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ABSTRACT

In many real-world problems, an agent must operate in an uncertain and partially
observable environment. Due to partial information, a policy directly trained to
operate from these restricted observations tends to perform poorly. In some sce-
narios, during training more information about the environment is available, which
can be utilized to find a superior policy. Because this privileged information is un-
available at deployment, such a policy cannot be deployed. The teacher-student
paradigm overcomes this challenge by using actions of privileged (or teacher)
policy as the target for training the deployable (or student) policy operating from
the restricted observation space using supervised learning. However, due to in-
formation asymmetry, it is not always feasible for the student to perfectly mimic
the teacher. We provide a principled solution to this problem, wherein the stu-
dent policy dynamically balances between following the teacher’s guidance and
utilizing reinforcement learning to solve the partially observed task directly. The
proposed algorithm is evaluated on diverse domains and fares favorably against
strong baselines.

1 INTRODUCTION

In many sequential decision-making problems, the agent has uncertain or incomplete information
about the system’s state. This scenario is common in many real-world problems and applications,
such as robotics, natural language processing, and healthcare (Kurniawati, 2022; Das et al., 2017).
Developing effective policies in such environments remains a significant area of research.

Our objective is to learn policies that can function under the restricted information available during
deployment. However, during training, we may have access to more information such as additional
observations when training in simulation Lee et al. (2020), or accurate measurements by instrumen-
tation during training Levine et al. (2015). This additional information can be regarded as privileged
information, available only during training. The introduction of this privileged information can sim-
plify the problem, as it enables the agent to possess all relevant information necessary for making in-
formed decisions. For example, navigating a building using a map is more straightforward than only
using a first-person view. Teacher-student learning exploits this idea by training a teacher policy,
capable of solving the problem with privileged information. The teacher policy is used to guide the
training of a student policy that can only access restricted observations. Teacher guidance typically
improves the learning process, yielding stronger student policies than training without guidance.

In recent years, advancements in technology have made simulations an increasingly popular en-
vironment for training RL agents. The ability to control the environment and access privileged
information in simulations makes them well-suited for teacher-student learning. Utilization of sim-
ulations in combination with this paradigm has been shown to be successful in a wide range of
problems such as autonomous driving (Codevilla et al., 2018; Chen et al., 2020; Hawke et al., 2020),
robotic locomotion (Lee et al., 2020; Margolis et al., 2022) and dexterous manipulation (Chen et al.,
2022b). This is the setting considered in this work.

When looking at teacher-student learning, a straightforward approach is to train the student to mimic
the teacher’s actions, a method known as Imitation Learning. The idea is that if the recent history of
student observations is sufficient to infer the privileged information that elicited the teacher’s action,
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then by conditioning the student policy on this history, it can accurately imitate the teacher even
without access to the privileged information.(Kumor et al., 2021; Swamy et al., 2022)

Although the appealing simplicity of this approach, it is not always possible for the student to per-
fectly imitate the teacher. As an example, let’s look at the ”Tiger Door” environment (Figure 1) from
(Littman et al., 1995; Warrington et al., 2021). A robot must navigate to the goal cell (green), with-
out touching the failure cell (blue). The cells, however, randomly switch locations every episode,
and their nature is not observed by the agent. The maze also includes a pink button that reveals the
correct goal location. A teacher policy that has access to the correct goal location will be able to go
to it directly. An optimal student, however, must deviate from the teacher’s route to explore the pink
button – behavior that cannot be learned by imitation. More broadly, there are environments where

Figure 1: The Tiger Door environment. On the left is the teacher’s observation, where the goal cell
(in green) and the failure cell (in blue) are perceptible. On the right is the student’s observation,
where these cells are not visible, but there is a pink button; touching it reveals the other cells.

even when considering history, it is not enough to eliminate the difference between the student and
the teacher. Trying to mimic the teacher will create a sub-optimal agent, an issue termed Imitation
Gap. In these cases, the student should not rely solely on the teacher’s advice and needs to combine
learning from another signal, such as a reward, to solve the task at hand. These environments have
been investigated in a series of recent papers (Weihs et al., 2021; Nguyen et al., 2022) that proposed
algorithms to solve this problem. However, these algorithms rely on tuning sensitive hyperparame-
ters to control the balance between following the teacher and learning to solve the task directly from
the reward signal. Finding the right value for these parameters is not a trivial task since they are
a function of the Imitation Gap in the environments, which is hard to estimate a priori. Therefore,
their approaches require an exhaustive hyperparameter search to work.

In this work, we present Teacher Guided Reinforcement Learning (TGRL). A teacher-student al-
gorithm that is suitable for problems with and without Imitation Gap. We construct a constrained
optimization problem that dynamically adjusts this aforementioned balance based on the problem at
hand. We test our algorithm on a series of tasks with Imitation Gap, demonstrating that our algorithm
achieves comparable or superior results compared to prior work, without a need for hyperparameter
tuning. Finally, we use our algorithm to solve a robotic hand re-orientation problem, using only tac-
tile sensors to estimate the object’s pose. This is considered a difficult partial observation problem
due to the sensors’ high-dimensional and sparse nature, demonstrating our method’s usefulness.
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2 PRELIMINARIES

Reinforcement learning (RL). We consider the interaction between the agent and the environ-
ment as a discrete-time Partially Observable Markov Decision Process (POMDP) (Kaelbling et al.,
1998) consisting of state space S, observation space Ω, action space A, state transition function
T : S × A → ∆(S), reward function R : S × A → R, observation function O : S → ∆(Ω),
and initial state distribution ρ0 : ∆(S). The environment is initialized at an initial state s0 ∼ S
sampled from ρ0. For each timestep t, the agent observes the observation ot ∼ O(.|st), ot ∈ Ω,
takes action at determined by the policy π, receives reward rt = R(st, at), transitions to the next
state st+1 ∼ T (.|st, at), and observes the next observation ot+1 ∼ O(.|st+1). The goal of RL (Sut-
ton & Barto, 2018) is to find the optimal policy π∗ maximizing the expected cumulative rewards
(i.e., expected return). As the rewards are conditioned on states unobservable by the agent, seminal
work (Kaelbling et al., 1998) has shown that the optimal policy may depend on the history of obser-
vations τt : {o0, a0, o1, a1...ot}, and not only on the current observation ot. Overall we aim to find
the optimal policy π∗ : τ → ∆(A) that maximizes the following objective:

π∗ = argmax
π

JR(π) := E

[ ∞∑
t=0

γtrt

]
. (1)

Teacher-student learning. Solving directly for the optimal policy of a POMDP is an intractable
problem (Madani et al., 1999; Papadimitriou & Tsitsiklis, 1987), and even solving with deep rein-
forcement learning methods is shown to be a complicated task (Zhu et al., 2017). As stated before,
although the agent only has access to the observation space during deployment, this is not always
the same during training. When training in simulations, we can get access to another observation
space, Ωp, with privileged information observations ω. In teacher-student learning, we construct a
teacher policy π̄ that successfully solves the task over Ωp, achieving a high cumulative reward. In
this work, we do not assume about the origin of π̄, whether it be from RL training or some other
algorithm, such as trajectory optimization. Given such a teacher policy, our goal is to use it to train
a student policy to solve the task over the original observation space Ω.

In Imitation Learning, we teach the student by minimizing a statistical distance function between
the teacher and the student’s actions. For stochastic policies, it is common (Czarnecki et al., 2019)
to use the cross-entropy as the loss function resulting in the following optimization problem:

max
π

JE(π) := max
π

E

[
−

H∑
i=0

γtHX
t (π|π̄)

]
(2)

Where HX
t (π|π̄) = −Ea∼π(·|τt)[log π̄(a|ωt)]. When looking at this objective, a natural question

arises: What is the policy we get from maximizing this objective? To answer that, we will cite the
following result:

Proposition 2.1. In the setting described above, denote πIL = argmaxπ JE(π) and f(ω) : Ωp →
Ω as the function that maps observations with privileged information to observations without such
information. Then, for any ω ∈ Ωp with o = f(ω), we have that πIL(o) = E[π̄(s)|o = f(ω)].

Proof. See (Weihs et al., 2021) proposition 1 or (Warrington et al., 2021) theorem 1.

Intuitively, this implies that the student will learn the statistical average of the teacher’s actions for
each observable state. This approach does not account for the fact that different underlying states
may require different actions. As a result, the student policy may only be able to approximate the
teacher’s actions by taking the average of all observed actions, which can result in a sub-optimal
policy when considering the environmental reward (Eq. 1). In the Tiger Door environment, for
example, the student will be able to follow the teacher’s action until the second intersection. There,
the teacher will go each time to the side that leads to the goal. The student, however, does not see
the goal and, therefore, will have an equal probability to go to each side - an average of the teacher’s
actions. This policy is sub-optimal since the student will get to the goal cell only half the time. In
general, these differences between the student and the teacher are termed Imitation Gap:
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Figure 2: Success rate of a pen reorientation task by Shadow Hand robot, using tactile sensing
only. While vanilla reinforcement learning takes a long time to converge, and imitation learning
methods can suffer from Imitation Gap, our algorithm is able to solve the task with reasonable
sample efficiency.

Definition 2.2. Imitation Gap. In the setting described above, let π∗ be the solution to Eq. 1 and πIL

be be the solution to Eq. 2 (as described in proposition 2.1). Then, we term the following quantity
as Imitation Gap: JR(π∗)− JR(π

IL).

In scenarios where the information available to the teacher is more comprehensive than that acces-
sible to the student, policies trained through imitation learning may exhibit a non-zero Imitation
Gap, as observed in the Tiger Door environment. As our objective is to find the optimal policy, π∗,
imitation learning alone is insufficient in such environments.

3 METHODS

Although Imitation Learning cannot solve the problem in environments where Imitation Gap exists,
we would still want to use the teacher’s guide to help the learning process of the student. Prior work
(Czarnecki et al., 2019; Nguyen et al., 2022) has suggested combining the two objectives. This way,
the student will try to optimize for the environmental reward but, at the same time, will prefer actions
taken by the teacher. The fact that we are also trying to maximize the environmental reward can lead
to the necessary deviation from the teacher’s actions since it will result in an overall higher objective
value. Looking back to the Tiger Door example, following the teacher’s guidance can lead you to
the areas where the goal can be found, giving the agent some understanding of the environment, but
a small deviation (going to the button) will result in a much higher average reward. The combined
objective is:

max
π

JTG(π, α) = max
π

E

[
H∑
t=0

γt(rt − αHX
t (π|π̄))

]
(3)

Where α is a balancing coefficient. Notice that this objective is indeed a combination of the previous
two, as JTG(π, α) = JR(π) + αJE(π). This objective can also be seen as a sort of reward shaping,
where the agent gets a negative reward for taking actions that differs from the teacher’s action.

As the balancing coefficient between the environmental reward and the teacher guidance, the value
of α greatly impacts the algorithm’s performance. A low α will limit the guidance the student gets
from the teacher, resulting in a long convergence time. A high value of α will lead to the student
relying too much on the teacher, with the risk of the final policy having an Imitation Gap. A common
practice is to conduct an extensive hyperparameter search to find the best α, as different values are
best suited for different tasks (Schmitt et al., 2018; Nguyen et al., 2022). Besides the inefficiency
of such search, as the agent progresses on a task, the amount of guidance it needs from the teacher
can vary, and a constant α may not be optimal throughout training. The exact dynamics of this
trade-off are task-dependent, and per-task tuning is tedious, undesirable, and often computationally
infeasible.
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3.1 TEACHER GUIDED REINFORCEMENT LEARNING

To reduce the effect of α on the optimization problem, we want to find another mechanism that will
make sure that the policy we learn will be the optimal policy of the POMDP. To achieve this, we will
add a constraint to our optimization problem that will enforce this goal. Hence, our optimization
problem becomes:

max
π

JTG(π, α) s.t JR(π) ≥ η (4)

Where η ∈ R. By adding this constraint, we limit the set of feasible policies to those whose
cumulative reward (Eq. 1) is at least η. If we would choose η = JR(π

∗), then this set will include
only the optimal policies. Unfortunately, JR(π∗), the value of the optimal policy, is usually not
known beforehand. To overcome this, we will introduce an auxiliary policy, πR, and will use its
value as the lower bound η = JR(πR). This way, we ensure that the student policy will be at least
as good as a policy trained without the teacher. Overall, Our algorithm iterates between improving
the auxiliary policy by solving maxπR

JR(πR) and solving the constrained problem using Lagrange
duality. We will note that a recent paper (Chen et al., 2022a) uses a similar constraint in another
context, to adjust between exploration and exploitation in conventional RL. More formally, for i =
1, 2, . . . we iterate between two stages:

1. Partially solving πi
R = argmaxπR

JR(πR) and obtaining ηi = JR(π
i
R).

2. Solving the ith optimization problem:

max
π

JTG(π, α) subject to JR(π) ≥ ηi (5)

To solve the constrained problem 5, we chose to use the dual lagrangian method, which has been
demonstrated to work well in reinforcement learning problems (Tessler et al., 2018; Bhatnagar &
Lakshmanan, 2012). Using the Lagrange duality, we transform the constrained problem into an
unconstrained min-max optimization problem. Considering Eq. 5 as the primal problem, the corre-
sponding dual problem is:

min
λ≥0

max
π

[JTG(π, α) + λ (JR(π)− ηi)] =

min
λ≥0

max
π

[
(1 + λ)JTG(π,

α

1 + λ
)− ληi

]
(6)

Where λ is the lagrange multiplier. Full derivation can be found in appendix A. The resulting
unconstrained optimization problem is compromised of two optimization problems. The inner one
is solving for π, and since ηi is independent of π this optimization problem is equal to solving the
combined objective 3 with an effective balancing coefficient of α

1+λ . We can see that the value of α
changes its role. While in the primal problem, it balanced the two objectives, now it is only part of
the balancing term. Moreover, since λ ≥ 0 yields α ≥ α

1+λ ≥ 0, then α can be seen as the upper
bound on the effective balancing.

The second stage is to solve for λ. The dual function is always a convex function since it is the
point-wise maximum of linear functions (Boyd et al., 2004). Therefore it can be solved with gradient
descent without worrying about local minimums. The gradient of Eq. 6 with respect to the lagrangian
multiplier λ yields the following update rule:

λnew = λold − µ[JR(π)− ηi] (7)

Where µ is the step size for updating the Lagrange multiplier. See appendix A for full derivation.
The resulting update rule is quite intuitive. If the policy that uses the teacher’s reward term achieves
higher environmental reward than the one trained without the teacher, then decrease λ. This, in
return, will increase the effective coefficient, thus leading to more reliance on the teacher in the next
iteration. If the policy trained without the teacher’s guidance achieves a higher reward, then increase
λ, decreasing the weight of the teacher’s reward.

When utilizing Lagrange duality to solve a constrained optimization problem, it is necessary to
consider the duality gap. The presence of a non-zero duality gap implies that the solution obtained
from the dual problem serves only as a lower bound to the primal problem and does not necessarily
provide the exact solution. Our analysis demonstrates that in the specific case under consideration,
the duality gap is absent. For proofs of our propositions see Appendix A.
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Algorithm 1 Teacher Guided Reinforcement Learning (TGRL)
Input: λinit, α, Ncollect, Nupdate, µ Initialize policies π and πR, λ0 ← λinit i = 1 · · ·

Collect Ncollect new trajectories and add them to the replay buffer. j = 1 · · ·Nupdate Sample a
batch of trajectories from the replay buffer. Update QR and QE . Update πR by maximizing
QR Update π by maximizing QR + α

1+λQE Estimate JR(π) − JR(πR) using Eq. 8 λi ←
λi−1 + µ[JR(π)− JR(πR)] π

Proposition 3.1. Suppose that the rewards function r(s, a) and the cross-entropy term HX(π|π̄)
are bounded. Then for every ηi ∈ R the primal and dual problems described in Eq. 5 and Eq. 6 has
no duality gap. Moreover, if the series {ηi}∞i=1 converges, then there is no dual gap also at the limit.

As a result of proposition 3.1, by solving the dual problem, we get a solution for the primal problem.
Notice that in the general case, the cross-entropy term can reach infinity when the support of the
policies does not completely overlap, thus making our algorithm not comply with the assumptions
stated above. As a remedy, we clip the value of the cross-entropy term and work with the bounded
version.

3.2 IMPLEMENTATION

Off-policy approach: We implemented our algorithm using an off-policy actor-critic. This allows
us to separate between data collection and policy learning, removing the need to collect data using
both π and πR at every iteration. As our objective is a compound of two terms, so is the Q value we
try to maximize: QTG = QR + α

1+λQE . Where the first one, QR, represents the values of actions
with respect to the environmental reward objective (Eq. 1). and the second one, QE , represents the
values of actions with respect to the teacher’s loss (Eq. 2). We found that using two separate critics
for representing these Q functions leads to more stable training since the network’s output does not
need to change when λ changes. We also use two actors, which correspond to our two policies π
and πR and optimize them by maximizing their relevant Q values. See Algorithm 1 for an outline of
the algorithm and appendix B for details.

Estimating the performance difference: As part of the algorithm we update λ using gradient
descent. As shown before, the gradient of the dual problem with respect to λ is the performance
difference between the two policies, JR(π)−JR(πR). During the training, we need to estimate this
quantity in order to take the gradient step. One option is to collect data using both policies and then
use the trajectories as Monte-Carlo estimation of the cumulative reward. This method gives a good
approximation when using a large number of trajectories. However, it requires a lot of interactions
with the environments, reducing the sample efficiency of our algorithm in the process. Another
option is to rely on the data we already have in our replay buffer for estimating this quantity. This
data, however, were not collected using the current policies, and therefore we need to use value
function approximations to make use of it. To achieve that we extended prior results from (Kakade
& Langford, 2002; Schulman et al., 2015) known as the objective difference lemma to the off-policy
case:

Proposition 3.2. Let ρ(s, a, t) be the distribution of states, actions, and timesteps currently in the
replay buffer. Then the following is an unbiased approximation of the performance difference:

JR(π)− JR(πR) =

E(s,a,t)∼ρ[γ
t(AπR

(s, a)−Aπ(s, a))] (8)

Regardless of the method chosen for the estimation, one of the challenges of estimating the perfor-
mance difference between the student and the teacher policies is the variability in the scale of the
policies’ performance across different environments and at different points in time. This makes it
difficult to determine an appropriate learning rate for the weighting factor λ, which will work ef-
fectively in all settings. To address this issue, we found it necessary to normalize the performance
difference value during the training process. This normalization allows us to use a fixed learning
rate across all of our experiments.
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Figure 3: Success rate of various algorithm on domains with Imitation Gap. Overall, Our algorithm
(blue) performs as well or better than competing methods across all tasks.

4 EXPERIMENTS

We perform three sets of experiments. In Sec. 4.1, we provide a comparison to previous work. In
Sec. 4.2 we solve an object reorientation problem with tactile sensors, a difficult partial observable
task that both RL and IL struggle to solve. In Sec. 4.2 we do ablations of our own method to show
the effect of individual components.

4.1 TGRL PERFORMS WELL, WITHOUT A NEED FOR HYPERPARAMETER TUNING

Our goal in conducting the following experiments is twofold: (1) to showcase the robustness of
TGRL with regard to the choice of its hyperparameters and (2) to check its ability to achieve com-
petitive results when compared to other algorithms. To achieve that we will compare TGRL to the
following algorithm:

IL. A pure imitation learning approach that tries to optimize only Eq. 2.

COSIL, from (Nguyen et al., 2022). This algorithm also uses entropy-augmented RL (Eq. 3) to
combine the environmental reward and the teacher’s guidance. To adjust the balancing coefficient
α, they propose an update rule that aims for a target cross-entropy between the student and the
teacher. More formally, giving a target variable D̄, they try to minimize α(JE(π) − D̄) using
gradient descent. Choosing a correct D̄ is not a trivial task since we don’t know beforehand how
similar the student and the teacher should be. Moreover, even the magnitude of D̄ can change
drastically between environments, depending on the action space support. To tackle this issue, we
run a hyperparameter search with N = 8 different values of D̄ and report the performance of both
the best and average values.

ADVISOR-off, an off-policy version of the algorithm from (Weihs et al., 2021). Instead of having a
single coefficient to balance between the reward terms, this paper chose to create a state-dependent
balancing coefficient. To do so, they first trained an auxiliary policy πaux using only imitation
learning loss. Then, for every state, they compare the actions distribution of the teacher versus these
of the auxiliary policy. The idea is that when the two disagree about the required action, it means
that there is an information gap, and for this state, we should not trust the teacher. This is reflected
in a coefficient that gives weight to the environmental reward.

PBRS, Concurrently and independently with our work (authors, 2022) propose to use potential-
based reward shaping (PBRS) to mitigate the issue of imitation gap. PBRS, originated from (Ng
et al., 1999), uses a given value function V (s) to assign higher rewards to more beneficial states,
which can lead the agent to trajectories favored by the policy associated with that value function:

rnew = renv + γV (st+1)− V (st)

where renv is the original reward from the environment. Since their algorithm is on-policy and we
wanted to create a fair comparison, we created our own baseline based on the same approach. First,
we train a policy πIL by minimizing only the imitation learning loss (Eq. 2). Then, we train a neural
network to represent the value function of this policy. Using this value function, we augment the
rewards using PBRS and train an agent using SAC over the augmented reward function.

In order to make a proper comparison, we perform experiments on a diverse set of domains with
both discrete and continuous action spaces, proprioceptive and pixel observations:
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Tiger Door. As described before, the task is to reach the goal cell without stepping on the failure
cell. Pixel observations with discrete action space.

Lava Crossing. A minigrid environment where the agent starts in the top-left corner and needs
to navigate through a maze of lava in order to get to the bottom-right corner. The episode ends in
failure if the agent steps on the lava. The teacher has access to the whole map, while the student
only sees a patch of 5x5 cells in front of it. Pixel observations with discrete action space.

Memory. The agent starts in a corridor containing two objects. It then has to go to a nearby room
containing a third object, similar to one of the previous two. The agent’s goal is to go back and touch
the object it saw in the room. The episode ends in success if the agent goes to the correct object
and in failure otherwise. While the student has to go to the room to see which object is the current
one, the teacher starts with that knowledge and can go to it directly. Pixel observations with discrete
action space.

Light-Dark Ant. A Mujoco Ant environment with a fixed goal and a random starting position. The
starting position and the goal are located at the ”dark” side of the room, where the agent has access
only to a noisy measurement of its current location. It has to take a detour through the ”lighted”
side of the room, where the noise is reduced significantly, enabling it to understand its location. On
the other hand, the teacher has access to its precise location at all times, enabling it to go directly
to the goal. This environment is inspired by a popular POMDP benchmark (Platt Jr et al., 2010).
Proprioceptive observation with continuous action space.

For a fair comparison, we used the same code and hyperparameters between across the various
algorithms, changing only the algorithm-specific ones. While tuning the necessary hyperparameter
for each algorithm, for TGRL we used only one value for the initial coefficient and coefficient
learning rate for all environments, See appendix B for further details.

Results. The comparison results, depicted in Figure 3, demonstrate that TGRL exhibits comparable
or superior performance across all tasks. Moreover, it achieved an almost perfect success rate across
all environments, demonstrating that it is not suffering from the Imitation Gap as the IL method.
While COSIL also demonstrates comparable performance when its hyperparameters are carefully
tuned, the average performance across all hyperparameter configurations is significantly lower. This
highlights its sensitivity to the choice of hyperparameters. The PBRS method also does not require
hyperparameter tuning but has slower convergence than the other teacher-student methods. This
comparison aligned with what has been demonstrated before by Cheng et al. (2021).

As can be seen, ADVISOR was able to solve some of the tasks successfully but completely failed on
Tiger Door and Lava Crossing, instead converging to a sub-optimal policy similar to that of Imitation
Learning method. This happens due to a fundamental limitation of the ADVISOR algorithm. As
a reminder, the ADVISOR algorithm utilizes a state-based coefficient that compares an imitation
learning policy to the teacher policy in order to determine the relative weighting between the IL loss
and the environment reward loss. Looking at the Tiger Door environment, the first point where the
policies differ is in the corridor split, but this is too late, as the divergence from the teacher should
have occurred near the pink button. This problem will happen in every environment where the
actions that should diverge from the teacher policy need to occur prior to the point where observation
differences would force a different action.

To demonstrate the robustness of our algorithm to the choice of the initial coefficient value, we
also performed a set of experiments in the Lava Crossing environment with different initial values.
The results, depicted in Figure 4, indicate that the proposed algorithm can effectively adjust the
coefficient value, regardless of the initial value, and converge to the optimal policy.

In order to ensure the versatility of our proposed algorithm, we also conducted experiments in envi-
ronments without Imitation Gap. As the presence of an Imitation Gap is dependent on the specific
task and the observations available to the agent, it is difficult to predict beforehand if such a gap ex-
ists in a given environment. The results of these experiments, presented in appendix C, demonstrate
that our algorithm, TGRL, is able to effectively handle problems in environments without Imitation
Gap, further solidifying its potential utility across a wide range of tasks.
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Figure 4: (Top-Left) Our algorithm performance in Lava Crossing is robust to different initial co-
efficient values. (Top-Right) Convergence plots of the main policy π and auxiliary policy πR in
Light-Dark Ant with separate or joint replay buffers between them. (Bottom) Adaptive balancing
coefficient between the teacher guidance and the RL loss provides better asymptotic convergence
than a fixed coefficient in the Shadow Hand environment. On the right graph, there is the per-
formance for different values and for TGRL. On the left graph, one can see the dynamics of the
coefficient during the training.

4.2 TGRL CAN SOLVE DIFFICULT ENVIRONMENTS WITH SIGNIFICANT PARTIAL
OBSERVABILITY.

We examined our algorithm’s performance in handling heavily occluded observations of the envi-
ronment’s state, which are typically a challenge for reinforcement learning methods. To do so, we
used the Shadow hand test suite with touch sensors (Melnik et al., 2021). In this task, the agent
controls the joints of the hand’s fingers and manipulates a pen to a target pose. The agent has access
to its own current joint positions and velocity and controls them by providing desired joints angle to
the hand’s controller. Since we have access to the simulation, we were able to train a teacher policy
that has access to the precise pose and velocity of the pen as part of its state. The student, however,
has only access to an array of tactile sensors located on the palm of the hand and the phalanges of
the fingers. The student needs to use the reading of these sensors to infer the pen’s current pose and
act accordingly.

While training our agents, we used a dense reward function that takes as a cost the distance between
the current pen’s pose and the goal. The pen has rotational symmetry, so the distance was taken only
over rotations around the x and y axes. A trajectory was considered successful if the pen reached a
pose of fewer than 0.1 radians than the goal pose.

The results of our experiments can be shown in figure 2. The performance shown is measured over
a set of 1,000 randomly sampled poses. At first, we trained a teacher on the full state space using
Soft Actor-Critic and Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). The teacher
achieved a 78% success rate after 5 · 106 environment steps. In parallel, using the same algorithms,
we trained a history-dependent agent on the observation space (which includes only joint positions
and the touch sensor’s reading). This agent, which we will denote as the baseline agent, was only
able to achieve a 47% success rate, and this is after 16 · 106 environments steps. This gap between
the teacher and the baseline agent demonstrates the difficulty of solving this reorientation task based
on tactile sensing only.

For the student, we compared using only imitation learning loss versus our algorithm. As can be
seen from the graph, The imitation learning policy converged fast, but only to around 54% success
rate. This is considerably less than the teacher’s, due to the Imitation gap discussed before. The
policy trained with our algorithm reached a 73% success rate, which is significantly higher. This
demonstrates the usefulness of our algorithm and its ability to use the teacher’s guidance while
learning from the reward at the same time.
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4.3 ABLATIONS

Joint versus separate replay buffer.Our algorithm uses two policies, the main policy π and an
auxiliary policy πR. The goal of the auxiliary policy πR is to be used in the update rule of the
Lagrange multiplier λ. During our experiments, we found that having a joint replay buffer between
the policies is a must in order to achieve good performance. An example of that can be found in
Figure 4, where we compare results in the Light-Dark Ant environment. We hypothesize that the
reason is that our algorithm relies on the auxiliary policy πR to have a competitive performance to the
main policy π in order to adjust the coefficient between the teacher’s guidance and the environmental
reward. Having a single replay buffer for both policies helps in achieving a similar convergence rate
since it enables each policy to learn from the successes and failures of the other.

Fixed versus adaptive balancing coefficient. One of the benefits of our method is the fact that
the balancing coefficient between the combined objective (Eq. 3) is dynamic, changing during the
training process based on the value of λ. To show that there are benefits of having an adaptive
coefficient, we trained our algorithm with a set of fixed coefficients. The results, shown in Figure 4,
highlight the advantage of our method. Not only that there is no need to search for the best parameter,
but even if it can be found, it will lead to inferior results compared to a dynamic coefficient.

5 CONCLUSION AND FUTURE WORK

In this work, we examined the paradigm of using teacher-student methods to solve complicated
POMDP. We presented an algorithm that dynamically balances between following the teacher and
solving the environment using reinforcement learning loss, thus overcoming the limitation of prior
methods. Although success remains to be demonstrated on real-world problems, we believe that our
algorithm can aid in solving many tasks, especially those that exhibit significant partial observability,
as we demonstrated with the robotic hand with tactile sensing domain.

An important investigation that we leave to future work is to have the balancing coefficient be state-
dependent. As the difference between the teacher’s and student’s actions can depend on the specific
state, we think this can lead to accelerated convergence compared to using one value for all states.
However, how to dynamically update this value during the training process remains an open ques-
tion.
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A DERIVATIONS AND PROOFS

A.1 DERIVATION OF THE DUAL PROBLEM

Given the Primal Problem we derived in Eq. 5:

max
π

JTG(π, α) subject to JR(π) ≥ ηi

The corresponding Lagrangian is:

L(π, λ) = JTG(π, α) + λ (JR(π)− ηi) =

Eπ

[ ∞∑
t=0

γt(rt − αHX
t (π|π̄))

]
+ λEπ

[ ∞∑
t=0

γtrt

]
− ληi =

Eπ

[ ∞∑
t=0

γt
(
(1 + λ)rt − αHX

t (π|π̄)
)]
− ληi =

Eπ

[
(1 + λ)

∞∑
t=0

γt

(
rt −

α

1 + λ
HX

t (π|π̄)
)]
− ληi =

(1 + λ)JTG(π,
α

1 + λ
)− ληi

And therefore out Dual problem is:

min
λ≥0

max
π

[
(1 + λ)JTG(π,

α

1 + λ
)− ληi

]
A.2 DERIVATION OF UPDATE RULE FOR λ

The gradient of the dual problem with respect to λ is:

∇λ

[
(1 + λ)JTG(π,

α

1 + λ
)− ληi

]
=

∇λ

[
Eπ

[ ∞∑
t=0

γt
(
(1 + λ)rt − αHX

t (π|π̄)
)]
− ληi

]
=

Eπ

[ ∞∑
t=0

γtrt

]
− ηi =

JR(π)− ηi

A.3 DUALITY GAP - PROOF FOR PROPOSITION 3.1

We start by restating our assumptions and discuss why they hold for our problem:
Assumption A.1. The rewards function r(s, a) and the cross-entropy term HX(π|π̄) are bounded.

Justification for A.1. This is achieved by using a clipped version of the cross entropy term. We
will add that we found the clipping helpful in practice since it stops this term from reaching infinity
when the support of the teacher and the student action distributions are not the same.
Assumption A.2. The sequence {ηi}∞i=1 is monotincally increasing and converging, i.e., there exist
η ∈ R such that limi→∞ ηi = η.

Justification for A.2. We will remind that the sequence {ηi}∞i=1 is the result of incrementally solv-
ing maxπR

JR(πR). Having this sequence be monotonically increasing is equivalent to a guarantee
for policy improvement in each optimization step, an attribute of several RL algorithms such as
Q-learning or policy gradient (Sutton & Barto, 2018). Regarding convergence, since the reward
is upper bound from assumption A.1, then we have an upper bounded monotonically increasing
sequence of real numbers, which is proved to converge.
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Assumption A.3. There exist ϵ > 0 such that for all i, the value of ηi is at most JR(π∗)− ϵ.

Justification for A.3. This assumption is equivelant to stating that JR(π∗)−JR(πR) > 0, meaning
that πR is never optimal. Without further assumption on the algorithm used to optimize πR, we can
not guarantee that this will not happen. However, if it happens, it means that we were able to find
the optimal policy, and therefore there is no need to continue with the optimization procedure. As
a remedy, we will define a new sequence {η̃i}∞i=1 where η̃i = ηi − ϵ and will use it instead of the
original ηi. Since ϵ can be as small as we want, its effect on the algorithm is negligible and it served
mainly for the completeness of our theory.

Before going into our proof, we will cite Theorem 1 of (Paternain et al., 2019), which is the basis of
our results:
Theorem A.4. Given the following optimization problem:

P ∗ = max
π

Eπ

[
H∑
i=0

γtr0(st, at)

]
subject to

Eπ

[
H∑
i=0

γtri(st, at)

]
≥ ci, i = 1...m,

And its Dual form:

D∗ = min
λ≥0

max
π

Eπ

[
H∑
i=0

γtr0(st, at)

]
+

λ

m∑
i=1

[
Eπ

[
H∑
i=0

γtri(st, at)

]
− ci

]
suppose that ri is bounded for all i = 0, ...,m and that Slater’s condition holds. Then, strong duality
holds, i.e., P ∗ = D∗.

Having stated that, we will move to prove the two parts of our proposition:
Proposition A.5. Given assumption A.1 and A.3, for every ηi ∈ R, the constrained optimization
problem Eq. 5 and its dual problem defined in Eq. 6 do not have a duality gap.

Proof. We align our problem with Theorem A.4 notations by denote as follows:

r0 : rt − αHX
t , r1 : rt, c1 : ηi

And we can see that our problem is a specific case of the optimization problem defined above. For
every ηi, there is a set feasible solutions in the form of an ϵ-neighborhood of π∗. This holds since
JR(π

∗) > JR(π) − ϵ for every π /∈ π∗. Therefore, Slater’s condition holds as it required that the
feasible solution set will have an interior point. Together with assumption A.1, we have all that we
need to claim that Theorem A.4 applies to our problem. Therefore, there is no duality gap.

Proposition A.6. Given all our assumptions, the constrained optimization problem at the limit:

max
π

JTG(π, α) subject to JR(π) ≥ η

has no duality gap.

Proof. Our proof will be based on the Fenchel-Moreau theorem (Rockafellar, 1970) that states:

If (i) Slater’s condition holds for the primal problem and (ii) its perturbation function P(ξ) is con-
cave, then strong duality holds for the primal and dual problems.

Denote ηlim the limit of the sequence. Without loss of generality, we assume that ηlim = JR(π
∗)−ϵ.

If not, we will just adjust ϵ accordingly. As in the last proof, Slater’s condition holds since there
is a set of feasible policies for the problem. Regarding the second requirement, the sequence of
perturbation functions for our problem is:

P (ξ) = lim
i→∞

Pi(ξ)
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where Pi(ξ) = max
π

JTG(π, α)

subject to JR(π) ≥ ηi + ξ

Notice that this is a scalar function since Pi(ξ) is the maximum objective itself, not the policy that
induces it. We will now prove that this sequence of functions converges point-wise:

• For all ξ > ϵ we claim that P (ξ) = limi→∞ Pi(ξ) = −∞. As a reminder ηi converged to
JR(π

∗)− ϵ. It means that there exists N such that for all n > N , we have |ηn−JR(π
∗)+

ϵ| < ξ
2 − ϵ. Moreover, since JR(π

∗)− ϵ is also the upper bound on the series of ηi we can
remove the absolute value and get:

0 ≤ JR(π
∗)− ϵ− ηn <

ξ

2
− ϵ

This yields the following constraint:

JR(πθ) ≥ ηn + ξ > JR(π
∗)− ξ

2
+ ξ = JR(π

∗) +
ξ

2

But since ξ > ϵ > 0 and π∗ is the optimal policy, no policies are feasible for this constraint,
so from the definition of the perturbation function, we have Pn(ξ) = −∞. This holds for
all n > N and, therefore also limi→∞ Pi(ξ) = −∞.

• For all ξ ≤ ϵ we will prove convergence to a fixed value. First, we claim that the perturba-
tion function has a lower bound. This is true since the reward function and the cross-entropy
are bounded, and the perturbation function value is a discounted sum of them.
In addition, the sequence of Pi(ξ) is monotonically decreasing. To see it, remember that
the sequence {ηi}∞i=1 is monotonically increasing. Since JR(π) is also upper bounded by
JR(π

∗), then the feasible set of the (i + 1) problem is a subset of the feasible set of the
i problem, and all those which came before. Therefore if the solution to the i problem is
still feasible it will also be the solution to the i + 1 problem. If not, then it has a lower
objective (since it was also feasible in the i problem), resulting in a monotonically decreas-
ing sequence. Finally, for every ηi there is at least one feasible solution, JR(π∗), meaning
the perturbation function has a real value. To conclude, {Pi(ξ)}∞i=1 is a monotonically
decreasing, lower-bounded sequence in R in therefore it converged.

After we established point-wise convergence to a function P (ξ), all that remain is to proof that this
function is concave. According to proposition A.5, each optimization problem doesn’t have a duality
gap, meaning its perturbation function is concave. Since every function in the sequence is concave,
and there is pointwise convergence, P (ξ) is also concave. To conclude, from the Fenchel-Moreau
theorem, our optimization problem doesn’t have a duality gap in the limit.

A.4 PERFORMANCE DIFFERENCE ESTIMATION - PROOF FOR PROPOSITION 3

Proposition: Let ρ(s, a, t) be the distribution of states, actions, and timesteps currently in the replay
buffer. Then the following is an unbiased approximation of the performance difference:

JR(π)− JR(πR) =

E(s,a,t)∼ρ[γ
t(AπR

(s, a)−Aπ(s, a))]

Proof: Let πRB be the behavioral policy induced by the data currently in the replay buffer, meaning:

∀s ∈ S πRB(a|s) =
∑

a′∈RB(s) Ia′=a∑
a′∈RB(s) 1

Using lemma 6.1 from (Kakade & Langford, 2002), for every two policies π and π̃ We can write:

η(π̃)− η(π) = η(π̃)− η(πRB) + η(πRB)− η(π) =

−[η(πRB)− η(π̃)] + η(πRB)− η(π) =
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−
∑
s

∞∑
t=0

γtP (st = s|πRB)
∑
a

πRB(a|s)Aπ̃(s, a)+

∑
s

∞∑
t=0

γtP (st = s|πRB)
∑
a

πRB(a|s)Aπ(s, a) =

∑
s

∞∑
t=0

γtP (st = s|πRB)
∑
a

πRB(a|s)[Aπ(s, a)−Aπ̃(s, a)]

Assuming we can sample tuples of (s, a, t) from our replay buffer and denote this distribution
ρRB(s, a, t) we can write the above equation as:

η(π̃)− η(π) =
∑
s,a,t

ρRB(s, a, t)γ
t[Aπ(s, a)−Aπ̃(s, a)]

Which we can approximate by sampling such tuples from the replay buffer.

B EXPERIMENTAL DETAILS

In this section, we outline our training process and hyperparameters.

Our algorithm optimizes two policies, π, and πR, using off-policy Q-learning. The algorithm itself
is orthogonal to the exact details of how to perform this optimization. For the discrete Gridworld
domains (Tiger Door, Memory and Lava Crossing), we used DQN (Mnih et al., 2015) with soft
target network updates, as proposed by (Lillicrap et al., 2015), which has shown to improve the
stability of learning. For the rest of the continuous domains, we used SAC (Haarnoja et al., 2018)
with the architectures of the actor and critic chosen similarly and with a fixed entropy coefficient.
For both DQN and SAC, we set the soft target update parameter to 0.005. As was mentioned in the
paper, we represent the Q function using to separate networks, one for estimating QR and another
for estimating QE . When updating a Q function, it has to be done with respect to some policy. We
found that doing so with respect to policy π yields stable performance across all environments.

For Tiger Door, Memory, and Lava Crossing, the teacher is a shortest-path algorithm executed over
the grid map. For Light-Dark Ant, the teacher is a policy trained using RL over the privileged
observation space until achieving a success rate of 100%. In all of our experiments, we average
performance over 5 random seeds and present the mean and 95% confidence interval.

For all proprioceptive domains, we used a similar architecture across all algorithms. The architecture
includes two fully-connected (FC) layers for embedding the past observations and actions separately.
These embeddings are then passed through a Long Short-Term Memory (LSTM) layer to aggregate
the inputs across the temporal domain. Additionally, the current observation is embedded using
an FC layer and concatenated with the output of the LSTM. The concatenated representation is
then passed through another fully-connected network with two hidden layers, which outputs the
action. The architecture for pixel-based observations are the same, with the observations encoded
by a Convolutional Neural Network (CNN) instead of FC. The number of neurons in each layer is
determined by the specific domain. The rest of the hyperparameters used for training the agents are
summarized in 5.

Our implementation is based on the code released by (Ni et al., 2022).

Fair Hyperparameter Tuning. We attempt to ensure that comparisons to baselines are fair. In par-
ticular, as part of our claim that our algorithm is more robust to the choice of its hyperparameters,
we took the following steps. First, we re-implemented all baselines, and while conducting experi-
ments, maintained consistent joint hyperparameters across the various algorithms. Second, all the
experiments of our own algorithm, TGRL, used the same hyperparameters. We used α = 3, initial λ
equal to 9 (and so the effective coefficient α

1+λ = 0.3) and coefficient learning rate of 3e−3. Finally,
for every one of the baselines we performed for each environment a search over all the algorithm-
specific hyperparameters with N=8 different values for each one and report the best results (besides
for COSIL, where we also report the average performance across hyperparameters).
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Tiger Door Lava Crossing Memory Light-Dark Ant Shadow Hand
Max ep. length 100 225 121 100 100
Collected ep. per iter. 5 10 120
RL updates per iter. 500 1000 1000
Optimizer Adam
Learning rate 3e-4
Discount factor (γ) 0.9
Batch size 32 128 128
LSTM hidden size 128 256 128
Obs. embedding 16 32 128
Actions embedding 16 32 16
Hidden layers after LSTM [128,128] [512,256] [512, 256, 128]

Figure 5: Hyperparameters table.

C ADDITIONAL RESULTS

Here we record additional results that were summarized or deferred in Section 4. In particular:

Environments without Imitation Gap. Determining the presence of an Imitation Gap in a given
environment is a complex task, as it is dependent on the specific task and the observations avail-
able to the agent, which can vary significantly across different environments. As such, it can be
challenging to know beforehand if an Imitation Gap exists or not. In the following experiment, we
demonstrate that even in scenarios where an Imitation Gap does not exist, the use of our proposed
TGRL algorithm yields results that are comparable to those obtained using traditional Imitation
Learning (IL) methods, which are typically considered the best approach in such scenarios. This
highlights the robustness and versatility of our proposed approach.

The experiment includes three classic POMDP environments from (Ni et al., 2022). These environ-
ments are a version of the Mujoco Hopper, Walker2D, and HalfCheetah environments, where the
agent only have access to the joint positions but not to their velocities. The teacher, however, has
access to both positions and velocities. As can be seen in Figure 6, TGRL converges a bit slower
than IL but still manage to converge to the teacher’s performance.

Full training curves for Shadow Hand experiments. In Figure 7, we provide the full version of
the training curves that appears in Figure 2.

Figure 6: TGRL versus Imitation Learning on domains without Imitation Gap. The rewards are
normalized based on the teachers’ performance.
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Figure 7: Full training curve of Shadow Hand pen reorientation with tactile sensors task
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