumed
by calculation, thus, the system model is as follows:

T(f, A 0) = Teomm(f; A, b) + Teomp(f5 A, b),

Saown(fs A) | Sup(f, A
Teomm(f, A, b) = dBdifn >+ PBEfp )+O‘(N)7 Q)

[max({T ™ )] + TE (£, ), b),

ﬂomp(fa A, b) = ETi(C“em)NEXp(-\m),i:Lm,N

where N denotes the number of clients sampled in this round, «(/N') denotes the latency, which is an
increasing function of NV but is independent of the message size (contains the time needed to establish
the transmission between the server and the clients), S(f, A) denotes the download/upload size,
B denotes the download/upload bandwidth of client, T Gerver) iq the time consumed by server-side

computation, and Ti(dlem) denotes the computation time consumed by ¢-th client, which is sampled
from an exponential distribution with ¢(f, A, b) as its mean. This design intends to simulate the
heterogeneity among clients’ computational capacity, where the assumed exponential distribution
has been widely adopted in system designs (Wang et al.,|2021a) and is consistent with real-world
applications (Huba et al.,2022).

We provide default parameters of our system model, including c(f, A, b), By, Baown, and T (server)
based on observations collected from FL trials we have conducted and real-world network bandwidth.
Users are allowed to specify these parameters according to their scenarios or other system statistic
providers, e.g., estimating the computation time of stragglers by sampling from FedScale (Lai
et al., 2022). As for the network bandwidth, we set Byown ~ 0.75MB /secs, By, ~ 0.25MB /secs
following (Lai et al.| [2022; Wang et al., 2021a). The default value of c(f, A, b) is obtained by
averaging the recorded client-wise time costs in trials of tabular mode benchmarks. Due to the limit
on the number of ports of the server, we set the default value of the maximum number of connections
in calculating a(IV) to 65535.

To implement our system model, we use the following proposition to calculate Eq. [I] analytically,
where we use ¢ as a shorthand for ¢( f, \, b) to keep clarity.

Proposition 1. When the computation time of clients is identically independently distributed, fol-

lowing an exponential distribution Exp('|%), then the expected time for the straggler of N uniformly
N ¢
i=17"

sampled clients is

What we need to calculate is the expected maximum of i.i.d. exponential random variable. Proposi-
tion [1{states that, for N exponential variables independently drawn from Exp(:| %), the expectation is

> i1 - There are many ways to prove this useful proposition, and we provide a proof starting from
studying the minimum of the exponential random variables.

Proof. At first, the minimum of N such random variables obeys Exp(-|&) (Graham et al.
1989). Denoting the i-th minimum of them by T;, 77 ~ Exp(|%) and T is what we are
interested in. Meanwhile, it is well known that exponential distribution is memoryless, namely,
Pr(X > s+t/X > s) = Pr(X > t). Thus, T» — T obeys the same distribution as the minimum of
N — 1 such random variables, that is to say, 175 — 7} is a random variable drawn from Exp(|¥)
Similarly, (T; 41 — T;) ~ Exp(-|¥=%),i =1,..., N — 1. Thus, we have:

C

o

5 @)

N—-1 c N—-1 c N
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Figure 6: A general algorithmic view for FedHPO methods: They are allowed to concurrently explore different
client-side configurations in the same round of FL, but the clients are heterogeneous, i.e., corresponding to

different functions ffc) (+). Operators in brackets are optional.

which concludes this proof. [

It is worth noting that we provide several optional system models. For example, for point-to-point
transport protocols, T¢omm should contain the time the server sends the model to each client.

F DETAILS OF THE IMPLEMENTATIONS OF FEDEX AND FTS

We first present a general algorithmic view in Figure[6] which unifies several such methods as well as
their personalized counterparts. At a high level, a policy 7 for determining the optimal lower-level
response A(©* = min, o f(A®), A(®)) is to be federally learned, along with the FL course itself. In
the t-th communication round: (1) In addition to the model #(*), either the policy 7 or its decisions

)\(C) is also broadcasted. (2) For the i-th client, if 70 is received, it needs to synchronize its local

(®)

policy 7, with this global one and then sample a hyperparameter configuration )\EC) from its local

policy. (3) Either received or locally sampled, )\Ec) is used to specify the local update procedure of
FL, which results in updated local model th“). (4) Then 0§t+1) is evaluated to provide the result of

(client-specific) function evaluation fi(c) (/\(C)>. (5) For personalized FedHPO methods that maintain

a local policy 7, it is updated w.r.t. (A, f;(A;)) to produce Tr(tJr ). (6) In addition to the local

model '™ either the local policy 7" ") or the feedback (/\l(-L e (/\EC))) is sent to the server.

(7) Finally, the server aggregates thﬂ)s into #**+1) and 7r§t+1)s/<)\l(-c), fi(c) (AEC))) s into 7t
respectively.

In FedEx (Khodak et al.l[2021), \;s are independently sampled from 7, and the aggregation operator
“aggr,” is exponential gradient descent. In FTS (Dai et al.,|2020), the broadcasted policy 7(t) is the
samples drawn from all clients’ posterior beliefs. The synchronous operator “sync,” can be regarded
as mixing Gaussian process (GP) models. The update operator “update,,” corresponds to updating

(t+1)

local GP model. Then a sample drawn from local GP posterior belief is regarded as 7, and

uploaded. Finally, the aggregation operator “aggr,,” is packing received samples together.

G STUDIES ABOUT THE NEW FIDELITY

In FL, a larger client_sample_rate leads to a minor variance of the aggregated model in each round,
which is believed to need less #round for convergence and to perform better. Therefore, we tend
to set the client_sample_rate as close to 1 as possible. However, according to our system model
in Section a large client_sample_rate leads to an increase in latency («(NN')), which makes the
communication cost higher. To answer RQ3, we use tabular mode and study the trade-off between
these two fidelity dimensions: client_sample_rate and #round. We simulate two distinct system
conditions by specifying different parameters for our system model.

Protocol. We compare the performance of HB with different client_sample_rates to learn a 2-layer
CNN with 2,048 hidden units on FEMNIST. To simulate a system condition with bad network
status, we set the upload bandwidth By, to 0.25MB/second and the download bandwidth Byown to
0.75MB/second (Wang et al.,[2021a). As for good network status, we set the upload bandwidth By, to
0.25GB/second and the download bandwidth B gown) to 0.75GB/second. In both cases, we consider
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Figure 7: Performances of different client_sample_rate under different system conditions.

different computation overhead so that it is negligible and significant, respectively. As for the rest
settings, we largely follow that in Section {.1]

Results and Analysis. We have an answer to RQ3: with the same time budget, the FL procedure
with a lower client_sample_rate achieves a better result than higher client_sample_rate with the
bad network status. In comparison, that with a higher client_sample_rate achieves a better result
than lower client_sample_rate in the good network status. In conclusion, this study suggests a best
practice of pursuing a more economic accuracy-efficiency trade-off by balancing client_sample_rate
with #round, w.r.t. the system condition. Better choices tend to achieve more economical accuracy-
efficiency trade-offs for FedHPO.

H DETAILS ON FEDHPO-BENCH BENCHMARKS

FEDHPO-BENCH consists of serveral categories of benchmarks on the different datasets (see
Appendix D)) with three modes. If not specified, we use the model as the name of the benchmark
in cross-silo scenario. In this part, we provide more details about how we construct the FedHPO
problems provided by current FEDHPO-BENCH and the three modes to interact with them.

H.1 CATEGORY

We categorize our benchmarks by model types. Each benchmark is designed to solve specific FL
HPO problems on its data domain, wherein CNN benchmark on CV, BERT benchmark on NLP, GNN
benchmark on the graphs, and LR & MLP benchmark on tabular data. All benchmarks have several
hyperparameters on configuration space and two on fidelity space, namely sample rate of FL and FL
round. And the benchmarks support several FL algorithms, such as FedAvg and FedOpt.

CNN benchmark learns a two-layer CNN with 2048 hidden units on FEMNIST and 128 hidden
units on CIFAR-10 with five hyperparameters on configuration space that tune the batch size of the
dataloader, the weight decay, the learning rate, the dropout of the CNN models, and the step size of
local training round in client each FL. communication round. The tabular and surrogate mode of the
CNN benchmark only supports FedAvg due to our limitations in computing resources for now, but
we will update FEDHPO-BENCH with more results as soon as possible.

BERT benchmark fine-tunes a pre-trained language model, BERT-Tiny, which has two layers and
128 hidden units, on CoLA and SST-2. The BERT benchmark also has five hyperparameters on
configuration space which is the same as CNN benchmark. In addition, the BERT benchmark support
FedAvg and FedOpt with all three mode.

GNN benchmark learns a two-layer GCN with 64 hidden units on Cora, CiteSeer and PubMed. The
GNN benchmark has four on hyperparameters configuration space that tune the weight decay, the
learning rate, the dropout of the GNN models, and the step size of local training round in client each
FL communication round. The GNN benchmark support FedAvg and FedOpt with all three mode.

Hetero benchmark learns a two-layer GCN with 64 hidden units as backbone to be aggregated. The
Hetero benchmark has two on hyperparameters configuration space that tune the learning rate and the
step size of local training round in client each FL. communication round. For each client, there are
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Table 8: The search space of our benchmarks, where continuous search spaces are discretized into several bins

under the tabular mode.

Benchmark Name Type Log #Bins Range
batch_size int X - {16, 32, 64}
weight_decay float X 4 [0, 0.001]
Client dropout float X 2 [0, 0.5]
step_size int X 4 [1, 4]
CNN learning_rate float Ve 10 [0.01, 1.0]
Server momentum float X 2 [0.0, 0.9]
learning_rate float X 3 [0.1, 1.0]
C client_sample_rate  float X 5 [0.2,1.0]
Fidelity round it x 250 (1, 500]
batch_size int X - {8, 16, 32, 64, 128}
weight_decay float X 4 [0, 0.001]
Client dropout float X 2 [0, 0.5]
Step_size int X 4 [1, 4]
BERT learning_rate float v 10 [0.01, 1.0]
Server momentum float X 2 [0.0, 0.9]
learning_rate float X 3 [0.1, 1.0]
. client_sample_rate float X 5 [0.2, 1.0]
Fidelity round it x40 (1, 40]
weight_decay float X 4 [0, 0.001]
. dropout float X 2 [0, 0.5]
Client step_size int X 8 [1, 8]
GNN learning_rate float v 10 [0.01, 1.0]
Server momentum float X 2 [0.0, 0.9]
learning_rate float X 3 [0.1, 1.0]
. client_sample_rate float X 5 [0.2, 1.0]
Fidelity round it x 500 [1, 500]
. learning_rate float v 2 [0.001, 0.01]
Client step_size int X 2 [1, 4]
Hetero ;
Fidelity client_sample_rate ﬂpat X 5 [0.2, 1.0]
round int X 500 [1, 500]
batch_size int v 7 [4, 256]
. weight_decay float X 4 [0, 0.001]
Client step_size int X 4 [1, 4]
LR learning_rate float Ve 6 [0.00001, 1.0]
Server momentum float X 2 [0.0, 0.9]
learning_rate float X 3 [0.1, 1.0]
. client_sample_rate float X 5 [0.2, 1.0]
Fidelity round it x 500 (1, 500]
batch_size int v 7 [4, 256]
weight_decay float X 4 [0, 0.001]
. step_size int X 4 [1, 4]
Client learning_rate float v 6 [0.00001, 1.0]
depth int X 3 [1, 3]
MLP width it v 7 [16, 1024]
Server momentum float X 2 [0.0, 0.9]
learning_rate float X 3 [0.1, 1.0]
1 client_sample_rate  float X 5 [0.2, 1.0]
Fidelity round it x 500 [1, 500]
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personalized encoder and classifier to handle different tasks. Thus, the Hadamard product of each
client’s configuration makes the search space.

LR benchmark learns an Ir on seven tasks from OpenML, see Appendix [D] for details. The LR
benchmark has four on hyperparameters configuration space that tune the batch size of the dataloader,
the weight decay, the learning rate, and the step size of local training round in client each FL
communication round. The LR benchmark support FedAvg and FedOpt with all three mode.

MLP benchmark’s the vast majority of settings are the same as LR benchmark. But in particular, we
add depth and width of the MLP to search space in terms of model architecture. The MLP benchmark
also support FedAvg and FedOpt with all three mode.

Cross-device. In cross-device scenarios, there can be large number of clients in total, but only a
few participate in each communication round. This benchmark contains two datasets, Twitter and
FedNetflix. We use a bag of words model with LR and tune the learning_rate, weight_decay, and
step_size of local training round in Twitter. As for FedNetflix, we tune an HMFNet (Li et al., [2021c)
in the learning_rate, batch_size, and step_size of local training round. Due to the time limit, the
results FedNetflix is incomplete, and we present the ECDF of Twitter in Figure[9]

H.2 MODE

Following HPOBench (Eggensperger et al.|[2021), FEDHPO-BENCH provides three different modes
for function evaluation: the tabular mode, the surrogate mode, and the raw mode. The valid input
hyperparameter configurations and the speed of acquiring feedback vary from mode to mode. Users
can choose the desired mode according to the purposes of their experiments.

Tabular mode. The idea is to evaluate the performance of many different hyperparameter configura-
tions in advance so that users can acquire their results immediately. For efficient function evaluation,
we implement the tabular mode of FEDHPO-BENCH by running the FL algorithms configured by
the grid search space in advance from our original search space (see Table ). For hyperparameters
whose original search space is discrete, we just preserve its original one. As for continuous ones,
we discretize them into several bins (also see Table [§ for details). To ensure that the results are
reproducible, we execute the FL procedure in the Docker container environment. Each specific
configuration ) is repeated three times with different random seeds, and the resulted performances,
including loss, accuracy and fl-score under train/validation/test splits, are averaged and adopted
as the results of f()). Users can choose the desired metric as the output of the black-box function
via FEDHPO-BENCH’s APIs. Besides, we provide not only the results of f(\) (i.e., that with
full-fidelity) but also results of f (), b), where b is enumerated across different #round and different
client_sample_rate. Since executing function evaluation is much more costly in FL than traditional
centralized learning, such lookup tables are precious. In creating them, we spent about two months of
computation time on six machines, each with four Nvidia V100 GPUs. Now we make them publicly
accessible via the tabular mode of FEDHPO-BENCH.

Surrogate mode.

As tabular mode has discretized the original search space and thus cannot respond to queries other
than the grids, we train random forest models on these lookup tables, i.e., {(A, ), f(\, b))}. These
models serve as a surrogate of the functions to be optimized and can answer any query A by simply
making an inference. Specifically, we conduct 10-fold cross-validation to train and evaluate random
forest models (implemented in scikit-learn (Pedregosa et al.,2011)) on the tabular data. Meanwhile,
we search for suitable hyperparameters for the random forest models with the number of trees in
{10, 20} and the max depth in {10, 15, 20}. The mean absolute error (MAE) of the surrogate model
w.r.t. the true value is within an acceptable threshold. For example, in predicting the true average loss
on the CNN benchmark, the surrogate model has a training error of 0.00609 and a testing error of
0.00777. In addition to the off-the-shelf surrogate models we provide, FEDHPO-BENCH offers tools
for users to build brand-new surrogate models. Meanwhile, we notice the recent successes of neural
network-based surrogate, e.g., ' YAHPO Gym (Pfisterer et al.,|2022)), and we will also try it in the next
version of FEDHPO-BENCH.

Raw mode. Both of the above modes, although they can respond quickly, are limited to pre-designed
search space. Thus, we introduce raw mode to FEDHPO-BENCH, where user-defined search spaces
are allowed. Once FEDHPO-BENCH’s APIs are called with specific hyperparameters, a containerized
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and standalone FL procedure (supported by FS) will be launched. It is worth noting that although we
use standalone simulation to eliminate the communication cost, raw mode still consumes much more
computation cost than tabular and surrogate modes.

H.3 NEW HYPERPARAMETERS

The FL setting introduces new hyperparameters such as server-side learning_rate, momentum for
FedOpt and client-side #local_update_step. Different FL algorithms have different
parameters, which correlate with hyperparameters related to general ML procedures. In this section,
we first adopt FedProx to study the impact of server-side hyperparameters mu, the
coefficient of the regular term, on the results. And then we compare the landscape of the federated
learning method and non-federated method.

H.3.1 TRENDS WITH DIFFERENT REGULARITY IN FEDPROX

To extend the tabular benchmarks with more FL algorithms, we adopt FedProx [2020b) to
GNN benchmark. Based on Table[8] we tune the server-side hyperparameters mu, the coefficient of
the regular term, in {0.1, 1.0, 5.0} to study the trends with different regularity in FedProx. We show
the landscape in Figure@with learning rate in [0.01, 1.0] and mu in [0.1, 5.0], and we observe that
when the learning rate is low, the effect of mu has little impact on the accuracy; however, when the
learning rate is large, the increase of mu can seriously damage the accuracy.

H.3.2 LANDSCAPES ON ML-RELATED HYPERPARAMETERS

In this section, to study the validation loss landscape of the federated learning method (FedAvg) and
non-federated method (Isolated), we consider learning_rate and batch_size, the hyperparameters
of the ML algorithm, as the coordinate axis to build the loss landscapes. We fix other ML-related
hyperparameters weight_decay to 0.0, dropout to 0.5 for both FedAvg and Isolated, which is the
best configuration chosen from the tabular benchmark <CNN, FEMNIST, FedAvg> under 1.0
client_sample_rate. As the loss landscapes shown in Figure 8| with learning rate in [0.01, 1.0] and
batch size in 16, 32, 64, we observe that the FedAvg with a higher learning rate achieves better results,
while the non-federated method (Isolated) prefer a lower learning rate. Their differences suggest the
uniqueness of FedHPO’s objective functions.

A

(a) FedAvg (b) Isolated

Figure 8: Landscape with the hyperparameters of the ML algorithm on FEMNIST.

H.4 DATA ANALYTICS

H.4.1 TRENDS IN DIFFERENT PRIVACY BUDGETS

We extend the tabular benchmarks with different levels of privacy budgets in FEMNIST and Cora. To
explore the trends of optimal configurations under different privacy budgets, we adopt NbAFL
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et al., [2020) with e € {1,10,20}. We observe that the best configuration varies under different
levels of privacy budgets in and Cora, as shown in Table[I0] Under different privacy budgets, a large
step_size all leads to a good performance. However, when the noise is intense, a higher learning_rate
is preferred, while a lower learning_rate will perform better when the noise is weak.

1.0

o8 e  learning rate weight_decay dropout step_size Test Acc. (%)

x)

0.6

[ T 1.0 0.001 0.5 7 63.87 £ 6.38
g0 10 0.59948 0.0 0.5 6 87.021.16
A e | 200 0.59948 0.001 0.5 6 87.30 +0.54

00 02 04 06 08 10
Normalized regret

Figure 9: ECDF on Twitter. Table 10: Best configuration with different levels of privacy budgets in Cora.

H.4.2 ERRORS OF SURROGATE BENCHMARKS

As we mentioned in Section [H:2] we report the regression error of training surrogate model in
Table Meanwhile, we present the mean rank over time of optimizers with surrogate modes in
Figure[22]and Figure 23] Compared to the results of tabular modes in[I3]and[I4] BOgp shows good
performance in both modes, while Random Search does not. This show the consistent performance
of the same optimizer when it interplays with surrogate and tabular benchmarks.

Model Dataset Algo.  Train MAE Test MAE
CNN FEMNIST FedAvg 0.00609 0.00777

: 07 CoLA FedAvg  0.04724 0.05454
0% BERT FedOpt 0.02426 0.02959
o o SST2 FedAvg  0.02597 0.03227
g \ o FedOpt 0.02802 0.03166
£° 3 Cora FedAvg  0.04702 0.04839
“‘Q ) FedOpt 0.05703 0.05893
ot 2 . . FedAvg  0.01334 0.01381
et e GNN- CiteSeer  peqopt — 0.01652 001717
L N FedAvg  0.04042 0.04148
‘o PubMed  plqopt 004816 0.05699
Figure 10: Landscape with the different
regularity of FedProx on Cora. Table 12: The regression error of surrogate models.

H.4.3 VARIANCE OF DIFFERENT SAMPLE RATE

As we build our tabular benchmark from FL courses executed in docker images provided by FS, we
can fully reproduce all the results given the same random seed in raw mode. Other than that, to study
the noise of different federated optimization, we analyze the variance of validation loss with 500
rounds under different sample rates in FEMNIST. And the mean standard deviation validation loss
is {1.945e-2, 1.7e-2, 1.728e-2, 1.715e-2, 1.43e-2} with sample rate {0.2, 0.4, 0.6, 0.8, 1.0}, which
shows that the higher sample rate tends to have lower variance. The reason is apparent: the lower the
sampling rate, the more inconsistent the set of clients sampled during the training process leads to
this error.

H.4.4 ECDF WITH DIFFERENT HETEROGENEITY

We extend our LR benchmarks with different heterogeneity settings. As we discussed in Appendix
we split the tabular dataset with LDA, whose « is in {0.1, 0.5, 0.7} (the smaller the alpha, the more
the heterogeneous). We show the ECDF of the normalized regret of evaluated configurations with
different «v in Figureﬂl'[, which shows that as the « decreases, it is harder to find a good configuration.
This phenomenon shows the necessity of tuning hyperparameters in FL with heterogeneous data.
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Figure 11: Empirical Cumulative Distribution Functions with different heterogeneity in LR benchmark.

I MORE RESULTS

In this section, we show the detailed experimental results of the optimizers on FEDHPO-BENCH
benchmarks under different modes. We first report the averaged best-seen validation loss, from
which the mean rank over time for all optimizers can be deduced. Due to time and computing
resource constraints, we do not have a complete experimental result of the raw mode, which we will
supplement as soon as possible.

1.1 TABULAR MODE

Following Section .1} we show the overall mean rank overtime on all FedHPO problems with
FedOpt, whose pattern is similar to that of FedAvg in Figure[d Then, we report the final results with
FedAvg and FedOpt in Table [I3]and [I4] respectively. Finally, we report the mean rank over time in
Figure[I3}2T] Due to time and computing resource constraints, the results on CNN benchmark are
incomplete (lacking that with FedOpt), which we will supplement as soon as possible.

5 5 10
9
4 4 8
X~ X~
c3 c3 E 6
b3 © 55
] (]
= = = 4
2 2 3
2
11e-4 le-3 le-2 le-1 1 118-4 le-3 le-2 le-1 1 11e-4 le-3 le-2 le-1 1
Fraction of budget Fraction of budget Fraction of budget
(a) BBO (b) MF (¢) All
— RS BO¢p BOgr BOkpr DE
— HB BOHB —— DEHB TPEyp TPEyp

Figure 12: Mean rank over time on all FedHPO problems (with FedOpt).

Table 13: Final results of the optimizers on tabular mode with FedAvg (lower is better).

benchmark RS BOgp BOgr BOxpe DE HB BOHB DEHB TPEwp TPEps

CNNggumnist | 0.4969+0.0054  0.4879+0.0051  0.4885+0.0065  0.5004+0.0068  0.4928+0.0054  0.4926+0.0052  0.4945+0.0059  0.498+0.0061  0.5163+0.0028  0.5148+0.0047
BERTsst.2 0.435+0.0142  0.4276+0.0082  0.4294£0.0071  0.4334+0.0081  0.437+0.0052  0.4311£0.0151  0.4504+0.0441  0.4319+0.0251  0.4341£0.0044  0.4251+0.0076
BERT oA 0.6151+£0.0014  0.6148+0.0014  0.6141£0.0016  0.6133+0.0022  0.6143+0.0006  0.6143+0.0016  0.6168+0.0025  0.6178+0.0025 0.6158+0.0014  0.6146+0.0018
GNNcora 0.3265+0.0042  0.3258+0.0062 0.326+0.0063  0.3347+0.0078  0.3267+0.0066 0.3324+£0.0136  0.3288+0.0030 0.3225+0.0039 0.3241x£0.0014  0.3249+0.0020
GNNieseer ~ 0.6469+0.0052  0.6442+0.0046  0.6499+0.0069  0.6442+0.0089  0.6453+0.0061  0.6387+0.0077  0.6425+0.0054  0.6452+0.0030  0.6324+0.0070  0.6371£0.0051
GNNpypmea  0.5262+0.0167  0.5146+0.0136  0.5169£0.0193  0.5311+0.0110  0.5001£0.0082  0.5006+£0.0144  0.5194£0.0212  0.4934+0.0010  0.506+0.0179  0.5044+0.0150

LR3; 0.6821x0.1299  0.6308+0.0292  0.6382+0.0435  0.6385+0.0459 0.667+0.0888  0.6492+0.0187 0.6461£0.0472 0.6145+£0.0242 0.7228+0.0427  0.758+0.0460

LRs3 1.629740.1628  1.7288+0.2306  1.6116+0.2017  1.7142+0.1663  1.6062+0.1487  1.5765+0.1416  1.5634+0.1993  1.4755£0.1126  1.5506+0.0010  1.5506+0.0010
LR3g17 1.8892+0.2647  1.7561£0.2538  1.7186+0.3562 2.4271£1.1596  1.7519£0.6093 3.948+2.5432  1.6384+0.1849 3.1183£2.9336 2.1344£1.0268 2.6576+1.1446
LRio101 0.548+0.0002  0.5483+0.0002  0.5482+0.0003  0.5487+0.0008 0.5481+£0.0002 0.5504£0.0049  0.5505+0.0047 0.5516£0.0064 0.5483+0.0009  0.5487+0.0017
LRi46s818 0.5294+0.0006  0.5291£0.0002  0.5295£0.0006  0.5289+0.0004  0.5291+0.0007  0.5292+0.0008 0.529+0.0004  0.5293+0.0002 0.5328+0.0055 0.5387+0.0186
LRy6821 0.4733+0.0025  0.464+0.0068  0.4722+0.0123  0.4843+0.0205 0.4971x£0.0312 0.4678+0.0109 0.4747+0.0127  0.4707+0.0095 0.4792+0.0083  0.4688+0.0086
LR 46822 0.4581+0.0202  0.4481+0.0102  0.4505+0.0182  0.4731+0.0197  0.4587+0.0118  0.4478+0.0122  0.4446+0.0066  0.4304+0.0071  0.437620.0071  0.4419+0.0089
MLP3; 0.5899+0.0032  0.5891£0.0052  0.5808+0.0094  0.5904+0.0035  0.5925+0.0008 0.5921£0.0017  0.5929+0.0001  0.593+0.0001  0.593+0.0000  0.593+0.0000

MLP53 0.7795+0.0156  0.7373£0.0186  0.7849+0.0215  0.8215+0.1220  0.8068+0.0752  0.769+0.0226  0.7577+0.0222  0.8173%0.1407  0.9491%0.0951  1.0567+0.0158

MLP3917 0.3863+0.0099  0.3937+0.0094  0.3858+0.0105  0.3958+0.0088  0.383x0.0074  0.3895:0.0049  0.3911+0.0079  0.4084+0.0407  0.3979+0.0035  0.3988+0.0036
MLP1p101 0.4054+0.0113  0.4217+£0.0065 0.4361£0.0124  0.4162+0.0154  0.418+0.0083  0.4137£0.0109  0.4152+0.0142  0.4102+0.0109 ~ 0.4522+0.0491  0.4352+0.0407
MLPiys18  0.5089£0.0092  0.4997+0.0072  0.5125£0.0076  0.5112+0.0049  0.5138+0.0107  0.5009+£0.0043  0.5199+0.0118  0.5039+0.0060  0.5392+0.0129  0.5440.0197

MLP1 46821 0.184+0.0187  0.1251£0.0167  0.155+0.0183  0.1769£0.0410  0.1851£0.0236  0.1561£0.0279  0.1683+£0.0291  0.1572+0.0305  0.1654+0.0422  0.1761%0.0409
MLPiggs22  0.2839£0.0259  0.2892+0.0363  0.317+0.0147  0.3586+0.0754  0.2928+0.0325  0.2927+0.0233  0.2823+0.0445 0.2549+0.0176  0.2745+0.0334  0.2755+0.0221
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Table 14: Final results of the optimizers on tabular mode with FedOpt (lower is better).

benchmark RS BOgp BOgr BOxpe DE HB BOHB DEHB TPEyp TPEyp
BERTsst>  0.441+0.0049  0.4325+0.0125  0.4301£0.0087  0.4463+0.0093  0.4351+0.0185  0.4403+0.0064  0.4295+0.0066 0.4285+0.0068 0.4293+0.0106  0.4332+0.0122
BERTcoLa  0.616£0.0008  0.616+£0.0011  0.6141£0.0022  0.6137+0.0025  0.6159+0.0005  0.6154+0.0013  0.6157+0.0018  0.6176+0.0004  0.6172+0.0005  0.6168+0.0004
GNNcora 0.3264+0.0027  0.3235+0.0004  0.3268+0.0032 0.3322+0.0101  0.3256+0.0009 0.3245+0.0014 0.3347£0.0121  0.3254+0.0008 0.3405£0.0129  0.3361+0.0187
GNNgijeseer  0.6483£0.0028  0.6517+0.0053  0.6497+0.0050  0.6535+0.0072  0.6458+0.0028  0.6442+0.0034  0.6543+0.0112  0.6463£0.0029  0.6488+0.0008  0.6495+0.0007
GNNpyprea  0.4777£0.0118  0.4426+0.0132  0.4718+0.0204  0.4943+0.0359  0.4318+0.0001  0.4559+0.0135  0.4699+0.0248  0.4318+0.0001  0.4368+0.0098  0.4402+0.0167
LR3; 0.7358+0.0937  0.6831+0.0198  0.6849+0.0523  0.8152+0.1180 0.7085£0.0660 0.6772+0.0527 0.6877+0.0561  0.6385+0.0498  0.8652+0.0851  0.7044+0.0403
LRs3 1.7838+0.2698  1.5609+0.1957  1.5241£0.0547  1.5116£0.0437  1.6208+0.3794  1.6045£0.2433  1.7236+0.4056  1.3488+0.1343  1.6654+0.2338  1.7978+0.2937
LRao17 2.254+0.5724 2.0316+£0.5246  2.3952+0.7949  1.9788+0.5290  2.6261+0.5535 2.3472+1.2238  2.5452+0.5266 2.3144+0.8685 3.2131+2.2754 2.0291+0.3674
LRyo101 0.5533+0.0078  0.55+0.0036 0.5505+0.0032  0.5509£0.0032  0.549+0.0012  0.5504+0.0029  0.5476+0.0017  0.5522+0.0056  0.5612+0.0201  0.8567+0.6019
LRys6818 0.511£0.0099  0.506+0.0103  0.5034+0.0097  0.5133+0.0078  0.5007+0.0021  0.5032+0.0054  0.5086+0.0067  0.4974+0.0030  0.4983£0.0049  0.5104+0.0157
LR 46821 0.4017£0.0272  0.3599+0.0148  0.4121£0.0188  0.4134+0.0364  0.4079£0.0242  0.395£0.0228  0.398+0.0448  0.3902+0.0300 0.4447£0.0447  0.4625+0.0735
LR 146822 0.3972+0.0060  0.4211+0.0236  0.4037+0.0191  0.4442+0.0261  0.4075+0.0127  0.4131+0.0215  0.4008+0.0085 0.3916+0.0086  0.3878+0.0074  0.3871+0.0043
MLP3; 0.5912+0.0012  0.5914+0.0024  0.5912+0.0012 0.5912+0.0023  0.5918£0.001T  0.5923+0.0007 0.5921+0.0007 0.5911x0.0023  0.5921+0.0006 0.5921+0.0006
MLPs3 0.9096+0.0690  0.8166+0.0890  0.8111£0.0998  0.8872+0.1465  0.8546+0.1223  1.0163+0.0781 0.8565+0.0574 0.9849+0.1238  1.1276+0.0394  1.0952+0.0293
MLP3g;7 0.3798+0.0126  0.3937+0.0086  0.3862+0.0075 0.3871+0.0110  0.3867+0.0086  0.4109+0.0402  0.4262+0.0687 0.3812+0.0125  0.4003+0.0000  0.4003+0.0001
MLPy101 0.42194£0.0168  0.4141£0.0056  0.4197£0.0138  0.4111£0.0078  0.4303+0.0369  0.4145+0.0106  0.4256+0.0286 0.4215+0.0277 0.4502+0.0390  0.4502+0.0300
MLPy46818  0.4943£0.0018  0.4913£0.0108  0.5022+0.0090  0.5023+0.0113  0.4884+0.0058  0.4995+0.0087  0.5046+0.0298  0.4921+0.0293  0.4978+0.0135  0.4861+0.0240
MLPg6821  0.1169£0.0128  0.0836+0.0132  0.0915£0.0149  0.167420.0600  0.1079+0.0444  0.0891+0.0150  0.1389+0.0465  0.0838+0.0270  0.1051+0.0138  0.1194+0.0130
MLPyges22  0.2963£0.0264  0.291440.0215  0.2705£0.0240  0.3025+0.0447  0.2779+0.0063  0.2759+0.0216 ~ 0.2621+0.0201  0.2549+£0.0108  0.257+0.0020  0.2518+0.0055
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Figure 13: Mean rank over time on CNN benchmark (FedAvg).
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Figure 14: Mean rank over time on BERT benchmark (FedAvg).
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Figure 15: Mean rank over time on BERT benchmark (FedOpt).

1.2 SURROGATE MODE

We report the the final results with FedAvg on FEMNIST and BERT benchmarks in Table [T5] Then
we present the mean rank over time of the optimizers in Figure 22]and Figure 23]

Table 15: Final results of the optimizers in surrogate mode (lower is better).

benchmark RS BOGP BORF BOKDE DE HB BOHB DEHB TPEMD TPEHB
CNNpemnist 0.0508  0.0478  0.0514  0.0492  0.0503 0.0478 0.048  0.0469 0.0471  0.0458
BERTSssT-2 0.4909 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4917 0.4908 0.4908
BERTcoLA 0.5013 0.4371 04113 0487 0444 04621 04232 04204 0.3687 0.3955
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Figure 16: Mean rank over time on GNN benchmark (FedAvg).
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Figure 17: Mean rank over time on GNN benchmark (FedOpt).
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Figure 18: Mean rank over time on LR benchmark (FedAvg).
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Figure 19: Mean rank over time on LR benchmark (FedOpt).
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Figure 20: Mean rank over time on MLP benchmark (FedAvg).
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Figure 21: Mean rank over time on MLP benchmark (FedOpt).
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Figure 22: Mean rank over time on CNN benchmark under surrogate mode (FedAvg).
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Figure 23: Mean rank over time on BERT benchmark under surrogate mode (FedAvg).

36



	Introduction
	Background and Motivations
	Problem Settings and Existing Benchmarks
	Uniqueness of Federated Hyperparameter Optimization

	Our Proposed Benchmark Suite: FedHPO-Bench
	Comprehensiveness
	Flexibility
	Extensibility

	Experiments
	Studies about Applying Traditional HPO Methods in the FL Setting
	Studies about Concurrent Exploration

	Conclusion and Future Work
	Maintenance of FedHPO-Bench
	Related Work
	Relation to HPOBench

	HPO Methods
	Black-box Optimizers
	Multi-fidelity Optimizers

	Datasets
	System Model
	Details of the Implementations of FedEx and FTS
	Studies about the New Fidelity
	Details on FedHPO-Bench Benchmarks
	Category
	Mode
	New Hyperparameters
	Trends with Different Regularity in FedProx
	Landscapes on ML-related Hyperparameters

	Data Analytics
	Trends in Different Privacy Budgets
	Errors of Surrogate Benchmarks
	Variance of Different Sample Rate
	ECDF with different heterogeneity


	More Results
	Tabular mode
	Surrogate mode


